

CENTRO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE QUÍMICA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

"SÍNTESE, ATIVIDADE ANTITUMORAL E ANTIMICROBIANA DE NOVOS DERIVADOS 3-[2-TIOXO-3-(ALQUILAMINOMETIL)-1,3,4-OXADIAZOL-5-IL] -β-CARBOLÍNICOS-1-FENILSSUBSTITUÍDOS"

Dissertação apresentada por *Franciele Cristina Savariz* ao Programa de Pós-Graduação em Química do Departamento de Química do Centro de Ciências Exatas da Universidade Estadual de Maringá como parte dos requisitos para a obtenção do título de Mestre em Química.

MARINGÁ, FEVEREIRO/2009

UNIVERSIDADE ESTADUAL DE MARINGÁ

CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

SÍNTESE, ATIVIDADE ANTITUMORAL E ANTIMICROBIANA DE NOVOS DERIVADOS 3-[2-TIOXO-3-(ALQUILAMINOMETIL)-1,3,4-OXADIAZOL-5-IL]β-CARBOLÍNICOS-1-FENILSSUBSTITUÍDOS

Mestranda: FRANCIELE CRISTINA SAVARIZ

Orientadora: Profa. Dra. Maria Helena Sarragiotto

MARINGÁ, FEVEREIRO DE 2009

Dados Internacionais de Catalogação-na-Publicação (CIP) (Biblioteca Central - UEM, Maringá – PR., Brasil)

S265s	<pre>Savariz, Franciele Cristina Síntese, atividade antitumoral e antimicrobiana de novos derivados 3-[2-tioxo-3-(alquilaminometil)-1,3,4- oxadiazol-5-il]-β-carbolínicos-1-fenilssubstituídos / Franciele Cristina Savariz Maringá : [s.n.], 2009. 146 f. : il. (algumas color.), figs., tabs.</pre>
	Orientadora : Profa. Dra. Maria Helena Sarragiotto. Dissertação (mestrado) - Universidade Estadual de Maringá, Programa de Pós-Graduação em Química, 2009.
	 β-carbolinas. 2. Bases de Mannich. 3. Atividade antitumoral. 4. Atividade antimicrobiana. 5. Anticâncer. 6. Antitumor. 7. Câncer. 8. Síntese orgânica. 9. Alcalóides. 10. Indol. I. Sarragiotto, Maria Helena, orient. II. Universidade Estadual de Maringá. Programa de Pós-Graduação em Química. III. Título.
	CDD 21.ed. 547

Universidade Estadual de Maringá Centro de Ciências Exatas Departamento de Química Programa de Pós-Graduação em Química

Este é o exemplar definitivo da Dissertação apresentada por **Franciele Cristina Savariz**, perante a Comissão Julgadora do Programa de Pós-Graduação em Química em 11 de fevereiro de 2009.

COMISSÃO JULGADORA:

Profa. Dra. Maria Helena Sarragiotto Presidente - UEM/DQI

Profa. Dra. Regina Aparecida Correia Gonçalves Membro - UEM/DFF

> Prof. Dr. Maurício Ferreira da Rosa Membro - UNIOESTE

Dedico este trabalho ao meu noivo Eduardo,

meu pai Itacir,

minha mãe Elmi,

minha irmã Eliane

e irmão Wellington,

pelo amor, paciência, compreensão, incentivo,

por acreditarem em mim e esperar...

AGRADECIMENTOS

À Deus por renovar em mim a força do Espírito Santo todos os dias.

À prof. Dra. Maria Helena Sarragiotto, pela orientação, paciência e amizade.

Ao CNPQ pela bolsa de estudo.

Ao Departamento de Química da Universidade Estadual de Maringá, pela disponibilidade de concretização deste trabalho.

Ao meu noivo Eduardo pelo amor, paciência...tudo.

A meu pai Itacir, minha mãe Elmi, que me ensinaram a capacidade de voar e sempre acreditaram em mim com amor incondicional.

A meu irmão Wellington e minha irmã Eliane me incentivando a continuar.

A minha linda afiliada Sthefanny, flash da verdadeira pureza da alegria.

A Regina e Altair, as nonas, por terem sido tão gentis e torcido tanto por mim.

As minhas amigas de Toledo Adriana, Sandra e Luci e de Maringá Silvia, Zibia e Elisangela, pela força em todos os momentos desta obra.

À Anelise, Liliam, Letícia, Maria Augusta, Manuela, Pollyanna, Rosemery, Valéria, George, Marcos e Professor Willian pelo aprendizado e amizade destes dois anos de convivência no laboratório 31.

À Ivânia, grande companheira, pela ajuda e realização dos espectros de RMN.

A Ana e ao Edson pelos espectros de IV e de massa. Ao Moacir pela colaboração.

A todos que perto e a distância rezaram e esperam por mim.

SUMÁRIO

SUMÁRIO

RESUMO	Ι
ABSTRACT	III
ÍNDICE DE FIGURAS	V
ÍNDICE DE TABELAS	VII
ÍNDICES DE QUADROS E ESQUEMAS	VIII
ÍNDICE DE GRÁFICOS	IX
ÍNDICE DOS ANEXOS	Х
LISTA DE ABREVIATURAS E SÍMBOLOS	XII
TABELA DOS DERIVADOS SINTETIZADOS E NUMERAÇÃO	XIV
1. INTRODUÇÃO	1
2. OBJETIVOS	6
3. REVISÃO BIBLIOGRÁFICA	7
3.1 POTENCIAL BIOLÓGICO DE OXADIAZÓIS E DE BASES DE MANNICH	7
4. RESULTADOS E DISCUSSÃO - PREPARAÇÃO E CARACTERIZAÇÃO DOS	
COMPOSTOS	10
4.1. PREPARAÇÃO E CARACTERIZAÇÃO DOS DERIVADOS 3-[2"-TIOXO-3"-	
(ALQUIL-AMINOMETIL)-1",3",4"-OXADIAZOL-5"-IL]- <i>β</i> -CARBOLÍNICOS-1-	
FENILSSUBSTITUÍDOS (24 - 29 a-c)	10
4.2 RESULTADOS E DISCUSSÃO – ENSAIOS BIOLÓGICOS	38
4.2.1 Avaliação da atividade antitumoral dos derivados 3-[2"-tioxo-3"-	
(alquilaminometil)-1",3",4"-oxadiazol-5"-il]-β-carbolínicos- 1-fenilssubstituí-	
dos (24-29 a-c)	38
4.2.2 Avaliação da atividade antimicrobiana	46
4.2.3 Estudo in silico	48
5. PARTE EXPERIMENTAL	53
5.1. INSTRUMENTAÇÃO	53
5.2. MATERIAIS E MÉTODOS	53
5.3. PROCEDIMENTO PARA A SÍNTESE DOS COMPOSTOS	54
5.3.1 Síntese do Triptofano metil éster (19)	54
5.3.2 Síntese das 3-carbometóxi-tetraidro- β -carbolinas-	
1-fenilssubstituídas (20 a-c)	55
5.3.3 Síntese das 3-carbometóxi- <i>β</i> -carbolinas-1-fenilssubstituídas	
(21 a-c)	55

SUMÁRIO

5.3.4 Síntese das <i>β</i> -carbolinas-1-fenilssubstituídas-3-carboidrazil	
(22 a-c)	56
5.3.5 Síntese das 3-(2"-tioxo-1",3",4"-oxadiazol-5"-il)- β -carbolínicos-	
1-fenilssubstituídos (23 a-c)	57
5.3.6 Síntese das 3-[2"-tioxo-3"-(alquil-aminometil)-1",3",4"-oxadiazolil]-	
m eta-carbolinas-1-fenilssubstituídas (24-29 a-c)	58
5.4. PROCEDIMENTO GERAL PARA OS ENSAIOS BIOLÓGICOS	60
5.4.1 Atividade anticâncer dos compostos	60
5.4.1.a Linhagens de células utilizadas	6
5.4.1.b Procedimento dos ensaios para a determinação da atividade	
anticâncer dos compostos	6
5.4.1.c Análise dos resultados	62
5.4.2 Teste de susceptibilidade antimicrobiana	6
5.4.2.a Teste de susceptibilidade antibacteriana	6
5.4.2.b Teste de susceptibilidade antifúngica	6
6. CONCLUSÕES	6
7.REFERÊNCIAS BIBLIOGRÁFICAS	6

RESUMO

Síntese, atividade antitumoral e antimicrobiana de novos derivados 3-[2-tioxo-3-(alquilaminometil)-1,3,4-oxadiazol-5-il] - β -carbolínicos-1-fenilssubstituídos.

Palavras chaves: β -carbolinas, Bases de Mannich, atividade antitumoral e antimicrobiana.

Alcalóides β -carbolínicos apresentam amplo espectro de um propriedades farmacológicas, biológicas е dentre elas. atividade antimicrobiana, antiviral e antitumoral. Diversas pesquisas têm sido desenvolvidas para a obtenção de derivados β-carbolínicos com diferentes substituintes, principalmente nas posições-1 e 3 do anel β -carbolínico, visando um estudo de relação estrutura/atividade.

Estudos anteriormente realizados por nosso grupo de pesquisa com esta classe de compostos mostraram que β -carbolinas contendo a unidade 2-tioxo-1,3,4-oxadiazol na posição-3 e o grupo fenilssubstituído na posição-1 apresentaram potente atividade antitumoral e antimicrobiana. Com base em dados da literatura que descrevem o incremento da atividade farmacológica de bases de Mannich derivadas de oxadiazóis, e visando a estudos de relação estrutura-atividade, propusemos a síntese e avaliação da atividade de bases de Mannich derivadas das tio-oxadiazolil- β -carbolinas anteriormente estudadas.

Assim, o presente trabalho teve como objetivo a síntese e avaliação da atividade antitumoral e antimicrobiana de novas β -carbolinas 1-fenilssubsituídas com a unidade 2-tioxo-3-(alquilaminometil)-1,3,4-oxadiazol-5-il na posição-3 da β -carbolina.

Os compostos 3-carbometóxi-β-carbolínicos (**21 a-c**), intermediários chaves da rota sintética, foram preparados pela reação de condensação do

RESUMO

éster metílico do L-triptofano com os aldeídos aromáticos benzaldeído, *m*-nitrobenzaldeído e *p*-dimetilaminobenzaldeído, via reação de Pictet-Spengler catalisada por ácido, seguida pela oxidação com enxofre, em xileno. A reação de substituição nucleofílica dos intermediários **21 a-c** com hidrazina hidratada forneceu os derivados β-carbolina-3-carboidrazidas (**22 a-c**).

A reação de adição nucleofílica de (**22 a-c**) com dissulfeto de carbono forneceu os compostos $3-(2^{"}-tioxo-1^{"},3^{"},4^{"}-oxadiazolil-5^{"}-il)-\beta$ -carbolínicos-1fenilssubstituídos (**23 a-c**). Os derivados **23 a-c**, foram então submetidos à reação de condensação de Mannich com as aminas primárias isopropilamina, butilamina, cicloexilamina, benzilamina e as aminas secundárias pirrolidina e morfolina, em presença de formaldeído, para a obtenção das respectivas bases de Mannich, os derivados inéditos $3-[2^{"}-tioxo-3^{"}-(alquilaminometil)-1^{"},3^{"},4^{"}$ $oxadiazol-5^{"}-il]-<math>\beta$ -carbolínicos (**24 - 29 a-c**).

As estruturas dos compostos sintetizados foram confirmadas com base na análise dos dados espectroscópicos de IV, EM, RMN ¹H e ¹³C/DEPT e de técnicas bidimensionais de RMN (COSY e HMQC).

Os compostos **23 a-c** e **24** - **29** (**a-c**) foram submetidos à avaliação da atividade antitumoral frente a culturas de células tumorais de melanoma (UACC-62), mama (MCF7), ovário resistente (NCI/ADR), rim (786-0), pulmão (NCI-460), próstata (PCO-3), ovário (OVCAR) e cólon (HT29). Estes compostos também foram avaliados quanto a atividade antimicrobiana frente as bactérias *Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Sthaphylococus aureus* e aos fungos *Candida parapsilosis, Candida tropicalis e Candida albicans.*

Os compostos sintetizados foram submetidos a um estudo teórico (*in silico*) através da "regra dos cinco de Lipinski", a qual fornece parâmetros relacionados à biodisponibilidade oral e a topologia das novas moléculas. A avaliação *in silico* incluiu a determinação das propriedades farmacocinéticas de absorção, distribuição, metabolismo, excreção e toxicidade (ADMET), obtendo-se o potencial do composto como fármaco "Drugscore", o qual é utilizado para julgar o potencial dos novos derivados obtidos como futuros fármacos.

ABSTRACT

Synthesis, antitumoral and antimicrobial activity of novel 1-substitutedphenyl-3-[2-thioxo-3-(alkylaminomethyl)-1,3,4-oxadiazol-5-yl]- β -carboline derivatives

Keywords: β -carboline, Mannich bases, antitumoral and antimicrobial activity.

The β -carbolines alkaloids are a class of synthetic and naturally occurring compounds that possess a large spectrum of important pharmacological properties such as, antimicrobial, antitumoral and antiviral. Studies on a variety of synthetic β -carboline derivatives have demonstrated the influence of the substituents in positions-1 and -3 of the β -carboline skeleton on activity.

The potentialities of β -carboline alkaloids as antitumoral agents and the importance of the search for new anticancer drugs have lead us to study this class of compounds. Our previous work on the synthesis and activity evaluation of 1-substituted-phenyl β -carbolines bearing the 2-thioxo-1,3,4-oxadiazol-5-yl nucleus showed the potential of these compounds as anticancer and antimicrobial agents. Furthermore, several Mannich bases derivate from 1,3,4-oxadiazole were reported to possess antitumoral activities.

Taking in account our previous results and the activity reported for Mannich bases of 1,3,4-oxadiazole, in the present investigation we have designed and synthesized a number of new β -carboline derivatives bearing a 2-thioxo-3-alkylaminomethyl-1,3,4-oxadiazol-5-yl at C-3 of the β -carboline nucleus.

In the synthetic route for the preparation of β -carboline-3carbohydrazides (**22 a-c**) the intermediates methyl β -carboline-3-carboxylates (**21 a-c**) were prepared through a Pictet-Spengler condensation of L-tryptophan methyl ester with appropriate aromatic aldehydes in acid media, and subsequent oxidation with sulfur, in xylene. The reaction of **21 a-c** with

ABSTRACT

hydrazine hydrate in ethanol furnished the 1-(substituted-phenyl)- β -carboline-3carbohydrazides (**22 a-c**). For preparation of 3-(2-thioxo-1,3,4-oxadiazol-5-yl) β carbolines (**23 a-c**), the key intermediates **22 a-c** were subjected to reaction with carbon disulfide in presence of KOH and ethanol, under reflux. The novel 1-substituted-phenyl-3-[2-thioxo-3-(alkylaminomethyl)-1,3,4-oxadiazol-5-yl]- β carboline derivatives (**24-29 a-c**) (Mannich bases) were obtained from the reaction of **23 a-c** with appropriated amines and formaldehyde.

The structures of the synthesized compounds were confirmed on the basis of their spectral data (IR, MS, ¹H and ¹³C NMR, COSY and HMQC).

The compounds **23 a-c** and **24-29** (**a-c**) were assayed for their antitumoral activity against the human cancer cell lines UACC-62 (melanoma), MCF7 (mamma), NCI/ADR (resistant mamma), 786-0 (kidney), NCI-460 (lung), PCO-3 (prostate), OVCAR (ovary) and HT29 (colon). Also, the antimicrobial activity of the synthesized compounds against the bactéria *Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Sthaphylococus aureus* and the fungi *Candida parapsilosis, Candida tropicalis* and *Candida albicans* were evaluted.

A computational study for prediction of ADMET properties of the novel synthesized β -carbolines derivatives was performed by determination of lipophilicity, topological polar surface area (TPSA), absorption (% ABS) and simple molecular descriptors, using Lipinski's rule.

ÍNDICE DE FIGURAS

ÍNDICE DE FIGURAS

Figura 1a: Espectro no IV (filme/KBr) do composto 21a	16
Figura 1b: Espectro de RMN ¹ H (300,0 MHz, CDCl ₃ /CD ₃ OD) do composto 21a	17
Figura 1c: Espectro de RMN ¹³ C/DEPT (75,0 MHz, CDCl ₃ /CD ₃ OD) do composto 21a	17
Figura 2a: Espectro no IV (filme/KBr) do composto 22a	18
Figura 2b: Espectro de RMN ¹ H (300,0 MHz, DMSO- <i>d</i> ₆) do composto 22a	19
Figura 2c: Espectro de RMN ¹³ C/DEPT (75,0 MHz, DMSO- <i>d</i> ₆ /CDCl ₃) do composto 22a	19
Figura 3a: Espectro no IV (filme/KBr) do composto 23a	21
Figura 3b: Espectro de RMN ¹ H (300,0 MHz, DMSO- <i>d</i> ₆) do composto 23a	22
Figura 3c: Espectro de RMN ¹³ C/DEPT (75,0 MHz, DMSO- <i>d</i> ₆) do composto 23a	22
Figura 4: Aminas utilizadas para a síntese dos compostos (24 - 29 a-c)	23
Figura 5a: Espectro no IV (filme/KBr) do composto 24a	26
Figura 5b: Espectro de RMN ¹ H (300,0 MHz, DMSO- <i>d</i> ₆) do composto 24a	27
Figura 5c: Espectro de RMN ¹³ C/DEPT (75,0 MHz, DMSO- <i>d</i> ₆) do composto 24a	27
Figura 5d: Espectro de massa de baixa resolução de 24a	28
Figura 5e: Fragmentação no espectro de massa do derivado 24a. Pico Base	28
Figura 5f: Fragmentação no espectro de massa do derivado 24a	29
Figura 6a: Espectro no IV (filme/KBr) do composto 25a	29
Figura 6b: Espectro de RMN ¹ H (300,0 MHz, DMSO- <i>d</i> ₆) do composto 25a	30
Figura 6c: Espectro de RMN ¹³ C (75,0 MHz, DMSO- <i>d</i> ₆) do composto 25a	30
Figura 6d: Espectro de massa de baixa resolução de 25a	31
Figura 7a: Espectro no IV (filme/KBr) do composto 26a	31
Figura 7b: Espectro de RMN ¹ H (300,0 MHz, DMSO- <i>d</i> ₆) do composto 26a	32
Figura 7c: Espectro de RMN ¹³ C (75,0 MHz, DMSO- <i>d</i> ₆) do composto 26a	32
Figura 7d: Espectro de massa de baixa resolução de 26a	33
Figura 8a: Espectro no IV (filme/KBr) do composto 27a	33
Figura 8b: Espectro de RMN ¹ H (300,0 MHz, DMSO- d_6) do composto 27a	34

ÍNDICE DE FIGURAS

Figura 8c: Espectro de RMN ¹³ C (75,0 MHz, DMSO- <i>d</i> ₆) do composto 27a	34
Figura 8d: Espectro de massa de baixa resolução de 27a	35
Figura 9a: Espectro no IV (filme/KBr) do composto 28a	35
Figura 9b: Espectro de RMN ¹ H (300,0 MHz, DMSO- <i>d</i> ₆) do composto 28a	36
Figura 9c: Espectro de RMN ¹³ C (75,0 MHz, DMSO- <i>d</i> ₆) do composto 28a	36
Figura 10a.: Espectro de IV (filme/KBr) do composto 29a	37
Figura 10b: Espectro de RMN ¹ H (300,0 MHz, DMSO- d_6) do composto 29a	37
Figura 10c: Espectro de RMN ¹³ C (75,5MHz, DMSO- <i>d</i> ₆) do composto 29a	38
Figura 10d: Espectro de massa de baixa resolução de 29a	38

ÍNDICE DE TABELAS

Tabela 1: Dados de RMN ¹ H e ¹³ C (300,0/75,0 MHz, DMSO-d ₆) para 22a e 23a	23
Tabela 2: Avaliação da atividade antitumoral dos compostos 3-(2"-tioxo-1",3",4"-oxadiazol-5"-il)-	
β -carbolínicos-1-benzossubstituídos (23 a-c) e dos derivados 3-[2"-tioxo-3"-(alquilaminometil)-	
1",3",4"-oxadiazol-5"-il]- β -carbolínicos (24-29 a-c). Valores de IC ₅₀ e IC ₅₀ MG-MID em μ M	46
Tabela 3: Avaliação da atividade antitumoral dos compostos 3-(2"-tioxo-1",3",4"-oxadiazol-5"-il)-	
β-carbolínicos-1-fenilssubstituídos (23 a-c) e dos derivados 3-[2"-tioxo-3"-(alquilaminometil)-	
1",3",4"-oxadiazol-5"-il]- β -carbolínicos (24-29 a-c) . Valores de IC ₁₀₀ e LC ₅₀ (entre parênteses) e	
$IC_{100}MG\text{-}MID$ e do $LC_{50}MG\text{-}MID$ em μM	47
Tabela 4: Dados para os derivados 24 - 28 a-c frente às células normais de Pulmão (V79) e de	
Rim (MDCK)	48
Tabela 5: Valores teóricos da regra do "cinco de Lipinski" calculados para os compostos	
(23 a-c) e (24-29 a-c)	56
Tabela 6: Características e rendimentos dos derivados 20 a-c	59
Tabela 7: Características e rendimentos dos derivados 21 a-c	60
Tabela 8: Características e rendimentos dos derivados 22 a-c	61
Tabela 9: Características e rendimentos dos derivados 23 a-c	61
Tabela 10: Características e rendimentos dos derivados 24 - 29 a-c	63
Tabela 11: Linhagens de células utilizadas nos ensaios antiproliferativo	64

ÍNDICE DE QUADROS E ESQUEMAS

ÍNDICE DE QUADROS E ESQUEMAS

Quadro 1: Estruturas básicas dos compostos tetraidro- β -carbolínicos e β -carbolínicos 1,3-	
dissubstituídos sintetizados e avaliados biologicamente em estudos anteriores	04
Esquema 1: Rota geral para a síntese dos compostos β -carbolínicos-1-fenilsubstituídos	
contendo o grupo 2-tioxo-3-(alquilaminometil)- 1,3, 4-oxadiazol-5-il na posição-3 (24 - 29 a-c).	12
Esquema 2: Proposta mecanística para síntese das tetraidro-β-carbolinas via reação de	
Pictet-Spengler	13
Esquema 3: Proposta mecanística de reação de oxidação das tetraidro-β-carbolinas	
utilizando enxofre	15
Esquema 4: Mecanismo proposto para a formação dos compostos 3-(2"-tioxo-1",3",4"-	
oxadiazol-5"-il)-β-carbolínicos-1-fenilssubstituídos (23 a-c)	20
Esquema 5: Mecanismo proposto para obtenção dos compostos 24 - 29 a-c	25

ÍNDICE DE GRÁFICOS

ÍNDICE DE GRÁFICOS

Gráfico 1: Comparação entre os valores de IC_{50} (μM) dos derivados 3-[2"-tioxo-3"-	
(pirrolidillmetil)- 1",3",4"-oxadiazol-5"il]-β-carbolínicos 28 a-c com os seus precursores 23 a-c	41
Gráfico 2: Resultado do teste antitumural do composto 27c	42
Gráfico 3: Resultado do teste antitumural do composto 24c	42
Gráfico 4: Resultado do teste antitumural do composto 24a	43
Gráfico 5: Resultado do teste de toxicidade frente as células nomais de pulmão(V79) e de	
rim (MDKV) do composto 27c	44
Gráfico 6 e 7: Resultado do teste de toxicidade frente as células nomais de pulmão(V79) e	
de rim (MDKV) dos compostos 24a e 24c	45
Gráfico 8: Valores de "Druglikeness" e "Drugscore" dos derivados 3-[2"-tioxo-3"-	
(alquilaminometil)- 1",3",4"-oxadiazol-5"-il]-β-carbolínicos (24-29 a-c) e dos seus precursores	
23 a-c	55

ÍNDICE DOS ANEXOS

ÍNDICE DOS ANEXOS

Anexo 1.	3-carbometóxi-1-fenil-β-carbolina (21a)	83
Anexo 2.	1-fenil-β-carbolina-3-carboidrazida (22a)	85
Anexo 3.	3-[2"-tioxo-(1", 3", 4")-oxadiazol-5"-il]-1-fenil-β-carbolina (23a)	87
Anexo 4.	3-[2"-tioxo-(1", 3", 4")-oxadiazol-5"-il]-1-(3'-nitrofenil)-β-carbolina	
	(23b)	89
Anexo 5.	3-[2"-tioxo-(1", 3", 4")-oxadiazol-5"-il]-1-(4'-dimetilaminofenil)- β -	
	carbolina (23c)	91
Anexo 6.	3-[2"-tioxo-3"-(isopropilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-	
	fenil-β-carbolina (24a)	93
Anexo 7.	3-[2"-tioxo-3"-(isopropilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (24b)	96
Anexo 8.	3-[2"-tioxo-3"-(isopropilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-	
	dimetilaminofenil)-β-carbolina (24c)	99
Anexo 9.	3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-fenil- β -	
	carbolina (25a)	102
Anexo 10.	3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (25b)	105
Anexo 11.	3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-di-	
	metilaminofenil)-β-carbolina (25c)	108
Anexo 12.	3-[2"-tioxo-3"-(cicloexilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-	
	fenil-β-carbolina (26a)	111
Anexo 13.	3-[2"-tioxo-3"-(cicloexilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (26b)	114
Anexo 14.	3-[2"-tioxo-3"-(cicloexilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-	
	dimetilaminofenil)-β-carbolina (26c)	117
Anexo 15.	3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-fenil-	
	β-carbolina (27a)	120
Anexo 16.	3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (27b)	123
Anexo 17.	3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-	
	dimetilaminofenil)-β-carbolina (27c)	126

Anexo 18.	3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazolil-5"-il]-1-fenil-β-	
	carbolina (28a)	129
Anexo 19.	3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-nitro-	
	fenil)-β-carbolina (28b)	132
Anexo 20.	3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-dime-	
	tilaminofenil)-β-carbolina (28c)	135
Anexo 21.	3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-5"-il]-1-fenil- β -	
	carbolina (29a)	138
Anexo 22.	3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (29b)	141
Anexo 23.	3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-dime-	
	tilaminofenil)-β-carbolina (29c)	144

LISTA DE ABREVIATURAS E SÍMBOLOS

LISTA DE ABREVIATURAS E SÍMBOLOS

Ų	Ângstron ao quadrado
ABS %	Porcentagem de Absorção
ADMET	Absorção, Distribuição, Metabolismo, Excreção e Toxicidade
CCDA	Cromatografia em Camada Delgada Analítica
СМІ	Concentração Mínima Inibitória
СМВ	Concentração Mínima bactericida
CMF	Concentração Mínima fungicida
COSY	HxH Correlation Spectroscopy
d	Dupleto
dd	Duplo Dupleto
ddd	Duplo Dupleto
DEPT	Distortionless Enhancement by Polarization Transfer
DMSO	Dimetilsulfóxido
EM	Espectro de Massa
HMQC	Heteronuclear Multiple Quantum Coherence
Hz	Hertz
IV	Infravermelho
INH	Isoniazida
IC	Concentração inibitória
IC ₅₀	Concentração do fármaco que causa a inibição de 50% do crescimento
	celular
IC ₁₀₀	Concentração do fármaco para inibição de 100% do crescimento celular -
	atividade citostática
LC ₅₀	Concentração do fármaco que mata 50% das células tumorais - atividade
	citotóxica
J	Constante de acoplamento
logP	Coeficiente de Partição Octanol/Água
LogS	Solubilidade do Composto
m	Multipleto
m/z	Relação massa/carga
MG-MID	Mean-Graph Midpoint Values
MHz	Megahertz

LISTA DE ABREVIATURAS E SÍMBOLOS

ММ	Massa Molecular
mmol	Milimol
<i>n</i> ALH	Número de grupos Aceptores de Ligação Hidrogênio
<i>n</i> DLH	Número de grupos Doadores de Ligação Hidrogênio
рН	Potencial Hidrogeniônico
ppm	Partes Por Milhão
PSA	Polar Surface Área (Área da Superfície Polar)
quint	Quinteto
RMN	Ressonância Magnética Nuclear
RMN ¹³ C	Ressonância Magnética Nuclear de Carbono 13
RMN ¹ H	Ressonância Magnética Nuclear de Hidrogênio
RMCs	Reação Multicomponentes
S	Simpleto
sl	Simpleto Largo
sext.	Sexteto
SFB	Soro fetal bovino
SNC	Sistema Nervoso Central
t	Tripleto
ТСА	Ácido tricloroacético
td	Tripleto de Dupleto
TFA	Ácido Trifluoroacético
TPSA	Topological Polar Surface Area (Área Topológica da Superfície Polar)
TMS	Tetrametilsilano
UFC	Unidade Formadora de colônia
UV	Ultravioleta
μ M	MicroMolar
δ	Deslocamento Químico
δ _H	Deslocamento Químico de Hidrogênio
δ _c	Deslocamento Químico de Carbono-13

TABELA DOS DERIVADOS SINTETIZADOS E NUMERAÇÃO

TABELA DOS DERIVADOS SÍNTETIZADOS E NUMERAÇÃO

1. INTRODUÇÃO

Alcalóides tetraidro- β -carbolínicos e β -carbolínicos naturais e sintéticos têm sido alvo de vários estudos químicos e biológicos. O interesse biológico por esta classe de compostos deve-se a ocorrência destes, sob condições fisiológicas, em tecidos e fluidos biológicos¹⁻⁴. Tetraidro- β -carbolinas **(1 a-c)**, por exemplo, foram encontradas no cérebro, plaquetas e em outros tecidos de mamíferos⁵.

Esta classe de compostos apresenta uma gama de propriedades farmacológicas, tais como anticonvulsivante³⁻⁶, antimicrobiana⁷, antiviral⁸, antitrombótica⁹, antitripanossômica¹⁰⁻¹² e antileishmania¹³⁻¹⁵. Deve-se salientar também a importância de compostos β -carbolínicos como agentes antitumorais¹⁶⁻²¹.

Os compostos β -carbolínicos contendo um sistema policíclico planar como harmina (2), harmano (3) e norharmano (4), apresentaram alta citotoxicidade frente várias linhagens de células tumorais humanas. Estudos mecanísticos indicaram que as β -carbolinas podem intercalar entre a hélice do DNA e inibir a topoisomerase I e II causando danos ao DNA. Os estudos mostraram uma correlação direta entre a habilidade de intercalação ao DNA e a citotoxicidade¹⁶.

1

A classe das manzaminas, isoladas de vários gêneros marinhos como *Haliclona, Pellina e Xestospongia*²², constituem uma classe de compostos β -carbolínicos com significante atividade anticâncer. A manzamina A **(5)** apresentou pronunciada atividade frente a linhagem de célula tumorais de leucemia e pulmão com valores de IC₅₀ de 0,07 e 0,25µM, respectivamente¹².

Uma série de derivados β -carbolínicos com diferentes substituintes na posição-3, tais como grupos carbometóxi (6), aminoácidos (7a-b) e carboxamida (8a-c), foram sintetizados e avaliados frente à diferentes linhagens de células tumorais. Os derivados (7a) e (7b), com lisina e arginina conjugadas, apresentaram potente atividade frente ao carcinoma cervical com valores de IC₅₀ de 4 e 1µM, respectivamente^{18, 23, 24}.

Uma série de derivados β -carbolínicos com diferentes substituintes na posição-1, como ésteres, aldeídos e álcoois, foram sintetizados e sua atividade citotóxica foi avaliada. Dentre esses os compostos **(9a)** e **(9b)** contendo o grupo aldeído na posição-1 e diferentes substituintes na posição-9, foram fortemente ativos frente a célula tumoral de leucemia com IC₅₀ de 0,36 e $1,7\mu$ M, respectivamente²⁵.

Devido a estes e outros relatos sobre o potencial de alcalóides β carbolínicos no desenvolvimento de agentes antitumorais, assim como parasiticidas, antivirais e antimicrobianos nos levaram ao estudo desta classe de compostos. Dentro deste contexto, nosso grupo de pesquisa vem, desde o ano de 2003, desenvolvendo trabalhos de síntese, avaliação da atividade farmacológica e estudos de relação estrutura-atividade de compostos tetraidro- β -carbolínicos e β -carbolínicos²⁶. Os estudos relativos à atividade biológica estão sendo realizados em colaboração com pesquisadores do Departamento de Análises Clínicas da Universidade Estadual de Maringá e do Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA) da Universidade Estadual de Campinas.

Nos trabalhos desenvolvidos^{26, 27}, realizou-se a síntese e a avaliação da atividade biológica *in vitro* de algumas séries de compostos contendo diferentes substituintes nas posições-1 e -3 do núcleo β -carbolínico, uma vez que, segundo a literatura, a presença de determinados substituintes nas posições -1, -2, -3 e/ou -9 do referido núcleo pode dar origem a derivados mais ativos e com menor toxicidade²⁰.

As estruturas básicas das séries de compostos sintetizadas estão mostradas no **Quadro 1**. Dentre os trabalhos realizados podemos citar a síntese e a avaliação da atividade antitripanossômica e antileishmania de uma série de alcalóides tetraidro- β -carbolínicos contendo diferentes substituintes aromáticos na posição-1 e o grupo carbometóxi (I) e N-alquilcarboxamida (II) na posição-3, com significantes resultados de atividade^{26, 28, 29}. Compostos β -carbolínícos contendo os grupos carbometóxi (III), carboidrazida (IV), 1,3,4-oxadiazolil (V)^{27,30} e 1,2,4-triazolil (VI)³⁰ na posição-3 foram sintetizados e vários dos derivados obtidos apresentaram atividade anticâncer frente a diversas linhagens de células tumorais humanas, em alguns casos com valores de IC₅₀ inferiores a 1,00 μ M^{27, 30}. Alguns dos derivados contendo a unidade 3-(1,3,4-oxadiazolil) (V) apresentaram também atividade antibacteriana e antifúngica²⁷.

R=H; *m*-NO₂; *p*-N(CH₃)₂; *m*-OCH₃, *p*-OH; *p*-OH; *p*-NO₂ e *o*-Cl

Quadro 1: Estruturas básicas dos compostos tetraidro- β -carbolínicos e β -carbolínicos 1,3-dissubstituídos sintetizados e avaliados biologicamente em estudos anteriores.

Em função da gama de propriedades dos alcalóides tetraidro- β carbolínicos e β -carbolínicos e devido aos promissores resultados obtidos por nosso grupo, pretende-se com este trabalho, dar continuidade aos estudos envolvendo a síntese e a relação estrutura-atividade de compostos β carbolínicos 1,3-dissubstituídos.

Tendo em vista o potencial biológico observado para a série de β carbolinas contendo a unidade 2-tioxo-1,3,4-oxadiazol na posição-3 (**V**), optamos pela continuidade do estudo destes derivados, propondo a introdução de substituintes no anel heterocíclico 2-tioxo-1,3,4-oxadiazol.

Trabalhos da literatura relatam que a introdução de grupos alquilaminometil no átomo de nitrogênio de sistemas heterocíclicos, ou seja, a formação de bases de Mannich resulta em aumento da atividade biológica em relação à dos respectivos heterocíclicos de partida³¹. Diferentes atividades biológicas tais como, antibacteriana^{32,33,34}, antifúngica^{33,35}, antimalárica³⁶, analgésica³⁷ e antitumoral³⁸ são descritas para bases de Mannich.

Assim, propusemos neste trabalho a síntese de derivados com a unidade 2-tioxo-3-(alquilaminometil)-1,3,4-oxadiazol-5-il na posição-3 da β -carbolina (VII), que correspondem às bases de Mannich de V, esperando o aumento do potencial antitumoral e antimicrobiano destes novos derivados em comparação com seus precursores.

Para predizer se os compostos sintetizados neste trabalho possuem potencial como fármaco, os mesmos foram submetidos a um estudo teórico (*in silico*) através da "regra do cinco de Lipinski", a qual fornece parâmetros relacionados à biodisponibilidade oral e topologia das novas moléculas^{39,40}.

Os cálculos foram realizados utilizando o programa computacional *Molinspiration online property calculation toolkit* e o programa *Osíris*⁴⁰⁻⁴³.

A avaliação *in silico* incluiu a determinação das propriedades farmacocinéticas de absorção, distribuição, metabolismo, excreção e toxicidade (ADMET)⁴⁴, obtendo-se o potencial do composto como fármaco "Drugscore", o qual é utilizado para julgar o potencial desses novos derivados como futuros fármacos⁴⁵.

2. OBJETIVOS

Devido as atividades biológicas descrita na literatura para os derivados β -carbolínicos e considerando a necessidade de sintetizar novos fármacos antitumorais e antimicrobianos, o presente trabalho foi conduzido com os objetivos de:

 Preparar e caracterizar uma série de derivados
 3-[2"-tioxo-3"-(alquilaminometil)-1",3",4"-oxadiazol-5"-il]-β-carbolínicos-1fenilssubstituídos;

- Realizar ensaios biológicos para avaliar a atividade anticâncer, antibacteriana e antifúngica dos compostos sintetizados;
- ✓ Realizar estudos de ADMET *in silico* dos compostos sintetizados.
- Realizar estudos de relação estrutura/atividade dos compostos βcarbolínicos sintetizados.

3. REVISÃO BIBLIOGRÁFICA

3. 1 POTENCIAL BIOLÓGICO DE OXADIAZÓIS E DE BASES DE MANNICH.

Nos últimos anos os núcleos oxadiazol tem sido alvo de muitos estudos químicos e biológicos, destacando-se com diversas atividades biológicas, tais como antiinflamatória⁴⁶, anti-hipertensiva^{47,} antibacteriana³², antimicrobiana^{34,48,49.}

Compostos contendo o núcleo 1,3,4-oxadiazol apresentam elevado potencial como agentes anticâncer, estimulantes do sistema nervoso central (SNC) e antibacteriano³² com destaque para vários compostos tio-oxadiazolínicos com atividade antiviral⁵⁰ e antitumoral⁵¹.

A potencialidade destes compostos como agentes antitumorais e antibacterianos foi também constatada em trabalhos anteriormente realizados por nosso grupo de pesquisa. Da série das β -carbolinas 2-tioxo-1,3,4-oxadiazolil sintetizadas por nosso grupo²⁷ os derivados contendo os grupos *p*-hidróxifenil **(10)** e *m*-nitrofenil **(11)** na posição-1 foram ativos e altamente seletivos frente a célula de ovário resistente (ACI/ADR) com concentração inibitória de 50% das células tumorais (IC₅₀) de 0,45 µM e 0,37 µM, respectivamente²⁷.

Em relação à atividade antimicrobiana, o composto **12** contendo o grupo fenil na posição-1 foi fortemente ativo perante a bactéria *Bacillus subitilis*, ativo frente a bactéria *Staphylococcus aureus* e muito ativo frente ao fungo *Candida albicans* com valor de concentração mínima inibitória (CMI) de 7,8, 62,5 e 15,6 µg/mL, respectivamente. O derivado **13** contendo o grupo *p*-dimetilaminofenil

na posição-1 mostrou-se ativo frente as bactérias *B. subitilis* e *S. aureus* com valores de CMI de 31,2 μ g/mL²⁷.

Estudos de relação estrutura-atividade descritos na literatura demonstraram que análogos N-aminometil-oxadiazolínicos, obtidos pela reação de Mannich entre oxadiazóis e uma amina, são mais eficazes e menos tóxicos do que os seus precursores³¹.

Nos últimos anos a reação de Mannich ganhou destaque na química medicinal por ser uma reação de amino-metilação de substratos orgânicos, para a formação de ligação carbono-nitrogênio⁵² de grande importância para a síntese e modificação de compostos biologicamente ativos³¹.

Uma gama de atividades é descrita para bases de Mannich dentre elas antibacteriana^{32,33}, antifúngica^{33,35}, antitubercular^{53,54}, anti-inflamatória⁵⁵, antimalárica³⁶, vasorelaxante⁵⁶, analgésica³⁷ e antitumoral contra células de leucemia⁴². Bases de Mannich são também usadas na indústria de polímeros como tintas e agentes tensoativos⁵⁷.

Aboraia e col.³¹ sintetizaram uma série de bases de Mannich derivadas de tio-oxadiazois com diferentes aminas, dentre estes derivados o composto **14**, demonstrou excelente atividade frente às células tumorais de Próstata (PC-3) e frente à leucemia (CCRF-CEM).

Uma série de bases de Mannich de oxadiazóis (**15**) e tio-oxadiazóis (**16**) utilizando diversas aminas secundárias foi sintetizada por Mamolo e col.³² e avaliada contra *Mycobacterium tuberculosis H37Rv* com MIC inferior a40 μ g/mL.

Ali e Shaharyar³⁴ também sintetizaram uma série de bases de Mannich de oxadiazóis avaliando a atividade antimicobacteriana contra *M. tuberculosis* $H_{37}Rv$ e *INH M. tuberculosis resistente*, destacando-se o composto **17** com CMI = 0.1µM e 1.10µM, respectivamente.

4. RESULTADOS E DISCUSSÃO - PREPARAÇÃO E CARACTERIZAÇÃO DOS COMPOSTOS.

4.1 PREPARAÇÃO E CARACTERIZAÇÃO DOS DERIVADOS 3-[2"-TIOXO-3"-(ALQUILAMINOMETIL)-1",3",4"-OXADIAZOLIL]-β-CARBOLÍNICOS-1-FENILSSUBSTITUÍDOS (24 - 29 a-c).

Como citado anteriormente, as atividades observadas em nossos estudos para β -carbolinas contendo a unidade 2-tioxo-1,3,4-oxadiazol na posição-3 e as relatadas na literatura para bases de Mannich derivadas de oxadiazóis, nos levaram a propor a síntese de uma série de derivados 3-[2"-tioxo-3"-(alquilaminometil)-1",3",4"-oxadiazolil-5"-il]- β -carbolínicos-1-fenil-substituídos esperando o aumento do potencial antitumoral e antimicrobiano destes novos derivados em comparação aos de seus precursores.

Para continuidade do estudo, escolhemos três precursores 3-tiooxadiazolínicos com diferentes substituintes na posição-1, sendo estes o grupo fenil, o *m*-nitrofenil e o *p*-N,N-dimetilaminofenil. Esta escolha foi realizada com o intuito de verificar a influência de substituintes com grupo captor e doador de elétrons, em comparação a um grupo fenil não-substituído. Além disto, os compostos contendo estes tipos de substituintes demonstraram bons resultados de atividade antitumoral e antimicrobiana nos trabalhos anteriores do grupo de pesquisa.

A partir da condensação destes precursores com seis diferentes aminas e formaldeído foram preparadas as bases de Mannich (24 - 29 a-c).

11

A rota geral para a síntese dos derivados 3-[2"-tioxo-3"-(alquilaminometil)-1",3",4"-oxadiazolil-5"-il]- β -carbolínicos-1-fenilssubstituídos (24 - 29 a-c) está ilustrada no **Esquema 1**.

Esquema 1: Rota geral para a síntese dos compostos β-carbolínicos-1-fenilsubstituídos contendo o grupo 2-tioxo-3-(alquilaminometil)- 1,3, 4-oxadiazol-5-il na posição-3 (24 - 29 a-c).

No desenvolvimento da rota sintética, o L-triptofano comercial **(18)**, utilizado como substrato, foi esterificado com metanol, na presença de H_2SO_4 concentrado⁵⁸, obtendo-se o L-triptofano metil éster **(19)**.

A reação de condensação de Pictet-Spengler⁵⁹⁻⁶¹, catalisada por ácido, do L-triptofano metil éster **(19)** com três diferentes aldeídos: benzaldeído **(a)**, 3-nitro benzaldeído **(b)**, 4-dimetilamino benzaldeído **(c)**, forneceu as

3-carbometóxi-1,2,3,4-tetraidro- β -carbolinas-1-fenilssubstituídas **(20 a-c)**. Os compostos foram obtidos como misturas de diastereoisômeros que não foram separados.

O mecanismo da reação de condensação de Pictet-Spengler⁵⁹⁻⁶¹ é muito discutido pela literatura. Nos artigos mais recentes o mecanismo é proposto por dois caminhos distintos. Segundo Kusurkar⁶⁰ o mecanismo envolve um intermediário do tipo espiroindolenina como apresentado no **caminho A** (**Esquema 2**). Maresh⁶¹, utilizando cálculos computacionais demonstrou que a ciclização ocorre preferencialmente por ataque direto do C-9a do indol ao carbono imínico (**caminho B**). Ambos os caminhos propõe a formação de um íon imínio como intermediário.

Esquema 2: Proposta mecanística para síntese das tetraidro-β-carbolinas via reação de Pictet-Spengler.

A caracterização de todos os produtos obtidos foi realizada com base na análise de seus dados espectroscópicos de IV, EM, RMN ¹H e RMN ¹³C (uni e bidimensionais).
A obtenção dos compostos **20 a-c** foi confirmada pelos dados espectroscópicos de RMN ¹H e RMN ¹³C/DEPT pela presença de um simpleto em $\delta_{\rm H}$ 3,72 com integração para três hidrogênios atribuídos à metoxila do éster, com sinal do carbono oximetílico em $\delta_{\rm C}$ 52,2 e carbono característico de carbonila de éster em $\delta_{\rm C}$ 173,4 confirmando a esterificação. A unidade tetraidro- β -carbolínica foi evidenciada pela presença dos sinais em $\delta_{\rm H}$ 5,69 (s, H-1)/ $\delta_{\rm C}$ 59,6 (C-1), $\delta_{\rm H}$ 4,09 (*dd*, 1H, *J* 12,4; 4,8 Hz, H-3)/ $\delta_{\rm C}$ 60,4 (C-3) e em $\delta_{\rm H}$ 3,17 (*dd*, *J* 12,6; 6,8 Hz, H-4 β)/ $\delta_{\rm C}$ 24,4 (C-4) e em $\delta_{\rm H}$ 3,52 (*dd*, *J* 14,8; 6,8 Hz, H-4 α)/ $\delta_{\rm C}$ 24,4 (C-4).

Os demais sinais de hidrogênios na região de 6,64-8,23 ppm e de carbonos em 108,0-135,1 ppm (CH) e 128,3-160,0 ppm (C₀) foram atribuídos aos carbonos aromáticos do anel **A** da unidade principal e do substituinte R^1 .

Estes compostos já foram sintetizados e caracterizados por nosso grupo de pesquisa, os dados de RMN ¹H e RMN ¹³C/DEPT foram comparados com os publicados anteriormente por Dusman²⁶ e estão de acordo.

A reação de aromatização das tetraidro- β -carbolinas **20 a-c** resultou nos compostos 3-carbometóxi- β -carbolínicos **(21 a-c)**^{62, 63}. Neste trabalho, o enxofre foi utilizado para a reação de oxidação da unidade tetraidro- β -carbolina à β -carbolina e o mecanismo está apresentado no **Esquema 3**.

O enxofre existe de diversas formas moleculares incluindo a estrutura alotrópica cíclica de 8 membros de enxofre (S₈), que é utilizado como agente de desidrogenação. O enxofre tem configuração eletrônica [Ar] $3s^23p^4$ e sua capacidade de desidrogenação é uma conseqüência da tendência para completar a configuração do gás inerte, adquirindo 2 elétrons com formação do ácido sulfídrico, H₂S, que possui odor forte e é tóxico.

O mecanismo de desidrogenação com enxofre não está bem estabelecido, mas evidências indicam que o mecanismo é radicalar envolvendo a abstração de átomos de hidrogênio de posições alilícas ou benzilícas⁶².

14

RESULTADOS E DISCUSSÃO - PREPARAÇÃO E CARACTERIZAÇÃO DOS COMPOSTOS

Esquema 3: Proposta mecanística de reação de oxidação das tetraidro-*β*-carbolinas utilizando enxofre.

Os produtos obtidos foram caracterizados com base na análise de seus dados espectroscópicos de IV, EM, RMN ¹H e RMN ¹³C (uni e bidimensionais). Devido à similaridade dos espectros, dentro da série, discutiremos os dados espectroscópicos apenas para um dos compostos desta série.

Com a análise do espectro no IV do derivado **21a (Figura 1a)** verificouse que os derivados desta série apresentam as bandas em: 3317 cm⁻¹ (N-H indol), 1723 cm⁻¹ (C=O) do éster, 1499, 1459, 1438, 1387 cm⁻¹ (C=C), 1351 cm⁻¹ (C-O-C éster), 1253 cm⁻¹ (C=C-N) e 740 cm⁻¹ (N-H indol).

Figura 1a: Espectro no IV (filme/KBr) do composto 21a.

Além do espectro no IV, as evidências espectrais para a formação da unidade β -carbolina nos derivados **21 a-c**, baseiam-se nos dados espectroscópicos de RMN ¹H, devido à ausência dos sinais dos hidrogênios metilícos H-1, H-3 e H-4 na região de $\delta_{\rm H}$ 3,0 - 6,0 e aparecimento de um simpleto em $\delta_{\rm H}$ 8,89, correspondente ao hidrogênio metiníco H-4.

Os dados espectroscópicos de RMN ¹³C/DEPT confirmaram a aromatização do anel **C**, pela presença dos sinais em $\delta_{\rm C}$ 114,2 (CH), 140,7 (C₀) e 143,4 (C₀) correspondentes aos carbonos C-4, C-3 e C-1, respectivamente, de acordo com os dados de RMN H¹ e C¹³/DEPT publicados anteriormente por Formagio²⁷, sendo assim apenas os dados para o derivado 3-carbometóxi-1-fenil- β -carbolina (21a) estão ilustrados nas **Figuras 1b e 1c (Anexo 1)**.

Figura 1c: Espectro de RMN ¹³C/DEPT (75,0 MHz, CDCI₃/CD₃OD) do composto 21a.

A preparação das β -carbolina-3-carboidrazidas (**22 a-c**), envolveu uma reação de substituição nucleofílica dos derivados 3-carbometóxi- β -carbolínicos 1-fenilssubstituídos (**21 a-c**), com hidrazina hidratada, em etanol, sob refluxo por 72 horas⁶³. Devido à similaridade dos espectros, dentro da série e porque foram sintetizados anteriormente²⁷, discutiremos os dados espectroscópicos apenas para um dos compostos desta série.

Os espectros na região do infravermelho dos compostos **22 a-c** apresentaram bandas de absorção de C=O de amida em 1600 cm⁻¹, 3423 cm⁻¹ (NH₂), 3324 cm⁻¹ (N-H indol), 3253 cm⁻¹ (N-H amida), 1614 cm⁻¹ (C=N), 1521 (C-N amida), 1494, 1462, 1448 (C=C), 1247 (C=C-N), 730 cm⁻¹ (N-H indol), como ilustrado na **Figura 2a** para o composto 1-fenil- β -carbolina-3-carboidrazida **(22a)**.

Figura 2a: Espectro no IV (filme/KBr) do composto 22a.

Os dados de RMN ¹H e RMN ¹³C/DEPT do composto **(22a)** estão na **Tabela 1 e Figuras 2b e 2c (Anexo 2).** A ausência dos sinais referentes à metoxila do éster na região de δ_H 4,00 (s, 3H)/ δ_C 53,2 (OCH₃) e a presença do sinal na região de δ_C 164,0, referente à carbonila da amida confirmam a substituição da metoxila. A presença do simpleto largo em δ_H 4,70 foi atribuído ao NH₂ livre do grupo carboidrazida.

Figura 2c: Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO-*d*₆/CDCl₃) do composto 22a.

A preparação dos derivados $3-(2^{\circ}-tioxo-1^{\circ},3^{\circ},4^{\circ}-oxadiazolil-5^{\circ}-il)-\beta$ carbolínicos-1-fenilssubstituídos **(23 a-c)**, envolveu a reação de adição nucleofílica das carboidrazidas **22 a-c** com o dissulfeto de carbono em presença de hidróxido de potássio, sob refluxo por 48 horas, e posterior acidificação com uma solução diluída de ácido clorídrico para assim ocorrer a ciclização com a formação do anel tio-oxadiazolínico^{34, 48}.

A proposta mecanística para a obtenção da unidade 2-tioxo-1,3,4oxadiazolil-5-il está apresentada no **Esquema 4**.

Esquema 4: Mecanismo proposto para a formação dos compostos $3-(2^{\circ}-tioxo-1^{\circ},3^{\circ},4^{\circ}-oxadiazol-5^{\circ}-il)-\beta$ -carbolínicos-1-fenilssubstituídos **(23 a-c)**.

A obtenção e caracterização dos derivados **23 a-c**, foi confirmada com base na análise de seus dados espectroscópicos de IV, RMN ¹H e RMN ¹³C que se encontram nos **Anexos 3-5**. Devido à similaridade dos espectros dentro da série discutiremos os dados espectroscópicos apenas para um dos compostos desta série.

Os espectros no IV destes derivados apresentaram bandas de estiramento de ligação C=S na região de 1368 e 1237 cm⁻¹ e para o estiramento C-O-C do anel oxadiazolil em 1163 cm⁻¹, além das bandas em 3056 cm^{-1} (N-H indol), 1623 cm⁻¹ (C=N) e 1556, 1495, 1439 cm⁻¹ (C=C), 1163 cm⁻¹ do (C-O-C) e 740 cm⁻¹ (indol) como ilustrado na **Figura 3a (Anexo 3).**

Figura 3a: Espectro no IV (filme/KBr) do composto 23a.

O espectro de RMN H¹ e ¹³C de 3-[2"-tioxo-1", 3", 4"-oxadiazol-5"-il]-1fenil- β -carbolina **(23a)** apresentou além dos sinais referentes à unidade β carbolínica, a presença dos sinais na região de $\delta_{\rm C}$ 177,0 e 161,0, referentes aos carbonos C-2" e C-5", que evidenciam a formação do anel heterocíclico como ilustrado nas **Figuras 3b e 3c** e na **Tabela 1**. Os dados espectroscópicos obtidos para estes derivados estão de acordo com os dados publicados anteriormente por Formagio²⁷.

Figura 3c: Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO- d_6) do composto 23a.

ppm

	22a	23a				
C/H	δ_{H} (multiplicidade, J = Hz):	δ _c	C/H	$\delta_{\rm H}$ (multiplicidade, J = Hz):	δ _c	
1 (C ₀)	-	141,4	1 (C ₀)	-	142,8	
3 (C ₀)	-	137,4	3 (C ₀)	-	137,2	
4 (CH)	8,80 (<i>s</i>)	113,0	4 (CH)	8,87 (<i>s</i>)	114,0	
4a (C ₀)	-	129,6	4a (C ₀)	-	129,0	
4b (C ₀)	-	121,1	4b (C ₀)	-	120,9	
5 (CH)	8,20 (<i>d</i> , 7,5)	121,2	5 (CH)	8,47 (<i>d</i> , 7,5)	122,3	
6 (CH)	7,33 (<i>ddd,</i> 7,5; 7,5; 1,5)	120,0	6 (CH)	7,34 (<i>t,</i> 7,5)	120,5	
7 (CH)	7,51-7,65 (m)	128,6	7 (CH)	7,56-7,71 (<i>m</i>)	129,5	
8 (CH)	7,69 (<i>dd</i> , 7,5; 2,7)	112,5	8 (CH)	7,56-7,71(<i>m</i>)	112,8	
8a (C ₀)	-	141,0	8a (C ₀)	-	141,6	
9 (NH)	11,86 (s)	-	9 (NH)	11,99 (s)	-	
9a (C ₀)	-	134,5	9a (C ₀)	-	134,0	
1' (C ₀)	-	130,9	1' (C ₀)	-	130,9	
2'/6' (CH)	8,10 (<i>dd</i> , 7,0; 1,5)	128,4	2'/6' (2CH)	8,04 (<i>d</i> , 7,5)	128,6	
3'/5' (CH)	7,51-7,65 (m)	128,5	3'/5' (2CH)	7,56-7,71 (<i>m</i>)	128,9	
4' (C ₀)	7,51-7,65 (m)	128,2	4' (C ₀)	7,56-7,71 (<i>m</i>)	129,3	
CO	-	164,5	2" (C ₀)	-	177,6	
NH	9,73 (<i>s</i>)	-	5" (C ₀)	-	161,2	
$\rm NH_2$	4,63 (<i>s</i>)	-	3" (NH)	15,00 (s/)	-	

Tabela 1: Dados de RMN ¹H e ¹³C (300,0/75,0 MHz, DMSO-*d*₆) para **22a e 23a**.

Na seqüência, os derivados $3-(2^{"}-tioxo-1^{"},3^{"},4^{"}-oxadiazol-5^{"}-il)-\beta$ carbolínicos **(23 a-c)** foram submetidos a reação de condensação de Mannich com as aminas primárias isopropilamina, butilamina, cicloexilamina, benzilamina e as aminas secundárias pirrolidina e morfolina **(Figura 4)** em presença de formaldeído $37\%^{32}$ usando etanol como solvente, obtendo-se as respectivas bases de Mannich, os derivados inéditos $3-[2^{"}-tioxo-3^{"}-$ (alquilaminometil)-1",3",4"-oxadiazol-5"-il]- β -carbolínicos **(24 - 29 a-c)**.

Figura 4: Aminas utilizadas para a síntese dos compostos (24 - 29 a-c).

A reação de Mannich trata-se de uma reação multicomponente (RMCs), envolvendo a condensação entre três componentes: um substrato que possua um hidrogênio ativo, formaldeído e uma amina primária ou secundária⁵².

O mecanismo da reação de Mannich envolve a formação inicial de um sal imina (íon imínio), resultante da condensação da amina com o formaldeído.

Normalmente a reação ocorre sob catálise ácida, o que favorece também a desidratação do produto de adição, gerando o íon imínio. O íon imínio é apenas um intermediário da reação, mas é bastante estável, e os correspondentes iodetos são encontrados comercialmente como sal de Eschenmoser⁵². O sal de imina atua como eletrófilo e adiciona-se ao substrato formando o produto da reação, uma amina denominada geralmente como base de Mannich.

A proposta mecanística para a obtenção dos derivados 3-(2"-tioxo-3"-(alquilaminometil)-1",3",4"-oxadiazol-5"-il)- β -carbolínicos-1-fenilssubstituídos (24-29 a-c) está apresentada no **Esquema 5**. Neste caso não foi utilizado ácido como catalisador das reações, pois a unidade 3-(2-tioxo-1,3,4-oxadiazol-5-il) possui um próton ácido que participa da reação de formação do sal imina sendo capturado pelo núcleofilo intermediário (I) do sal imina. Em seguida o sal imina (B) é atacado pelo substrato (C), neste caso, um derivado 3-(2-tioxo-1,3,4-oxadiazol-5-il)- β -carbolina desprotonado, ocorrendo a condensação e a formação das respectivas bases de Mannich (D)^{52, 64}.

Esquema 5: Mecanismo proposto para obtenção dos compostos 24 - 29 a-c.

A confirmação da obtenção das bases de Mannich **(24 - 29 a-c)** foi realizada através da análise dos dados de IV, EM, RMN ¹H e RMN ¹³C/DEPT, em conjunto com dados de ¹H-¹H-COSY e HMQC.

Os espectros de RMN ¹³C destes compostos apresentaram sinais referentes aos carbonos C-2" e C-5" do anel tio-oxadiazolil, em torno de $\delta_{\rm C}$ 177,0 e 161,0, respectivamente. Além disso, a introdução do grupo metilênico foi confirmada pelo simpleto no espectro de RMN ¹H entre 5,00-6,00 ppm e pelo sinal deste carbono metilênico no espectro de RMN ¹³C/DEPT/HMQC na região de 70,0 ppm.

Devido à similaridade dos compostos dentro das séries discutir-se-á um derivado de cada série evidenciando a introdução do grupo alquilaminometil correspondente.

O derivado 3-[2"-tioxo-3"-(isopropilaminometil)-1",3",4"-oxadiazol-5"-il]-1fenil- β -carbolina (24a) apresentou bandas no infravermelho em 3040 cm⁻¹ (N-H indol); 1614 cm⁻¹ (C=N); 1390 e 1239 cm⁻¹ (C=S), 2971 cm⁻¹ (C-H isopropil), 1565, 1487, 1464 cm⁻¹ (C=C) e 732 cm⁻¹ (N-H indol) **(Figura 5a)**.

Figura 5a: Espectro no IV (filme/KBr) do composto 24a.

Nestes derivados, a presença do grupo N-isopropil foi evidenciada pelos sinais no espectro de RMN ¹H na região de 4,60 ppm (*hepteto,* 1H, *J* 6,9 Hz) e em $\delta_{\rm H}$ 1,22 (*d,* 6H, *J* 6,9 Hz) referentes aos H-8" dos H-9", respectivamente, além do simpleto em 11,43 ppm referente ao NH livre.

No espectro de RMN ¹³C foram observados os sinais em 46,2 ppm do C-8" e 18,9 ppm das duas metilas (C-9") do grupo isopropil, como ilustrados nas **Figuras 5b e 5c (Anexos 6-8).** RESULTADOS E DISCUSSÃO - PREPARAÇÃO E CARACTERIZAÇÃO DOS COMPOSTOS

Figura 5b: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **24a.**

Figura 5c: Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO-*d*₆) do composto 24a.

A formação do composto **24a** foi confirmada pelo pico do íon molecular (M^{+}) em *m/z* 415 (FM C₂₃H₂₁N₅OS) no espectro de massas de baixa resolução, conforme **Figura 5d.** Na análise do espectro de massas observa-se também a presença do pico em *m/z* 243 (pico base, Fragmento 1 - **F**₁) resultante da perda do grupo isopropilaminometil-tio-oxadiazolil. O pico em m/z 344 corresponde ao fragmento resultante da clivagem da ligação entre o C-6" e o N-3" com saída de uma molécula neutra, conforme mecanismo propostos nas **Figuras 5e** e **5**f.

Figura 5d: Espectro de massa de baixa resolução de 24a.

Figura 5e: Fragmentação no espectro de massa do derivado 24a. Pico Base.

Figura 5f: Fragmentação no espectro de massa do derivado 24a.

O derivado 3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazol-5"-il]-1-fenil- β -carbolina **(25a)** apresentou bandas no infravermelho na região de 3057 cm⁻¹ (N-H indol); 1618 cm⁻¹ (C=N); 1394 e 1238 cm⁻¹ (C=S); 2968, 2920, 2852 cm⁻¹ (C-H butil); 1566, 1492, 1456 cm⁻¹ (C=C) e 732 cm⁻¹ (N-H indol), como ilustrado na **Figura 6a**.

Figura 6a: Espectro no IV (filme/KBr) do composto 25a.

A presença do grupo N-butil nos derivados **(25a-c)** foi confirmada devido aos sinais no espectro de RMN ¹H (**Figura 6b**) na região de δ_H 3,58 (*t, 2H, J* 7,0 *Hz, H-8"*), δ_H 1,56 (*Quint, 2H, J 7,0 Hz, H-9"*), δ_H 1,31 (*Sext., 2H, J 7,0 Hz, H-10"*), δ_H 0,90 (*t, 3H, J 7,2 Hz, H-11"*) e do NH em 11,44 (*sl*) e na região de δ_C 43,9 (C-8"), δ_C 28,4 (C-9"), δ_C 19,4 (C-10") e δ_C 13,6 (C-11") no espectro de RMN ¹³C, **Figura 6c (Anexos 9-11)**.

Figura 6b: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **25a**.

Figura 6c: Espectro de RMN 13 C (75,0 MHz, DMSO- d_6) do composto 25a.

O espectro de massa de baixa resolução de **25a** apresentou pico do íon molecular (M⁺⁺) em *m*/*z* 429 (FM C₂₄H₂₃N₅OS), conforme **Figura 6d.** O pico base está em *m*/*z* 243 (**F**₁) e o fragmento do butilaminometil em *m*/*z* 84.

Figura 6d: Espectro de massa de baixa resolução de 25a.

O derivado 3-[2"-tioxo-3"-(cicloexilaminometil)-1",3",4"-oxadiazol-5"-il]-1fenil- β -carbolina **(26a)** apresentou bandas no infravermelho na região de 3042 cm⁻¹ (N-H indol); 1613 cm⁻¹ (C=N); 1372 e 1237 cm⁻¹ (C=S); 2930 e 2852 cm⁻¹ (C-H ciclohexil); 1564, 1484, 1453 cm⁻¹ (C=C) e 730 cm⁻¹ (N-H indol), como ilustrado na **Figura 7a**.

Figura 7a: Espectro no IV (filme/KBr) do composto 26a.

A confirmação da obtenção do derivado 26a foi apoiada na análise dos dados de RMN ¹H e RMN ¹³C/DEPT, verificando-se a introdução do grupo Nciclohexil pelos sinais no espectro de RMN ¹H na região de $\delta_{\rm H}$ 4,21 (*t, 1H, J* 11,7 Hz) referente ao H-8" e δ_H 1,05-1,84 (m, 6H) referentes aos H-9" à H-13" e em 11,40 (sl) atribuído ao NH livre, Figura 7b.

No espectro de RMN ¹³C a introdução da ciclohexilamina está evidenciada pelos carbonos na região de δ_C 53,7 (C-8"), δ_C 29,1 (C-9"/C13"), δ_C 25,0 (C-10"/C12") e δ_C 25,0 (C-11"), Figura 7c (Anexos 12-14).

Figura 7c: Espectro de RMN 13 C (75,0 MHz, DMSO- d_6) do composto 26a.

O espectro de massa de baixa resolução de **26a (Figura 7d)** apresentou o pico do íon molecular (M^+) em *m*/z 455 (FM C₂₆H₂₅N₅OS). O fragmento com *m*/z 243 (F₁), correspondente ao pico base, o fragmento *m*/z 344 (F₂), além da presença do fragmento ciclohexilaminometil-tio-oxadiazolil em *m*/z 312.

Figura 7d: Espectro de massa de baixa resolução de

O derivado 3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazol-5"-il]-1fenil- β -carbolina **(27a)** apresentou bandas no infravermelho na região de 3062 cm⁻¹ (N-H indol); 1618 cm⁻¹ (C=N); 1396 e 1237 cm⁻¹ (C=S); 2915 cm⁻¹ (CH₂); 1565, 1493, 1454 cm⁻¹ (C=C) e 734 cm⁻¹ (N-H indol) como ilustrado na **Figura 8a**.

Figura 8a: Espectro no IV (filme/KBr) do composto 27a.

A presença do grupo benzil no composto **27a** foi confirmada pelo espectro de RMN ¹H pelo sinal na região de δ_{H} 4,85 (*s*, 2H), correspondente ao H-8", do multipleto em δ_{H} 7,31-7,38 (*m*, 3H) referente aos H-10",12" e 14" e do sinal em 7,42 (*d*, 2H, J 3,6 Hz), atribuído aos H-11"/H-13" (**Figura 8b**).

No espectro de RMN ¹³C, os sinais do grupo benzil aparecem em δ_{C} 47,7 (C-8"), 135,4 (C-9"), 128,2 (C-10"/C-14"), 128,8 (C-11"/C-13") e δ_{C} 127,0 (C-12"), como ilustrado na **Figura 8c**. (Anexos 15-17).

Figura 8b: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **27a**.

Figura 8c: Espectro de RMN ¹³C (75,0 MHz, DMSO- d_6) do composto **27a**.

A obtenção de **27a** foi confirmada no espectro de massas de baixa resolução, pelo pico do íon molecular (M^+) *m/z* 463 (FM C₂₇H₂₁N₅OS). O pico base em *m/z* 91 correspondente ao íon tropílio, conforme **Figura 8d**.

Figura 8d: Espectro de massa de baixa resolução de 27a.

O espectro no IV do derivado 3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazol-5"-il]-1-fenil- β -carbolínico **(28a)** apresentou as bandas em 3280 (N-H indol); 1622 cm⁻¹ (C=N); 1374 e 1243 cm⁻¹ (C=S); 2965, 2948, 2877 cm⁻¹ (C-H pirrolidil); 1567, 1496, 1478, 1445, 1415 cm⁻¹ (C=C) e 741 cm⁻¹ (N-H indol), conforme **Figura 9a**.

Figura 9a: Espectro no IV (filme/KBr) do composto 28a.

A introdução do grupo pirrolidilaminometil em **28a** foi confirmada pelos sinais em $\delta_{\rm H}$ 2,89 (*sl*, 2H, H-8" e H-11"), em $\delta_{\rm H}$ 1,71 (*sl*, 2H, H-9" e H-10") e em 5,20 ppm (*sl*) correspondente aos hidrogênios metilênicos H-6", no espectro de RMN ¹H (**Figuras 9b**). No espectro de RMN ¹³C, foram observados sinais de carbonos metilênicos em 49,5 e 23,6 ppm referentes aos carbonos C-8"/C-11" e C-9"/C-10", respectivamente, além do sinal em 66,1 ppm, atribuído ao C-6" (**Figura 9c**) (Anexos 18-20).

Figura 9b: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **28a**.

Figura 9c: Espectro de RMN ¹³C (75,0 MHz, DMSO- d_6) do composto **28a**.

O espectro no IV do derivado 3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazol-5"-il]-1-fenil- β -carbolínico **(29a)** apresentou bandas em 3207 cm⁻¹ (N-H indol); 1622 cm⁻¹ (C=N); 1359 e 1248 cm⁻¹ (C=S); 1561, 1496, 1455 cm⁻¹ (C=C); 2964, 2840 cm⁻¹ (C-H morfolil); 1165 cm⁻¹ (C-O-C, morfolil) e 742 cm⁻¹ (N-H indol), **Figura 10a**.

Figura 10a.: Espectro de IV (filme/KBr) do composto 29a.

A introdução do grupo morfolilaminometil³³ no composto **21a** foi confirmada pelo sinais em δ_H 2,85 (*t*, *4H*, *J* 1,8 *Hz*, H-8" e H-12"), δ_H 3,60 (*t*, *4H*, *J* 1,8 *Hz*, H-9" e H-11") e em 5,08 ppm (*s*, H-6") no espectro de RMN ¹H (**Figura 10b**), e pelos sinais dos carbonos metilênicos em 50,1 (C-8"/C-12"), 66,4 ppm (C-9"/C-11") e 70,0 ppm (C-6") no espectro de RMN ¹³C (**Figura 10c**) (Anexos 21-23).

Figura 10b: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **29a**.

Figura 10c: Espectro de RMN ¹³C (75,5MHz, DMSO-*d*₆) do composto 29a.

O espectro de massas de baixa resolução de **29a (Figura 10d)** apresentou pico do íon molecular (M^{+}) em *m*/*z* 443 (FM C₂₄H₂₁N₅O₂S). A fragmentação do íon molecular entre os C-3" e C-5" resultou no fragmento com *m*/*z* 243 (F₁) correspondente ao pico base. O fragmento correspondente ao grupo morfolilmetil foi observado em m/*z* 100.

Figura 10d: Espectro de massa de baixa resolução de 29a.

4.2.1 Avaliação da atividade antitumoral dos derivados 3-[2"-tioxo-3"- (alquilaminometil)-1",3",4"-oxadiazol-5"-il]- β -carbolínicos 1-fenilssubstituídos (24 - 29 a-c).

A avaliação da atividade antitumoral dos derivados 3-[2"-tioxo-(3"alquilaminometil)-1",3",4"-oxadiazol-5"-il]- β -carbolínicos (**24 - 29 a-c**) e dos seus precursores (**23 a-c**), foi realizada no Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA) na Universidade Estadual de Campinas (UNICAMP) sob responsabilidade dos professores Dr. João Ernesto de Carvalho e Dra. Mary Ann Foglio.

Os compostos foram avaliados em culturas de células tumorais humanas de melanoma (UACC-62), mama (MCF-7), ovário resistente (NCI/ADR), rim (786-0), pulmão (NCI-460), próstata (PCO-3), ovário (OVCAR) e colo (HT-29). Os ensaios foram realizados pelo método colorimétrico com sulforrodamina B⁶⁵ e a doxorrubicina foi utilizada como controle positivo, segundo metodologia descrita por Monks e col⁶⁶.

Os valores de IC₅₀, que se refere à concentração da substância que causa 50% de inibição do crescimento celular tumoral, IC₁₀₀ (concentração da substância para inibição total do crescimento das células tumorais - atividade citostática) e LC₅₀ referente à concentração da substância que mata 50% das células tumorais (atividade citotóxica) foram calculados a partir da curva de concentração *versus* porcentagem de crescimento e com esses valores obtevese os valores da média dos pontos do gráfico *(Mean-Graph MidPoint Values)* (MG-MID μ M) utilizados para avaliar a atividade de cada composto frente a todas as células tumorais testadas⁶⁷.

Os valores de IC₅₀ MG-MID são calculados a partir da seguinte equação:

$$\frac{\sum \log IC_{50}}{8_{células\ tumorais}} = \overline{x} \log x$$

$$10^{\bar{x}\log} = IC_{50}MG - MID$$
³⁹

Com esta mesma equação são calculados os valores de IC₁₀₀ MG-MID e

Na **Tabela 2** encontram-se os dados de IC_{50} e na **Tabela 3** estão os valores de IC_{100} e LC_{50} dos compostos 3-(2"-tioxo-1",3",4"-oxadiazol-5"-il)- β -carbolínicos 1-fenilssubstituídos **(23 a-c)** e das respectivas bases de Mannich **(24-29 a-c)**. Nestas tabelas estão os valores de MG-MID (μ M) calculados para cada parâmetro IC_{50} , IC_{100} e LC_{50} . Compostos com valor de $IC_{50} > 100 \mu$ M foram considerados não ativos e compostos com valores de $IC_{50} < 1,0 \mu$ M, considerados fortemente ativos.

Analisando os valores de MG-MID dos derivados **23 a-c** observa-se que o composto **23c**, contendo o grupo 4-dimetilaminofenil, grupo doador de densidade eletrônica, na posição-1 da unidade β -carbolínica, é o mais ativo com IC₅₀ MG-MID de 20,83 μ M.

A comparação dos valores de IC_{50} MG-MID **(Tabela 2)** mostra que, com exceção dos compostos **25b**, **26c**, **29c**, as demais bases de Mannich foram mais ativas que seus precursores frente às células testadas.

Pela análise dos valores de IC_{50} (**Tabela 2**), verifica-se que a introdução do grupo pirrolidilmetil em **28 a-c** resultou no aumento da atividade frente a todas as células testadas em relação aos seus precursores, exceto para os derivados **28c** frente à células de rim (786-0) e **28b** frente à células de próstata (PCO-3) (Gráfico 1).

Gráfico 1: Comparação entre os valores de IC_{50} (μ M) dos derivados 3-[2"-tioxo-3"- (pirrolidillmetil)- 1",3",4"-oxadiazol-5"il]- β -carbolínicos **28 a-c** com os seus precursores **23 a-c**.

Os resultados dos ensaios mostraram que dentre todos os compostos, o composto **27c** com o substituinte 4-dimetilaminofenil na posição-1 da β -carbolina e o grupo 3-benzilaminometil, foi o mais seletivo dentre todos, inibindo o crescimento da cultura de células renal (786-0) com valores de IC₅₀ de 0,38 μ M, atividade citostática (IC₁₀₀) de 19,62 μ M e citotóxica (LC₅₀) >100 μ M e IC₅₀ MG-MID de 4,57 μ M (Gráfico 2).

Gráfico 2: Resultado do teste antitumural do composto 27c.

O derivado **24c** é o mais ativo de todos os novos derivados sintetizados com valores de IC₅₀ MG-MID (4,37 μ M) e IC₁₀₀ MG-MID (63,25 μ M). Este derivado apresentou alta concentração inibitória frente às células tumorais de melanoma (UACC-62) e pulmão (NCI-460) com valores de IC₅₀ de 0,88 μ M e IC₅₀ 1,01 μ M, respectivamente (Gráfico 3).

Gráfico 3: Resultado do teste antitumural do composto 24c.

Atividade significativa foi observada também para o derivado **24a**, com valor de IC₅₀ MG-MID de 5,89 e forte atividade frente às células tumorais de mama (MCF7) com valor de IC₅₀ de 0,86 μ M (Gráfico 4).

Gráfico 4: Resultado do teste antitumural do composto 24a.

Assim observou-se que os derivados com o grupo fenil e 4dimetilaminofenil na posição-1 da unidade β -carbolínica apresentaram os melhores valores de IC₅₀ MG-MID.

Nos últimos anos a incidência de carcinomas tem aumentado em níveis alarmantes em todo o mundo. Um número crescente de pacientes são imunocomprometidos devido à quimioterapia, transplantes de órgãos e a infecções. Esse problema exige a descoberta de novos compostos eficazes contra o câncer e que atenue os efeitos colaterais e não afete as células normais.

Assim realizaram-se a avaliação da citotoxicidade frente células normais dos derivados **24-28 a-c**. Estes foram avaliados frente às células normais de pulmão (V79) e de rim (MDCK), conforme **Tabela 4**. Nos **Gráfico 5, 6, 7** estão ilustrados os resultados das atividades dos derivados **27c**, **24a** e **24c** frente às células normais.

Observa-se que a Doxorrubicina, droga padrão nestes testes e a atualmente mais utilizada no tratamento de câncer, apresentou um IC_{50} de 0,04 μ M frente às células tumorais de pulmão (NCI-460) e para atingir o IC_{50} frente

às células normais de pulmão (V79) utilizou-se uma dose 2 vezes maior de Doxorrubicina.

Destacam-se os derivados **27c** e **24c**, para os quais foi necessária uma dose 10 vezes maior para atingir à concentração que causa 50% de inibição do crescimento das células normais de pulmão (V79), ou seja, estes dois novos derivados são menos tóxicos para as células normais de pulmão do que o padrão.

A Doxorrubicina apresentou valor de IC_{50} de 0,21 µM frente às células tumorais de rim (786-0) e valor de IC_{50} de 0,47 µM frente às células normais de rim (MDCK), enquanto o derivado **27c** apresentou IC_{50} de 0,38 µM frente às células tumorais de rim (786-0), ou seja, ligeiramente maior do que o valor do padrão, entretanto para que este derivado atinja o IC_{50} frente às células normais de rim (MDCK) é necessária uma dose 10 vezes maior.

Devido a estes dados, juntamente com os dados do estudo *in silico*, os derivados **24c** e **27c** são fortes candidatos aos estudos *in vivo*.

Gráfico 5: Resultado do teste de toxicidade frente as células nomais de pulmão(V79) e de rim (MDKV) do composto 27c.

Gráfico 6 e 7: Resultado do teste de toxicidade frente as células nomais de pulmão(V79) e de rim (MDKV) dos compostos 24a e 24c.

	,	- /	. ,			•			
Células	Melanoma (UACC-62)	Mama (MCF7)	Ovário resistente (NCI/ADR)	Rim (786-0)	Pulmão (NCI-460)	Próstata (PCO-3)	Ovário (OVCAR)	Colo (HT29)	IC₅₀ MG-MID μM
Padrão (Doxorrubicina)	0.43	0.01	0.13	0.21	0.04	0.46	0.34	0.46	0.14
23a	>100	25,54	17,60	27,95	20,60	25,54	31,77	25,54	29,25
23b	24,10	27,93	74,99	32,38	73,41	12,20	22,31	27,93	31,26
23c	23,82	18,84	32,11	14,72	19,09	14,72	14,72	40,46	20,83
24a	6,00	0,86	5,90	4,66	5,72	6,12	6,21	43,85	5,89
24b	7,08	4,56	9,27	49,90	4,26	53,54	6,25	>100	14,79
24c	0,88	5,88	2,78	9,82	1,01	13,31	3,42	22,06	4,37
25a	5,29	7,29	30,16	6,51	2,74	26,66	5,99	49,80	10,72
25b	>100	>100	>100	>100	>100	>100	>100	>100	100,00
25c	10,34	42,04	16,32	5,03	3,99	35,24	39,05	>100	19,50
26a	8,89	40,79	13.49	28,57	7,02	38,99	11,21	>100	21.38
26b	7,58	14,33	3.74	49,81	4,33	20,31	12,28	>100	14.79
26c	8,74	>100	5.13	52,44	15,19	58,48	18,66	>100	28.18
27a	>100	16,87	3,72	1,31	4,63	47,68	6,39	54,29	12,59
27b	11,30	16,64	5,34	7,13	5,25	14,17	5,55	68,52	10,96
27c	2,98	10,23	2,55	0,38	1,28	14,96	5,91	56,34	4,57
28a	7,61	22,81	6,83	9,45	7,58	22,64	6,97	21,53	11,48
28b	6,97	11,23	6,65	15,98	17,98	14,25	6,51	24,15	11,75
28c	6,63	16,08	7.05	21,81	11,04	11,00	5,96	14,13	10.72
29a	6,77	39,43	7,59	11,42	36,77	8,10	7,38	17,61	13,18
29b	6,81	11,49	7.96	51,73	40,43	6,33	10,38	38,91	15.49
 29c	24,19	56,35	20,16	67,63	38,55	16,58	47,33	49,28	36,31
			,						

Tabela 2: Avaliação da atividade antitumoral dos compostos $3-(2^{"}-tioxo-1^{"},3^{"},4^{"}-oxadiazol-5^{"}-il)-\beta$ -carbolínicos-1-benzossubstituídos **(23 a-c)** e dos derivados $3-[2^{"}-tioxo-3^{"}-(alquilaminometil)-1^{"},3^{"},4^{"}-oxadiazol-5^{"}-il]-\beta$ -carbolínicos **(24-29 a-c)**. Valores de IC₅₀ MG-MID em μ M.

MG-MID= Mean-graph midpoint values.

 $IC_{50} \text{ MG-MID}= (\Sigma logIC_{50})/8 = médialogIC_{50} \text{ depois } 10^{\text{medialogIC50}}$

3-[2"-tioxo-3"-(alquilaminometil)-1",3",4"-oxadiazol-5"-il]- β -carbolinicos (24-29 a-c). Valores de IC ₁₀₀ e LC ₅₀ (entre parenteses) e IC ₁₀₀ MG-MID e do LC ₅₀ MG-MID em μ M.										
Células	Melanoma (UACC-62)	Mama (MCF7)	Ovário resistente (NCI/ADR)	Rim (786-0)	Pulmão (NCI-460)	Próstata (PCO-3)	Ovário (OVCAR)	Colo (HT29)	IC ₁₀₀ (LC ₅₀	MG-MID MG-MID) 11M
Padrão (Doxorrubicina)	0,44 (0,99)	0,09 (2,78)	6,14 (68,44)	10,00 (>100)	1,25 (>100)	4,59 (82,12)	2,61 (>100)	10,58 (>100)	2,09	33,37
23a	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
23b	>100	>100	>100	>100	>100	35,77 (>100)	>100	>100	87,1	>100
23c	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
24a	15,63 (56,88)	16,01 (74,61)	20,10 (63,05)	3,96 (20,62)	17,63 (61,95)	30,91 (>100)	14,64 (52,41)	81,39 (>100)	18,36	60,49
24b	>100	98,35 (>100)	>100	>100	88,90 (>100)	>100	67,50 (>100)	>100	93,62	>100
24c	6,81 (>100)	>100	39,16 (>100)	>100	>100	>100	95,97 (>100)	>100	63,25	>100
25a	15,12 (58,99)	>100	>100	43,71 (>100)	>100	>100	25,59 (>100)	>100	60,05	93,62
25b	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
25c	57,49 (>100)	>100	>100	21,55 (>100)	>100	>100	>100	>100	77,03	>100
26a	32,14 (52,07)	>100	>100	>100	>100	>100	>100	>100	86,77	92,17
26b	65,59 (48,62)	>100	>100	>100	>100	>100	>100	>100	94,86	92,17
26c	35,12 (>100)	>100	>100	>100	>100	>100	>100	>100	87,74	>100
27a	91,16 (>100)	66,96 (>100)	37,97 (>100)	12,94 (52,62)	39,85 (>100)	72,49 (>100)	34,54 (>100)	>100	48,36	92,29
27b	53,52 (>100)	68,48 (>100)	52,52 (>100)	21,66 (41,14)	>100	56,83 (>100)	22,25 (>100)	>100	51,91	89,49
27c	58,52 (>100)	>100	94,87 (>100)	19,62 (>100)	>100	(>100)	58,91 (>100)	>100	70,94	>100
28a	34,17 (>100)	>100	51,40 (>100)	>100	>100	72,79 (>100)	27,24 (57,73)	75,33 (>100)	63,44	93,36
28b	21,31 (47,18)	>100	46,48 (>100)	>100	>100	>100	21,53 (49,91)	91,41 (>100)	61,13	83,18
28c	25,34 (52,70)	>100	91,37 (>100)	77,82 (>100)	71,19 (>100)	60,35 (>100)	24,81 (>100)	65,45 (>100)	57,86	93,33
29a	26,24 (53,19)	>100	>100	37,81 (>100)	>100	63,76 (>100)	28,81 (56,37)	71,36 (>100)	58,11	86,02
29b	>100	>100	>100	>100	46,84 (>100)	30,11 (>100)	44,97 (69,85)	57,36 (>100)	66,09	95,61
29c	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100

Tabela 3: Avaliação da atividade antitumoral dos compostos $3-(2"-tioxo-1",3",4"-oxadiazol-5"-il)-\beta$ -carbolínicos-1-fenilssubstituídos **(23 a-c)** e dos derivados $3-[2"-tioxo-3"-(alquilaminometil)-1",3",4"-oxadiazol-5"-il]-\beta$ -carbolínicos **(24-29 a-c)**. Valores de IC₁₀₀ e LC₅₀ (entre parênteses) e IC₁₀₀ MG-MID e do LC₅₀ MG-MID em μ M.

MG-MID= Mean-graph midpoint values.

 $IC_{100} \text{ MG-MID}= (\Sigma log IC_{100})/8 = m\acute{e}dialog IC_{100} \text{ depois } 10^{\Lambda^{medialog IC100}}$

 $LC_{50} \text{ MG-MID}= (\Sigma \text{log} LC_{50})/8 \text{=} \text{médialog} LC_{50} \text{ depois } 10^{\text{n}\text{m}\text{e}\text{d}\text{i}\text{a}\text{log} LC_{50}}$

Tabela 4: Dados para os derivados 24 - 28 a-c frente às células normais de Pulmão (V79) e de Rim (MDCK).

Células	Pulmão (V79)			Rim (MDCK)			
Compostos	IC ₅₀	IC100	LC ₅₀	IC ₅₀	IC ₁₀₀	LC ₅₀	
(Doxorrubicina)							
Padrão	0,08	1,50	16,25	0,47	2,40	21,95	
24a	15,74	>100	>100	5,03	>100	>100	
24b	13,92	>100	>100	12,25	90,57	>100	
24c	9,95	>100	>100	2,03	>100	>100	
25a	3,14	>100	>100	3,28	>100	>100	
25b	33,32	>100	>100	>100	>100	>100	
25c	26,26	>100	>100	15,03	>100	>100	
26a	11,55	>100	>100	5,11	>100	>100	
26b	9,77	>100	>100	4,14	>100	>100	
26c	89,36	>100	>100	51,14	>100	>100	
27a	4,92	73,54	>100	3,34	83,67	>100	
27b	15,14	88,78	>100	3,67	88,78	>100	
27c	12,24	>100	>100	3,85	>100	>100	
28a	16,02	>100	>100	20,72	91,34	>100	
28b	13,98	51,87	>100	17,33	73,12	>100	
28c	15,40	67,83	>100	20,80	95,62	>100	

Células	Células tumorais pulmao (NCI-460)		Células normal pulmao (V79)	Células tumorais rim (786-0)		células normal rim (MDCK)
Compostos	IC ₅₀		IC ₅₀	IC ₅₀		IC ₅₀
Doxorrubicina						
(Padrão)	0,04	2x	0,08	0,21	2x	0,47
24a	5,72	3x	15,74			
24b	4,26	3x	13,92			
24c	1,01	10x	9,95			
25c	3,99	6X	26,26	5,03	3x	15,03
26a	7,02	2X	11,55			
26b	4,33	2X	9,77			
26c	15,19	6X	89,36			
27a				1,31	3x	3,34
27b	5,25	3X	15,14			
27c	1,28	9X	12,24	0,38	3x	3,85
28a	7,58	2X	16,02	9,45	2x	20,72

4.2.2 Avaliação da atividade antimicrobiana

A avaliação da atividade antimicrobiana dos derivados sintetizados foi realizada no Departamento de Análises Clínicas da UEM sob responsabilidade do professor Dr. Benedito P. Dias Filho.

Os ensaios foram realizados aplicando-se o teste de susceptibilidade pelo método de microdiluição para a determinação da concentração mínima inibitória (CMI) da amostra e dos antibióticos de referência usando meio Mueller-Hinton, segundo normas descritas pelo NCCLS⁶⁸.

A CMI (concentração mínima inibitória/concentração bacteriostática ou concentração fungiostática) é a menor concentração de uma substância em μg/mL que inibe o crescimento do microorganismo.

A concentração mínima tanto fungicida (CMF) ou bactericida (CMB) é a menor concentração da substância que mata 99,9% do fungo ou bactéria teste. A CMF ou CMB é determinada pela subcultura do poço (well) "sem crescimento" do teste de determinação do CMI em placa de Petri contendo o meio Agar Sabourand, para o teste fungicida, e Mueller-Hinton, para o bactericida.

Os compostos $3-(2"-tioxo-1",3",4"-oxadiazol-5"-il)-\beta$ -carbolínicos-1fenilssubstituídos **(23 a-c)** e os derivados 3-[2"-tioxo-3"-(alquilaminometil)- $1",3",4"-oxadiazol-5"-il]-<math>\beta$ -carbolínicos **(24-29 a-c)** foram testados frente às bactérias *Bacillus subtilis* ATCC-6623, *Escherichia coli* ATCC-25922, *Pseudomonas aeruginosa* ATCC-27853, *Sthaphylococus aureus* ATCC-25923 e aos fungos *Candida parapsilosis* ATCC-22019, *Candida tropicalis* ATCC-28707 e *Candida albicans* ATCC-10231.

Da série dos compostos **23 a-c**, o derivado **23a** contendo o grupo fenil na posição-1 foi ativo perante as bactérias *B. subitilis* com valor de CMI/CMB: 7,8/125 μg/mL e *S. aureus* com valor de CMI/CMB: 62,5/>1000 e frente ao fungo *C. albicans* (CMI/CMF: 15,6/62,5 μg/mL).
RESULTADOS E DISCUSSÃO – ENSAIOS BIOLÓGICOS

O derivado **23b** contendo o grupo *m*-nitrofenil na posição-1 mostrou-se ativo frente às bactérias *S. aureus* e *B. subitilis* com valores e CMI/CMB de 125/>1000 e 125/250 μg/mL, respectivamente.

O derivado **23c** contendo o grupo *p*-dimetilaminofenil na posição-1 mostrou-se ativo frente às bactérias *S. aureus* com valor de CMI/CMB: 31,2/>1000 μg/mL e *B. subitilis* com valor de CMI/CMB: 31,2/250 μg/mL.

Os compostos 24-29 a-c foram inativos frente a todas as bactérias e fungos testados com CMI > 1000 μ g/mL o que demonstra que a introdução de um grupo alquilaminometil em 23a-c resultou na perda da atividade antimicrobiana.

4.2.3 Estudo in silico.

Na busca de novos medicamentos, a previsão dos processos farmacocinéticos de novas substâncias nos estágios iniciais da pesquisa é de extrema importância. A otimização das propriedades de Absorção, Distribuição, Metabolismo, Excreção e Toxicidade (ADMET) através de modificações moleculares de compostos promissores, é essencial na seleção dos candidatos com maiores probabilidades de não serem abandonados, mais adiante, na fase clínica. O fracasso na fase clínica representa grandes perdas de tempo e dinheiro⁶⁹.

Uma substância precisa, para produzir seu efeito esperado, estar presente em concentrações apropriadas no local de atuação especifico. Além da quantidade ministrada, as concentrações obtidas dependem da extensão da velocidade de absorção, distribuição, ligações e/ou localização nos tecidos, biotransformação e eliminação desta subsância, estas por sua vez, estão diretamente correlacionada com a passagem da substância por membranas celulares⁷⁰.

Resumidamente as propriedades de ADME dissem respeito á:

Absorção: é a passagem do fármaco do local em que foi administrado para a circulação sistêmica. Constitui-se do transporte da substância através das membranas biológicas.

Distribuição: é a passagem de um fármaco da corrente sangüínea para os tecidos. A distribuição é afetada por fatores fisiológicos e pelas propriedades físico-químicas da substância.

Metabolismo: é a transformação do fármaco em outra(s) substância(s), por meio de alterações químicas. A biotransformação ocorre principalmente no fígado, nos rins, nos pulmões e no tubo gastrintestinal.

Excreção: as substâncias são eliminadas do organismo tanto na forma inalterada como sob a forma de metabólitos. A eliminação ocorre por diferentes vias e varia conforme as características físico-químicas da substância a ser excretada⁷⁰.

Esquema 6: Representação da biodisponibilidade oral em humanos.

Estudos *in silico* dos parâmetros de ADME e de toxicidade são realizados em etapas preliminares do processo de desenvolvimento de fármacos, com o intuito de economizar tempo e direcionar o estudo dos novos compostos.

Assim, para verificar se os derivados sintetizados tem potencial como candidatos a futuros fármacos estes foram submetidos a avaliação *in silico* utilizando os programas disponíveis no <u>www.molinspiration.com/cgi.</u> <u>bin/properties</u>⁴¹ e <u>www.organic.chemistry.org/prog/peo</u>⁴⁴.

Um estudo teórico de todos os compostos 3-[2"-tioxo-3"-(alquilaminometil)-1",3",4"-oxadiazolil-5"-il]- β -carbolínicos-1-fenilssubstituídos (**24-29 a-c**) e dos seus precursores 3-(2"-tioxo-1",3",4"-oxadiazolil-5"-il)- β carbolínicos-1-fenilssubstituídos (**23 a-c**), foi realizado determinando as regras de Lipinski^{39, 41,} e a área topológica da superfície polar (TPSA)⁴⁴.

A "regra do cinco de Lipinski" estabelece que para um composto administrado por via oral ter uma boa absorção ou permeabilidade, o mesmo deverá satisfazer os seguintes critérios⁴⁴:

a) Número de grupos doadores de ligação hidrogênio, tais como n-OHNH, (nDLH) \leq 5;

b) Número de grupos aceptores de ligação hidrogênio, tais como n-ON, (nALH) \leq 10;

c) Massa molecular (MM) < 500;

d) Coeficiente de partição octanol/água (milogP) < 5.

Moléculas com mais de uma violação das regras podem ter problemas com a biodisponibilidade.

Os valores obtidos, através de cálculos teóricos, para os parâmetros de Lipinski para os novos derivados **24-29 a-c** e para seus precursores **23 a-c** estão mostrados na **Tabela 5.** Todos os derivados apresentam número de grupos doadores de ligação hidrogênio igual a 1 ou 2 e número de grupos aceptores de ligação hidrogênio de 6 à 10, dentro dos padrões estabelecidos.

As massas moleculares apresentaram-se entre 415,52< MM >498,65 g/mol, com exceção para três compostos **26b**, **27b e 27c** que possuem massa molecular ligeiramente maior que 500,00 g/mol.

Os compostos contendo os grupos isopropilaminometil, pirrolidilmetil e morfolilmetil ligados ao anel tio-oxadiazolínico apresentaram lipofilicidade menor do que 5,0, com valores entre 3,69 a 4,41, enquanto que os derivados com os grupos butilaminometil, benzilaminometil e cicloexilaminometil apresentaram valores maiores do que 5,0, violando uma das regras de Lipinski³⁹.

A área de superfície polar (PSA) é um fator que pode ser considerado na análise da permeabilidade celular. Valores inferiores a 140 Å², indicam uma boa permeabilidade do fármaco na membrana plasmática celular⁶⁹. Assim a porcentagem de absorção foi estimada usando a equação: % ABS = 109 – 0.345 x TPSA, de acordo com Zhao *et al*⁴⁰. De acordo com o critério estabelecido acima, os compostos **24-29 a-c** apresentaram valores de porcentagem de absorção entre 68,31-87,30%, indicando que os mesmos tem boa permeabilidade. O composto **29b** demonstrou o mais alto valor de TPSA (117,94 Å²) e o menor valor de absorção (68,31%), sugerindo que sua biodisponibilidade oral e de absorção deve ser baixa.

Apenas os compostos **26b e 27c** apresentaram **2** violações das regra de Lipinski, devido ao miLogP maior que 5 e massa molecular maior que 500,00 g/mol. A maioria dos compostos sintetizados não apresentou nenhuma violação das regras de Lipinski.

RESULTADOS E DISCUSSÃO – ENSAIOS BIOLÓGICOS

O LogS determina a solubilidade do composto em água. A solubilidade do composto afeta significativamente a sua absorção e distribuição. Normalmente uma baixa solubilidade leva a uma má absorção. O valor de LogS é um valor estimado da solubilidade do composto medida em mol.L⁻¹. A maioria dos medicamentos comerciais possuem LogS maior do que -4⁴⁴. Os compostos avaliados **24-29 a-c** apresentaram LogS de -5,54 a -7,44 mol.L⁻¹, o que não é o ideal.

Para determinar a pontuação global como fármaco (drugscore) os compostos foram analisados pelo uso do programa Osíris (disponível em *http://www.organic-chemistry.org*)⁴⁴. Os valores positivos de "drugscore" entre 0,1 e 1,0 mol.L⁻¹ indicam que a molécula contém predominantemente grupos farmacofóricos, que são freqüentemente presentes em medicamentos comerciais. O valor de "drugscore" combina registros de "druglikeness", cLogP, LogS, peso molecular e riscos de toxicidade em um único valor prático que pode ser utilizado para predizer o potencial global dos compostos como candidatos a novos fármacos⁴⁵.

Os valores de "druglikeness" e de "drugscore" para os novos derivados e seus precursores estão no **Gráfico 8**. Os valores de "drugscore" variaram de 0,053 a 0,29 sendo baixos e os valores de "druglikeness" de 3,68 a -4,00 mol.L⁻¹, o ideal para "druglikeness" é que os valores sejam positivos ente 0 a 4, um valor positivo indica que o composto contém predominantemente fragmentos que estão freqüentemente presentes em medicamentos comerciais⁴⁴. Todos os derivados com os grupos fenil e 4-dimetilaminofenil na posição-1 da β -carbolina apresentaram valores positivos tanto de "druglikeness" como de "drugscore", indicando uma tendência como bons fármacos, com destaque para os derivados **24a** e **28a**, com os maiores valores de "druglikeness" sendo 3,34 e 3,68 mol.L⁻¹, respectivamente.

Gráfico 8: Valores de "Druglikeness" e "Drugscore" dos derivados 3-[2"-tioxo-3"-(alquilaminometil)-1",3",4"-oxadiazol-5"-il]-β-carbolínicos **(24-29 a-c)** e dos seus precursores **23 a-c**.

RESULTADOS E DISCUSSÃO – ENSAIOS BIOLÓGICOS

Tabela 5: Valores teóricos da regra do "cinco de Lipinski" calculados para os compostos (23 a-c) e (24-29 a-c).

		TPSAª	Regra do 5 de Lipinski ^ª						
Compostos	% ABS	(Ų)	<i>n</i> ALH aceptores	<i>n</i> DLH doadores	milogP	ММ	n violações	Log S⁵	
23a	84,68	70,51	5	2	3,80	344,40	0	-6,03	
23b	68,87	116,33	8	2	3,74	389,40	0	-6,49	
23c	83,56	73,74	6	2	3,90	387,47	0	-6,06	
24a	84,27	71,68	6	2	4,31	415,52	0	-6,51	
24b	68,46	117,50	9	2	4,27	460,52	0	-6,97	
24c	83,15	74,91	7	2	4,42	458,59	0	-6,55	
25a	84,27	71,676	6	2	5,08	429,55	1	-6,67	
25b	68,46	117,5	9	2	5,04	474,55	1	-7,13	
25c	83,15	74,914	7	2	5,18	472,62	1	-6,71	
26a	84,27	71,68	6	2	5,55	455,59	1	-7,41	
26b	68,46	117,50	9	2	5,50	500,58	2	-6,38	
26c	83,15	74,91	7	2	5,65	498,66	1	-7,44	
27a	84,27	71,68	6	2	5,04	463,57	1	-7,16	
27b	68,46	117,50	9	2	5,00	508,56	1	-6,38	
27c	83,15	74,91	7	2	5,14	506,64	2	-7,19	
28a	87,3	62,89	6	1	4,29	427,53	0	-6,16	
28b	71,49	108,71	9	1	4,25	472,53	0	-6,62	
28c	86,19	66,13	7	1	4,39	470,60	0	-6,19	
29a	84,12	72,12	7	1	3,73	443,53	0	-5,54	
29b	68,31	117,95	10	1	3,69	488,53	0	-6,00	
29c	83,00	75,36	8	1	3,83	486,60	0	-5,57	

^a www.molinspiration.com/cgi-bin/properties ^b www.organic chemistry.org/prog/peo %ABS = 109 - 0.345 x TPSA

*n*DLH (número de grupos doadores de ligação hidrogênio) \leq 5.

*n*ALH (número de grupos aceptores de ligação hidrogênio) \leq 10.

5. PARTE EXPERIMENTAL.

5.1. INSTRUMENTAÇÃO

Os espectros de RMN ¹H e ¹³C foram obtidos em espectrômetro VARIAN modelo Mercury PlusBB, operando a 300,0 MHz para ¹H e 75,0 MHz para ¹³C tendo como referência interna o tetrametilsilano (TMS). Os deslocamentos químicos foram obtidos em ppm e os solventes utilizados foram CD₃OD, mistura de CDCl₃/CD₃OD e DMSO. A interpretação dos dados foi realizada com ajuda da técnica de DEPT, em CH₃/CH = sinal positivo (+), CH₂ = sinal negativo (-), C₀ (não ligado a hidrogênio) = sinal de intensidade zero e técnicas bidimensionais de COSY e HMQC.

Os espectros de absorção na região do IV foram registrados em um espectrofotômetro BOMEN, modelo MB-séries, em pastilha de KBr, na região de 400 a 4000cm⁻¹. Utilizou-se absorção em 1601 cm⁻¹ de um filme de poliestireno como referência.

5.2. MATERIAIS E MÉTODOS

As cromatografias em camada delgada analítica (CCDA) foram realizadas em lâminas de vidro, utilizando-se sílica gel 60 (0,063 – 0,200mm) da Merck. As eluições foram feitas em solventes orgânicos puros ou combinados. As revelações das placas foram obtidas por irradiação com lâmpada ultravioleta em 254/366nm, iodo ressublimado e reagente de Dragendorff.

Na síntese dos compostos foram utilizados os seguintes reagentes: Ltriptofano (Synth, 98,5%; Vetec, 98,5%); benzaldeído (Acros Organic, 99%), panisaldeído (Aldrich, 98%); p-hidroxibenzaldeído (Acros Organic, 99%); vanilina (Acros Organic, 99%); p-dimetilaminobenzaldeído (Merck, 98,5%); mnitrobenzaldeído (Acros organic, 99%); p-nitrobenzaldeído (Acros Organic, 99%), o-clorobenzaldeído (Acros Organic, 99%), enxofre (Vetec, 95%), isopropilamina (Acros Organics, 99%), *n*-butilamina (Acros Organics, 99,8%), cicloexilamina (Aldrich, 99%), benzilamina (Aldrich, 99%), pirrolidina (Aldrich,

57

99%), morfolina (Aldrich, 99%), hidrazina hidratada 51% (Aldrich), dissulfeto de carbono (Aldrich, 99,9%), formaldeído (Merck, 37%), carbonato de sódio (Synth, 99,5%), hidróxido de sódio (Synth), Hidróxido de pótassio (Synth) e sulfato de sódio anidro (Vetec).

Os solventes utilizados nas reações foram acetato de etila (Nuclear, 99,5%; Dinâmica, 99,0%), hexano (Nuclear, 97%), metanol (Dinâmica, 99,5%; Nuclear, 99,8%), clorofórmio (Dinâmica, 99,8%; Nuclear, 99,8%), diclorometano (Quimex, 99,5%), DMF (Analyticals, 99,8%), THF (Vetec, 99,5%), xileno (Nuclear), éter de petróleo (Nuclear, 60%), acetona (Nuclear, 99,5%), etanol (Synth, 95,0%).

Os ácidos empregados foram: ácido trifluoroácetico (Vetec, 99,5%), ácido sulfúrico (Synth, 95-98%; Nuclear, 98%) e ácido clorídrico (Nuclear, 36,5-40%).

5.3 PROCEDIMENTO PARA A SÍNTESE DOS COMPOSTOS.

5.3.1 Síntese do triptofano metil éster (19).

Em um balão equipado com um agitador magnético e um condensador, foram adicionados 14,68 mmol de L-triptofano comercial, 30 mL de metanol e gotas de ácido sulfúrico concentrado até total solubilização do L-triptofano. A mistura reacional foi mantida sob refluxo e agitação por 48h. A mistura reacional foi neutralizada com uma solução de carbonato de sódio a 10% e posteriormente extraído com acetato de etila (3x 30mL). A fase orgânica foi seca com sulfato de sódio anidro e, após filtragem do secante, o solvente foi removido em evaporador rotatório. O produto foi obtido puro com um rendimento de 95%. 5.3.2 Síntese das 3-carbometóxi-tetraidro- β -carbolinas-1-fenilssubstituídas (20 ac).

Em um balão equipado com um agitador magnético foram adicionados 4,60 mmol de L-triptofano metil éster **(19)**, solubilizado em 10 mL de CH₂Cl₂ e 6,90 mmol de aldeído (1,5 equivalentes) e 10,08 mmol de ácido trifluoroacético. Foram utilizados três diferentes aldeídos, como mostrado na **Tabela 6**.

A mistura reacional foi mantida sob agitação por 48h. Após esse período adicionou-se 30 mL de água destilada e neutralizou-se com uma solução aquosa de Na_2CO_3 5%, extraindo-se posteriormente com diclorometano (1 x 30mL) e com acetato de etila (2 x 30 mL). O solvente foi removido em evaporador rotativo. O produto foi recristalizado em metanol. Os produtos foram obtidos como mistura de produtos *cis* e *trans* com rendimentos na faixa de 80% **(Tabela 6)**.

Reagente (Aldeído)	Produto	Formula Molecular	Massa Molecular (g/mol)	Rendimento (%)	
benzaldeido	20a	$C_{19}H_{18}N_2O_2$	306,36	80	
3-nitrobenzaldeido	20b	$C_{19}H_{17}N_3O_4$	351,36	85	
4-dimetilaminobenzaldeído	20c	$C_{21}H_{23}N_3O_2$	349,43	83	

Tabela 6: Características e rendimentos dos derivados 20 a-c.

5.3.3 Síntese das 3-carbometóxi-β-carbolinas-1-fenilssubstituídas (21 a-c).

PARTE EXPERIMENTAL

Em um balão equipado com um agitador magnético e um condensador, foram adicionados 3,26 mmol dos derivados **(20 a-c)** dissolvido em 25 mL de xileno e 9,78 mmol de enxofre em pó (3,0 equivalentes). A solução foi mantida sob refluxo e agitação por 48 horas e posteriormente por 3 horas à 0°C sob agitação, para a precipitação. O precipitado formado foi filtrado em funil de Büchner e lavado com éter de petróleo. Os rendimentos obtidos constam na **Tabela 7**.

R ¹	Produto	Formula Molecular	Massa Molecular (g/mol)	Rendimento (%)	
fenil	21a	$C_{19}H_{14}N_2O_2$	302,33	81	
3-nitrofenil	21b	$C_{19}H_{13}N_3O_4$	347,33	70	
4-dimetilaminofenil	21c	$C_{21}H_{19}N_3O_2$	345,40	90	

Tabela 7: Características e rendimentos dos derivados 21 a-c.

5.3.4 Síntese das β -carbolinas-1-fenilssubstituídas-3-carboldrazil (22 a-c).

Em um balão equipado com um agitador magnético e um condensador, foram adicionados 3,31 mmol dos derivados **(21 a-c) (Tabela 8)** em 50 mL de etanol e adicionou-se 52,96 mmol de hidrazina hidratada 51%. A mistura reacional foi mantida sob refluxo e agitação por 72 horas e posteriormente, por 2 horas à 0°C sob agitação. O precipitado formado foi filtrado em funil de Büchner e lavado com etanol.

PARTE EXPERIMENTAL

R ¹	Produto	Formula Molecular	Massa Molecular (g/mol)	Rendimento (%)	
fenil	22a	$C_{18}H_{14}N_4O$	302,33	77	
3-nitrofenil	22b	$C_{18}H_{13}N_5O_3$	347,33	72	
4-dimetilaminofenil	22c	$C_{20}H_{19}N_5O$	345,40	90	

Tabela 8: Características e rendimentos dos derivados 22 a-c.

5.3.5 Síntese das 3-(2"-tioxo-1",3",4"-oxadiazol-5"-il)- β -carbolínicos-1-fenilssubstituídos (23a-c).

Em um balão equipado com um agitador magnético à temperatura de 0°C foram adicionados 3,31 mmol dos derivados β -carbolínicos-1benzossubstituído-3-carboidrazil **(22 a-c)** em 20 mL de etanol e adicionou-se 16,56 mmol de dissulfeto de carbono (CS₂) (5 equivalentes) e 3,31 mmol de hidróxido de potássio triturado. A mistura reacional foi mantida a 0 °C sob agitação por 1h e posteriormente a reação foi refluxada sob agitação por 48 h. O solvente foi evaporado e o resíduo obtido foi dissolvido em água e a solução acidificada com HCl 2 mol.L⁻¹, mantendo-se a 0°C por 2h. O precipitado obtido foi filtrado em funil de Büchner, lavado com água e recristalizado com metanol. Os rendimentos obtidos constam na **Tabela 9**.

Tabela 9: Características	e rendimentos do	os derivados 23 a-c.
---------------------------	------------------	----------------------

R ¹	Produto	Formula Molecular	Massa Molecular (g/mol)	Rendimento(%)	PF (⁰C)
fenil	23a	$C_{19}H_{12}N_4OS$	344,46	72	230,0 - 232,0
3-nitrofenil	23b	$C_{19}H_{11}N_5O_3S$	389,38	70	226,0 - 228,0
4-dimetilaminofenil	23c	$C_{21}H_{17}N_5OS$	387,46	70	186,0 - 188,0

5.3.6 Síntese das 3-[2"-tioxo-3"-(alquil-aminometil)-1",3",4"-oxadiazolil]- β carbolinas-1-fenilssubstituídas (24 - 29 a-c).

Em um balão equipado com um agitador magnético e um condensador, foram adicionados 0,5 mmol dos derivados **(23 a-c)** em 10 mL de etanol, 0,5 mmol das aminas primárias (isopropilamina, butilamina, cicloexilamina, benzilamina) **(24-27 a-c)** e 0,5 mmol das aminas secundárias (pirrolidina e morfolina) **(28-29 a-c)** e lentamente adicionou-se 6 eq. (3,0 mmol) de formaldeído 37%. A mistura reacional foi mantida a 70°C com agitação por 24 horas e posteriormente, deixada em agitação por 1 hora à 0 °C. O precipitado formado foi filtrado em funil de Büchner lavando com etanol. Os rendimentos obtidos constam na **Tabela 10**.

PARTE EXPERIMENTAL

Tabela 10: Características e rendimentos dos derivados 24 - 29 a-c.

R ¹	R ² (Amina)	Produto	Formula Molecular	Massa Molecular (g/mol)	Rendimento (%)	PF (⁰ C)
fenil	Isopropilamina	24a	$C_{23}H_{21}N_5OS$	415,51	62	234,0 - 237,0
3-nitrofenil	Isopropilamina	24b	C ₂₃ H ₂₀ N ₆ O ₃ S	460,51	89	236,0 - 237,0
4-dimetilaminofenil	Isopropilamina	24c	C ₂₅ H ₂₆ N ₆ OS	458,58	90	160,0 - 161,0
fenil	Butilamina	25a	$C_{24}H_{23}N_5OS$	429,54	83	212,0 - 215,0
3-nitrofenil	Butilamina	25b	C ₂₄ H ₂₂ N ₆ O ₃ S	474,54	65	230,0 - 235,0
4-dimetilaminofenil	Butilamina	25c	C ₂₆ H ₂₈ N ₆ OS	472,61	92	214,0 - 216,0
fenil	Cicloexilamina	26a	$C_{26}H_{25}N_5OS$	455,57	74	222,0 - 224,0
3-nitrofenil	Cicloexilamina	26b	$C_{26}H_{24}N_6O_3S$	500,57	83	222,0 - 223,0
4-dimetilaminofenil	Cicloexilamina	26c	C ₂₈ H ₃₀ N ₆ OS	498,65	70	173,0 - 175,0
fenil	Benzilamina	27a	$C_{27}H_{21}N_5OS$	463,55	79	225,0 - 228,0
3-nitrofenil	Benzilamina	27b	C ₂₇ H ₂₀ N ₆ O ₃ S	508,55	77	216,0 - 220,0
4-dimetilaminofenil	Benzilamina	27c	C ₂₉ H ₂₆ N ₆ OS	506,62	86	200,0 - 205,0
fenil	Pirrolidina	28a	$C_{24}H_{21}N_5OS$	427,52	55	207,0 - 209,0
3-nitrofenil	Pirrolidina	28b	$C_{24}H_{20}N_6O_3S$	472,52	52	112,0 - 114,0
4-dimetilaminofenil	Pirrolidina	28c	C ₂₆ H ₂₆ N ₆ OS	470,59	92	156,0 - 160,0
fenil	Morfolina	29a	$C_{24}H_{21}N_5O_2S$	443,52	82	208,0 - 210,0
3-nitrofenil	Morfolina	29b	$C_{24}H_{20}N_6O_4S$	488,52	85	163,0 - 167,0
4-dimetilaminofenil	Morfolina	29c	$C_{26}H_{26}N_6O_2S$	486,59	83	215,0 - 217,0

5.4. PROCEDIMENTO GERAL PARA OS ENSAIOS BIOLÓGICOS

5.4.1. Atividade anticâncer dos compostos

A avaliação da atividade anticâncer dos derivados **24-29 a-c** e **23 a-c**, foi realizada no Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA) da UNICAMP sob responsabilidade dos professores Dr. João Ernesto de Carvalho e Dra. Mary Ann Foglio.

5.4.1.a Linhagens de células utilizadas

As linhagens de células utilizadas na avaliação da atividade anticâncer foram cedidas pelo National Cancer Institute (NCI) dos Estados Unidos da América (EUA).

As culturas de células tumorais humanas utilizadas foram:

Tipo celular	Código	Tipo de cultura
Melanoma	UACC-62	Aderida
Mama	MCF-7	Aderida
Rim	786-0	Aderida
Pulmão	NCI-460	Aderida
Próstata	PCO-3	Aderida
Ovário	OVCAR	Aderida
Colo	HT-29	Aderida

Tabela 11: Linhagens de célulares utilizadas nos ensaios antiproliferativo.

Todos os procedimentos foram realizados segundo metodologia descrita por Monks e col.⁶⁶.

5.4.1.b Procedimento dos ensaios para a determinação da atividade anticâncer dos compostos

Foram plaqueados 100μ L de células, em meio de cultura denominada RPMI-1640 suplementando com 5% de soro fetal bovino inativo (SFB) e gentamicina (meio RPMI/SFB/gentamicina), nas suas respectivas densidades de inoculação em placas de 96 compartimentos. Estas foram incubadas por 24 horas a 37° C em atmosfera de 5% de CO₂ e 100% de umidade. Para cada

linhagem foram utilizadas um número estipulado de placas, além da placa T_0 (placa controle), dependendo da quantidade de células obtidas na contagem.

Diluição das amostras

As amostras foram diluídas em dimetilsulfóxido (DMSO) na concentração de 1g/ml resultando em soluções estoques. Estas soluções foram diluídas 40 vezes em RPMI/SFB/gentamicina. Foram adicionadas 100μ L do composto a ser testado nas placas de 96 compartimentos, exceto na T₀, nas doses de 0,25; 2,5; 25; 250 mg/ml, sendo realizada no mesmo momento, a fixação e posterior leitura da placa T₀, determinando assim a quantidade de células presentes no momento em que os compostos foram colocados. As demais placas foram incubadas por 48 horas. Após este período, foram realizadas as leituras pelo ensaio do SRB.

Ensaio da Sulforodamina B (SRB):

As placas de 96 compartimentos foram centrifugadas por 3 minutos a 2000 rpm, e foram fixadas com 50 μ L de ácido tricloroacético a 50% (TCA) para as células aderidas. Para completar a fixação celular, as placas foram incubadas por 1 hora a 4^oC. Após esse tempo, foram submetidas a quatro lavagens consecutivas com água destilada para a remoção dos resíduos de TCA, meio, SFB e metabólitos secundários. Estas placas foram mantidas a temperatura ambiente até a secagem completa.

Em seguida, as placas foram coroadas pela adição de 50µL de SRB a 0,4% (peso/volume) dissolvido em ácido acético a 1%. Estas foram incubadas a 4⁰C, durante 30 minutos. Após esse período, as placas foram lavadas por 4 vezes consecutivas com uma solução de ácido acético 1%. O resíduo da solução de lavagem foi removido e as placas foram novamente secas à temperatura ambiente.

O corante ligado às proteínas celulares foi solubilizado com uma solução de Trizma Base na concentração de 10µL e pH 10,5 por 5 minutos em ultrasom. A leitura espectrofotométrica da absorbância foi realizada em 560nm em um leitor de microplacas.

5.4.1.c Análise dos resultados

Foram calculadas as médias das absorbâncias descontadas de seus respectivos brancos e através da fórmula abaixo, foi determinada a inibição de crescimeto (IC) de cada amostra testada³¹.

Se T>C a substância estimulou o crescimento, não apresenta IC.

Se $T \ge T_0$ mas < C, a substância foi citostática e a fórmula utilizada é $100^{(T-T_0)/(C-T_0)}$.

Se T<T₀ a substância foi citocida, a fórmula utilizada é $100*[(T-T_0)/(C-T_0)];$

Sendo que T é a média da absorbância da célula tratada; C é o controle de célula; T_0 é o controle das células no dia da adição das substancias. O resultado obtido foi subtraído de 100% obtendo-se então a porcentagem de inibição de crescimento. As amostras foram consideradas ativas quando apresentaram inibição de crescimento maior que 50% e ainda de forma dose dependente³¹.

5.4.2 Teste de susceptibilidade antimicrobiana

O ensaio de avaliação da atividade antimicrobiana foi realizado no Departamento de Análises Clínicas da Universidade Estadual de Maringá, sob coordenação do professor Dr. Benedito Dias Prado Filho, aplicando-se o teste de susceptibilidade para a determinação da concentração mínima inibitória (CMI).

A CMI é definida como a maior diluição onde houve inibição do crescimento, ou seja, ausência de turvação quando comparado com o controle bacteriano ou de leveduras.

5.4.2.a Teste de susceptibilidade antibacteriana

Os ensaios para avaliação da atividade antibacteriana foram realizados, aplicando-se o teste de susceptibilidade pelo método de microdiluição para a determinação da concentração mínima inbitória (CMI) da amostra e dos antibióticos de referência usando caldo Mueller-Hinton em placas de microtitulação de 96 poços, segundo normas descritas pelo National Committee for Clinical Laboratory Standards (NCCLS)⁶⁸.

A solução estoque das amostras dos derivados (10mg) dissolvida em DMSO (1mL), foi diluída repedidamente em meio Mueller-Hinton, obtendo uma série de concentrações na ordem de 1mg para 10 μg/mL.

Alíquotas de 100 μ L do meio bacteriano foram adicionados em cada poço. Foi realizada a partir do primeiro poço, uma diluição seriada, homogeneizando e transferindo 100 μ L do primeiro poço para o segundo, do segundo para o terceiro e assim sucessivamente até o décimo primeiro poço. Alíquotas de 5 μ L da suspensão de bactérias contendo 1,0 x 10⁸ UFC/mL, foram adicionadas a cada poço da placa de microdiluição.

Foram utilizados também como controle meio não inoculado (controle negativo) e meio sem a substância (controle positivo). As placas foram incubadas a 37°C por 24 horas.

As bactérias utilizadas e seus antibióticos de referência foram *Staphylococcus aureus* ATCC-25923 (gram +) (penicilina), *Bacillus subtilis* ATCC-6623 (gram +) (vancomicina) e *Escherichia coli* ATCC-25922 (gram -) (tetraciclina) e *Pseudomonas aeruginosa* ATCC-27853 (gram -) (tetraciclina).

5.4.2.b Teste de susceptibilidade antifúngica

Os ensaios para avaliação da atividade antifúngica foram realizados, aplicando-se o teste de susceptibilidade pelo método de microdiluição para a determinação da concentração mínima inbitória (CMI) da amostra e dos antibióticos de referência usando caldo Sabouraud dextrose, em placas de microtitulação de 96 poços, segundo normas descritas pelo National Committee for Clinical Laboratory Standards (NCCLS)⁶⁸.

Para a padronização do inóculo do fungo leveduriforme, foi adicionado volume suficiente da suspensão de levedura, em 5 mL de solução salina estéril, até a obtenção de uma turvação padronizada de acordo com o tubo 0,5 da escala MacFarland (1,0 x 10^8 UFC/mL). A suspensão do fungo foi diluída 1:100 em água destilada (4,95 mL de água destilada + 50 µL da suspensão). Em

seguida 2 mL dessa suspensão foram adicionados em 38 mL de meio RPMI-1640 (diluição 1:20).

Alíquotas de 100 μ L da suspensão fúngica foram adicionados em cada poço. Foi realizada a partir do primeiro poço, uma diluição seriada, homogeneizando e transferindo 100 μ L do primeiro poço para o segundo, do segundo para o terceiro e assim sucessivamente até o décimo primeiro poço. Alíquotas de 5 μ L da suspensão fúngica contendo 1,0 x 10⁸ UFC/mL, foram adicionadas a cada poço da placa de microdiluição.

Os tubos foram incubados à temperatura de 37 °C por 24 horas.

Os fungos utilizados foram: *Candida albicans* ATCC-10231, *Candida parapsilosis* ATCC-22019 *e Candida tropicalis* ATCC-28707 e a micostatina foi utilizada como antifúngico de referência.

6. CONCLUSÕES

Neste trabalho foram sintetizados os derivados β-carbolínicos-1fenilssubstituídos **(23 a-h)** contendo o grupo 2"-tioxo-1",3",4"-oxadiazolil ligado ao C-3 e suas respectivas bases de Mannich , derivadas das reações com diferentes aminas:

✓ 3-[2"-tioxo-3"-(isopropilaminometil)-1",3",4"-oxadiazol-2"-il]-β-carbolínicos
 (24 a-c);

✓ 3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazol-2"-il]- β -carbolínicos (25 a-c);

✓ 3-[2"-tioxo-3"-(cicloexilaminometil)-1",3",4"-oxadiazol-2"-il]-β-carbolínicos
 (26 a-c);

✓ 3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazol-2"-il]-β-carbolínicos
 (27 a-c);

✓ 3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazolil-2"-il]- β -carbolínicos (28 a-c);

✓ 3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-2"-il]- β -carbolínicos (**29 a-c**). Os resultados dos ensaios de atividade antitumoral mostraram que:

- os compostos 24-29 a-c foram ativos frente à maioria das células testadas.

- com exceção dos compostos **25b**, **26c**, **29c**, as demais bases de Mannich foram mais ativas que seus precursores frente às células testadas.

 - a introdução do grupo pirrolidilmetil resultou no aumento da atividade frente a todas as células testadas, exceto para o derivado 28c frente as células de rim (786-0), em relação aos seus precursores.

- o composto **27c** com o substituinte 4-dimetilaminofenil na posição-1 da β - carbolina e o grupo 3-benzilaminometil, foi o mais ativo dentre todos, inibindo o crescimento da cultura de células renal (786-0) com valores de IC₅₀ 0,38 μ M.

A avaliação *in silico* mostrou que todos os derivados com os grupos fenil e 4-dimetilaminofenil na posição-1 da β -carbolina apresentaram valores positivos tanto de "druglikeness" como de "drugscore", indicando uma tendência como bons candidatos a fármacos, com destaque para os derivados **24a** e **28a**. -Os derivados **24c** e **27c** são menos tóxico que o padrão comercial, Doxorrubicina, frente às células normais de pulmão (V79) e de rim (MDCK), assim são fortes candidatos aos estudos *in vivo*.

7. REFERÊNCIAS BIBLIOGRÁFICAS

1. Herraiz, T.; Analysis of the bioactive alkaloids tetrahydro- β -carboline and β -carboline in food. Journal of Chromatography **A**, 2000, 881, 483-499.

2. Fekkes, D.; Tuiten, A.; Bom, I.; Pepplinkhuizen, L.; *Pharmacokinetics of the β-carboline norharman in man.* **Life Sciences**, 2001, 69, 2113-2121.

3. Peura, P.; Johnson, J. V.; Yost, R. A.; Faull, K. F.; *Concentrations of Tryptoline and Methtryptoline in Rat Brain.* **Journal of Neurochemistry**, 1989, *52*, 847-852.

4. Braestrup, C.; Nielsen, M.; Olsen, C. E.; Urinary and brain β -carboline-3carboxylates as potent inhibitors of brain benzodiazepine receptors. **Proceedings of the National Academy of Sciences of the United States of America**, 1980, 77, 2288-2292.

5. Shimizu, M.; Ishikawa, M.; Komoda, Y.; Nakajima, T.; *Total Synthesis of (-)- Trypargine.* **Chemical & pharmaceutical bulletin**, 1982, *30*, 909-914.

6. Batch, A.; Dodd, R. H.; Ortho-Directed Metalation of 3-Carboxy-β-carbolines: Use of the Sml2-Cleavable 9-N-(N',N'-Dimethylsulfamoyl) Blocking Group for the Preparation of 9-N-Deprotected 4-Amino Derivatives via Azide Introduction or a Palladium-Catalyzed Cross-Coupling Reaction. Journal of organic chemistry, 1998, 63, 872-877.

7. Molina, P.; Fresneda, P. M.; Garcia-Zafra, S.; Almendros, P.; *Iminophosphorane-mediated syntheses of the fascaplysin alkaloid of marine origin and nitramarine.* **Tetrahedron Letters**, 1994, *35*, 8851-8854.

8. Molina, P.; Fresnda, P. M.; Garcia-Zafra, S.; *An Iminophosphorane-Mediated Efficient Synthesis of the Alkaloid Eudistomin U of Marine Origin.* **Tetrahedron Letters**, 1995, *36*, 3581-3582.

9. Lin, N.; Zhao, M.; wang, C.; Peng, S.; *Synthesis and Antithrombotic Activity of Carbolinecarboxyl RGD Sequence.* **Bioorganic & Medicinal Chemistry Letters** 2002, *12*, 585-587.

10. Rivas, P.; Cassels, B. K.; Morello, A.; Repetto, Y.; *Effects of some b-carboline alkaloids on intact Trypanosoma cruzi epimastigotes.* **Comparative Biochemistry and Physiology Part C**,1999, *122*, 27-31.

11. Ferreira, M. E.; Nakayama, H.; Arias, A. R. de; Schinini, A.; Bilbao, N. V. de; Serna, E.; Lagoutte, D.; Soriano-Agatón, F.; Poupon, E.; Hocquemiller, R.; Fournet, A.; *Effects of canthin-6-one alkaloids from Zanthoxylum chiloperone on Trypanosoma cruzi-infected mice.* **Journal of Ethnopharmacology**, 2007, *109*, 258-263.

12. Boursereau, Y.; Coldham, I.; *Synthesis and biological studies of 1-amino* β *-carbolines.* **Bioorganic & Medicinal Chemistry Letters**, 2004, *14*, 5841-5844.

13. Kumar, A.; Katiyar, S. B.; Gupta, S.; Chauhan, P. M. S.; *Syntheses of new substituted triazino tetrahydroisoquinolines and β-carbolines as novel antileishmanial agents.* **European Journal of Medicinal Chemistry**, 2006, *41*, 106-113.

14. Tanaka, J. C. A.; Silva, C. C. da, Ferreira, I. C.; Machado, G. M. C.; Leon, L. L.; Oliveira, A. J. B de; *Antileishmanial activity of indole alkaloids from Aspidosperma ramiflorum.* **Phytomedicine**, 2007, *14*, 377-380.

15. Bernardino, A. M. R.; Gomes, A. O.; Charret, K. S.; Freitas, A. C. C.; Machado, G. M. C.; Canto-Cavalheiro, M. M.; Leon, L. L.; Amaral, V. f.; *Synthesis and leishmanicidal activities of 1-(4-X-phenyl)- N'-[(4-Y-phenyl)methylene]-1H-pyrazole-4-carbohydrazides.* European Journal of Medicinal Chemistry, 2006, 41, 80-87.

16. Cao, R.; Peng, W.; Chen, H.; Ma, Y.; Liu, X.; Hou, X.; Guan, H.; Xu, A.; *DNA binding properties of 9-substituted harmine derivatives*. **Biochemical and Biophysical Research Communications**, 2005, *338*, 1557-1563.

17. Fontana, A.; Benito, E. J.; Martín, M. J.; Sánchez, N.; Alajarín, R.; Vaquero, J. J.; Alvarez-Builla, J.; Lambel-Giraudet, S.; Leonce, S.; Pierre, A.; Caignard, D.; *Synthesis and Cytotoxic Activity of Pyridazino[1',6':1,2] pyrido[3,4-b]indol-5-inium Derivatives as Anti-Cancer Agents.* **Bioorganic & Medicinal Chemistry Letters**, 2002, *12*, 2611-2614.

18. Zhao, M.; Bi, L.; Wang, W.; Wang, C.; Baudy-Floc'h, M.; Ju, J.; Peng, S.; *Synthesis and cytotoxic activities of* β *-carboline amino acid.* **Bioorganic & Medicinal Chemistry**, 2006, *14*, 6998-7010.

19. Cao, R.; Chen, Q.; Hou, X.; Chen, H.; Guan, H.; Ma, Y.; Peng, W.; Xu, A.; *Synthesis, acute toxicities, and antitumor effects of novel 9-substituted* β *-carboline derivatives.* **Bioorganic & Medicinal Chemistry**, 2004, *12*, 4613-4623.

20. Cao, R.; Peng, W.; Chen, H.; Hou, X.; Guan, H.; Chen, Q.; Ma, Y.; Xu, A.; *Synthesis and in vitro cytotoxic evaluation of 1,3-bisubstituted and 1,3,9-trisubstituted* β -carboline derivatives. European Journal of Medicinal Chemistry, 2005, *40*, 249-257.

21. Castro, A. C.; Dang, L. C.; Soucy, F.; Grenier, L.; Mazdiyasni, H.; Hottelet, M.; Parent, L.; Pien, C.; Palombella, V.; Adams, J.; *Novel IKK Inhibitors: β-Carbolines.* **Bioorganic & Medicinal Chemistry Letters**, 2003, *13*, 2419-2422.

22. Clark, J. S.; Townsend, R. J.; Blake, A. J.; Teat, S. J.; Johns, A. *A concise enantioselective synthesis of the AB ring system of the manzamine alkaloids by ring-closing enyne metathesis.* **Tetrahedron Letters**, 2001, *42*, 3235–3238.

23. Xiao, S.; Lin, W.; Wang, C.; Yang, M.; Synthesis and Biological Evaluation of DNA Targeting Flexible Side-Chain Substituted β -carboline Derivatives. **Bioorganic & Medicinal Chemistry Letters**, 2001, *11*, 437-441.

24. Guan, H.; Chen, H.; Peng, W.; Ma Y.; Cao, R.; Liu, X.; Xu, A.; *Design of β-carboline derivatives as DNA-targeting antitumor agents.* **European Journal of Medicinal Chemistry**, 2006, *41*, 1167-1179.

25. Abdel-Moty, S. G.; Sakai, S.; Aimi, N.; Takayama, H.; Kitajima, M.; El-Shorbagi, A.; Ahmed, A. N.; Omar, N. M. *Synthesis of cytotoxic 1- polyhydroxyalkyl-β-carboline derivatives.* **European Journal of Medicinal Chemistry**,1997, *32*, 1009- 1017.

26. Düsman, L. T.; Síntese, estudos conformacionais e avaliação da atividade biológica frente trypanosoma cruzi e artemia salina de tetraidro-β-carbolinas-3-carbometóxi e 3-amido-1-benzossubstituídas. **Dissertação de mestrado**. Universidade Estadual de Maringá, Brasil, Mar., **2005**.

27. Formagio, A. S. N.; Síntese e avaliação da atividade antitumoral, antiviral, antibacteriana e antifúngica de β-carbolinas contendo diferentes substituintes nas posições -1 e -3. **Tese de doutorado**. Universidade Estadual de Maringá, Brasil, Mar., **2008**.

28. Valdez, R.H.; Tonin, L.T.D.; Ueda-Nakamura, T.; Filho, B.P.D.; Morgado-Diaz, J.A.; Sarragiotto, M.H.; Nakamura, C.V.; *Biological activity of 1,2,3,4tetrahydro- β-carboline-3-carboxamides against Trypanosoma cruzi*. **Acta Tropica**, 2008.

29. Tonin, L. T. D.; Barbosa, V. A.; Bocca, C. C.; Ramos, E. R. F.; Nakamura, C. V.; Costa, W. F.da; Basso, E. A.; Nakamura, T. U.; Sarragiotto, M. H. *Comparative study of the trypanocidal activity of the methyl 1-nitrophenyl-*1,2,3,4-9H-tetrahydro- β -carboline-3-carboxylate derivatives and benznidazole using theoretical calculations and cyclic voltammetry. European Journal of Medicinal Chemistry, 2008.

30. Formagio, A. S. N.; Tonin, L.T. D.; Foglio, M. A.; Madjarof, C.; Carvalho, J. E. de; Costa, W. F. da; Cardoso, F. P.; Sarragiotto, M. H. *Synthesis and antitumoral activity of novel 3-(2-substituded-1,3,4-oxadiazol-5-yl) and 3-(5-substituded-1,2,4-triazol-3-yl)* β -carboline derivatives. **Bioorganic & Medicinal Chemistry**, 2008, *16*, 9660.

31. Aboraia, A. S.; Abdel-Rahman, H. M.; Mahfouz, N. M.; EL-Gendy, M. A.; *Novel* 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione

derivatives: Promising anticancer agents. **Bioorganic & Medicinal Chemistry**, 2006, *14*, 1236–1246.

32. Mamolo, M.G.; Zampieri, D.; Vio, L.; Fermeglia, M.; Ferone, M.; Pricl, S.; Scialino, G.; Banfi, E.; *Antimycobacterial activity of new 3-substituted 5-(pyridin-4-yl)-3H-1,3,4-oxadiazol-2-one and 2-thione derivatives. Preliminary molecular modeling investigations.* **Bioorganic & Medicinal Chemistry**, 2005, *13*, 3797-3809.

33. Ashok, M.; Holla, B.S.; Poojary, B.; Convenient one pot synthesis and antimicrobial evaluation of some new Mannich bases carrying 4methylthiobenzyl moiety. European Journal of Medicinal Chemistry, 2007, 42, 1095-1101.

34. Ali, M. A.; Shaharyar, M.; Oxadiazole mannich bases: Synthesis and antimycobacterial activity. **Bioorganic & Medicinal Chemistry Letters**, 2007, *17*, 3314-3316

35. Holla, B.S.; Poojary, K.N.; Rao, B. S.; Shivananda, M.K.; *New bis-aminomercaptotriazoles and bis-triazolothiadiazoles as possible anticancer agents.* **European Journal of Medicinal Chemistry**, 2002, *37*, 511-517.

36. Lopes, F.; Capela, R.; Goncaves, J.O.; Horton, P.N.; Hursthouse, M.B.; Iley, J.; Casimiro, C.M.; Bom, J.; Moreira, R.; *Amidomethylation of amodiaquine: antimalarial N-Mannich base derivatives.* **Tetrahedron Letters**, 2004, *45*, 7663-7666.

37. Malinka, W.; Swiatek, P.; Filipek, B.; Sapa, J.; Jezierska, A.; Koll, A.; *Synthesis, analgesic activity and computational study of new isothiazolopyridines of Mannich base type.* **II Farmaco**, 2005, *60*, 961-968.

38. Holla, B.S.; Veerendra, B.; Shivananda, M.K.; Poojary, B.; *Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles.* **European Journal of Medicinal Chemistry**, 2003, *38*, 759-767.

39. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J.; *Experimental and computational approaches to estimate solubility and permeability in drug*

discovery and development settings. Advanced Drug Delivery Reviews, 1997, 23, 3-25.

40. Zhao, M. Y. ; Abraham, M. H.; Le, J.; Hersey, A.; Luscombe, C. N.; Beck, G.; Sherborne, B.; Cooper, I. *Rate-Limited Steps of Human Oral Absorption and QSAR Studies.* **Pharmaceutical Research**, 2002, *19*, 1446-1457.

41. Disponível em: <<u>http://www.molinspiration.com</u>>, acessado em 20 Set. 2008.

42. Güniz Küçükgüzel, S.; Küçükgüzel, I. Tatar, E.; Rollas, S.; Sxahin,F.;Güllüce, M.; Clercq, E. De ; Kabasakal, L.; *Synthesis of some novel heterocyclic compounds derived from diflunisal hydrazide as potential anti-infective and anti-inflammatory agents.* European Journal of Medicinal Chemistry, 2007, *42*, 893-901.

43. Andrighetti-Fröhner, C. R.; Oliveira, K.N. de; Gaspar-Silva, D.; Pacheco, L. K.; Joussef, A. C.; Steindel, M.; Simões, C. M. O.; Souza, A. M.T. de; Magalhães, U. O.; Afonso, I. F.; Rodrigues, C. R.; Nunes, R. J.; Castro, H.C.; *Synthesis, biological evaluation and SAR of sulfonamide 4-methoxychalcone derivatives with potential antileishmanial activity.* European Journal of Medicinal Chemistry, 2008.

44. Disponível em: <<u>www.organic-chem.org/prog/peo</u>>, acessado em 20 Set.
2008.

45. Dias, L. R. S.; Santos, M. B.; Albuquerque, S. de; Castro, H. C.; Souza, A. M. T. de; Freitas, A. C. C.; DiVaio, M. A. V.; Cabral, L. M.; Rodriguese, C. R.; *Synthesis, in vitro evaluation, and SAR studies of a potential antichagasic 1H-pyrazolo*[*3*,*4-b*]*pyridine series.* **Bioorganic & Medicinal Chemistry**, 2007, *15*, 211-219.

46. Narayama, B.; Ashalatha, B. V.; Raj Vijaya, K. K.; Fernandes, J.; Sarojini, B. K.; *Synthesis of some new biologically active 1,3,4-oxadiazolyl nitroindoles and a modified Fischer indole synthesis of ethyl nitro indole-2-carboxylates.* **Bioorganic & Medicinal Chemistry**, 2005, *13*, 4638-4644.

47. Dawson, L.; Hughes, Z. A.; Starr, K. R.; Storey, J. D.; Bettelini, L.; Bachi, F.; Arban, R.; Poffe, A.; Melotto, S.; Hagan, J. J.; Price, G. W.; *Characterisation of the selective* 5-*HT*_{1B} receptor antagonist SB-616234-A (1-[6-(*cis*-3,5-*dimethylpiperazin*-1-*yl*)-2,3-*dihydro*-5-*methoxyindol*-1-*yl*]-1-[2'-*methyl*-4'-(5-*methyl*-1,2,4-oxadiazol-3-*yl*) biphenyl-4-*yl*]*methanone hydrochloride*): In vivo neurochemical and behavioural evidence of anxiolytic/antidepressant activity. **Neuropharmacology**, 2006, 50, 975-983.

48. Obi, K.; Kojima, A.; Fukuda, H.; Hirai, K.; *Synthesis and biological activity of a novel class of cephalosporins with a oxadiazolyl hydroxypyridone moiety at C-7.* **Bioorganic & Medicinal Chemistry Letters**, 1995, *5*, 2777-2782.

49. Mishra, L.; Said, M. K.; Itokawa, H.; Takeya, K.; *Antitumor and Antimicrobial Activities of Fe(II)/Fe(III) Complexes Derived from some Heterocyclic Compounds.* **Bioorganic & Medicinal Chemistry**, 1995, 3, 1241-1245.

50. Tan, T. M. C.; Chen, Y.; Kong, K. H.; Bai, J.; Li, Y.; Lim, S. G.; Ang, T. H.; Lam, Y.; *Synthesis and the biological evaluation of 2-benzenesulfonylalkyl-5-substituted-sulfanyl-[1,3,4]-oxadiazoles as potential anti-hepatitis B virus agents.* **Antiviral Research**, 2006, *71*, 7-14.

51. Jin, L.; Chen, J.; Song, B.; Chen, Z.; Yang, S.; Li, Q.; Hu, D.; Xu, R.; *Synthesis, structure, and bioactivity of N'-substituted benzylidene-3,4,5-trimethoxybenzohydrazide and 3-acetyl-2-substituted phenyl-5-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1,3,4-oxadiazole derivatives.* **Bioorganic & Medicinal Chemistry Letters**, 2006, *16*, 5036-5040.

52. Clayden, J.; Greeves, N.; Warren, Stuart; Wothers, P.; *Organic* Chemistry, Oxford, 2001, 712-714.

53. Joshi, S.; Khosla, N.; Tiwari, P.; *In vitro study of some medicinally important Mannich bases derived from antitubercular agent.* **Bioorganic & Medicinal Chemistry**, 2004, *12*, 571-576.

54. Walczak, K. ; Gondela, A.; Suwinski, J.; *Synthesis and anti-tuberculosis activity of N-aryl-C-nitroazoles.* **European Journal of Medicinal Chemistry**, 2004, 39, 849-853.

55. Amir, M.; Shikha, K.; Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. **European Journal of Medicinal Chemistry**, 2004, 39, 535-545.

56. Ferlin, M.G.; Chiarelotto, G.; Antonucci, F.; Caparrotta, L.; Froldi, G.; *Mannich bases of 3H-pyrrolo*[*3*,*2-f]quinoline having vasorelaxing activity.* **European Journal of Medicinal Chemistry**, 2002, 37, 427-434.

57. Tramontiny, M.; Angioliny, L.; Ghedini, N.; *Mannich bases in polymer chemistry.* **Polymer**, 1998, *29*, 771-788.

58. Vogel, A.; *Vogels's Practical Organic Chem.*, **1978**, 3^a ed., 843.

59. Bailey, P. D.; Cochrane, P. J.; Forster, A. H.; Morgana, K. M.; Pearson D. P.J. *Synthesis of Polycyclic Indolic Structures*. **Tetrahedron Letters**, 1999, *40*, 4597-4600

60. Kusurkar, R. S.; Alkobati, N. A. H.; Gokule, A. S.; Puranik. G. V.; Use of the *PicteteSpengler reaction for the synthesis of 1,4-disubstituted-1,2,3,4-tetrahydro-* β *-carbolines and 1,4-disubstituted-* β *-carbolines: formation of* γ *-carbolines.* **Tetrahedron**, 2008, 64, 1654-1662

61. Maresh, J. J.; Giddings, Lesley-A.,; Friedrich, A.; Loris, E. A.; Panjikar, S.; Trout, B. L.; Stockigt, J.; Peters, B.; O'Connor, S. E.; *Strictosidine Synthase: Mechanism of a Pictet-Spengler Catalyzing Enzyme.* **Journal American Chemical Society**, 2008, *130*, 710-723.

62. Fu, P. P.; Harvey, R. G.; *Dehydrogenation of Polycyclic Hydroaromatic Compounds.* **Chemical Reviews**, 1978, 78, 317-361.

63. Cao, R.; Chen, H.; Peng, W.; Ma, Y.; Hou, X.; Guan, H.; Liu, X.; Xu, A.; *Design, synthesis and in vitro and in vivo antitumor activities of novel* β *-carboline derivatives.* **European Journal of Medicinal Chemistry**, 2005, *40*, 991-1001.

64. Almajan, G. L.; Barbuceanu, S. F.; Almajan, E. R.; Draghici, C.; Saramet, G.; Synthesis, characterization and antibacterial activity of some triazole

78

Mannich bases carrying diphenylsulfone moieties. European Journal of Medicinal Chemistry, 2008. (Impress)

65. Ishida, J.; Wang, H. K.; Oyama, M.; Cosentino, M. L.; Chang, Q. H.; Lee, K. H.; *Anti-AIDS Agents. 46. Anti-HIV Activity of Harman, an Anti-HIV Principle from Symplocos setchuensis, and Its Derivatives,* **Journal of Natural products**, 2001, *64*, 958-960.

66. Monks, A.; Scudiero, D.; *SKehan, P.; Shoemaker, R.;* Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. *Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines.* Journal National Câncer Institute, 1991, 83, 757-766.

67. Holbeck, S.L.; *Update on NCI in vitro drug screen utilities*. **European Journal of Cance**r, 2004, *40*, 785-793.

68. National Commite For Clinical Laboratory Standards (NCLLS). *Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.* Approved Standard, Sixth Edition, NCCLS document M7-A6, USA, **2003**.

National Commite For Clinical Laboratory Standards (NCLLS). *Methods for broth dilution antifungal susceptibility testing of years.* Approved Standard, Second Edition, NCCLS document M27-A2, USA, **2002**.

69. Mota, L. T.; *Desenvolvimento de Modelos In Silico de Propriedades de ADME para a triagem de novos candidatos a fármacos.* **Dissertação de mestrado**. Universidade de São Paulo (USP), Brasil, Fev. **2007**

70. Gilman, A. G.; Goodman, L. S.; Gilman, A.; *The pharmacological Basis of Therapeutics. As bases farmacológicas da terapêutica.* Editora: Guanabara Koogan. 6⁰ ed. Vol.1, New Yourk, **1980**, 1-24.

79

ÍNDICE DOS ANEXOS

Anexo 1.	3-carbometóxi-1-fenil-β-carbolina (21a)	83
Anexo 2.	1-fenil-β-carbolina-3-carboidrazida (22a)	85
Anexo 3.	3-[2"-tioxo-(1", 3", 4")-oxadiazol-5"-il]-1-fenil-β-carbolina (23a)	87
Anexo 4.	3-[2"-tioxo-(1", 3", 4")-oxadiazol-5"-il]-1-(3'-nitrofenil)-β-carbolina	
	(23b)	89
Anexo 5.	3-[2"-tioxo-(1", 3", 4")-oxadiazol-5"-il]-1-(4'-dimetilaminofenil)- β -	
	carbolina (23c)	91
Anexo 6.	3-[2"-tioxo-3"-(isopropilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-	
	fenil-β-carbolina (24a)	93
Anexo 7.	3-[2"-tioxo-3"-(isopropilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (24b)	96
Anexo 8.	3-[2"-tioxo-3"-(isopropilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-	
	dimetilaminofenil)-β-carbolina (24c)	99
Anexo 9.	3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-fenil- β -	
	carbolina (25a)	102
Anexo 10.	3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (25b)	105
Anexo 11.	3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-di-	
	metilaminofenil)-β-carbolina (25c)	108
Anexo 12.	3-[2"-tioxo-3"-(cicloexilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-	
	fenil-β-carbolina (26a)	111
Anexo 13.	3-[2"-tioxo-3"-(cicloexilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (26b)	114
Anexo 14.	3-[2"-tioxo-3"-(cicloexilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-	
	dimetilaminofenil)-β-carbolina (26c)	117
Anexo 15.	3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-fenil-	
	β-carbolina (27a)	120
Anexo 16.	3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (27b)	123
Anexo 17.	3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-	
	dimetilaminofenil)-β-carbolina (27c)	126
Anexo 18.	3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazolil-5"-il]-1-fenil- β -	

	carbolina (28a)	129
Anexo 19.	3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-nitro-	
	fenil)-β-carbolina (28b)	132
Anexo 20.	3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-dime-	
	tilaminofenil)-β-carbolina (28c)	135
Anexo 21.	3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-5"-il]-1-fenil- β -	
	carbolina (29a)	138
Anexo 22.	3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-	
	nitrofenil)-β-carbolina (29b)	141
Anexo 23.	3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-dime-	
	tilaminofenil)-β-carbolina (29c)	144

C/H	$\delta_{\rm H}$ (multiplicidade, J = Hz)	δ _c]		4	AIIEXU	<u>1</u> . 5-cai boille	lovi-i-ieiii-b		lia (21a)		
1 (C ₀)	-	143,8					O					
2 (N)	-	-			6	5	4 00	CH ₃				
3 (C ₀)		136,8			_//	4b 4i						
4 (CH)	8,89 (s)	117,8				_/ `	N // N					
4a (C ₀)	-	130,3			8	8a N	9a (1		2			
4b (C ₀)	-	122,2				Η	1' 2'		2			
5 (CH)	8,28 (d, 8,1)	121,7					6'					
6 (CH)	7,35 (td, 2,1; 8,0)	122,4										
7 (CH)	7,50-7,70 (<i>m</i>)	130,1					5'4'					
8 (CH)	7,50-7,70 (<i>m</i>)	113,4			1							
8a (C ₀)	-	141,1			1					1.1		
9 (NH)	-	-										
9a (C ₀)	-	136,1	5									
1' (C ₀)	-	131,0			- 1				ł.	1.		
2' (CH)	7,99 (dd,1,5; 8,0)	129,6										- 72 m A
3' (CH)	7,50-7,70 (<i>m</i>)	129,7			,							
4' (CH)	7,50-7,70 (<i>m</i>)	130,1								1.1		
5' (CH)	7,50-7,70 (<i>m</i>)	129,7		ſ				l.		5.0.1		
6' (CH)	7,99 (dd,1,5; 8,0)	129,6		/								
C=O	-	166,8										
OCH₃	4,03 <i>(</i> s <i>)</i>	53,2	10	· 11						1		
			9	, , , , , , , , , , , , , , , , , , , ,			6		4	3		1
			5.15	5.57 10.	29 26.56	5	-	-		-	-	-

Anexo 1: 3-carbometóxi-1-fenil-β-carbolina (21a)

ER ¹**H-1:** Espectro de RMN ¹H (300,0 MHz, CDCl₃/CD₃OD) do composto **21a.**

ER ¹³**C-1:** Espectro de RMN ¹³C/DEPT (75,0 MHz, CDCl₃/CD₃OD) do composto **21a**.

IV (v, cm⁻¹; KBr): 3317 cm⁻¹ (N-H indol), 1723 cm⁻¹ (C=O) do éster, 1499, 1459, 1438, 1387 cm⁻¹ (C=C), 1351 cm⁻¹ (C-O-C éster), 1253 cm⁻¹ (C=C-N) e 740 cm⁻¹ (N-H indol).

EIV-1: Espectro de IV (filme/KBr) do composto 21a.

7.03

<u>Anexo 2</u>: 1-fenil-β-carbolina-3-carboidrazida (22a)

ER ¹**H-2:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **22a**.

14.64

ER ¹³**C-2:** Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO-*d*₆/CDCl₃) do composto **22a**.

IV (v, cm⁻¹; KBr): 1600 cm⁻¹ (C=O amida), 3423 cm⁻¹ (NH₂), 3324 cm⁻¹ (N-H indol), 3253 cm⁻¹ (N-H amida), 1614 cm⁻¹ (C=N), 1521 cm⁻¹ (C-N amida), 1494, 1462, 1448 cm⁻¹ (C=C), 1247 cm⁻¹ (C=C-N) e 730 cm⁻¹ (N-H indol).

EIV-2: Espectro de IV (filme/KBr) do composto 22a.

C/H

1(C₀)

2 (N)

ER ¹**H-3**: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **23a**.

IV (v, cm⁻¹; KBr): 3056 cm⁻¹ (N-H indol); 1623 cm⁻¹ (C=N); 1368 e 1237 cm⁻¹ (C=S); 1163 cm⁻¹ (C-0-C), 1556, 1495, 1439 cm⁻¹ (C=C) e 740 (indol).

EIV-3: Espectro de IV (filme/KBr) do composto 23a.

C/H	$\delta_{\rm H}$ (multiplicidade, $J = Hz$)	δ _c	
1(C ₀)	-	141,7	
2 (N)	-	-	NH^2
3(C ₀)	-	138,5	$N_{N_{c''}} \ge S$
4(CH)	8,92 (s)	114,7	
4a(C ₀)	-	130,1	$5 \qquad fm: C_{10}H_{11}O_2N_5S$
4b(C ₀)	-	120,7	4b $4a$ N
5(CH)	8,50 (d, 8,1)	122,4	
6(CH)	7,40 (t, 6,7)	120,8	$\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{3}} \frac{1}{$
7(CH)	7,63-7,72 (m)	129,3	$\frac{8}{8} \frac{8a}{4} \frac{1}{6} 1$
8(CH)	7,63-7,72 (m)	112,7	$H = \frac{1}{4}$
8a(C ₀)	-	140,1	5
9 (NH)	12,18 (s)	-	
9a(C ₀)	-	134,1	
1'(C ₀)	-	131,1	
2'(CH)	8,80 (t, 1,8)	123,3	
3'(C ₀)	-	148,2	
4'(CH)	8,45 (d, 1,8)	123,8	
5'(CH)	7,95 (t, 7,9)	130,6	
6'(CH)	8,42 (d, 1,8)	135,0	
2" (C ₀)	-	177,6	
5" (C ₀)	-	160,9	
3" (NH)	15,0	-	
		•	
			15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ppm
			ر الب
			3.86 8.55 8.96 9.55

<u>Anexo 4</u>: 3-[2"-tioxo-(1", 3", 4")-oxadiazol-5"-il]-1-(3'-nitrofenil)-β-carbolina (23b)

ER ¹**H-4:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **23b**.

ER¹³C-4: Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO- d_6) do composto **23b**.

EIV-4: Espectro de IV (filme/KBr) do composto 23b.

<u>Anexo 5</u>: 3-[2"-tioxo-(1", 3", 4")-oxadiazol-5"-il]-1-(4'-dimetilaminofenil)-β-carbolina (23c)

C/H	$\delta_{\rm H}$ (multiplicidade, J = Hz)	δc
1(C ₀)	-	141,5
2 (N)	-	-
3(C ₀)	-	133,4
4(CH)	8,75 (s)	113,0
4a(C ₀)	-	129,1
4b(C ₀)	-	120,9
5(CH)	8,43 (d, 8,1)	122,1
6(CH)	7,31 (t, 7,5)	120,4
7(CH)	7,58 (ddd, 7,8; 7,8; 2,0)	128,7
8(CH)	7,70 (d, 8,4)	112,0
8a(C ₀)	-	141,5
9 (NH)	11,91	-
9a(C ₀)	-	134,3
1'(C ₀)	-	130,7
2'/6'(CH)	7,97 (d, 8,7)	129,5
3'/5'(CH)	7,08 (d, 8,7)	112,8
4'(C ₀)	-	143,2
2" (C ₀)	-	177,5
5" (C ₀)	-	161,3
(CH ₃) ₂	3,05 (s)	*
3" (NH)	15,0	-

*Em baixo do solvente

ER ¹**H-5:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **23c**.

ER¹³C-5: Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO- d_6) do composto **23c**.

IV (v, cm⁻¹; KBr):): 3061 cm⁻¹ (N-H); 1609 cm⁻¹ (C=N); 1368 e 1237 cm⁻¹ (C=S); 1169 cm⁻¹ (C-0-C); 1557, 1495, 1453 cm⁻¹ (C=C) e 745 (indol)

ER¹**H-6:** Espectro de RMN ¹H (300,0 MHz, DMSO-*d*₆) do composto **24a**.

ER¹³C-6: Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO-*d*₆) do composto 24a.

IV (v, cm⁻¹; KBr): 3040 cm⁻¹ (N-H indol); 1614 cm⁻¹ (C=N); 1390 e 1239 cm⁻¹ (C=S), 2971 cm⁻¹ (C-H isopropil), 1565, 1487, 1464 cm⁻¹ (C=C) e 732 cm⁻¹ (N-H indol).

EIV-6: Espectro de IV (filme/KBr) do composto 24a.

EM-6: Espectro de massa de baixa resolução de 24a.

Anexo 7: 3-[2"-tioxo-3"-(isopropilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-nitrofenil)-β-carbolina (24b)

3.95

ER ¹**H-7**: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **24b**.

5.07

IV (v, cm^{-1} ; KBr): 3054 cm^{-1} (N-H indol); 1611 cm^{-1} (C=N); 1350 e 1239 cm^{-1} (C=S); 2973 cm⁻¹ (C-H isopropil), 1566, 1485, 1465 cm⁻¹ (C=C) e 728 cm⁻¹ (N-H indol).

EHMQC-7: Espectro HMQC do composto 24b.

C/H	δ_{H} (multiplicidade, J = Hz)	δc	Anexo 8: 3-[2"-tioxo-3	-3"-(isopropilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-dimetilaminofenil)-β-carbo	lina (24c)
1 (C ₀)	-	141,5			
2 (N)	-	-		9"	
3 (C ₀)	-	138,7		6"	
4 (CH)	8,82 (<i>s</i>)	114,7		[°] − N [°] 8" ∕ 9"	
4a (C ₀)	-	124,9			
4b (C ₀)	-	121,2		$\bigvee \sum_{2^{"}} S$	
5 (CH)	8,42 (<i>d</i> , 7,5)	122,0	$6 \xrightarrow{5} 4$	<u>5</u> "-O	
6 (CH)	7,32 <i>(t,</i> 7,3)	120,3	4b 4a	$\sqrt{3}$	
7 (CH)	7,60 (t, 7,3)	128,6			
8 (CH)	7,72 (d, 8,4)	112,8	8 8a N 9a 1	1 M. 0251 1261 (600	
8a (C ₀)	-	141,3	Н у	¹ 2'	1
9 (NH)	11,87 (s)	-	6'(\\	· → 3'	
9a (C ₀)	-	133,5	5'	4)	
1' (C ₀)	-	129,4		N	
2' (CH)	7,95 (<i>d</i> , <i>8</i> ,7)	129,3			
3' (CH)	6,96 (<i>d</i> , <i>8</i> ,7)	112,2			l .
4' (C ₀)	-	150,8			-
5' (CH)	6,96 (d <i>, 8,7</i>)	112,2			
6' (CH)	7,95(<i>d</i> , <i>8</i> ,7)	129,3			
N(CH ₃) ₂	3,05 (s)	40,0			
2" (C ₀)	-	174,3			
5" (C ₀)	-	166,7			r I
6" (CH ₂)	5,98 (s/)	64,6			
7" (NH)	11,40 (s/)	-			
8" (CH)	4,61 (Quint.,6,9)	46,2	٨		
9" (CH ₃) ₂	1,24 (<i>d</i> , <i>6</i> , <i>9</i>)	19,0			L
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ppm
			2.13	3.73 8.71 8.26 3.77	

C/H 1 (C₀) 2 (N) 3 (C₀) 4 (CH)

ER ¹**H-8**: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **24c**.

IV (v, cm⁻¹; KBr): 3085 cm⁻¹ (N-H indol); 1609 cm⁻¹ (C=N); 1365 e 1240 cm⁻¹ (C=S); 2973 cm⁻¹ (C-H isopropil), 1557, 1488, 1466 cm⁻¹ (C=C) e 740 cm⁻¹ (N-H indol).

EIV-8: Espectro de IV (filme/KBr) do composto 24c.

EM-8: Espectro de massa de baixa resolução de 24c.

C/H	δ_{H} (multiplicidade, $J = Hz$)	δ _c
1 (C ₀)	-	141,6
2 (N)	-	-
3 (C ₀)	-	138,9
4 (CH)	8,93 (s)	115,9
4a (C ₀)	-	129,9
4b (C ₀)	-	121,1
5 (CH)	8,46 (<i>d</i> , <i>8</i> , 1)	122,2
6 (CH)	7,35 <i>(t, 7,5)</i>	120,4
7 (CH)	7,57-7,73 (<i>m</i>)	129,2
8 (CH)	7,57-7,73 (<i>m</i>)	112,8
8a (C ₀)	-	140,5
9 (NH)	11,99 (s)	-
9a (C ₀)	-	137,5
1' (C ₀)	-	133,9
2'/6' (CH)	8,08 (<i>d</i> , <i>6</i> ,9)	128,5
3'/5' (CH)	7,57-7,73 (<i>m</i>)	129,0
4' (CH)	7,57-7,73 (<i>m</i>)	128,9
2" (C ₀)	-	175,5
5" (C ₀)	-	160,5
6" (CH ₂)	5,92 (s <i>l</i>)	68,0
7" (NH)	11,44 (s/)	-
8" (CH ₂)	3,58 (<i>t</i> , 7,0)	43,9
9" (CH ₂)	1,56 (Q <i>uint., 7,0</i>)	28,4
10" (CH ₂)	1,31 (Sext., 7,2)	19,4
11" (CH ₃)	0,90 (<i>t</i> , 7,2)	13,6

Anexo 9: 3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-fenil-β-carbolina (25a)

ER ¹³**C-9:** Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO- d_6) do composto **25a**.

IV (v, cm⁻¹; KBr): 3057 cm⁻¹ (N-H indol); 1618 cm⁻¹ (C=N); 1394 e 1238 cm⁻¹ (C=S); 2968, 2920, 2852 cm⁻¹ (C-H butil); 1566, 1492, 1456 cm⁻¹ (C=C) e 732 cm⁻¹ (N-H indol).

EIV-9: Espectro de IV (filme/KBr) do composto 25a.

EM-9: Espectro de massa de baixa resolução de 25a.

EHMQC-9: Espectro HMQC do composto 25a.

C/H	$ δ_H(multiplicidade, J = Hz) $	δc	
1 (C ₀)	-	141,7	10"
2 (N)	-	-	6"11"
3 (C ₀)	-	138,9	$\int_{N} \frac{N}{H} 9''$
4 (CH)	9,00 (<i>s</i>)	116,7	$N^{-N} \sum S$
4a (C ₀)	-	*	
4b (C ₀)	-	121,0	
5 (CH)	8,55 (<i>d</i> , <i>7,8</i>)	123,6	
6 (CH)	7,37 <i>(t, 7,2)</i>	120,7	EM: Coulden NoOoS
7 (CH)	7,63-7,73 (<i>m</i>)	129,2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8 (CH)	7,63-7,73 (<i>m</i>)	112,7	
8a (C ₀)	-	139,1	
9 (NH)	12,17 (s)	-	5'-4'
9a (C ₀)	-	137,8	
1' (C ₀)	-	134,1	
2' (CH)	8,83 (<i>s</i>)	123,4	
3' (C ₀)	-	148,3	
4' (CH)	8,50 (<i>d</i> , <i>8</i> , 1)	122,4	
5' (CH)	7,96 (<i>t</i> , <i>7,9</i>)	130,5	
6' (CH)	8,43 (dd, 8,1; 2,1)	134,8	
2" (C ₀)	-	175,4	
5" (C ₀)	-	158,5	
6" (CH ₂)	5,98 (s/)	68,5	
7" (NH)	11,47 (s <i>l</i>)	-	
8" (CH ₂)	3,59 (<i>t</i> , 7,3)	44,1	1 - Culture Michael Comment Contraction Marken Ma
9" (CH ₂)	1,59 (Quint., 7,2)	28,3	1
10" (CH ₂)	1,31 (Sext., 7,5)	19,5	12 11 10 9 8 7 6 5 4 3 2 1 ppm
11" (CH ₃)	0,90 (<i>t</i> , 7,2)	13,6	··· ···

Anexo 10: 3-[2"-tioxo-3"-(butilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-nitrofenil)-β-carbolina (25b).

*não observados

ER ¹**H-10:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **25b**.

ER¹³**C-10**: Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO-*d*₆) do composto **25b**.

IV (v, cm⁻¹; KBr): 3053 cm⁻¹ (N-H indol); 1612 cm⁻¹ (C=N); 1345 e 1238 cm⁻¹ (C=S); 2961, 2928, 2866 cm⁻¹ (C-H butil); 1565, 1454 cm⁻¹ (C=C) e 731 cm⁻¹ (N-H indol).

EIV-10: Espectro de IV (filme/KBr) do composto 25b.

EM-10: Espectro de massa de baixa resolução de 25b.

EHMQC-10: Espectro HMQC do composto 25b.

C/H	$ δ_{H} (multiplicidade, J = Hz): $	δ _c
1 (C ₀)	-	141,4
2 (N)	-	-
3 (C ₀)	-	138,7
4 (CH)	8,80 (s)	114,7
4a (C ₀)	-	124,9
4b (C ₀)	-	121,2
5 (CH)	8,42 (<i>d</i> , 7,8)	122,0
6 (CH)	7,32 <i>(t, 7,5)</i>	120,3
7 (CH)	7,60 (t, 7,6)	128,6
8 (CH)	7,71 (<i>d</i> , <i>8</i> ,1)	112,8
8a (C ₀)	-	141,3
9 (NH)	11,86 (s)	-
9a (C ₀)	-	129,3
1' (C ₀)	-	133,5
2' (CH)	7,95 (<i>d, 8,7</i>)	129,3
3' (CH)	6,96 (<i>d</i> , <i>9,0</i>)	112,2
4' (C ₀)	-	150,8
5' (CH)	6,96 (d <i>, 9,0</i>)	112,2
6' (CH)	7,95 (<i>d</i> , <i>8</i> ,7)	129,3
2" (C ₀)	-	175,5
5" (C ₀)	-	164,6
N(CH ₃) ₂	3,05 (s)	40,0
6" (CH ₂)	5,92 (s/)	68,2
7" (NH)	11,41 (<i>sl</i>)	-
8" (CH ₂)	3,59 (<i>t</i> , 7,2)	44,0
9" (CH ₂)	1,57 (Q <i>uint., 7,3</i>)	28,5
10" (CH ₂)	1,32 (Sext., 7,3)	19,5
11" (CH ₃)	0,92 (<i>t</i> , 7,3)	13,7

ER ¹H-11: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **25c**.

ER ¹³**C-11:** Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO- d_6) do composto **25c**.

IV (v, cm⁻¹; KBr): 3262 cm⁻¹ (N-H); 1608 cm⁻¹ (C=N); 1348 e 1229 cm⁻¹ (C=S); 2952, 2926, 2865 cm⁻¹ (C-H butil); 1558, 1493, 1452 cm⁻¹ (C=C) e 734 cm⁻¹ (N-H indol).

EIV-11: Espectro de IV (filme/KBr) do composto 25c.

EM-11: Espectro de massa de baixa resolução de 25c.

EHMQC-11: Espectro HMQC do composto 25c.

ER ¹**H-12:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **26a**.

ER ¹³**C-12:** Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO- d_6) do composto **26a**.

IV (v, cm⁻¹; KBr): 3042 cm⁻¹ (N-H indol); 1613 cm⁻¹ (C=N); 1372 e 1237 cm⁻¹ (C=S); 2930 e 2852 cm⁻¹ (C-H ciclohexil); 1564, 1484, 1453 cm⁻¹ (C=C) e 730 cm⁻¹ (N-H indol).

EIV-12: Espectro de IV (filme/KBr) do composto 26a.

EM-12: Espectro de massa de baixa resolução de 26a.

EHMQC-12: Espectro HMQC do composto 26a.

C/H	$\delta_{\rm H}$ (multiplicidade, $J = Hz$)	δ _c	
1 (C ₀)	-	141,7	
2 (N)	-	-	
3 (C ₀)	-	139,1	
4 (CH)	9,00 (s)	116,7	
4a (C ₀)	-	*	
4b (C ₀)	-	121,0	
5 (CH)	8,55 (<i>d</i> , <i>7,8</i>)	122,4	
6 (CH)	7,37 <i>(t,</i> 7,2)	120,6	
7 (CH)	7,63-7,73 (<i>m</i>)	129,2	
8 (CH)	7,63-7,73 (<i>m</i>)	112,7	
8a (C ₀)	-	139,7	
9 (NH)	12,17 (s)	-	
9a (C ₀)	-	137,9	
1' (C ₀)	-	134,1	
2' (CH)	8,82 (sl)	123,4	1
3' (C ₀)	-	148,4	
4' (CH)	8,50 (d <i>, 8,1</i>)	123,6	
5' (CH)	7,97 (<i>t</i> , 7,9)	130,5	
6' (CH)	8,44 (<i>d</i> , <i>8</i> , 1)	134,9	
2" (C ₀)	-	174,2	
5" (C ₀)	-	164,9	
6" (CH ₂)	6,02 (s <i>l</i>)	65,4	
7" (NH)	11,46 (<i>s</i>)	-	
8" (CH)	4,22 (<i>t</i> , 11,7)	53,8	
9"/13"(CH ₂)	1,03-1,85 <i>(m)</i>	28,96	1
10" (CH ₂)	1,03-1,85 <i>(m)</i>	24,9	bull house
12" (CH ₂)	1,03-1,85 <i>(m)</i>	24,6	r
11" (CH ₂)	1,03-1,85 <i>(m)</i>	25,1	

ER ¹**H-13:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **26b**.

ER ¹³**C-13:** Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO- d_6) do composto **26b**.

IV (v, cm⁻¹; KBr): 3064 cm⁻¹ (N-H); 1613 cm⁻¹ (C=N); 1346 e 1239 cm⁻¹ (C=S); 2930 e 28542 cm⁻¹ (C-H ciclohexil); 1559, 1485, 1459 cm⁻¹ (C=C) e 730 cm⁻¹ (N-H indol).

EIV-13: Espectro de IV (filme/KBr) do composto 26b.

EM-13: Espectro de massa de baixa resolução de 26b.

EHMQC-13: Espectro HMQC do composto 26b.

C/H	δ_{H} (multiplicidade, $J = Hz$)	δ _c	<u>Anexo 14</u> : 3-[2"-tioxo-3"-(cicloexilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-dimetilaminofenil)-β-carbolina 26c.
1 (C ₀)	-	141,4	
2 (N)	-	-	10"
3 (C ₀)	-	138,7	9"
4 (CH)	8,81 (<i>s</i>)	114,6	12"
4a (C ₀)	-	124,9	6"N 13"
4b (C ₀)	-	121,2	
5 (CH)	8,42 (<i>d</i> , 7,8)	122,0	$N \rightarrow \frac{1}{2^n} S$
6 (CH)	7,32 <i>(t,</i> 7,8)	120,3	$6 - 5 - 4 - 5 - 0^{-1}$
7 (CH)	7,60 <i>(t, 7,8)</i>	128,5	FM: $C_{28}H_{30}N_6OS$
8 (CH)	7,71 <i>(d, 9,0)</i>	112,7	
8a (C ₀)	-	141,2	
9 (NH)	11,88 (s)	-	6'
9a (C ₀)	-	133,4	5' 40
1' (C ₀)	-	129,4	N
2' (CH)	7,97 <i>(d, 9,0)</i>	129,3	
3' (CH)	6,96 <i>(d, 9,0)</i>	112,1	
4' (C ₀)	-	150,8	
5' (CH)	6,96 <i>(d, 9,0)</i>	112,1	
6' (CH)	7,97 <i>(d, 9,0)</i>	129,3	
2" (C ₀)	-	174,2	
5" (C ₀)	-	*	
N(CH ₃) ₂	3,05 <i>(</i> s <i>)</i>	39,9	
6" (CH ₂)	5,99 <i>(sl)</i>	65,4	
7" (NH)	11,41 <i>(</i> s <i>)</i>	-	
8" (CH)	4,21 <i>(t, 11,7)</i>	53,7	
9"/13"(CH ₂)	1,03-1,84 <i>(m)</i>	29,1	- A Contraction of the Contracti
10"/12"(CH ₂)	1,03-1,84 <i>(m)</i>	25,0	12 11 10 9 8 7 6 5 4 3 2 1 ppm
11" (CH ₂)	1,03-1,84 <i>(m)</i>	25,0	لمجاهد المراك
		-	1.87 3.34 3.26 4.58 20.88 18.81

ER ¹**H-14:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **26c**.

ER ¹³**C-14:** Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO- d_6) do composto **26c**.

IV (v, cm⁻¹; KBr): 3083 cm⁻¹ (N-H); 1609 cm⁻¹ (C=N); 1361 e 1240 cm⁻¹ (C=S); 2932 e 2851 cm⁻¹ (C-H ciclohexil); 1555, 1489, 1450 cm⁻¹ (C=C) e 739 cm⁻¹ (N-H indol).

EIV-14: Espectro de IV (filme/KBr) do composto 26c.

EM-14: Espectro de massa de baixa resolução de 26c.

EHMQC-14: Espectro HMQC do composto 26c.

C/H	$\delta_{\rm H}$ (multiplicidade, $J = Hz$)	δc
1 (C ₀)	-	141,6
2 (N)	-	-
3 (C ₀)	-	138,6
4 (CH)	8,91 (s)	115,9
4a (C ₀)	-	129,9
4b (C ₀)	-	121,0
5 (CH)	8,45 (<i>d</i> , <i>7,8</i>)	122,2
6 (CH)	7,31-7,38 <i>(m)</i>	120,4
7 (CH)	7,60-7,64 (<i>m</i>)	129,1
8 (CH)	7,70 <i>(d, 8,4)</i>	112,7
8a (C ₀)	-	140,4
9 (NH)	11,96 (sl)	-
9a (C ₀)	-	137,4
1' (C ₀)	-	133,9
2'/6' (CH)	7,89 (<i>d</i> , <i>6</i> , <i>9</i>)	128,4
3'/5' (CH)	7,60-7,64 (<i>m</i>)	129,0
4' (CH)	7,60-7,64 (<i>m</i>)	128,9
2" (C ₀)	-	175,1
5" (C ₀)	-	160,1
6" (CH ₂)	5,78 (<i>sl</i>)	67,7
7"NH	11,74 <i>(sl)</i>	-
8" (CH ₂)	4,85 <i>(s)</i>	47,7
9" (C ₀)	-	135,4
10"/14"(CH)	7,31-7,38 (<i>m</i>);	128,2
11"/13"CH)	7,42 (d, 3,6).	128,8
12"(CH)	7,31-7,38 (<i>m</i>);	128,0

Anexo 15: 3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-fenil-β-carbolina 27a.

ER ¹**H-15:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **27a**.

IV (v, cm⁻¹; KBr): 3062 cm⁻¹ (N-H indol); 1618 cm⁻¹ (C=N); 1396 e 1237 cm⁻¹ (C=S); 2915 cm⁻¹ (CH₂); 1565, 1493, 1454 cm⁻¹ (C=C) e 734 cm⁻¹ (N-H indol).

EIV-15: Espectro de IV (filme/KBr) do composto 27a.

EM-15: Espectro de massa de baixa resolução de 27a.

EHMQC-15: Espectro HMQC do composto 27a.

C/H	$δ_H$ (multiplicidade, J =	δc
	Hz):	
1 (C ₀)	-	142,1
2 (N)	-	-
3 (C ₀)	-	138,8
4 (CH)	8,98 (s)	116,7
4a (C ₀)	-	127,8
4b (C ₀)	-	121,0
5 (CH)	8,48 (<i>d</i> , 7,5)	122,4
6 (CH)	7,30-7,40 <i>(m)</i>	120,7
7 (CH)	7,62-7,71 (<i>m</i>)	129,2
8 (CH)	7,62-7,71 (<i>m</i>)	112,6
8a (C ₀)	-	141,6
9 (NH)	12,14 (s)	-
9a (C ₀)	-	134,8
1' (C ₀)	-	134,1
2' (CH)	8,71 (<i>sl</i>)	123,2
3' (C ₀)	-	148,2
4' (CH)	8,43 (d <i>d, 8,1; 1,8</i>)	123,6
5' (CH)	7,91 (<i>t</i> , <i>7</i> ,2)	130,4
6' (CH)	8,32 (<i>d</i> , 7,2)	135,4
2" (C ₀)	-	176,4
5" (C ₀)	-	160,2
6" (CH ₂)	5,79 (<i>sl</i>)	67,8
7" (NH)	11,78 (s)	-
8" (CH ₂)	4,82 <i>(</i> s)	47,7
9" (C ₀)	-	137,9
10"/14" (CH)	7,29-7,40 (<i>m</i>)	128,0
11"/13" (CH)	7,29-7,40 (<i>m</i>)	128,6
12"(CH)	7,29-7,40 (<i>m</i>)	127,8

Anexo 16: 3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-nitrofenil)-β-carbolina 27b

ER ¹**H-16:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **27b**.

ER¹³**C-16:** Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO-*d*₆) do composto **27b**.

IV (v, cm⁻¹; KBr): 3063 cm⁻¹ (N-H indol); 1621 cm⁻¹ (C=N); 1348 e 1240 cm⁻¹ (C=S); 2899 cm⁻¹ (CH₂); 1566, 1496, 1454 cm⁻¹ (C=C) e 730 cm⁻¹ (N-H indol).

EIV-16: Espectro de IV (filme/KBr) do composto 27b.

EM-16: Espectro de massa de baixa resolução de 27b.

EHMQC-16: Espectro HMQC do composto 27b.

C/H	δ_{H} (multiplicidade, $J = Hz$)	δ _c
1 (C ₀)	-	141,4
2 (N)	-	-
3 (C ₀)	-	135,4
4 (CH)	8,79 (<i>s</i>)	114,7
4a (C ₀)	-	124,8
4b (C ₀)	-	121,2
5 (CH)	8,40 (<i>d</i> , <i>7,8</i>)	122,0
6 (CH)	7,28-7,39 (<i>m</i>)	120,3
7 (CH)	7,59 (t, 7,8)	128,5
8 (CH)	7,68-7,76 (<i>m</i>)	112,8
8a (C ₀)	-	141,1
9 (NH)	11,84 (s)	-
9a (C ₀)	-	133,4
1' (C ₀)	-	129,3
2'/6'(CH)	7,68-7,76 (<i>m</i>)	129,1
3'/5'(CH)	6,86 (<i>d</i> , <i>8</i> , <i>4</i>)	112,1
4' (C ₀)	-	150,7
2" (C ₀)	-	175,1
5" (C ₀)	-	160,1
N(CH ₃) ₂	3,06 (s)	40,0
6" (CH ₂)	5,80 (s/)	67,8
7" (NH)	-	-
8" (CH ₂)	4,86 <i>(</i> s)	47,8
9" (C ₀)	-	138,4
10"/14"(CH)	7,43 (<i>d</i> ; <i>4</i> ,5)	128,8
11"/13"(CH)	7,28-7,39 (<i>m</i>)	128,2
12" (CH)	7,28-7,39(<i>m</i>)	127,9

Anexo 17: 3-[2"-tioxo-3"-(benzilaminometil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-dimetilaminofenil)-β-carbolina 27c.

ER ¹**H-17**: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **27c**.

IV (v, cm⁻¹; KBr): 3086 cm⁻¹ (N-H indol); 1607 cm⁻¹ (C=N); 1363 e 1241 cm⁻¹ (C=S); 2888 cm⁻¹ (CH₂); 1558, 1495, 1443 cm⁻¹ (C=C) e 739 cm⁻¹ (N-H indol).

EIV-17: Espectro de IV (filme/KBr) do composto 27c.

EM-17: Espectro de massa de baixa resolução de 27c.

EHMQC-17: Espectro HMQC do composto 27c.

Anexo 18: 3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazolil-5"-il]-1-fenil-β-carbolina 28a

ER ¹**H-18:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **28a**.

ER ¹³**C-18:** Espectro de RMN ¹³C (75,0 MHz, DMSO-*d*₆) do composto **28a**.

IV (v, cm⁻¹; KBr): 3280 (N-H indol); 1622 cm⁻¹ (C=N); 1374 e 1243 cm⁻¹ (C=S); 2965, 2948, 2877 cm⁻¹ (C-H pirrolidil); 1567, 1496, 1445, 1415 cm⁻¹ (C=C) e 741 cm⁻¹ (N-H indol).

EIV-18: Espectro de IV (filme/KBr) do composto 28a.

EHMQC-18: Espectro HMQC do composto 28a.

C/H	$\delta_{\rm H}$ (multiplicidade, $J = H$)	δ _c	
1 (C ₀)	-	141,7	
2 (N)	-	-	8"
3 (C ₀)	-	138,6	6" _ N
4 (CH)	8,95 (s)	130,1	
4a (C ₀)	-	*	
4b (C ₀)	-	120,9	$\left\ \int_{2^{n}}^{2^{n}} S \right\ $
5 (CH)	8,54 (<i>d</i> , <i>7,8</i>)	122,5	$5 \qquad 4 \qquad 5^{"}$
6 (CH)	7,37 <i>(t, 6,9)</i>	120,7	4b 4a
7 (CH)	7,63-7,72 (<i>m</i>)	129,3	$\frac{7}{10} \frac{1}{100} \frac{1}{100} \frac{N}{1000} C_{24}H_{20}N_6O_3S$
8 (CH)	7,63-7,72 (<i>m</i>)	112,7	8 8a N 9a 1
8a (C ₀)	-	140,2	$H \qquad \frac{1}{2}$
9 (NH)	12,17 (s)	-	6'() 3' NO
9a (C ₀)	-	134,1	-NO ₂
1' (C ₀)	-	131,4	³ 4'
2' (CH)	8,80 (s)	123,4	
3' (C ₀)	-	148,2	
4' (CH)	8,50 (<i>d</i> , <i>7,8</i>)	123,7	
5' (CH)	7,96 (<i>t</i> , <i>7,8</i>)	130,6	
6' (CH)	8,44 (<i>d</i> , <i>8</i> ,1)	135,1	
2" (C ₀)	-	177,9	
5" (C ₀)	-	159,3	
6" (CH ₂)	5,20 (s/)	66,2	
7" (NH)	-	-	
8"/11" (CH ₂)	2,89 (s/)	49,5	
9"/10" (CH ₂)	1,71 (sl)	23,6	
			12 11 10 9 8 7 6 5 4 3 2 1
			5.39 16.78 11.54 8.04 18.53 18.99

ER ¹**H-19:** Espectro de RMN ¹H (300,0 MHz, DMSO-*d*₆) do composto **28b**.

Appro 10: 3-[2"-tioxo-3"-(nirrolidilmetil)-1" 3" 4"-ovadiazolil-5"-il]-1-(3'-nitrofenil)-8-carbolina 28h

18.99

ER¹³**C-19:** Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO-*d*₆) do composto **28b**.

IV (v, cm⁻¹; KBr): 3285 (N-H indol); 1623 cm⁻¹ (C=N); 1347 e 1252 cm⁻¹ (C=S); 2970, 2874, 2854 cm⁻¹ (C-H pirrolidil); 1523, 1498, 1455 cm⁻¹ (C=C) e 753 cm⁻¹ (N-H indol).

EHMQC-19: Espectro HMQC do composto 28b.

C/H	$\delta_{\rm H}$ (multiplicidade, $J = Hz$)	δ _c
1 (C ₀)	-	143,5
2 (N)	-	-
3 (C ₀)	-	133,5
4 (CH)	8,74 (s)	112,7
4a (C ₀)	-	124,6
4b (C ₀)	-	121,0
5 (CH)	8,46 (<i>d</i> , <i>8</i> , 1)	122,1
6 (CH)	7,32 <i>(t, 7,0)</i>	120,3
7 (CH)	7,60 (t, 7,2)	128,6
8 (CH)	7,71 (<i>d</i> , <i>8</i> , 1)	112,8
8a (C ₀)	-	141,4
9 (NH)	11,87 (s)	-
9a (C ₀)	-	130,8
1' (C ₀)	-	129,0
2' (CH)	7,96 (<i>d</i> , <i>9,0</i>)	129,4
3' (CH)	6,97 (<i>d</i> , <i>9,0</i>)	112,1
4' (C ₀)	-	150,9
5' (CH)	6,967 (d <i>, 9,0</i>)	112,1
6' (CH)	7,96 (<i>d</i> , <i>9,0</i>)	129,4
2" (C ₀)	-	177,6
5" (C ₀)	-	163,7
N(CH ₃) ₂	3,05 (s)	40,0
6" (CH ₂)	5,20 (s/)	66,1
7" (NH)	-	-
8"/11" (CH ₂)	2,89 (sl)	49,5
9"/10" (CH ₂)	1,71 (sl)	23,6

Anexo 20: 3-[2"-tioxo-3"-(pirrolidilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-dimetilaminofenil)-β-carbolina 28c

ER ¹**H-20**: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **28c**.

ER ¹³**C-20:** Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO- d_6) do composto **28c**.

IV (v, cm⁻¹; KBr): 3080 (N-H indol); 1623 cm⁻¹ (C=N); 1369 e 1243 cm⁻¹ (C=S); 2963, 2949, 2870 cm⁻¹ (C-H pirrolidil); 1557, 1497, 1455 cm⁻¹ (C=C) e 750 cm⁻¹ (N-H indol).

EM-20: Espectro de massa de baixa resolução de 28c.

C/H	$\delta_{\rm H}$ (multiplicidade, $J = Hz$)	δ _c
1 (C ₀)	-	143,0
2 (N)	-	-
3 (C ₀)	-	137,2
4 (CH)	8,90 (s)	114,3
4a (C ₀)	-	129,0
4b (C ₀)	-	120,9
5 (CH)	8,52 (<i>d</i> , 7,8)	122,4
6 (CH)	7,35 <i>(t, 7,2)</i>	120,5
7 (CH)	7,58-7,73 (<i>m</i>)	129,5
8 (CH)	7,58-7,73 (<i>m</i>)	112,8
8a (C ₀)	-	141,6
9 (NH)	12,03 (s)	-
9a (C ₀)	-	134,1
1' (C ₀)	-	130,6
2'/6' (CH)	8,05 (<i>d</i> , <i>6</i> ,9)	128,6
3'/5' (CH)	7,58-7,73 (<i>m</i>)	128,9
4' (CH)	7,58-7,73 (<i>m</i>)	129,3
2" (C ₀)	-	177,6
5" (C ₀)	-	161,2
6" (CH ₂)	5,08 (<i>s</i>)	70,0
7" (NH)	-	-
8"/12" (CH ₂)	2,81 (<i>t</i> , <i>4</i> ,3)	50,1
9"/11" (CH ₂)	3,61 (<i>t</i> , <i>4</i> ,3)	66,4

Anexo 21: 3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-5"-il]-1-fenil-β-carbolina 29a

ER ¹**H-21:** Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **29a**.

ER ¹³C-21: Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO-*d*₆) do composto 29a.

IV (v, cm⁻¹; KBr): 3207 cm⁻¹ (N-H indol); 1622 cm⁻¹ (C=N); 1359 e 1248 cm⁻¹ (C=S); 1561, 1496, 1455 cm⁻¹ (C=C); 2964, 2840 cm⁻¹ (C-H morfolil); 1165 cm⁻¹ (C-0-C, morfolil) e 742 (N-H indol).

EIV-21: Espectro de IV (filme/KBr) do composto 29a.

EM-21: Espectro de massa de baixa resolução de 29a.

EHMQC-21: Espectro HMQC do composto 29a.

C/H	$\delta_{\rm H}$ (multiplicidade, $J = Hz$)	δς	
1 (C ₀)	-	141,7	
2 (N)	-	-	
3 (C ₀)	-	148,2	
4 (CH)	8,98 (<i>s</i>)	115,0	
4a (C ₀)	-	*	
4b (C ₀)	-	*	
5 (CH)	8,55 (<i>d</i> , <i>7,8</i>)	122,6	
6 (CH)	7,38 <i>(t, 7,2)</i>	120,8	
7 (CH)	7,64-7,73 (<i>m</i>)	129,4	
8 (CH)	7,64-7,73 (<i>m</i>)	112,7	
8a (C ₀)	-	140,4	
9 (NH)	12,21 (s)	-	
9a (C ₀)	-	134,3	
1' (C ₀)	-	130,1	
2' (CH)	8,80 (s)	123,4	
3' (C ₀)	-	148,2	
4' (CH)	8,50 (<i>d</i> , <i>7,8</i>)	123,8	
5' (CH)	7,97 (<i>t</i> , 7,9)	130,6	
6' (CH)	8,45 (<i>dd</i> , <i>8</i> ,1; 1,8)	135,1	
2" (C ₀)	-	177,7	
5" (C ₀)	-	160,6	
6" (CH ₂)	5,09(<i>sl</i>)	70,0	
7" (NH)	-	-	
8"/12" (CH ₂)	2,81 (<i>sl</i>)	50,1	-
9"/11" (CH ₂)	3,61 (sl)	66,0	-

*não observados

Anexo 22: 3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(3'-nitrofenil)-β-carbolina 29b

ER ¹**H-22**: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **29b**.

IV (v, cm⁻¹; KBr): 3226 cm⁻¹ (N-H indol); 1626 cm⁻¹ (C=N); 1351 e 1249 cm⁻¹ (C=S); 1559, 1497, 1453 cm⁻¹ (C=C); 2967, 2859 cm⁻¹ (C-H morfolil); 1166 cm⁻¹ (C-0-C, morfolil) e 740 (N-H indol).

EIV-22: Espectro de IV (filme/KBr) do composto 29b.

EHMQC-22: Espectro HMQC do composto 29b.

			- Anexo 23: 3-[2"-tioxo-3"-(morfolilmetil)-1",3",4"-oxadiazolil-5"-il]-1-(4'-dimetilaminofenil)-β-carbolina 29
C/H	$\delta_{\rm H}$ (multiplicidade, $J = Hz$)	δc	
1 (C ₀)	-	143,6	
2 (N)	-	-	
3 (C ₀)	-	133,6	
4 (CH)	8,75 (<i>s</i>)	112,9	$\vec{\mathbf{J}} = \vec{\mathbf{N}} \mathbf{N} \mathbf{O}$
4a (C ₀)	-	124,5	$\vec{N} = \frac{\vec{N}}{12" 11"}$
4b (C ₀)	-	121,0	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2^{n}}$ S^{-1}
5 (CH)	8,46 (<i>d</i> , <i>7,8</i>)	122,1	$\frac{1}{5}$ 4 $\frac{1}{5}$ O^{-1}
6 (CH)	7,33 <i>(t, 7,5)</i>	120,4	$-\frac{6}{4b}$ $\frac{4b}{4a}$ $\frac{3}{3}$
7 (CH)	7,60 (t)	128,6	
8 (CH)	7,72 (<i>d</i> , <i>8</i> ,1)	112,8	$-\frac{1}{8} = \frac{1}{8} = \frac{1}{1} = 1$
8a (C ₀)	-	141,4	\dot{H} \dot{H} \dot{I} $2'$
9 (NH)	11,90 (s)	-	- 6' <u>()</u> 3'
9a (C ₀)	-	130,7	
1' (C ₀)	-	128,9	
2' (CH)	7,96 (<i>d</i> , <i>8</i> ,7)	129,4	
3' (CH)	6,97 (<i>d</i> , <i>8</i> ,7)	112,1	
4' (C ₀)	-	150,9	
5' (CH)	6,97 (d <i>, 8,7</i>)	112,1	
6' (CH)	7,96 (<i>d, 8,7</i>)	129,4	
2" (C ₀)	-	177,6	
5" (C ₀)	-	161,4	
6" (CH ₂)	5,08 (s/)	69,9	
N(CH ₃) ₂	3,05 (s)	39,9	
7" (NH)	-	-	
3"/12" (CH ₂)	2,81 (s/)	50,1	
)"/11" (CH ₂)	3,61 (s/)	66,0	· · · · · · · · · · · · · · · · · · ·
/			」 12 11 10 9 8 7 6 5 4 3 2 1 ppm
			2.88 3.65 3.75 3.65 6.45 22.07 2.88 2.48 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49

ER ¹**H-23**: Espectro de RMN ¹H (300,0 MHz, DMSO- d_6) do composto **29c**.

ER¹³**C-23**: Espectro de RMN ¹³C/DEPT (75,0 MHz, DMSO-*d*₆) do composto **29c**.

IV (v, cm⁻¹; KBr): 3261 cm⁻¹ (N-H indol); 1609 cm⁻¹ (C=N); 1364 e 1238 cm⁻¹ (C=S); 1556, 1495, 1438 cm⁻¹ (C=C); 2964, 2846 cm⁻¹ (C-H morfolil); 1165 cm⁻¹ (C-0-C, morfolil) e 751 (N-H indol).

EIV-23: Espectro de IV (filme/KBr) do composto 29c

EM-23: Espectro de massa de baixa resolução de 29c.