

CENTRO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE QUÍMICA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

FERNANDO RODRIGUES DE CARVALHO

"Caracterização de Complexos de Transferência de Carga entre íons Derivados de *N*,*N*'-alquildiilbis(piridínio substituídos) com lodeto"

MARINGÁ, FEVEREIRO/2011

FERNANDO RODRIGUES DE CARVALHO

"Caracterização de Complexos de Transferência de Carga entre íons Derivados de *N*,*N*'-alquildiilbis(piridínio substituídos) com lodeto"

Centro de Ciências Exatas Dissertação apresentada ao Programa de Pós-Graduação em Química do Departamento de Química do Centro de Ciências Exatas da Universidade Estadual de Maringá como parte dos requisitos para a obtenção do título de Mestre em Química

Orientador: Prof. Dr. Noboru Hioka

MARINGÁ, FEVEREIRO/2011

Dados Internacionais de Catalogação-na-Publicação (CIP) (Biblioteca Central - UEM, Maringá – PR., Brasil)

Carvalho, Fernando Rodrigues de C331 Caracterização de complexos de transferência de carga entre íons derivados de N,N'-alquildiil-bis (piridínio substituídos) com Iodeto / Fernando Rodrigues de Carvalho. -- Maringá, 2011. 101 f. : il. Orientador: Prof. Dr. Noboru Hioka Dissertação (mestrado) - Universidade Estadual de Maringá, Centro de Ciências Exatas, Departamento de Química, Programa de Pós-Graduação em Química. 1. Complexo de transferência de carga. 2. Piridínios. 3. Iodeto. I. Hioka, Noboru, orient. II.Universidade Estadual de Maringá, Centro de Ciências Exatas, Departamento de Química, Programa de Pós-Graduação em Química III. Título.

541.3 CDD 21.ed.

Este é o exemplar definitivo da Dissertação apresentada por Fernando Rodrigues de Carvalho, perante a Comissão Julgadora do Programa de Pós-Graduação em Química em 25 de fevereiro de 2011.

COMISSÃO JULGADORA:

Prof. Dr. Noboru Hioka Presidente - DQI/UEM

Prof. Dr. Edgardo Alfonso Gomes Pineda Membro - DQI/UEM

Prof. Dr. Luiz Henrique Dall'Antonia Membro - UEL

Aos meus pais Fidelcino e Maria, à minha esposa Nancy, às minhas filhas Laura e Beatriz, ao meu sogro e sogra Natalino e Luzia e ao meu irmão Bruno.

Agradecimentos

Ao Pai Celestial que me concedeu a vida e é minha fonte de força e inspiração.

Aos meus pais pelo apoio emocional, educacional e financeiro.

A minha esposa pelo amor, paciência, incentivo e compreensão nos momentos difíceis ao longo desta trajetória e por acreditar no meu potencial.

Ao professor Dr. Noboru Hioka pela orientação, paciência, confiança e conselhos.

Aos professores Vagner, Wilker, Luiz e Claudio pelas discussões científicas.

Aos alunos de iniciação científica principalmente a Andrezza, Maicon, Douglas, Paulo e Bruno pela amizade e ajuda na execução de alguns experimentos.

Aos colegas do Laboratório, em especial Adriana, André, Augusto e Simone.

Conhecimento e aprendizado

Uma revelação dada ao Profeta Joseph Smith em 1843 disse: "Qualquer princípio de inteligência que alcançarmos nesta vida, surgira conosco na ressurreição. E se nessa vida uma pessoa, por sua diligência e obediência, adquirir mais conhecimento e inteligência do que outra, ela terá tanto mais vantagem no mundo futuro." (*Doutrina e convênios 130:18-19*)

Em 2000 o Profeta Gordon B. Hinckey ensinou: "O processo de aprendizado não tem fim. Precisamos ler, observar, assimilar e ponderar sobre aquilo o que expomos em nossa mente. Acredito na evolução da mente, do coração e da alma da humanidade. Acredito no aperfeiçoamento. Acredito no crescimento. Nada há de mais animador do que ser capaz de avaliar e então resolver um problema difícil, lutar com algo que pareça quase insolúvel e então encontrar a solução.

Por esses motivos, e por causa da velocidade e complexidade que a vida exige de nós, não podemos parar de aprender, crescer e progredir. Não podemos descansar em nosso desenvolvimento pessoal – um desenvolvimento que é emocional, espiritual e também mental. Há tanto para aprender e tão pouco tempo para fazê-lo." (*Standing for Something 2000, p. 62*)

SUMÁRIO

SUMÁRIO	I
LISTA DE ESQUEMAS	III
LISTA DE FIGURAS	. IV
LISTA DE TABELAS	VIII
ABREVIATURAS E SÍMBOLOS	X
RESUMO	XIII
ABSTRACT	XV
1. INTRODUÇÃO	1
1.1 Complexo de transferência de carga	1
1.2 Compostos aceptores e doador de elétrons	9
2. OBJETIVOS	21
2.1 Geral	21
2.2 Específico	21
3. PARTE EXPERIMENTAL	23
3.1 Equipamentos	23
3.2 Materiais	23
3.3 Derivados piridínicos estudados	23
3.4 Obtenção dos derivados piridínicos	24
3.5 Determinação da estequiometria	25
3.6 Preparo das soluções para estimar as constantes de formação e absortividade molar pelo méto Benesi-Hildebrand (B-H)	odo 25
3.7 Preparo das soluções para estimar as constantes de formação pelo método iterativo de ajuste curva	e de 26
3.8 Estimativa das constantes de formação e das absortividades molares	26
3.8.1 Aplicação do método B-H	26
3.8.2 Aplicação do método iterativo de ajuste de curva	26
3.9 Supressão da luz de emissão de fluorescência dos C _n bis(4CP) ²⁺ e C _n 4CP ⁺ pelo I ⁻	27
3.9.1 Calculo das constantes de supressão	27
3.9.2 Efeito da temperatura na região de baixa e alta concentração de l ⁻	27
3.10 Estimativa dos parâmetros termodinâmicos	28

3.11 Efeito dos ânions Br e SCN sobre a banda do CTC	28
3.11.1 Preparo das soluções (W e Y)	28
3.11.2 Efeito do Br ⁻	28
3.11.3 Efeito do SCN ⁻	28
3.12 Efeito da porcentagem de água sobre o CTC	29
3.13 Estudo eletroquímica dos CTC	29
3.13.1 Preparo das soluções	29
3.13.2 Voltametria cíclica	30
4. RESULTADOS E DISCUSSÕES	31
4.1 Observação da banda de transferência de carga	31
4.2 Determinação da estequiometria dos CTC	35
4.3 Estimativa das constantes de formação e absortividades molar	38
4.3.1 Método B-H	38
4.3.2 Método iterativo de ajuste de curva	45
4.4 Supressão da emissão fluorescente dos C _n bis(4CP) ²⁺ e C _n 4CP ⁺ pelo I ⁻	50
4.4.1 Calculo das constantes de supressão	50
4.4.2 Efeito da temperatura na região de baixa e alta concentração de l	53
4.5 Estimativa dos parâmetros termodinâmicos de formação do CTC	55
4.6 Curva analítica para determinação espectrofotométrica de iodeto	59
4.7 Efeito do ânion Br e SCN sobre a banda do CTC	61
4.8 Efeito da porcentagem de água sobre o CTC	65
4.9 Determinação dos parâmetros espectroscópicos e potencial de ionização do I, Br e SCN	66
4.10 Estudo eletroquímico dos CTC	74
4.10.1 Observação do pico redox dos CTC	74
4.10.2 Efeito do ânion sobre os potenciais redox	82
4.10.3 Reversibilidade dos CTC	84
5. CONCLUSÃO	87
6. REFERÊNCIAS BIBLIOGRÁFICAS	90
ANEXO 1 - Dedução da equação do método de Job de variação contínua	96
ANEXO 2 - Dedução da equação do método Benesi-Hildebrand (B-H)	98
ANEXO 3 - Dedução da equação do método interativo de ajuste de curva	99

LISTA DE ESQUEMAS

Esquema 1. Diagrama de níveis de energia relativos à interação doador-aceptor segundo
o modelo de Mulliken3
Esquema 2. Transição de transferência de carga dos orbitais HOMO do doador para os
orbitais LUMO do aceptor de elétrons4
Esquema 3. Estruturas químicas de: (A) DDQ e (B) TCNQ7
Esquema 4. Estruturas químicas de: (A) rac-1,1'-bi-2-naphthol e (B) p-benzoquinona8
Esquema 5. Estrutura química do poli(3-alquiltiofenos)8
Esquema 6. Estrutura química do 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8.8.8]
hexacosane
Esquema 7. Proposta de mecanismo para a reação de hidrólise alcalina dos íons RCP
gerando 4-piridona e 4-carboxamida, de acordo com Kosower e Patton, 196611
Esquema 8. Representação geral de derivados dímeros Cnbis. Reagente e possíveis
intermediários e produtos resultantes do ataque de um nucleófilo sobre os Cnbis. O grupo
de saída pode estar na posição 2 ou 4 e a carga do anel após a reação depende do
nucleófilo13
Esquema 9. Proposta de mecanismo para a reação de hidrólise alcalina dos íons
C _n bis(2BP) ²⁺ gerando a 2-piridona14
Esquema 10. Proposta de mecanismo para a reação de $C_n bis(2BP)^{2+} com N_3^{-}$ gerando o
íon C _n bis(2AP) ²⁺ como produto16
Esquema 11. Proposta de mecanismo para a reação de hidrólise alcalina dos íons
C _n bis(2AP) ²⁺ gerando a 2-piridona17
Esquema 12. Proposta de complexo "sanduíche" para derivados de cadeia metilênica
interligante "curta", exemplo o derivado C ₃ bis(4CP)19
Esquema 13. Estruturas dos derivados: (A) dímeros: $C_n bis(4CP)^{2+}$ (n = 3, 4, 6 e 8), (B)
dímeros: $C_n bis(2BP)^{2+}$ (n = 4 e 6), (C) monômeros: $C_n 4CP^+$ (n = 4, 6 e 16 carbonos no R) e
(D) monômero: $C_n 2BP^+$ (n = 1, grupo metil)24
Esquema 14. Equilíbrio proposto para os CTC. (A) dímeros: $C_n bis(4CP)^{2+}$ (n = 3, 4, 6 e 8)
e (B) monômero: $C_n 4CP^+$ (n = 4, 6 e 16 carbonos no R)

LISTA DE FIGURAS

mostra o aumento da absorbância com o aumento da [l⁻]. (B) Determinação de K_{CTC} e ε_{CTC} para os CTC formados entre C₃bis(4CP)²⁺ e l⁻.....45 Figura 7. (A) Espectros de absorção UV-Vis para o $C_3 bis(4CP)^{2+}$ (5,0x10⁻⁵ mol L⁻¹) em acetonitrila a 30,0 °C com adições crescentes de [1⁻] de 0 a 0,072 mol L⁻¹. A seta indica o aumento da absorbância com o aumento da [I⁻]. Variação da absorbância em 410 nm do CTC formado entre $C_n bis(4CP)^{2+}$ (ou $C_4 4CP^+$) e l com adições crescentes de [l] em acetonitrila a 30,0 °C. (B) $C_3 bis(4CP)^{2+}$. (C) $C_4 bis(4CP)^{2+}$. (D) $C_6 bis(4CP)^{2+}$. (E) **Figura 8. (A)** Espectros de fluorescência do $C_8 bis(4CP)^{2+}$ (4,3x10⁻⁶ mol L⁻¹) a diversas [I⁻] (0 a $1,50 \times 10^{-2}$ mol L⁻¹) em acetonitrila a 30,0 °C, λ_{excit} = 278 nm. A seta indica o aumento da supressão com o aumento da [1]. (B) Plot de fluorescência versus [1] para dímeros: $C_3 bis(4CP)^{2+}$ (**a**), $C_4 bis(4CP)^{2+}$ (**b**), $C_6 bis(4CP)^{2+}$ (**c**), $C_8 bis(4CP)^{2+}$ (**v**); e monômeros: (**C**) Figura 9. Plot de Stern-Volmer, em acetonitrila a 30,0 °C para dímeros: C₃bis(4CP)²⁺ (■), $C_4 bis(4CP)^{2+}$ (•), $C_6 bis(4CP)^{2+}$ (•), $C_8 bis(4CP)^{2+}$; e monômeros: (V), $C_4 4CP^+$ (•), $C_6 4CP^+$ **Figura 10. (A)** Plot de Stern-Volmer para a supressão do $C_8 bis(4CP)^{2+}$ (4,3x10⁻⁶ mol L⁻¹) em função da adição de l⁻ (0,015 a 0,150 mol L⁻¹) a 30,0 °C. (B) Fluorescência versus temperatura para o C₄bis(4CP)²⁺ (4.3x10⁻⁶ mol L⁻¹) em acetonitrila a diversas temperaturas. $\lambda_{\text{excit}} = 278 \text{ nm e } \lambda_{\text{emis}} = 308 \text{ nm}$: baixa [l⁻] = 1,50x10⁻³ mol L⁻¹ (**a**), e alta [l⁻] = 7,50x10⁻³ mol

seta mostra o aumento da absorbância com o aumento da [l⁻]. **Inserção**: Curva analítica para determinação de iodeto......60

Figura 14. (A) Espectros de absorção UV-Vis em acetonitrila a 30,0 °C do CTC formado entre C₃bis(4CP)²⁺ (8,9x10⁻⁴ mol L⁻¹) e l⁻ (5,00x10⁻³ mol L⁻¹) com adições crescentes de Br⁻ (1,80x10⁻³ a 2,90x10⁻³ mol L⁻¹). A seta indica a diminuição da absorbância do C₃bis(4CP)²⁺/l⁻ com o aumento da [Br⁻]. (B) Variação da absorbância dos CTC $(C_3 bis(4CP)^{2+}/I)$ na região de 410 nm e 311 nm $(C_3 bis(4CP)^{2+}/B)^{-1}$62 Figura 15. (A) Espectros de absorção UV-Vis em acetonitrila a 30,0 °C do CTC formado entre C₃bis(4CP)²⁺ (8,9x10⁻⁴ mol L⁻¹) e l⁻ (5,00x10⁻³ mol L⁻¹) com adições crescentes de SCN^{-} (1,80x10⁻³ a 2,90x10⁻³ mol L⁻¹). (B) Variação da absorbância dos CTC Figura 16. Variação da absorbância do CTC (C₃bis(4CP)²⁺/l⁻) na região de 410 nm em acetonitrila a 30,0 °C utilizando como ânion interferente o Br (=) e o SCN (•)......64 Figura 17. (A) Espectros de absorção UV-Vis em acetonitrila a 30,0 °C do CTC formado entre C₃bis(4CP)²⁺ (8,9x10⁻⁴ mol L⁻¹) e l⁻ (5,00x10⁻³ mol L⁻¹) com adições crescentes de SCN⁻ (0 a 1,00x10⁻² mol L⁻¹). A seta indica a diminuição da absorbância do C₃bis(4CP)²⁺/l⁻ com o aumento da [SCN]. (B) Variação da absorbância para os CTC na região de 410 Figura 18. Espectros de absorção UV-Vis ilustrando a influência da porcentagem de água sobre a BTC do C_3 bis(4CP)²⁺ (3,0x10⁻⁴ mol L⁻¹) e l⁻ (4,00x10⁻³ mol L⁻¹) em acetonitrila a Figura 19. Plot de hv_{CTC} junto ao comprimento de onda de máxima absorbância do Figura 20. (A) Voltamogramas cíclicos com eletrodo de C_{vitreo} em acetonitrila, v = 100 mV s^{-1} , 30,0 °C, [ânion] = 4,00x10⁻³ mol L⁻¹ e [C₃bis(4CP)²⁺] = 6,0x10⁻⁴ mol L⁻¹. (A) CH₃CN sem substrato (—), But₄NBr (—), But₄NI (—), C₃bis(4CP)²⁺/Br⁻ (—) e C₃bis(4CP)²⁺/l⁻ (—). (B) Ampliação da figura A.....75

Figura 21. Sobreposição dos voltamogramas dos CTC, com eletrodo de C_{vítreo} em acetonitrila a 30,0 °C e v = 100 mV s⁻¹, $[C_n bis(4CP)^{2+}] = 6,0x10^{-4} mol L^{-1}, [C_44CP^{+}] =$ $12,0x10^{-4}$ mol L⁻¹ e [I⁻] = 4,00x10^{-3} mol L⁻¹. C₄4CP⁺/I⁻ (---), C₈bis(4CP)²⁺/I⁻ (---), **Figura 22.** Voltamogramas cíclicos com eletrodo de C_{vitreo} em acetonitrila, $v = 100 \text{ mV s}^{-1}$ a 30,0 °C, com adições crescentes de I^{-} (0 a 4,00x10⁻³ mol L^{-1}), $[C_n bis(4CP)^{2+}] = 6,0x10^{-4}$ mol L^{-1} e [C₄4CP⁺] = 12.0x10⁻⁴ mol L⁻¹. As setas indicam o aumento do pico catódico com o aumento da $[I^{-}]$. (A) C₃bis(4CP)²⁺, (B) C₄bis(4CP)²⁺, (C) C₈bis(4CP)²⁺ e (D) C₄4CP⁺/I⁻...79 Figura 23. Sobreposição dos voltamogramas dos CTC com eletrodo de Cvítreo em acetonitrila a 30.0 °C e v = 100 mV s⁻¹, $[C_n bis(4CP)^{2+}] = 6.0 \times 10^{-4}$ mol L⁻¹ e $[Br^{-}] = 4.00 \times 10^{-3}$ mol L⁻¹: C_3 bis(4CP)²⁺/Br⁻ (---) e C₄bis(4CP)²⁺/Br⁻ (---)......80 **Figura 24.** Voltamogramas cíclicos com eletrodo de C_{vitreo} em acetonitrila, $v = 100 \text{ mV s}^{-1}$ a 30,0 °C, com adições crescentes de Br⁻ (1,20x10⁻³ a 4,00x10⁻³ mol L⁻¹) e [C_nbis(4CP)²⁺] = $6,0x10^{-4} \text{ mol } L^{-1}, (\textbf{A}) C_3 \text{bis}(4\text{CP})^{2+}/\text{Br}^-. (\textbf{B}) C_4 \text{bis}(4\text{CP})^{2+}/\text{Br}^-......81$ Figura 25. Comparação dos voltamogramas dos CTC com eletrodo de Cvítreo em acetonitrila a 30,0 °C e v = 100 mV s⁻¹, $[C_n bis(4CP)^{2+}] = 6,0x10^{-4} mol L^{-1} e [Br^{-}] = 4,00x10^{-3}$ mol L⁻¹: (A) $C_3 bis(4CP)^{2+}/Br^{-}$ (--) $C_3 bis(4CP)^{2+}/I^{-}$ (--). (B) $C_4 bis(4CP)^{2+}/Br^{-}$ (--) **Figura 26.** Voltamogramas cíclicos realizados em acetonitrila, v = 100 mV s⁻¹, $[C_4 \text{bis}(4\text{CP})^{2^+}] = 6.0 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ e } [\text{Br}^-] = 4.00 \times 10^{-3} \text{ mol } \text{L}^{-1}$. 0 de l⁻ (---), 2.00 \times 10^{-3} \text{ mol } \text{L}^{-1} Figura 27. Variação da velocidade de varredura, v = 50 a 250 mV s⁻¹ com eletrodo de $C_{v(treo)}$, $[C_n bis(4CP)^{2+}] = 6.0 \times 10^{-4}$ mol L⁻¹, $[C_4 4CP^+] = 12.0 \times 10^{-4}$ mol L⁻¹ e [Doador] = Figura 28. Variação da corrente do pico catódico (i_{pc}) do CTC em função da $v^{1/2}$, com eletrodo de C_{vitreo} , $[C_n bis(4CP)^{2^+}] = 6,0x10^{-4} mol L^{-1}$, $[C_44CP^+] = 12,0x10^{-4} mol L^{-1} e$ $[Doador] = 4,00x10^{-3} \text{ mol } L^{-1} \text{ a } 30,0 \text{ °C.}$ (A) $C_3 bis(4CP)^{2+}/l^{-1}$ (E), $C_4 bis(4CP)^{2+}/l^{-1}$ (I), $C_8 bis(4CP)^{2+}/l^{-}(\blacktriangle), C_4 4CP^{+}/l^{-}(\triangledown).$ (B) $C_3 bis(4CP)^{2+}/Br^{-}(\blacksquare) = C_4 bis(4CP)^{2+}/Br^{-}(\bullet).......85$

LISTA DE TABELAS

Tabela 1. K_{CTC} e ε_{CTC} dos CTC de l⁻ com diferentes aceptores em solventes de diferentes constantes dielétricas (ξ): acetonitrila e DMSO, a 30,0 °C. Método B-H......41 **Tabela 2.** K_{CTC} e ε_{CTC} dos CTC (Método B-H) de C₃bis(4CP)²⁺ (6,0x10⁻⁴ mol L⁻¹) e l⁻ $(1.30 \times 10^{-3} \text{ a } 2.00 \times 10^{-3} \text{ mol } \text{L}^{-1}) \text{ em DMSO e acetonitrila e } \text{C}_3 \text{bis}(4 \text{CP})^{2+} (5.0 \times 10^{-5} \text{ mol } \text{L}^{-1}) \text{ e}$ I⁻ (6,0x10⁻⁵ a 1,3x10⁻⁴ mol L⁻¹) em dioxano a 30,0 °C......44 **Tabela 3.** Valores de $K_{CTC,lim}$ e $\varepsilon_{CTC,lim}$ calculados pelo método iterativo e valores de K_{CTC} e ε_{CTC} (método B-H) dos CTC formados entre os $C_n bis(4CP)^{2+}$ (ou $C_n 4CP^+$) e l, em **Tabela 4.** Valores de K_{SV} para $C_n bis(4CP)^{2+}$ (4,3x10⁻⁶ mol L⁻¹) e $C_n 4CP^+$ (8,6x10⁻⁶ mol L⁻¹) tendo l⁻ como supressor, e K_{CTC} calculados pelo método B-H em acetonitrila a 30,0 °C....53 **Tabela 5.** Valores de K_{CTC} , $\varepsilon_{CTC,410}$, ΔH^{o}_{f} , $\Delta S^{o}_{f} \in \Delta G^{o} \operatorname{dos} C_{n} \operatorname{bis}(4 \operatorname{CP})^{2^{+}/l^{-}}$ em acetonitrila..58 **Tabela 6.** Comprimento de onda de máxima absorção ($\lambda_{máx}$), força do oscilado (f), momento de dipolo de transição (μ_{EN}), energia de ressonância (R_N) e valores de (b/a)² para **Tabela 7.** Comprimento de onda de máxima absorção ($\lambda_{máx}$), potencial de ionização (I_D) experimental e da literatura (em água) e energia de transição (hv_{CTC}) do complexo formado **Tabela 8.** Comprimento de onda de máxima absorção ($\lambda_{máx}$), absortividade molar (ε_{CTC}) calculada pelo método B-H, energia de transição (hv_{CTC}), potencial de ionização (I_D) e **Tabela 9.** Parâmetros eletroquímicos em condições de $[C_n bis(4CP)^{2^+}] = 6,0x10^{-4} mol L^{-1}$,

Tabela 10. Parâmetros eletroquímicos em condições de $[C_n bis(4CP)^{2+}] = 6,0x10^{-4}$ mol	L ⁻¹ ,
$[C_44CP^+] = 12,0x10^{-4} \text{ mol } L^{-1} \text{ e } [I^-] = 4,00x10^{-3} \text{ mol } L^{-1}$.78
Tabela 11. Parâmetros eletroquímicos em condições de $[C_n bis(4CP)^{2+}] = 6,0x10^{-4}$ mol L	- ⁻¹ e
[Br ⁻] = 4,00x10 ⁻³ mol L ⁻¹	.81
Tabela 12. Parâmetros eletroquímicos em condições de $[C_n bis(4CP)^{2+}] = 6,0x10^{-4}$ mol L	- ⁻¹ e
[<i>D</i>] = 4,00x10 ⁻³ mol L ⁻¹	.83
Tabela 13. Parâmetros eletroquímicos, em condições de [C _n bis(4CP) ²⁺] = 6,0x10 ⁻⁴ mol	L ⁻¹ ,
$[C_44CP^+] = 12,0x10^{-4} \text{ mol } L^{-1} e [D] = 4,00x10^{-3} \text{ mol } L^{-1}$.86

ABREVIATURAS E SÍMBOLOS

СТС	complexo de transferência de carga	
BTC	banda de transferência de carga	
D	doador de elétrons	
A	aceptor de elétrons	
[D] _o	concentração inicial do doador	
[A] _o	concentração inicial do aceptor	
ΨN	função de onda do estado fundamental	
ΨE	função de onda do estado excitado	
Ψο	função de onda não ligada	
ψ_1	função de onda dativa	
A,D	representação da espécie não ligada	
A ⁻ ,D ⁺	representação da espécie ligada	
а	coeficiente que representa a quantidade de espécie não ligada A,D	
b	coeficiente que representa a quantidade de espécie ligada A ⁻ , D ⁺	
a*	coeficiente que representa a quantidade de espécie ligada A ⁻ , D ⁺ no	
estado excitado		
b*	coeficiente que representa a quantidade de espécie não ligada A,D no	
estado fundamental		
huctc	energia de transição de transferência de carga	
E _A	afinidade eletrônica do aceptor	
I _D	potencial de ionização do doador	
R_N	energia de ressonância do complexo no estado fundamental	
W	energia de dissociação do CTC no estado excitado	
f	força do oscilador	

 $\mu_{\rm \scriptscriptstyle EN}$ momento de dipolo de transição

 $\Delta v_{1/2}$ largura de meia banda

υ_{máx} frequencia do pico máximo do CTC

υ_{CTC} número de onda de máxima absorção do CTC

НОМО	orbital molecular de maior energia ocupado
LUMO	orbital molecular de menor energia desocupado
h ս <i>D</i>	energia de transição eletrônica do doador
hυ _A	energia de transição eletrônica do aceptor
π-Α	aceptores de elétrons π
n-D	doadores de elétrons n
NAD ⁺	nicotinamida adenina dinucleotídeo
NADP ⁺	nicotinamida adenina dinucleotídeo fosfato
C222	4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8.8.8] hexacosane
DDQ	2,3-dicloro-5,6-diciano-p-benzoquinona
TCNQ	7,7,8,8-tetraciano-quinona-di-metano
RCP	N-alquil-2-ciano e/ou N-alquil-4-cianopiridínios
MCP	metil-2-ciano e/ou metil-4-cianopiridínios
4P	4-piridona
4A	4-carboxamida
k ₁	constante de velocidade da primeira etapa (etapa rápida)
k ₂	constante de velocidade da segunda etapa (etapa lenta)
UV-Vis	ultravioleta-vísivel
Abs	absorbância
Abs _{lim}	limite de absorção
Abs _o	absorbância do aceptor,
k _{obs}	constante de velocidade observada
CMC	concentração micelar crítica
C _n bis(2BP) ²⁺	N, N'-alquildiil-bis(2-bromopiridínios)
C _n bis(4CP) ²⁺	N, N'-alquildiil-bis(4-cianopiridínios)
C _n bis(2AP) ²⁺	N, N'-alquildiil-bis(2-azidopiridínios)
C _n bis	derivados dímeros
$C_n 4CP^+$	N-alquil-4-cianopiridínios
C _n 2BP ⁺	N-alquil-2-bromopiridínios

C _n	extensão da cadeia alifática
OH	íon hidroxila
Ē	íon iodeto
Br	íon brometo
SCN	íon tiosianato
l ₃	íon triiodeto
K _{CTC}	constante de formação do CTC
8 _{CTC}	coeficiente de absortividade molar do CTC
K _{CTC,lim}	constante de formação do CTC no limite de saturação
ECTC,lim	coeficiente de absortividade molar do CTC no limite de saturação
K _{SV}	constantes de supressão de fluorescência
ξ	constante dielétrica
$\lambda_{máx}$	comprimento de onda de máxima absorção
λ_{excit}	comprimento de onda de excitação
λ_{emis}	comprimento de onda de emissão
DMSO	dimetil sulfoxido
B-H	Benesi-Hildebrand
ΔH^{o}_{f}	entalpia padrão de formação
$\Delta S^{o_{f}}$	entropia padrão de formação
ΔG^{o}	energia livre padrão
LD	limite de detecção
LQ	limite de quantificação
EPH	eletrodo padrão de hidrogênio
C _{vítreo}	carbono vítreo
E_{pc}	potencial de pico catódico
E _{pa}	potencial de pico anôdico
E _{1/2}	potencial de meia onda
i _{pc}	corrente de pico catódico
İ _{pa}	corrente de pico anódico

RESUMO

Complexos de Transferência de Carga (CTC) foram primeiramente definidos por Mulliken. Este sugere que este tipo de complexo é formado pela interação de um doador (*D*) e um aceptor (*A*) de elétrons. Tal interação promove o surgimento de uma banda adicional no espectro de absorção eletrônico que não contempla o doador nem o aceptor de elétrons. Neste trabalho, a classe de compostos aceptores de interesse é aquela constituída de grupamentos piridínicos, heterocíclicos biologicamente ativos e presentes em moléculas importantes do sistema biológico (NAD⁺ e NADP⁺) o que as tornam moléculas biomimetizadoras. Sua versatilidade sintética permite obter derivados piridínicos com diferentes "design moleculares" permitindo seu uso como sonda local em estudos de membranas e colóides. A respeito dos compostos doadores de elétrons, foram utilizados haletos, principalmente o iodeto l⁻ que é um forte n-doador, doador de elétrons n.

Observou-se a formação de uma banda de transferência de carga dos CTC formados entre os aceptores e o iodeto como doador de elétrons. Os aceptores utilizados foram: espécies dicatiônicas – dímeras tais como os íons *N*,*N'*-alquildiil-bis(4cianopiridínios) C_n bis(4CP)²⁺ com ponte metilênica interligante de n = 3, 4, 6 e 8 grupos metilenas e íons *N*,*N'*-alquildiil-bis(2-bromopiridínios) C_n bis(2BP)²⁺ com n = 4 e 6; espécies monômeras tais como íons *N*-alquil-4-cianopiridínios C_n 4CP⁺ onde neste caso n = 4, 6 e 16 se refere ao número de carbonos no grupo alquílico (R) e o íon *N*-alquil-2-bromopiridínios C_n 2BP⁺ com n = 1, grupo metil. Obteve-se estequiometria 1:1, independente de tratar-se de compostos dímeros ou monômeros, e os valores de *K*_{CTC} e ε_{CTC} foram determinados. Estes resultados indicaram que os derivados dímeros formam complexos do tipo "sanduíche" com o iodeto intercalado entre os dois anéis piridínicos e que tanto a *K*_{CTC} quanto a ε_{CTC} aumentam quando n diminui ou quando passa de monômeros para dímeros. de medidas de supressão de fluorescência (constantes de supressão de Stern-Volmer), tendo como supressor o l⁻ e fluoróforos os derivados piridínicos. Em todos os casos, esta tendência advém da intensificação do efeito de densidade de carga positiva e efeito de conformação que propicia a existência de complexos tipo "sanduíche" à medida que n diminui ou quando passa de monômeros para dímeros.

Através do estudo de solvente verificou-se que os CTC são favorecidos em solventes com baixa constante dielétrica. Estes são também favorecidos à medida que aumenta a temperatura, indicando que o processo de complexação é endotérmico porém espontâneo sendo controlado pelo fator entrópico. Os ânions SCN⁻, Br⁻ e a água atuam como espécies interferentes na formação do complexo. Verificou-se que os derivados piridínicos poderiam ser utilizados na determinação espectrofotométrica de iodeto na ordem de mmol.L⁻¹.

Os cálculos dos parâmetros espectroscópicos para os sistemas $C_n bis(4CP)^{2+}/l^{-1}$ indicaram que os CTC formados são do tipo forte e que sua estabilidade aumenta a medida que n diminui confirmando as tendências obtidas nos valores de K_{CTC} , $\varepsilon_{CTC} e \Delta G^{0}$. Calculou-se o potencial de ionização dos íons SCN⁻, Br⁻ e l⁻ e verificou-se que este ultimo apresenta menor potencial de ionização em um dado solvente, e que o potencial de ionização do l⁻ diminui a medida que diminui a constante dielétrica, indicando que o iodeto é um melhor doador de elétrons em solventes mais apolares. Os resultados eletroquímicos mostram um pico redox característico para os CTC estudados, que é dependente da cadeia metilênica interligante entre os anéis piridínicos (n) e tipo de doador.

Palavra-Chave: complexo de transferência de carga, piridínios, iodeto.

XIV

ABSTRACT

Charge Transfer Complexes (CTC) were first defined by Mulliken who have proposed the theory which suggests that in this type of complex electrons donor (*D*) and acceptor (*A*) interactions are involved. As a result of *D*-*A* interaction, an additional band in the UV-Vis electronic absorption spectra region appears, which does not correspond to the individual absorption of *D* and *A*. In the present work, the class of acceptor compounds that we are interested are pyridinium derivatives, heterocyclic and biologically active molecules present in relevant biological systems, NAD⁺ and NADP⁺. Indeed, pyridinium cations has also been used to biomimetic systems; the synthetic versatility enables synthesize pyridinium derivatives with different molecular designs allowing its use as a local probe in order to study the physical chemical properties of membranes and colloids. On the other hand, considering the electron donor compounds, iodide l⁻ is an n-donor, electron donor n.

The results demonstrated a charge transfer band of the CTC formed between the acceptors studied (ions *N*,*N'*-alkyldiil-bis(4-cyanopyridinium) C_n bis(4CP)²⁺ dimers bridged by n methylene chain (spacers) with n= 3, 4, 6 and 8 units; the ions *N*,*N'*-alkyldiil-bis(2-bromopyridinium) C_n bis(2BP)²⁺ dimers with n = 4 and 6 methylene groups and ions *N*-alkyl-4-cyanopyridinium C_n 4CP⁺ monomers where n = 4, 6 and 16 refers to the number of carbons on the alkyl group (R) and the ion *N*-alkyl-2-bromopyridinium C_n 2BP⁺ monomer where n = 1, methyl group) and iodide as electron donor. The 1:1 stoichiometry, and the *K*_{CTC} and ε_{CTC} values were determined. These results indicated that dimers derivatives form a "sandwich type-complex" with iodide and that either as the *K*_{CTC} as ε_{CTC} increase when n decrease, or increase from monomers to dimers. This trends were confirmed by two methods (Benesi-Hildebrand and iteractive) and by fluorescence quenching Stern-Volmer

cases, this trends stems from the intensifying of the positive charge density and "sandwich" effect as n decreases, and, they increase from monomers to dimers.

Through the solvent study was verified that the CTC formation are favored in low dielectric constant solvents. These are also favored with temperature increasing, indicating a spontaneous complexation process however endothermic being driver by the entropic factor. Water and anions SCN⁻, Br⁻ act as interfering species in complex formation. Therefore pyridine derivatives could be used in the spectrophotometric iodide determination in the mmol.L⁻¹ order.

The spectroscopic parameters were calculated for the systems $C_n bis(4CP)^{2+}/I^-$ and indicated that the CTC formed are extremely stable and its stability increases as n decreases, confirming the trend obtained in the K_{CTC} , $\varepsilon_{CTC} \in \Delta G^o$ values. The ionization potential of SCN⁻, Br⁻ and I⁻ ions has been calculated and found that the latter has lower ionization potential in a given solvent and that the ionization potential of I⁻ decreases as the dielectric constant decreases indicating that iodide is a better electron donor in non-polar solvents. The electrochemical results show a characteristic redox peak for the CTC studies, which is dependent on the chain methylenes bound between pyridine rings (n) and donor type.

Keywords: charge transfer complex, pyridinium, iodide.

1. INTRODUÇÃO

1.1 Complexo de transferência de carga

Historicamente Benesi e Hildebrand (em 1949) foram os primeiros a observar a formação de um Complexo de Transferência de Carga (CTC) pela interação de um doador e um aceptor de elétrons. Os autores verificaram que ao misturarem benzeno e iodo havia o surgimento de uma banda adicional no espectro de absorção eletrônico que não contemplava o iodo e nem o benzeno. A esta nova banda eles atribuíram à formação de um complexo molecular entre benzeno e iodo. Para examinar a natureza deste complexo o benzeno foi substituído por outros compostos, sendo posteriormente concluído que era resultado de uma interação ácido-base de Lewis¹. Estes resultados deram suporte para as conclusões de Mulliken de que a nova banda observada no espectro de absorção é devida a uma transição de transferência de carga do benzeno para o iodo, possibilitando a este desenvolver a teoria do CTC apresentada em 1952^{2,3}. Para o desenvolvimento desta, Mulliken utilizou de um modelo usando o formalismo mecânico-quântico, o qual se mostrou relativamente adequado à maioria dos complexos moleculares conhecidos. A teoria propõe que a transição envolve a excitação de um elétron do doador (*D*) para um orbital vazio do aceptor (*A*).

Este formalismo mecânico-quântico tem como base a descrição das funções de onda aproximadas do estado fundamental (Ψ_N) e excitado (Ψ_E) do CTC. Desta forma, para descrever o estado fundamental tem-se:

$$\psi_N = a \psi_0(A, D) + b \psi_1(A^-, D^+)$$
 (1)

onde Ψ_0 representa a função de onda não ligada, Ψ_1 representa a função de onda dativa e *a* e *b* são coeficientes que correspondem à quantidade de cada espécie (*A*,*D* e *A*⁻,*D*⁺) na função de onda do estado fundamental. Assim, a razão b^2/a^2 varia de zero para nenhuma transferência de carga, até infinito para uma transferência completa de carga. Então, se a^2 >> b^2 implica em um CTC formado do tipo fraco, pois a espécie que predomina no estado fundamental é a não ligada (*A*,*D*). Por outro lado, se b^2 >> a^2 indica que o CTC formado é do tipo forte, pois a espécie que predomina no estado fundamental é a dativa (*A*⁻,*D*⁺). A equação 1 descreve a transferência parcial de um elétron do doador para o aceptor. Já o estado excitado (Ψ_F) pode ser descrito pela seguinte equação:

$$\psi_E = a * \psi_1(A^-, D^+) - b * \psi_0(A, D)$$
 (2)

onde $a^* e b^*$ são coeficientes que representam à quantidade de cada espécie no estado excitado. Para um complexo com interação *D*-*A* fraca pode-se supor que $a^* \cong a e b^* \cong b$; disso decorre que, como $a^2 >> b^2$ (para complexos fracos), no estado excitado a espécie predominante será a dativa⁴ (A^- , D^+), isto é, $a^{*2} >> b^{*2}$.

As equações 1 e 2 mostram que um CTC pode ser considerado como uma superposição de duas estruturas: a estrutura descrita pela função de onda $\Psi_0(A,D)$, onde a interação intermolecular ocorre sem a carga transferida, e a estrutura descrita pela função de onda $\Psi_1(A^-,D^+)$, onde a densidade eletrônica é transferida do doador para o aceptor^{2,5}.

O estado fundamental e excitado pode ser representado dentro do diagrama de níveis de energia segundo o modelo de Mulliken².

Esquema 1. Diagrama de níveis de energia relativos à interação *D-A* segundo o modelo de Mulliken²

O termo $h\nu_{CTC}$ representado no Esquema 1 corresponde a energia de transição de transferência de carga do doador para o aceptor, E_A é a afinidade eletrônica do aceptor, I_D é o potencial de ionização do doador e R_N é a energia de ressonância do complexo no estado fundamental. Estes parâmetros podem ser expressos através da seguinte equação^{6,7}:

$$h\upsilon_{CTC} = I_D - E_A - W$$
 (3)

onde *W* é a energia de dissociação do complexo de transferência de carga no estado excitado^{5,8}.

O diagrama acima pode ser reescrito usando o método dos orbitais moleculares, onde a excitação que leva a transição de transferência de carga é considerada como a transição de um orbital molecular ocupado (HOMO) do doador *D*, característico do complexo como um todo, para um orbital molecular vazio (LUMO) do aceptor A^9 .

Esquema 2. Transição de transferência de carga dos orbitais HOMO do *D* para os orbitais LUMO do *A* de elétrons⁹.

Neste diagrama hv_D é a energia de transição eletrônica do doador, hv_A é a energia de transição eletrônica do aceptor, hv_{CTC} e hv'_{CTC} são as energias de transições de transferência de carga possíveis do doador para o aceptor de elétrons. Os dois formalismos são, entretanto, equivalentes conforme Mulliken demonstrou¹⁰.

Os CTC podem ser separados em dois grupos: i) complexos fracos, que envolve uma baixa capacidade de transição de transferência de carga $D \rightarrow A$ e; ii) complexos fortes, que envolve alta capacidade de transição de transferência de carga $D \rightarrow A$ podendo gerar radicais livres¹¹. A intensidade da interação *D*-*A* no CTC pode ser considerada como o resultado da força da interação entre os orbitais *D*-*A*; assim estes são classificados também de acordo com o tipo de interação entre esses orbitais: a) π -doador e π -aceptor, onde orbitais do tipo π doam e/ou recebem elétrons no CTC. Este tipo de interação (π - π) geralmente forma complexos fortes; b) As interações doador-aceptor do tipo σ - σ , σ - π e n- π normalmente formam complexos fracos³.

Os CTC geralmente são sensíveis à temperatura e a polaridade do solvente. Sua densidade e condutividade geralmente aumentam em comparação a densidade e condutividade dos componentes individuais. A formação de um CTC frequentemente promove um aumento no momento dipolar e uma diminuição da entropia do sistema; adicionalmente a formação do par doador-aceptor de elétrons geralmente suprime a fluorescência do fluoróforo¹².

Na composição do CTC existiriam duas espécies, uma "rica" em elétrons tal como um nucleófilo que atua como doador de elétrons (base de Lewis) e outra "pobre" em elétrons que atua como aceptor de elétrons (ácido de Lewis)^{4,13}. Geralmente estes tipos de complexos têm maior tendência em se formar quando o doador tem baixo potencial de ionização e o aceptor tem alta afinidade eletrônica. No entanto, especialmente em soluções, a eficiência de um doador não é somente determinada pelo potencial de ionização, mas também depende de outras contribuições tal como da entropia do sistema e do fator estérico¹².

A transição de transferência de carga entre um doador e aceptor de elétrons pode ser associada à transferência de um elétron, como em uma reação de óxi-redução intermolecular, onde doador é oxidado e aceptor é reduzido^{5,14}. A interação entre estas duas espécies (doador e aceptor) em solução, geralmente promove a formação de um CTC com absorção na região do visível tornando a solução colorida. Desta forma sua formação pode ser monitorada por espectrofotometria UV-Vis.

Os CTC são muitas vezes observados também entre nucleófilos e eletrófilos formando importantes espécies intermediárias durante reações. Tal complexo controla a

reatividade pela aproximação das espécies reagentes induzindo uma superposição de orbitais entre os mesmos¹⁵⁻¹⁷.

A interação nos CTC é importante também na área de fármacos e sistemas biológicos, dada à existência de aceptores contendo orbitais π (π -aceptor), visto que estes participam de diversos processos nos organismos vivos^{18,19}. Esta interação também propicia meios de determinação espectrofotométrica destes fármacos, tendo em vista sua complexação com π -aceptores formando CTC estáveis²⁰⁻²². As reações que levam a formação destes complexos, denominadas de reações de transferência de carga também vêm sendo empregadas há alguns anos para este tipo de determinação²³⁻²⁵. Estes métodos exploram o caráter ácido-básico de alguns fármacos, como por exemplo, a cefalexina que, devido ao seu caráter básico, é considerado um excelente doador de elétrons²⁶. Este fármaco é um antibiótico largamente utilizado na medicina humana para o combate de diversos tipos de infecções sendo extremamente comercializado no Brasil, uma vez que está presente em diversas formulações farmacêuticas de diferentes fabricantes²⁷.

A cefalexina, assim como outros fármacos, tem sido determinada por vários outros métodos tais como a cromatografia líquida de alta eficiência²⁸, quimioluminescência²⁹ e eletroforese capilar³⁰, porém, destacam-se os métodos espectrofotométricos pela simplicidade, praticidade e baixo custo de instrumentação. Aliado a estes fatores, a espécie monitorada geralmente apresenta intensa absorção na região do visível, fato que facilita o uso do método destacado. No caso da cefalexina, observou-se que esta interage fortemente com aceptores de elétrons como o 2,3-dicloro-5,6-diciano-*p*-benzoquinona (DDQ) e 7,7,8,8-tetraciano-quinona-di-metano (TCNQ), Esquema 3, formando um complexo doador-aceptor de elétrons. Verificou-se que em solventes polares o complexo é dissociado como resultado da transferência total da carga do doador para o aceptor

formando um ânion radicalar com absorção na região do visível^{31,32}. Este é monitorado espectrofotometricamente para a determinação indireta da cefalexina em formulações farmacêuticas comerciais²⁶.

Esquema 3. Estruturas químicas de: (A) DDQ e (B) TCNQ.

As facilidades na identificação dos CTC, sabendo que na maioria dos casos é possível a visualização de cor por meio da absorção de transferência de carga, tornam estes analiticamente confiáveis e sensíveis para monitorar a associação doador-aceptor de elétrons em vários hidrocarbonetos aromáticos com diferentes tipos de π - e σ -aceptores. Assim, a formação do CTC tem sido uma importante ferramenta analítica para se avaliar inibição estérica desta associação (doador-aceptor). Por exemplo, a diferença entre vários anéis doadores em sua associação com quinona, são prontamente distintos em suas absorções de transferência de carga, ou seja, em sua cor³³.

A interação doador-aceptor de elétrons formando um CTC estável tem sido estudada por alguns pesquisadores como sistema hospede-hospedeiro, como por exemplo, o complexo formado entre *rac*-1,1'-bi-2-naphthol como doador de elétrons atuando como molécula hospedeira e derivados de *p*-benzoquinona como aceptores de elétrons atuando como moléculas hospede, Esquema 4; este doador e aceptores são utilizados como excelentes indicadores visuais da presença de hidrocarbonetos aromáticos, moléculas hospedes³⁴⁻³⁶.

Esquema 4. Estruturas químicas de: (A) rac-1,1'-bi-2-naphthol e (B) p-benzoquinona.

Os fundamentos químicos envolvendo os CTC também vêm ganhando destaque em áreas como a de materiais supercondutores orgânicos. A condutividade de vários materiais orgânicos é extremamente baixa (< 10⁻¹⁰ S⁻¹ cm⁻¹). No entanto, moléculas doadoras e aceptoras de elétrons reagem entre si para formar CTC que geralmente apresentam alta condutividade (~ 10⁻² S⁻¹ cm⁻¹) devido a formação de carga promovida pela união doador-aceptror^{37,38}. Alguns tipos de polímeros conjugados, como por exemplo o poli(3-alquiltiofenos), Esquema 5, interage facilmente com o oxigênio a ponto de sofrer uma oxidação parcial, devido a formação de um CTC. A formação deste tipo de complexo intensifica as propriedades elétricas do polímero, podendo assim ser aplicado como material semicondutor^{39,40}. Nas áreas de fotocatálise, armazenagem de energia solar e em fenômenos de superfície a aplicação dos conceitos químicos referentes aos CTC estão sendo cada vez mais utilizados⁴¹⁻⁴³.

Esquema 5. Estrutura química do poli(3-alquiltiofenos).

Em alguns casos os CTC são utilizados em eletrodos de íon-seletivo, por exemplo na detecção do íon triiodeto (I_3) utilizando diferentes ionóforos, por exemplo os macrocíclicos ligantes como o 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8.8.8] hexacosane, Esquema 6. Este ligante forma um complexo de transferência de carga relativamente estável com o iodo, (composto.I⁺)I₃, formando um ionóforo adequado⁴⁴. Este e outros ionóforos, que se baseiam na formação destes tipos de complexos, já estão sendo utilizados em eletrodos de íon-seletivo apresentando alta seletividade, sensibilidade e tempo de resposta relativamente curto^{45,46}.

Esquema 6. Estrutura química do 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8.8.8] hexacosane.

1.2 Compostos aceptores e doador de elétrons

A classe de compostos aceptores de interesse neste trabalho é aquela constituída de grupos piridínicos, heterocíclicos biologicamente ativos e presentes em moléculas importantes do sistema biológico, tais como as coenzimas nucleotídeos da purina (NAD⁺ e NADP⁺) o que as torna moléculas biomimetizadoras. Sendo assim o estudo da estabilidade e reatividade destes compostos para a compreensão de sistemas biológicos/bioquímicos é de extrema importância⁴⁷⁻⁵¹. Adicionalmente a versatilidade sintética permite obter derivados piridínicos com diferentes "design moleculares" permitindo seu uso como sondas

investigativas para sistemas químicos e biológicos tais como membranas celulares, cristais líquidos, colóides micelares e lipossomais ⁵²⁻⁵⁵.

Kosower (1956) descobriu que em solventes orgânicos compostos piridínicos exibem alta afinidade pelo iodeto (I⁻) formando um CTC estável^{56,57}. Em 1966 Kosower e Patton estudaram a hidrólise alcalina de íons *N*-alquil-2-ciano e *N*-alquil-4-cianopiridínios (RCP). Este sistema reacional apresenta algumas características interessantes como:

a) a hidrólise dos RCP (Esquema 7) leva a formação de dois produtos principais: a 4-piridona (4P) e a 4-carboxamida (4A). A 4-piridona é um composto neutro e a carboxamida é um composto de carga positiva de modo que a razão dos produtos formados 4P/4A varia intensamente com a polaridade do meio em que os RCP estão localizados;

b) como pode ser visualizado no Esquema 7, o caminho que leva à 4-piridona passa por uma pseudobase (k₂), composto da classe das cianoidrinas. Este passo é cineticamente favorecido em comparação com a etapa que leva a carboxamida (k₁). Entretanto a rota que leva a 4-piridona pode ser limitada pelo passo seguinte: *via* pseudobase protonada (k₄) ou desprotonada (k₃), onde a influência do pH do meio é evidente. Essa alternativa mecanística torna a razão de produtos 4P/4A altamente dependente do pH⁵⁸⁻⁶¹.

c) na realidade a dependência da razão 4P/4A esta relacionada às constantes de velocidade da reação, ou seja, estas constantes igualmente são bastante sensíveis às mudanças de pH - o que permite utilizar a reação como sonda de concentração local de íons hidroxilas, e da constante dielétrica do meio - o que permite utilizá-la como sonda de polaridade do meio⁵⁸.

iv) as espécies envolvidas exibem propriedades que facilitam o acompanhamento cinético das reações por absorção UV-Vis: coeficientes de absorção molar de reagentes e

produtos na faixa de 10³ L mol⁻¹ cm⁻¹ e distintos comprimentos de onda de máxima absorção de reagentes e produtos⁵⁹⁻⁶¹.

Esquema 7. Proposta de mecanismo para a reação de hidrólise alcalina dos íons RCP gerando 4-piridona e 4-carboxamida, de acordo com Kosower e Patton⁵⁸.

Um detalhado estudo cinético^{59,60} com derivados RCP permitiu obter o perfil da hidrólise alcalina e a razão 4P/4A em função do pH, da força iônica, da presença de surfactantes e da constante dielétrica do meio. O perfil obtido para a razão 4P/4A à medida que a reação foi conduzida em soluções com aumento do pH obedece a um formato sigmoidal à semelhança de experimentos de obtenção de pK_a. A geração da piridona (4P) em pH mais elevado é acentuadamente favorecida em detrimento a carboxamida (4A) devido ao passo mecanístico envolvendo a pseudobase desprotonada (pK_a), que seria

uma etapa cineticamente favorecida. Adicionalmente, foi mostrado que o aumento da constante dielétrica do meio favorece a formação de 4P e aumenta a constante de velocidade observada da reação⁶⁰.

Um exemplo⁶¹ de uso da reação como sonda local foi com os RCP e íons OH⁻ em condições de pseudo-primeira ordem em água, usando o homólogo com o grupo R alquílico: o hexadecil que contém 16 carbonos (HCP) e o metil com apenas um carbono (MCP). Demonstrou-se que o derivado MCP atua como um sal simples, onde ambas proporção 4P/4A e a constante de velocidade observada (kobs), mantêm-se inalteradas, independentes da concentração de MCP. Entretanto o homólogo HCP, que além da carga positiva, possui cadeia alguílica longa - característica de surfactante, apresentou razão 4P/4A e k_{obs} que aumentaram com a [HCP], sendo ambas acentuadamente maiores aquelas com MCP. Estes efeitos foram observados mesmo usando-se baixas concentrações de HCP, regiões muito abaixo da sua concentração micelar crítica (CMC). Estes efeitos são similares aos observados com reações em meios micelares quando os RCP se encontravam incorporados à região da camada de Stern de micelas⁶⁰. Assim, foi proposto que mesmo em meios com concentrações de surfactantes abaixo da CMC tem-se a existência de agregados pré-micelares das próprias moléculas de HCP, exemplo, dímeros que coexistiriam pré-micelarmente em equilíbrio com monômeros. Esses dímeros apresentariam maior reatividade que os monômeros. No caso o próprio surfactante foi utilizado (ao mesmo tempo) como o composto - sonda. Este estudo motivou vários dos estudos subsequentes.

Diante da maior reatividade de espécies auto-agregadas como dímeros, comparadas a monômeros iniciou-se uma série de estudos com compostos homólogos constituídos de dois anéis piridínicos interligados por uma cadeia alquílica de grupos metilenas, formando "dímeros covalentemente unidos". Estes compostos são os *N*,*N*-

alquildiil-bis(piridínio substituídos), derivados constituídos de duas unidades piridínicas interligadas através do nitrogênio quaternário por n grupos metilenas: C_nbis, com n variando de 3 a 8 átomos de carbono, cujas estruturas generalizadas são ilustradas no Esquema 8, onde Nu representa o nucleófilo do sistema reacional.

Esquema 8. Representação geral de derivados dímeros C_n bis. Reagente e possíveis intermediários e produtos resultantes do ataque de um nucleófilo sobre os C_n bis. O grupo de saída pode estar na posição 2- ou 4- e a carga do anel após a reação depende do nucleófilo.

Tais estudos, principalmente baseados em cinéticas, mostraram efeitos de cargaconformação intensos nos derivados dímeros^{17,62,63}. Uma explanação sobre estes trabalhos é apresentada a seguir.

Estudos cinéticos de hidrólise alcalina mostraram que compostos di-catiônicos de *N*, *N'*-alquildiil-bis(2-bromopiridínios) – C_n bis(2BP)²⁺ (C_n bis(2BP)²⁺/OH⁻), dímeros, reagem através de duas etapas consecutivas, a primeira levando a um composto intermediário
mono-catiônico, como mostra o Esquema 9. Este intermediário é constituído de: um anel 2bromopiridínio de carga positiva (anel reagente não modificado) e um anel do reagente modificado (anel 2-piridona, de carga nula), para em seguida atingir um único produto final constituído de dois anéis 2-piridona (ambos neutros de carga)⁶².

Esquema 9. Proposta de mecanismo para a reação de hidrólise alcalina dos íons dímeros $C_n bis(2BP)^{2+}$ gerando a 2-piridona⁶².

Em reações de hidrólise alcalina de compostos *N*, *N*'-alquildiil-bis(4-cianopiridínios) – $C_n bis(4CP)^{2+}$ ($C_n bis(4CP)^{2+}/OH^-$) ocorre a geração de dois anéis de produtos, a 4piridona (anel de carga neutra) e a 4-carboxiamida (anel carregado positivamente); isso torna mais complexo os intermediários e produtos finais da reação⁶¹. Sabendo desta complexidade, a reação é melhor representada genericamente, como mostrado no Esquema 8. Portanto, o substituinte do anel (X) é o grupo ciano (CN) na posição 4-, o intermediário mono-catiônico é constituído de: um anel 4-cianopiridínio de carga positiva (anel reagente não modificado) e um anel do reagente modificado (geralmente anel 4piridona, neutro)⁶¹, para em seguida formar dois produtos finais. Um deles constituído de dois anéis 4-piridona e o outro constituído de um anel 4-piridona e um anel 4-carboxiamida. É importante salientar que a formação dos anéis piridona e carboxiamida pela hidrólise alcalina dos derivados C_nbis(4CP)²⁺ é depende do pH, sendo que o aumento do pH favorece a formação da piridona, pelo mesmo motivo que favorece na hidrólise alcalina do HCP, como já descrito. Particularmente para os C_nbis(4CP)²⁺, a 4-piridona também é favorecida com a diminuição da cadeia metilênica interligante n. Isto acontece devido ao aumento da densidade de carga positiva que por sua vez deve aumentar a concentração local de íons OH⁻, favorecendo o ataque do nucleófilo no carbono 4 do anel e não no carbono do grupo CN⁶¹, Esquema 7. O mesmo efeito foi observado quando se aumenta a [HCP] devido à formação de agregados pré-micelares, tais como dímeros intermoleculares, que também induzem o aumento da concentração local de íons OH⁻.

Para a reação dos dímeros $C_n bis(2BP)^{2+}$ com íon azida $(C_n bis(2BP)^{2+}/N_3)$, gera-se um intermediário formado por: um anel 2-bromopiridínio de carga positiva (anel reagente não modificado) e um anel de reagente modificado (anel 2-azidopiridínio, de carga igualmente positiva), para em seguida se obter como produto final um composto constituído de dois anéis 2-azidopiridínio (di-catiônico)⁶³, como mostrado no Esquema 10. Assim neste sistema não ocorre variação líquida de carga, isto é, as três espécies são dicatiônicas diferentemente dos casos anteriores, ou seja, das reações com íons OH⁻.

Esquema 10. Proposta de mecanismo para a reação de dímeros $C_n bis(2BP)^{2+} \text{ com N}_3^$ gerando o íon $C_n bis(2AP)^{2+}$ como produto⁶³.

Reações de hidrólise alcalina envolvendo o produto do sistema $C_n bis(2BP)^{2+}/N_3^{-}$, ou seja, compostos di-catiônicos de *N*, *N'*-alquildiil-bis(2-azidopiridínios) – $C_n bis(2AP)^{2+}$ $(C_n bis(2AP)^{2+}/OH^{-})$ gera um composto intermediário mono-catiônico, como mostrado no Esquema 11, constituído de: um anel 2-azidopiridínio de carga positiva (anel reagente não modificado) e um anel do reagente modificado (anel 2-piridona, neutro), para em seguida atingir um único produto final constituído de dois anéis 2-piridona (neutro)¹⁷.

Esquema 11. Proposta de mecanismo para a reação de hidrólise alcalina dos íons $C_n bis(2AP)^{2+}$ gerando a 2-piridona¹⁷.

O monitoramento cinético por UV-Vis de todas estas reações envolvendo derivados dímeros C_nbis demonstrou a existência de ponto isosbéstico, fato que a princípio indicaria a inexistência de intermediários⁶⁴. Entretanto o tratamento cinético-matemático mostrou que os dados se ajustam a processos bi-exponenciais (duas etapas consecutivas de primeira-ordem) para os casos C_nbis(2BP)²⁺/OH⁻, C_nbis(2AP)²⁺/OH⁻ e C_nbis(4CP)²⁺/OH⁻, ou seja, reações em etapas indicando cineticamente a formação de intermediários. Estes intermediários foram isolados e/ou suas presenças foram detectadas experimentalmente. Todos estes estudos cinéticos de reações de substituição nucleofílica aromática com dímeros e íons OH⁻ como nucleófilo, mostrou-se que as reações ocorrem em duas etapas, sendo a primeira rápida e a segunda lenta. Para todos os tipos de derivados dímeros observou-se a seguinte ordem crescente para as constantes de velocidade da reação: C_8 bis < C_6 bis < C_5 bis < C_4 bis << C_3 bis, no caso do sistema C_n bis(2BP)²⁺/OH⁻, C_n bis(2AP)²⁺/OH⁻ e

 C_n bis $(4CP)^{2+}/OH^{-}$. Para os três últimos sistemas reacionais, de duas etapas, a segunda etapa não apresentou constantes de velocidades muito diferentes entre si e nem muito diferentes das obtidas para os compostos constituídos de apenas um anel piridínico (monômeros)^{62,63,65}.

As reatividades altamente significativas e diferenciadas dos dímeros C_n bis com n = 3 poderiam ser explicadas pela maior densidade de carga positiva devido a proximidade dos anéis, no entanto a diferença de reatividade dos C_3 bis com os demais homólogos excede a expectativa. Inclusive para o C_3 bis com substituinte CN na posição 4- (para) do anel piridínio, C_3 bis(4CP) em pH superior a 11,5, observou-se a formação inusitada de um produto adicional, além das tradicionais "cabeças" 4-piridona e 4-carboxiamida. Sugeriu-se que adicionalmente ao ataque do íon hidróxido à posição 4- (posição do grupo eletrocaptor ciano), ocorreria um ataque competitivo à posição 2- do anel (formando nesta uma pseudobase)¹⁷. Esta mudança de rota mecanística foi creditada pelo grupo de pesquisas à formação de um complexo tipo "sanduíche", ficando o OH⁻ inserido entre os dois anéis piridínicos devido a um efeito de carga aliado a conformação, como pode ser visualizada no Esquema 12. Este complexo pode direcionar o ataque à posição 2- do anel e não restringindo-se somente à posição 4-^{17,66}.

Esquema 12. Proposta de complexo tipo "sanduíche" para derivados de cadeia metilênica interligante "curta", exemplo o derivado C_3 bis $(4CP)^{2+17,66}$.

A estrutura geométrica proposta no Esquema 12 é válida para todos os outros derivados $(C_n bis(2BP)^{2+} e C_n bis(2AP)^{2+})$ de cadeia metilênica "curta" principalmente os $C_3 bis$, independente do nucleófilo.

Os estudos termodinâmicos para todos estes sistemas (C_nbis/OH⁻) mostraram que para a etapa rápida há uma maior participação do termo entrópico para os derivados de cadeia metilênica "curta", quando comparado aos de cadeia "longa", sugerindo neste caso uma maior organização estrutural para os derivados de cadeia "curta". Estes resultados reforçaram a proposta da presença de uma estrutura do tipo "sanduíche". Assim a explicação para os valores elevados de velocidade de reação nos sistemas C₃bis(4CP)²⁺/OH⁻, C₃bis(2BP)²⁺/OH⁻ e C₃bis(2AP)²⁺/OH⁻ pode ser devida à formação de complexo tipo "sanduíche".

Por outro lado a respeito de compostos doadores de elétrons, o ânion iodeto, I^{-} , é um n-doador (doador de elétrons n) e um precursor para a formação do iodo (I_2). O I_2 é extremamente importante para o ser humano, pois é parte integrante dos hormônios tireóideos. A glândula tireóide fabrica os hormônios tiroxina e triodotironina que contém iodo. A deficiência de iodo no organismo causa hipotiroidismo e o excesso causa

hipertiroidismo^{67,68}. Para prevenir tais doenças é, por lei, adicionado iodeto de potássio (KI) ao sal de cozinha, formando o chamado sal iodado. Adicionalmente muitos produtos farmacêuticos contem iodeto em suas formulações comerciais, como xaropes expectorantes, por exemplo. Iodo na forma de tri-iodeto é usado como anti-séptico e desinfetante. Em alguns países tabletes de iodeto de potássio são vendidas em drogarias para proteção da tireóide no caso de acidente nuclear^{69,70}. Além de em produtos farmacêuticos, traços de iodeto estão presentes em vários outros produtos, tais como: ambientais, medicinais, biológicas e alimentares. Devido à importância do iodeto, sua determinação é de extrema importância em análises químicas e clinicas⁶⁸.

Sabendo da importância dos íons piridínicos e do ânion iodeto, e da capacidade dos CTC em controlar reatividade e direcionar reações, aliado à possibilidade da utilização de piridínios em eletrodos de íon-seletivo a l⁻, neste trabalho foram investigadas as interações formadoras de CTC entre diferentes derivados de íons piridínicos com l⁻.

2. OBJETIVOS

2.1 Geral:

Caracterização espectrofotométrica e eletroquímica dos CTC formados entre derivados de *N,N'*-alquildiil-bis(piridínio substituídos) com l⁻, visando um melhor entendimento do processo de transferência de carga envolvendo derivados piridínicos.

2.2 Específicos:

- > Determinar a estequiometria dos CTC estudados,
- > estimar a constante de formação (K_{CTC}) e a absortividade molar junto ao comprimento de onda de máxima absorção do CTC (ε_{CTC}) pelo método de Benesi-Hildebrand (B-H) e pelo método iterativo de ajuste de curva,
- avaliar o efeito da posição e do tipo de substituinte dos derivados dímeros N,N'-alquildiil-bis(piridínio substituídos) e de derivados monômeros na formação do CTC,
- estudar o efeito de constante dielétrica do solvente (ξ) nos valores de K_{CTC} e
 ε_{CTC},
- determinar as constantes de supressão de fluorescência (K_{SV}) dos N,N'alquildiil-bis(4-cianopiridínios) e N-alquil-4-cianopiridínios pelo I⁻,
- > estimar os parâmetros termodinâmicos (ΔH^{o}_{f} , ΔS^{o}_{f} e ΔG^{o}) de formação do CTC,

21

- > construir a curva analítica para determinação espectrofotométrica de l,
- > verificar o efeito dos ânions Br e SCN sobre a banda de absorção do CTC,
- > avaliar o efeito da presença de água sobre o CTC,
- determinar os parâmetros espectroscópicos dos CTC e potencial de ionização do l⁻, Br⁻ e SCN⁻ e,
- > avaliar as propriedades eletroquímicas do sistema.

3. PARTE EXPERIMENTAL

3.1 Equipamentos

Balança Analítica Scientech S.A. 120, espectrofotômetros de Absorção de UV-Vis modelo Cary-50 Varian, acoplado a um banho de termostatização TECNAL TE-184, espectrofotômetros de Absorção de UV-Vis modelo DU-800 Beckman, acoplado a um sistema de termostatização eletrônica Peltier Beckman, espectrofluorímetro modelo Cary Eclipse Varian, acoplado a um sistema de termostatização eletrônica, cubeta de quartzo de 1,0 cm de caminho ótico, potenciostato galvanostato Eco Chimie, modelo P302N, bomba de vácuo a óleo Tecnal TE-058, dessecador a vácuo e estufa Fanem.

3.2 Materiais

Todos os reagentes utilizados eram PA, iodeto de potássio 99 % (Nuclear), iodeto de tetrabutilamonio 99 % (Aldrich), brometo de tetrametilamonio 99 % (Acros Organics), tiosianato de potássio 99 % (Nuclear), 4-cianopiridina 98 % (Aldrich), 2-bromopiridina 98 % (Aldrich), iodeto de metila 99 % (Sigma Aldrich), 1-bromobutano 99 % (Sigma Aldrich), 1-bromohexano 99 % (Sigma Aldrich), 1,3-dibropropano 99 % (Sigma Aldrich), 1,4-dibromobutano 99% (Sigma Aldrich), 1,6-dibromohexano 99% (Sigma Aldrich), 1,8-dibromootano 99% (Sigma Aldrich), 1,6-dibromohexano 99% (Sigma Aldrich), 1,8-dibromootano 99% (Sigma Aldrich). Os solventes foram Acetonitrila, DMSO 99,9 % (Mallincrodt), Dioxano 99,8 % (Carlo Erba) e água bidestilada.

3.3 Derivados piridínicos estudados

Os derivados estudados foram os: (i) íons *N*,*N*'-alquildiil-bis(4-cianopiridínios), $C_n bis(4CP)^{2+}$ com ponte metilênica interligante de n = 3, 4, 6 e 8 grupos metilenas; (ii) íons *N*,*N*'-alquildiil-bis(2-bromopiridínios), $C_n bis(2BP)^{2+}$ com n = 4 e 6 e, (iii) os íons Mono-anel

íons *N*-alquil-4-cianopiridínios ($C_n 4CP^+$) onde neste caso n = 4, 6 e 16 se refere ao número de carbonos no grupo alquílico (R) e o íon *N*-alquil-2-bromopiridínios ($C_n 2BP^+$) onde n = 1 se refere ao grupo metil. Estruturas mostradas no Esquema 13.

Esquema 13. Estruturas dos derivados: **(A)** dímeros: $C_n bis(4CP)^{2+}$ (n = 3, 4, 6 e 8), **(B)** dímeros: $C_n bis(2BP)^{2+}$ (n = 4 e 6), **(C)** monômeros: $C_n 4CP^+$ (n = 4, 6 e 16 carbonos no R) e **(D)** monômero: $C_n 2BP^+$ (n = 1, grupo metil).

3.4 Obtenção dos derivados piridínicos

Todas as reações de síntese, purificação e armazenamento dos derivados piridínicos foram realizadas ao abrigo da luz. Os dímeros $C_n bis(4CP)^{2+}$, onde n = 3, 4, 6 e 8, foram sintetizados utilizando-se quantidades na proporção de 1:3, em mol, de brometo de 1,w-dibromoalcano e 4-cianopiridina (~ 8,5 g) em 50 mL de acetonitrila, durante 2 dias sob refluxo e agitação utilizando-se um agitador magnético. Os precipitados foram filtrados e recristalizados em mistura de etanol/metanol (80:20, v/v), fornecendo cristais com formato de agulhas de cor amarela⁶¹. Os dímeros $C_n bis(2BP)^{2+}$ com n = 4 e 6 foram sintetizados adicionando-se quantidades proporcionais de 1:3, em mol, de brometo de 1,w-

dibromoalcano e 2-bromopiridina (~ 9 mL) em 60 mL de acetonitrila, durante 5 dias sob refluxo e agitação. Obtiveram-se precipitados de cor branca; estes foram filtrados e lavados com acetonitrila gelada e recristalizados em etanol⁶². O monômero C_12BP^+ foi sintetizado adicionando-se quantidades proporcionais de 1:2, em mol, de iodeto de metila e 2-bromopiridina (~ 4 mL) em 50 mL de acetonitrila, durante 2 dias sob agitação. Obtiveram-se precipitados de cor branca; estes foram filtrados e lavados com acetonitrila a baixa temperatura e recristalizados em etanol. Os monômeros C_n4CP^+ com n = 4, 6 e 16 foram sintetizados no Instituto de Química da Universidade de São Paulo (USP) sendo cedidos pelo prof. Dr. Mário J. Politi⁵⁹.

3.5 Determinação da estequiometria

As proporções estequiométricas dos CTC foram determinadas pelo método de Job⁷¹, cuja dedução encontra-se no Anexo 1, e método da razão molar⁷². Prepararam-se soluções estoques equimolares em acetonitrila de $C_n bis(4CP)^{2+}$ (6,0x10⁻⁴ mol L⁻¹) - KI (6,0x10⁻⁴ mol L⁻¹) e $C_n 4CP^+$ (12,0x10⁻⁴ mol L⁻¹) - KI (12,0x10⁻⁴ mol L⁻¹). Alíquotas destas soluções foram adicionadas em cubetas variando alternativamente de 2,60 a 1,40 mL da solução do doador e aceptor obtendo um volume total de 4,00 mL em todas as cubetas. Usou-se espectrofotômetro a 30,0 °C.

3.6 Preparo das soluções para estimar as constantes de formação e absortividade molar pelo método Benesi-Hildebrand¹ (B-H)

Para o preparo de todas as soluções de compostos piridínicos os sólidos foram previamente solubilizados em algumas gotas de água (~ 0,4 mL). Em acetonitrila e DMSO prepararam-se as soluções dos dímeros e monômeros obtendo-se as seguintes concentrações $6,0x10^{-4}$, $12,0x10^{-4}$ mol L⁻¹, respectivamente. O solvente dioxano foi usado

somente para o CTC formado entre $C_3 bis(4CP)^{2+}$ e I⁻. Estas soluções foram divididas em dois volumes de 25,00 mL. Em uma das soluções de 25,00 mL dissolveu-se 10,0 mg de KI (solução Y) com auxílio de ultra-som. A outra foi mantida sem KI, solução W.

3.7 Preparo das soluções para estimar as constantes de formação pelo método iterativo de ajuste de curva

Prepararam-se soluções de $C_n bis(4CP)^{2+}$ com n = 3, 4, 6 e 8 e $C_n 4CP^+$ com n = 4 e 6, em acetonitrila, obtendo-se para os $C_n bis(4CP)^{2+}$ e $C_n 4CP^+$ (solução W) as seguintes concentrações 5,0x10⁻⁵ e 10,0x10⁻⁵ mol L⁻¹, respectivamente. Desta solução, 25,00 mL foram utilizadas para dissolver 0,30 g de KI (solução Y) com auxílio de ultra-som.

3.8 Estimativa das constantes de formação e das absortividades molares

3.8.1 Aplicação do método B-H

A equação de Benesi-Hildebrand¹ (método B-H) foi utilizada para calcular as K_{CTC} e as absortividades molares dos CTC (ϵ_{CTC}). A dedução da equação B-H encontra-se no Anexo 2. A concentração do doador (I^-) variou de 1,30x10⁻³ a 2,00x10⁻³ mol L⁻¹. A concentração dos aceptores C_nbis(4CP)²⁺, C_nbis(2BP)²⁺ (6,0x10⁻⁴ mol L⁻¹) e C_n4CP⁺ (12,0x10⁻⁴ mol L⁻¹) foram mantidas constantes.

Em cada amostra foram adicionados volumes variados de solução W (0,30 a 0,90 mL) e solução Y (1,70 a 1,10 mL) obtendo um volume total de 2,00 mL em cada cubeta. As medidas foram feitas na região de absorbância máxima dos CTC, a 30,0 °C.

3.8.2 Aplicação do método iterativo de ajuste de curva

A equação descrita por Valeur e colaboradores⁷³ onde a dedução encontra-se no Anexo 3, foi utilizada para calcular os valores das constantes de formação dos CTC no

limite de saturação, $K_{CTC,lim}$, que é a condição de alta concentração de íons iodeto e baixa concentração de derivado piridínio. Neste experimento a concentração do l⁻ variou de 0 a 0,072 mol L⁻¹, enquanto as de C_nbis(4CP)²⁺ (5,0x10⁻⁵ mol L⁻¹) e C_n4CP⁺ (10,0x10⁻⁵ mol L⁻¹) permaneceram constantes.

Em cada amostra foram adicionados volumes variados de solução W (0 a 2,00 mL) e solução Y (2,00 a 0 mL) obtendo um volume total de 2,00 mL em cada cubeta. As medidas foram coletadas na região de absorbância máxima dos CTC a 30,0 °C.

3.9 Supressão da luz de emissão de fluorescência dos C_nbis(4CP)²⁺ e C_n4CP⁺ pelo I⁻ 3.9.1 Calculo das constantes de supressão

Prepararam-se soluções estoques de $C_n bis(4CP)^{2+}$ (8,7x10⁻⁴ mol L⁻¹), $C_n 4CP^+$ (17,4x10⁻⁴ mol L⁻¹) e l⁻ (0,30 mol L⁻¹). A partir destas, em cada cubeta foram adicionadas quantidades variadas de acetonitrila (2,00 a 1,90 mL) e solução de l⁻ (0 a 0,10 mL). Em todas as amostras foram adicionadas 0,01 mL de solução estoque do aceptor, obtendo um volume total de 2,01 mL na cubeta. Usou-se o espectrofluorímetro a 30,0 °C, com slit de emissão e excitação de 5 com potencia média. A equação de Stern-Volmer foi empregada para o cálculo das constantes de supressão de fluorescência K_{SV}, através do plot F_o/F *versus* [l⁻].

3.9.2 Efeito da temperatura na região de baixa e alta concentração de l.

Para verificar o efeito da temperatura prepararam-se duas cubetas utilizando as mesmas soluções estoques de aceptor (C_4 bis(4CP)²⁺) e supressor (I^-) mencionadas acima. Em cada cubeta foram adicionadas 0,01 mL do aceptor, supressor e acetonitrila obtendo um volume total de 2,01 mL e a concentração de 1,50x10⁻³ mol L⁻¹ e 7,50x10⁻³ mol

L⁻¹ representando as regiões de baixa e a alta concentração de supressor, respectivamente. A temperatura variou de 25,0 a 55,0 °C.

3.10 Estimativa dos parâmetros termodinâmicos

Para o preparo das soluções foi empregado o procedimento descrito na parte 3.6. Para estimar os valores das K_{CTC} repetiu-se o procedimento descrito na parte 3.8.1 em diversas temperaturas, 15,0 a 55,0 °C. Através dos valores das K_{CTC} , calculados pelo método B-H em diversas temperaturas, utilizou-se da equação de van't Hoff para estimar $\Delta H^{o}_{f} \in \Delta S^{o}_{f}$ de formação dos CTC. Os parâmetros foram calculados pelo plot de ln K_{CTC} *versus* 1/T. O valores de ΔG^{o} foram calculados através dos valores de K_{CTC} a 30,0 °C.

3.11 Efeito dos ânions Br e SCN sobre a banda do CTC

3.11.1 Preparo das soluções (W e Y)

Preparou-se uma solução de C₃bis(4CP)²⁺ de 1,61x10⁻³ mol L⁻¹ (solução W). Desta solução, 25,00 mL foi utilizada para dissolver 37,0 mg de KI (solução Y), com ultra-som.

3.11.2 Efeito do Br

Preparou-se uma solução de 25,00 mL de KBr, 2,50x10⁻³ mol L⁻¹, em acetonitrila. Em cubetas contendo 2,00 mL de solução Y, foram adicionadas, variando alternativamente de 0 a 1,60 mL de solução de KBr e acetonitrila, obtendo um volume total de 3,60 mL .

3.11.3 Efeito do SCN

Prepararam-se duas soluções de 10,00 mL de KSCN, 1,30x10⁻² mol L⁻¹ (solução 1) e 5,10x10⁻³ mol L⁻¹ (solução 2), em acetonitrila. A seguir, as amostras foram preparadas adicionando 2,00 mL de solução Y, 0,50 mL da solução 1 e volumes variados de solução 2

e acetonitrila, obtendo um total de 3,60 mL. Também foi preparado 25,00 mL de uma solução mais concentrada de KSCN, 2,30x10⁻² mol L⁻¹ (solução 3). A seguir foram preparadas nove cubetas, em cada uma foram adicionadas 2,00 mL de solução Y, em seguida foram adicionadas, variando alternativamente de 0 a 1,60 mL da solução 3 e acetonitrila, obtendo um volume total de 3,60 mL.

3.12 Efeito da porcentagem de água sobre o CTC

Foi preparado uma solução Y estoque, $C_3 bis(4CP)^{2+}$ (6,0x10⁻⁴ mol L⁻¹) com KI (8,00x10⁻³ mol L⁻¹). Prepararam-se amostras contendo 2,00 mL desta solução. Em cada uma, foram adicionados quantidades variadas de água (0 a 2,00 mL) e acetonitrila (2,00 a 0 mL), obtendo um volume total de 4,00 mL. A porcentagem de água variou de 0 a 50 %.

3.13 Estudo eletroquímica dos CTC

3.13.1 Preparo das soluções

Prepararam-se as soluções de C_nbis(4CP)²⁺ n = 3, 4, 8 (6,0x10⁻⁴ mol L⁻¹) e C₄4CP⁺ (12,0x10⁻⁴ mol L⁻¹) - solução W. Desta solução, 25,00 mL foi utilizada para dissolver 37,0 mg de iodeto de tetrabutilamônio - But₄NI ou 23,0 mg de brometo de tetrabutilamônio - But₄NBr (solução Y) com ultra-som. As amostras foram previamente preparadas adicionando volumes variados de solução W (4,00 a 0 mL) e solução Y (0 a 4,00 mL), para os CTC do tipo C_nbis(4CP)²⁺/I⁻ e para os CTC do tipo C_nbis(4CP)²⁺/Br⁻, solução W (4,00 a 0,54 mL) e solução Y (0 a 3,46 mL) obtendo um volume total de 4,00 mL, em ambos os sistemas. A solução do eletrodo de referência foi preparada a partir da dissolução de 16,9 mg de AgNO₃ e 106,4 mg de LiClO₄ em acetonitrila obtendo uma concentração de 0,01 e 0,10 mol L⁻¹, respectivamente.

3.13.2 Voltametria Cíclica

Montou-se a cela eletroquímica com um eletrodo de carbono vítreo (C_{vitreo}) como eletrodo de trabalho, um fio de platina (Pt) como contra eletrodo e como eletrodo de referência um fio de prata cloreto de prata (Ag/AgCl) imerso numa solução de acetonitrila contendo de AgNO₃ (0,01 mol L⁻¹) e LiClO₄ (0,10 mol L⁻¹), E^o = 0,503 V *versus* EPH (eletrodo padrão de hidrogênio). Adicionou-se 3 mL da amostra na cela eletroquímica, borbulhou-se N₂ por 15 segundos e registraram-se os voltamogramas cíclicos utilizando um Potenciostato Galvanostato a 30,0 °C. O mesmo procedimento foi realizado para as demais amostras. Optou-se para obtenção dos voltamogramas uma varredura anódica para todos os sistemas de -2,0 a 1,5 V com uma velocidade de varredura de 100 mV s⁻¹.

4. RESULTADOS E DISCUSSÕES

4.1 Observação da banda de transferência de carga

Os compostos 4-cianopiridínicos estudados apresentam picos característicos na região do ultravioleta em acetonitrila, 230 nm e 278 nm (Figura 1) com absortividade molar por grupo cromóforo aproximadamente ε_{230} = 17.200 mol⁻¹ L cm⁻¹ e ε_{278} = 4.700 mol⁻¹ L cm⁻¹, respectivamente, enquanto que o iodeto apresenta absorção em 238 nm.

Figura 1. Espectro de absorção UV para o C_3 bis $(4CP)^{2+}(3,1x10^{-6} \text{ mol } L^{-1})$ em acetonitrila.

Entretanto a interação entre 4-cianopiridínios (π -aceptor) e l⁻ (n-doador) em acetonitrila, provoca o surgimento de uma banda adicional no espectro eletrônico UV-Vis em 410 nm (Figura 2A). Esta banda é proveniente da transferência de carga do doador para aceptor, denominada de banda de transferência de carga (BTC).

Figura 2. (A) Espectros de absorção UV-Vis para o $C_3 bis(4CP)^{2+}$ (6,0x10⁻⁴ mol L⁻¹) em acetonitrila com adições crescentes de [I⁻] de 1,30x10⁻³ a 2,00x10⁻³ mol L⁻¹. A seta mostra o aumento da absorbância com o aumento da [I⁻]. (B) Variação da absorbância em 410 nm como função da [I⁻] em acetonitrila a 30,0 °C. [piridínio dímero] = 6,0x10⁻⁴ mol L⁻¹: $C_3 bis(4CP)^{2+}$ (\blacksquare), $C_4 bis(4CP)^{2+}$ (\bullet), $C_6 bis(4CP)^{2+}$ (\blacktriangle) e $C_8 bis(4CP)^{2+}$ (\blacktriangledown). [piridínio monômero] = 12,0x10⁻⁴ mol L⁻¹: $C_6 4CP^+$ (\checkmark), $C_4 4CP^+$ (\blacklozenge) e $C_{16} 4CP^+$ (\succ).

Estes CTC são formados pela interação predominantemente eletrostática *D-A* em solvente orgânico. Um comportamento espectral semelhante ao apresentado na Figura 2A foi observado nos CTC dos demais 4-cianopiridínios com l⁻ em solvente acetonitrila e DMSO. Na Figura 2B se mostra que os CTC com os derivados dímeros, série $C_n bis(4CP)^{2+}$, apresentam maiores intensidades de absorção do que os da série de monômeros $C_n 4CP^+$, mesmo trabalhando-se com iguais concentrações de anéis piridínicos. Quando comparamos as intensidades de absorção do CTC dentro da série dos dímeros, observa-se que estas aumentam na medida em que n diminui, ou, ao passar da série dos monômeros para dímeros. Este efeito advém provavelmente da diferença de intensidade de dois fatores concorrentes: i) maior estabilidade dos CTC, que implica em

uma maior K_{CTC} ; ii) maior coeficiente de absorção molar junto ao CTC (ε_{CTC}) devido ao maior grau de superposição dos orbitais *D*-*A* envolvidos na BTC. A avaliação do grau de participação de cada fator individualmente é extremamente difícil de ser mensurada uma vez que ambas as participações são cooperativas.

Os CTC formados com iodeto em acetonitrila para as séries 4-cianopiridínios (dímeros e monômeros) mostram a BTC com o mesmo comprimento de onda de máximo (410 nm). Já para todos os dímeros de 2-bromopiridínios, C_nbis(2BP)²⁺, a BTC ocorre em 360 nm, Figura 3A, enquanto que para o monômero C₁2BP⁺ entre 350-360 nm; o pico destes derivados em acetonitrila, mas sem a presença de l⁻, ocorre em aproximadamente 278 nm. Dessa forma, a diferença de energia entre os orbitais dos estados (fundamental e excitado) envolvida na transição de transferência de carga, é maior nos complexos formados pelos derivados 2-bromopiridínios do que para os 4-cianopiridínios, independente de ser dímeros ou monômeros. A justificativa para tal fato envolve diversos parâmetros moleculares, sendo entre estes o fator de impedimento estérico devido à presença do bromo na posição 2-; este volumoso grupo poderia dificultar a aproximação direta do doador sobre o anel. Adicionalmente a este efeito, o grupo CN (ligado à posição 4- do anel piridínico) é melhor retirante de elétrons do que o átomo de Br (na posição 2-). Assim, os derivados contendo substituinte CN terão maior densidade de carga positiva no anel o que propicia mais intensa interação com o l⁻. Para os CTC formados entre C_nbis(2BP)²⁺/l⁻, novamente a semelhança do que ocorre nos C_nbis(4CP)²⁺ dímeros, observa-se que a intensidade da BTC aumenta a medida em que n diminui, Figura 3B.

Figura 3. (A) Espectros de absorção UV-Vis para o $C_4 bis(2BP)^{2+}$ (6,0x10⁻⁴ mol L⁻¹) em acetonitrila com adições crescentes de [I⁻] de 1,30x10⁻³ a 2,00x10⁻³ mol L⁻¹. A seta mostra o aumento da absorbância com o aumento da [I⁻]. (B) Variação da absorbância em 360 nm como função da [I⁻] em acetonitrila a 30,0 °C. [piridínio dímero] = 6,0x10⁻⁴ mol L⁻¹: $C_4 bis(2BP)^{2+}$ (•).

É importante ressaltar que, apesar dos diferentes comprimentos da cadeia n gerar diferentes densidades totais de carga positiva nos aceptores, em cada série todos os CTC absorveram no mesmo comprimento de onda de máximo em acetonitrila: 410 nm para os derivados $(C_n bis(4CP)^{2+})$ 4-cianopiridínicos monômeros е $C_n 4CP^+$ dímeros е respectivamente) e 350-360 nm para os 2-bromopiridínicos dímeros e monômero $(C_n bis(2BP)^{2+} e C_1 2BP^+, respectivamente)$. Isto implica que, entre as séries todos possuem transição envolvendo energia semelhante, ou seja, a diferença de energia entre o elétron no orbital mais energético do doador (HOMO), com o orbital vazio de menor energia do aceptor (LUMO), é similar. Assim, observa-se que a energia de transferência de carga depende apenas do substituinte do anel piridínico, ou seja, esta energia é praticamente independente: (i) do tamanho da cadeia metilênica entre os anéis piridínicos da mesma série; e (ii) da forma dímero e monômero.

4.2 Determinação da estequiometria dos CTC

A aplicação do método de Job⁷¹ de variação contínua (dedução no anexo 1) e do método da razão molar⁷² indicaram uma relação estequiométrica de 1:1, equimolar, para os CTC estudados, conforme pode ser visualizada na Figura 4A e 4B, respectivamente.

A proporção equimolar (1:1) é independente dos CTC serem formados por dímeros ou monômeros. Os resultados (Figura 4) são particularmente interessantes para os CTC de $C_n bis(4CP)^{2+}$ dímeros, devido aos elevados valores de absorbância quando comparados aos monômeros, com destaque para os derivados dímeros de cadeia metilênica interligante curta como o $C_3 bis(4CP)^{2+}$. Assim, a magnitude dos efeitos obtidos sugere haver, além do efeito de densidade de carga positiva, um efeito conformacional levando a formação de um complexo com estrutura tipo "sanduíche" onde o íon iodeto ficaria inserido entre os dois anéis piridínicos. Essa proposta condiz com a estequiometria 1:1 (equimolar) ou 2:1 (anel piridínico:1⁻), Esquema 14A, conforme proposto anteriormente no grupo de pesquisas^{17,62,63}. Este efeito "sanduíche" promoveria um maior grau de superposição dos orbitais *D-A* (maior ε_{CTC}) e/ou uma maior estabilidade (maior *K*_{CTC}) do CTC levando a um aumento de sua concentração, sendo ambos fatores favorecidos à medida em que n diminui.

Ainda no CTC, íons l⁻ poderiam ser substituídos por íons Br⁻ (inclusive estes são os contra-íons dos derivados utilizados), mantendo-se em equilíbrio. Já os CTC de C_n4CP⁺ (monômeros de piridínios) com l⁻ não podem advir de complexo tipo "sanduíche", tendo assim uma menor probabilidade de transferência de elétrons (Esquema 14B). Apesar das menores intensidades de absorção (Figura 2B), a proporção *D*:*A* nestes CTC também resultou em 1:1.

35

Figura 4. Determinação da estequiometria dos CTC entre 4-cianopiridínios com l⁻ em acetonitrila. **(A)** Método de Job, Piridínios dímeros: $C_3 bis(4CP)^{2+}$ (**•**), $C_4 bis(4CP)^{2+}$ (**•**), $C_6 bis(4CP)^{2+}$ (**•**), e $C_8 bis(4CP)^{2+}$ (**•**). Piridínios monômeros: $C_6 4CP^+$ (**•**). **(B)** Método da razão molar, $C_6 bis(4CP)^{2+}$ como exemplo.

O mesmo perfil gráfico obtido na Figura 4B foi obtido para os demais sistemas.

Esquema 14. Equilíbrio proposto para os CTC. **(A)** dímeros: $C_n bis(4CP)^{2+}$ (n = 3, 4, 6 e 8) e **(B)** monômero: $C_n 4CP^+$ (n = 4, 6 e 16 carbonos no R).

As estruturas geométricas apresentadas no Esquema 14A (dímeros) e 14B (monômeros) independem do substituinte do anel, ou seja, são propostas para os derivados das séries dos 4-cianopiridínios e 2-bromopiridínios. Adicionalmente esta proposta seria válida para qualquer doador como os halogenetos, principalmente aqueles de volume elevado devido a maior característica doadora – alta polarizabilidade, como é o caso do iodeto.

4.3 Estimativa das Constantes de formação e absortividades molar

4.3.1 Método B-H

A equação de Benesi-Hildebrand¹ foi usada para estimar as K_{CTC} e as ε_{CTC} para os CTC através das absorbâncias, em condições de alta concentração do doador *D* (variável) e baixa quantidade fixa do aceptor *A* ([C_nbis²⁺]= 6,0x10⁻⁴ mol L⁻¹ e [C_n4CP⁺]= 12,0x10⁻⁴ mol L⁻¹) onde os aceptores estão com concentrações de anéis piridínicos iguais. Aplicou-se a equação 4, cuja dedução esta no Anexo 2:

$$\frac{[A]_o}{Abs} = \frac{1}{K_{CTC} \cdot \varepsilon_{CTC}} \cdot [D]_o + \frac{1}{\varepsilon_{CTC}} \cdot (4)$$

onde $[A]_o$ é a concentração fixa dos aceptores $(C_n bis(4CP)^{2+}, C_n bis(2BP)^{2+}, C_n 4CP^+ e C_1 2BP^+)$, $[D]_o$ é a concentração do l⁻ a cada adição e *Abs* é a absorbância junto ao comprimento de onda de máximo do CTC. Para cada ponto coletado foi preparada uma solução específica conforme descrita na parte experimental. Os parâmetros K_{CTC} e ε_{CTC} , extraídos do plot $[A]_o/Abs$ versus $1/[D]_o$, Figura 5A, 5B, 5C e 5D, são apresentados na Tabela 1, juntamente com os coeficientes de correlação (R). Para todas as estimativas os experimentos foram realizados em triplicata.

Figura 5. Determinação de K_{CTC} e ε_{CTC} para os CTC formados entre derivados 4cianopiridinios e l⁻ (1,30x10⁻³ a 2,00x10⁻³ mol L⁻¹) em acetonitrila a 30,0 °C. Método B-H. (A) [piridínios dímeros] = 6,0x10⁻⁴ mol L⁻¹: C₃bis(4CP)²⁺ (\blacksquare), C₄bis(4CP)²⁺ (\bullet), C₆bis(4CP)²⁺ (\blacktriangle) e C₈bis(4CP)²⁺ (\blacktriangledown). (B) [piridínios monômeros] = 12,0x10⁻⁴ mol L⁻¹: C₄4CP⁺ (\blacksquare), C₆4CP⁺ (\bullet) e C₁₆4CP⁺ (\bigstar). (C) [piridínios dímeros] = 6,0x10⁻⁴ mol L⁻¹: C₄bis(2BP)²⁺ (\bullet) e C₆bis(2BP)²⁺ (\bigstar). (D) [piridínio monômero] = 12,0x10⁻⁴ mol L⁻¹: C₁2BP⁺ (\blacksquare).

Observa-se que o valor de K_{CTC} para os CTC formados entre os $C_n bis(4CP)^{2+}$ (ou $C_n bis(2BP)^{2+}$) com l⁻ em acetonitrila de modo geral aumenta a medida em que n diminui (Tabela 1). Esta ordem foi melhor obedecida pelos valores de ε_{CTC} e para o fator

multiplicativo K_{CTC} x ε_{CTC} . Em DMSO o mesmo padrão é observado principalmente para ε_{CTC} (Tabela 1). Estas observações provam numericamente a maior tendência em complexar (maior valor de K_{CTC}) e a maior superposição dos orbitais *D-A* (maior valor de ε_{CTC}) dos CTC formados pelos derivados dímeros com n menores. Estes resultados decorrem do maior efeito "sanduíche", efeito conformacional que também esta aliada a maior densidade da carga positiva nos derivados de ponte metilênica menores.

Entre os derivados monômeros C_n4CP^+ com l⁻, os valores dos parâmetros K_{CTC} e ϵ_{CTC} e do produto entre esses, mantiveram-se praticamente iguais, aproximadamente 418 ± 124 mol⁻¹.L para K_{CTC} e 62 ± 7 mol⁻¹ L cm⁻¹ para ϵ_{CTC} (apesar do elevado nível de incerteza principalmente no valor de K_{CTC}). Nos monômeros a extensão da cadeia alifática (C_n) ligada ao anel aparentemente não influencia os parâmetros. Estes derivados de apenas um anel apresentam densidade de carga positiva iguais entre si, além de não gerarem complexos do tipo "sanduíche". Estes complexos não foram formados mesmo com o derivado hexadecil ($C_{16}4CP^+$), derivado este passível de formar dímeros por auto-associação⁶⁵ o que poderia levar a complexo tipo "sanduíche" intermolecular. A não formação de dímeros por este derivado provavelmente é devido ao solvente relativamente pouco polar (acetonitrila) utilizado nestes experimentos.

Solventes	Acetonitrila (ξ = 37,5)			DMSO (ξ = 45,0)			
Aceptores	К стс (mol ⁻¹ L)	Єстс (mol ⁻¹ L cm ⁻¹)	$K_{CTC} \times \mathcal{E}_{CTC}$ (10 ³ , mol ⁻² L ² cm ⁻¹)	К стс (mol ⁻¹ L)	Єстс (mol ⁻¹ L cm ⁻¹)	$K_{CTC} \times \mathcal{E}_{CTC}$ (10 ³ , mol ⁻² L ² cm ⁻¹)	
C ₃ bis(4CP) ²⁺	505±52	905±63	457±3	1.215±117	191±30	232±4	
	(R = 0,997)			(R = 0,995)			
C ₄ bis(4CP) ²⁺	531±38	847±33	449±1	1.777±118	169±12	300±1	
	(R = 0,998)			(R = 0,992)			
C ₆ bis(4CP) ²⁺	397±34	762±70	303±2	781±5	133±118	104±6	
	(R = 0,995)			(R = 0,995)			
C ₈ bis(4CP) ²⁺	309±64	674±16	208±1	1.291±36	91±4	118±1	
	(R = 0,997)			(R = 0,998)			
C₄4CP⁺	400±133	65±9	26±1	-	-	-	
	(R = 0,992)						
C_64CP^+	429±118	61±8	26±1	-	-	-	
	(R = 0,995)						
$C_{16}4CP^+$	424±122	59±5	25±1	-	-	-	
	(R = 0,991)						
C ₄ bis(2BP) ²⁺	460±107	778±13	359±1	-	-	-	
	(R = 0,995)						
C ₆ bis(2BP) ²⁺	459±113	645±60	296±7	-	-	-	
	(R = 0,991)						
$C_1 2BP^+$	97	1.734	168	-	-	-	
	(R = 0,995)						

Tabela 1. K_{CTC} e ε_{CTC} dos CTC de l⁻ com diferentes aceptores em solventes de diferentes constantes dielétricas (ξ): acetonitrila e DMSO, a 30,0 °C. Método B-H.

Quando comparam-se os valores do fator multiplicativo ($K_{CTC} \times \varepsilon_{CTC}$) entre os piridínios dímeros e monômeros, novamente observa-se que a interação nos últimos são muito menores corroborando a proposição do complexo tipo "sanduíche" nos primeiros. É

interessante ressaltar que quando comparam-se os CTC formados por 4-cianopiridínios observa-se que as K_{CTC} apresentam diferenças pequenas entre C₄bis(4CP)²⁺ e C₄4CP⁺ e entre C₆bis(4CP)²⁺ e C₆4CP⁺ (compostos de n = 4 e 6, entre os dímeros e monômeros); por outro lado, na mesma comparação, a ε_{CTC} se mostra muitíssimo mais sensível do que a K_{CTC} . Este resultado sugere que as diferenças de intensidade de absorção devem advir mais efetivamente da absortividade molar do que da constante de formação. O termo ε_{CTC} esta relacionado ao grau de superposição dos orbitais *D*-*A*, consequentemente, a probabilidade da transição prevalece à estabilidade e quantidade dos complexos formados (K_{CTC}). Dessa maneira, o efeito conformacional aliado à carga leva a uma maior superposição, isto é, entrelaçamento de orbitais entre l⁻ e os C_nbis(4CP)²⁺.

Adicionalmente constata-se que o efeito de interação do l⁻ com $C_n bis(4CP)^{2+}$ é maior do que com $C_n bis(2BP)^{2+}$ para derivados de mesmo n. Esta observação também pode ser explicada pelo efeito estérico causado pelo volumoso grupo bromo na posição 2-, que pode diminuir a proximidade das espécies, diminuindo a interação no CTC e o fato do grupo ciano ser um melhor retirador de elétrons que o bromo, promovendo assim uma maior densidade de carga positiva no anel, implicando numa maior interação com l⁻.

Como mencionado anteriormente, a avaliação do grau de contribuição do parâmetro K_{CTC} e ε_{CTC} separadamente é difícil. Assim, o fator multiplicativo K_{CTC} x ε_{CTC} se torna um parâmetro mais adequado para avaliar a absorbância dos CTC. Como exemplo, observouse que os parâmetros individuais para o complexo C₁2BP⁺/l⁻ não são tão confiáveis, pois a absorção deste CTC (com comprimento de onda máximo de 350-360 nm) é afetada pela absorção do 2-bromopiridínio em aproximadamente 278 nm, devido a sobreposição de banda. Contudo o fator multiplicativo K_{CTC} x ε_{CTC} para o monômero, mais uma vez, é menor do que para os dímeros, apontando a maior interação destes últimos pelo l⁻.

Para avaliar o efeito do solvente (ou constante dielétrica - ξ) utilizou-se DMSO e dioxano em comparação a acetonitrila. Sabendo que a formação dos CTC, no caso estudado, ocorre primariamente devido às interações coulômbicas, pois ambos aceptor e doador são íons de cargas opostas, espera-se que solventes de alta ξ favoreçam as espécies não complexadas, enquanto que de baixa favoreçam a espécie complexada. Os valores de K_{CTC} e ε_{CTC} foram extremamente afetados pela ξ do solvente, como mostrado na Tabela 2. Os valores de ε_{CTC} aumentam à medida que a ξ do solvente diminui, no entanto um efeito oposto foi observado para os valores de K_{CTC} (menor em acetonitrila do que em DMSO). Contudo o fator multiplicativo K_{CTC} x ε_{CTC} esta de acordo com o esperado pelo efeito eletrostático e mais uma vez exibe a mesma tendência observada nos valores de ε_{CTC} , ou seja, aumentam na medida em que a ξ do solvente diminui. Este resultado sugere que quanto menor a ξ do solvente, maior será o grau de superposição dos orbitais *D-A* afetando diretamente a ε_{CTC} e, novamente, mostrando menor influência na K_{CTC} .

Observa-se também uma diminuição da energia envolvida na transição (maiores comprimentos de onda) à medida que a ξ diminui. Esta menor diferença de energia entre os orbitais envolvidos (do doador e aceptor) provavelmente deve-se a uma maior desestabilização do orbital com elétrons n do doador (HOMO-donor) em solventes mais apolares⁷⁴⁻⁷⁶.

Tabela 2. K_{CTC} e ε_{CTC} dos CTC (Método B-H) de C₃bis(4CP)²⁺ (6,0x10⁻⁴ mol L⁻¹) e l⁻ (1,30x10⁻³ a 2,00x10⁻³ mol L⁻¹) em DMSO e acetonitrila e C₃bis(4CP)²⁺ (5,0x10⁻⁵ mol L⁻¹) e l⁻ (6,0x10⁻⁵ a 1,3x10⁻⁴ mol L⁻¹) em dioxano a 30,0 °C.

Parâmetros	DMSO (ξ = 45,0)	Acetonitrila (ξ = 37,5)	Dioxano (ξ = 2,2)	
$K_{CTC} \pmod{1} L$	1.215±117	505±52	2.982±105	
	(R = 0,9949)	(R = 0,9972)	(R = 0,9908)	
$\epsilon_{\text{CTC}} \pmod{1} L \text{ cm}^{-1}$	191±30	905±63	5.115±89	
	(400 nm)	(410 nm)	(450 nm)	
$K_{CTC} \mathbf{X} \ \mathcal{E}_{CTC} \ (10^3, mol^{-2} \ L^2 \ cm^{-1})$	232±4	457±3	15.253±9	

Na avaliação do efeito do dioxano sobre o CTC, além da BTC observada em 450 nm, verificou-se outra banda em 360 nm (Figura 6A) referente a uma possível formação de I_2 que em reação⁷⁷ com l⁻ leva a I_3^- . Esta banda apresentou-se muito mais sensível à concentração de l⁻ do que a de 450 nm, de forma que em altas [l⁻], a banda de 360 nm sobrepõe-se com a de 450 nm. Este fato inviabilizou o estudo da complexação de C_n bis(4CP)²⁺ com l⁻ neste solvente em altas concentrações do ânion. Assim o monitoramento da BTC para a estimativa dos parâmetros K_{CTC} e ε_{CTC} (Figura 6B) só pode ser efetuado em concentrações aproximadamente 10 vezes menores de ambas as espécies. De qualquer forma, os resultados em dioxano sugerem a existência de forte interação entre o C₃bis(4CP)²⁺ e o l⁻.

Figura 6. (A) Espectros de absorção UV-Vis para o C₃bis(4CP)²⁺ (5,0x10⁻⁵ mol L⁻¹) em dioxano com adições crescentes de [I⁻] de 6,0x10⁻⁵ a 1,3x10⁻⁴ mol L⁻¹. A seta mostra o aumento da absorbância da BTC com o aumento da [I⁻]. **(B)** Determinação de K_{CTC} e ε_{CTC} para os CTC formados entre C₃bis(4CP)²⁺ e I⁻, 30,0 °C.

4.3.2 Método iterativo de ajuste de curva

A fim de confirmar a tendência dos valores das $K \in \varepsilon$ calculados a partir do método B-H, foram também determinados esses valores pelo método iterativo de ajuste de curva em acetonitrila. Este método considera as situações de limite de saturação onde todas as moléculas piridínicas estariam complexadas, ou seja, $[D]_o >> [A]_o$. Nestes cálculos da K no limite de saturação ($K_{CTC,lim}$) aplicou-se a equação 5, cuja dedução esta no Anexo 3. Novamente as concentrações de $C_nbis(4CP)^{2+}$ ou C_n4CP^+ na cubeta e na solução estoque com doador eram de mesma concentração, de modo que a concentração do substrato piridínico foi mantida fixa variando-se apenas a de doador ($[D]_o = [I^-]$). Porém com este método iterativo as concentrações dos derivados foram de uma ordem de grandeza menor do que nos experimentos do método B-H, devido à necessidade de se atingir o limite de saturação da absorbância.

$$Abs = \frac{Abs_o + Abs_{\lim} K_{CTC,\lim}[D]_o}{1 + K_{CTC,\lim}[D]_o}$$
(5)

onde *Abs* é a absorbância do CTC a cada $[D]_o$, *Abs*_o é a absorbância somente do aceptor em 410 nm (valor muito próximo de zero) e *Abs*_{lim} é a absorbância limite do CTC alcançada em altas $[D]_o$, conforme podem ser visualizados na Figura 7. Para o calculo da absortividade molar utilizando este método ($\varepsilon_{CTC,lim}$) foi empregado a equação 6, levandose em conta a Lei de Lambert-Beer na região de saturação:

$$Abs_{\lim} = \varepsilon_{CTC,\lim} \cdot [A]_o \Rightarrow \varepsilon_{CTC,\lim} = \frac{Abs_{\lim}}{[A]_o}$$
 (6)

onde a $[A]_o$ é a concentração do aceptor, que em condições de limite de absorbância (Abs_{lim}) praticamente encontra-se totalmente complexado, ou seja, $[A]_o \cong$ [CTC].

Na Figura 7A observa-se o aumento da absorbância do CTC com o aumento da $[D]_o$, inclusive mostrando a região limite de saturação (Figura 7B, 7C, 7D, 7E, 7F e 7G). Na Tabela 3 estão apresentados os valores em acetonitrila da K_{CTC} e ε_{CTC} calculados pelo método B-H (repetição proposital e parcial da Tabela 1 para facilitar a comparação) e os valores de $K_{CTC,lim}$ e $\varepsilon_{CTC,lim}$ calculados utilizando o método iterativo de ajuste de curva.

Figura 7. (A) Espectros de absorção UV-Vis para o $C_3 bis(4CP)^{2+}$ (5,0x10⁻⁵ mol L⁻¹) em acetonitrila a 30,0 °C com adições crescentes de [I⁻] de 0 a 0,072 mol L⁻¹. A seta indica o aumento da absorbância com o aumento da [I⁻]. Variação da absorbância em 410 nm do CTC formado entre $C_n bis(4CP)^{2+}$ (ou C_44CP^+) e I⁻ com adições crescentes de [I⁻] em acetonitrila a 30,0 °C: (B) $C_3 bis(4CP)^{2+}$. (C) $C_4 bis(4CP)^{2+}$. (D) $C_6 bis(4CP)^{2+}$. (E) $C_8 bis(4CP)^{2+}$. (F) C_44CP^+ . (G) C_64CP^+ .

Um comportamento espectral semelhante ao apresentado na Figura 7A foi observado para os demais derivados. Nas Figuras 7B a 7G as curvas teóricas mostraram um ajuste relativamente bom aos pontos experimentais.

Tabela 3. Valores de $K_{CTC,lim}$ e $\varepsilon_{CTC,lim}$ calculados pelo método iterativo e valores de K_{CTC} e ε_{CTC} (método B-H) dos CTC formados entre os $C_n bis(4CP)^{2+}$ (ou $C_n 4CP^+$) e l⁻, em acetonitrila a 30,0 °C.

	C _n bis(4CP) ²⁺				C _n 4CP⁺	
Método/Parâmetros	n = 3	n = 4	n = 6	n = 8	n = 4	n = 6
Iterativo,	185±17	156±18	112±12	81±8	28±1	39±2
К стс, <i>lim</i> (mol ⁻¹ L)	(R ² = 0,985)	(R ² = 0,969)	(R ² = 0,975)	(R ² = 0,983)	(R ² = 0,997)	(R ² = 0,994)
Iterativo,	2.700	1.900	1.420	1.320	550	490
€_{CTC,lim} (mol ⁻¹ L cm ⁻¹)						
$B-H,^* \kappa_{crc} (mol^{-1}L)$	505±52	531±38	397±34	309±64	400±133	429±118
$B\text{-}H,^{*}\epsilon_{\text{CTC}} \ (\text{mol}^{-1} \ \text{L} \ \text{cm}^{-1})$	905±63	847±33	762±70	674±16	65±9	61±8

* Valores já apresentados na Tabela 1.

Os valores de $K_{CTC,lim}$ e também de $\varepsilon_{CTC,lim}$ são próximos nos monômeros e menores do que aqueles para dímeros. Novamente para dímeros os parâmetros obedecem ao mesmo perfil previamente discutido: $C_3 bis(4CP)^{2+} > C_4 bis(4CP)^{2+} > C_6 bis(4CP)^{2+} >$ $C_8 bis(4CP)^{2+}$, ou seja, aumentam à medida que n diminui. Assim, estes resultados confirmam a tendência observada nos cálculos pelo método B-H dentro das séries dos 4cianopiridínios e suportam a explicação do efeito de densidade de carga positiva juntamente ao conformacional levando ao complexo tipo "sanduíche". Porém, apesar das tendências iguais, as K_{CTC} e ε_{CTC} (método B-H) e as $K_{CTC,lim}$ e $\varepsilon_{CTC,lim}$ (método iterativo) apresentaram valores diferentes entre as metodologias devido as diferentes considerações aplicadas durante o processo de dedução das equações (Anexo 2 e 3). No método iterativo consideram-se situações de limite de absorção, Abs_{lim} , onde todas as moléculas piridínicas estariam complexadas e leva-se em consideração a absorção do aceptor, Abs_{o} , no
comprimento de onda de máximo do CTC, apesar de pequena. Adicionalmente têm-se diferenças nas concentrações utilizadas.

4.4 Supressão da emissão fluorescente dos $C_n bis(4CP)^{2+}$ e $C_n 4CP^+$ pelo I

4.4.1 Calculo das constantes de supressão

Os C_nbis(4CP)²⁺ e C_n4CP⁺ em acetonitrila, apesar de intensidades baixas, exibem emissão de fluorescência na região de 308 nm ao serem excitados em 278 nm, Figura 8A. Nos experimentos com o complexo formado com íons iodeto não observou-se emissão de fluorescência de modo que o l⁻ atua como supressor de energia de estados excitados dos piridínios. Assim observou-se uma diminuição da fluorescência (F) do piridínio à medida que iodeto é adicionado. O mesmo comportamento apresentado na Figura 8A foi observado para os demais substratos.

Figura 8. (A) Espectros de fluorescência do $C_8 bis(4CP)^{2+}$ (4,3x10⁻⁶ mol L⁻¹) a diversas [l⁻] (0 a 1,50x10⁻² mol L⁻¹) em acetonitrila, $\lambda_{excit} = 278$ nm. A seta indica o aumento da supressão com o aumento da [l⁻]. (B) Plot de fluorescência *versus* [l⁻] a 30,0 °C. Dímeros (4,3x10⁻⁶ mol L⁻¹): $C_3 bis(4CP)^{2+}$ (**■**), $C_4 bis(4CP)^{2+}$ (**•**), $C_6 bis(4CP)^{2+}$ (**▲**) e, $C_8 bis(4CP)^{2+}$ (**▼**). (**C**) Monômeros (8,6x10⁻⁶ mol L⁻¹): $C_4 4CP^+$ (**•**), $C_6 4CP^+$ (**•**) e $C_{16} 4CP^+$ (**▶**).

Na Figura 9, razão F₀/F *versus* [I⁻], constata-se uma relação linear de supressão. As constantes de supressão de fluorescência de Stern-Volmer (K_{SV}) foram calculadas e estão apresentadas na Tabela 4.

Figura 9. Plot de Stern-Volmer, em acetonitrila a 30,0 °C. Dímeros (4,3x10⁻⁶ mol L⁻¹): C₃bis(4CP)²⁺ (■), C₄bis(4CP)²⁺ (●), C₆bis(4CP)²⁺ (▲) e, C₈bis(4CP)²⁺. Monômeros (8,6x10⁻⁶ mol L⁻¹): (▼), C₄4CP⁺ (●), C₆4CP⁺ (◀) e C₁₆4CP⁺ (►). λ_{excit} 278 nm e λ_{emis} 308 nm.

Por meio dos resultados da Tabela 4, observou-se que as K_{SV} dos $C_n bis(4CP)^{2+}$ dímeros aumentam quando n diminui. Isto implica que a afinidade do l⁻ será maior nos derivados com n menor com consequente maior supressão de emissão de fluorescência. Quando comparam-se as K_{SV} dos compostos de n = 4 e 6 entre os derivados dímeros e monômeros, verifica-se que os monômeros apresentam menores valores, indicando sua menor afinidade pelo l⁻ provavelmente decorrente da não existência do complexo tipo "sanduíche" aliada a sua menor densidade de carga positiva. O valor de K_{SV} também é baixo para o monômero hexadecil ($C_{16}4CP^+$) em comparação aos derivados dímeros, novamente indicando que este derivado, nestas condições, não gera dímero por autoassociação, o que poderia induzir a formação de complexo tipo "sanduíche" intermolecular, como já citado anteriormente. Estes resultados de supressão de fluorescência são coerentes com as tendências previamente obtidas em nossos experimentos anteriores realizadas por metodologias completamente diferentes.

	C _n bis(4CP) ²⁺				C _n 4CP⁺		
Constantes	n = 3	n = 4	n = 6	n = 8	n = 4	n = 6	n = 16
K _{SV}	322±5	286±6	227±7	152±4	205±7	163±8	166±6
(mol ⁻¹ L)	(R = 0,999)	(R = 0,998)	(R = 0,996)	(R = 0,997)	(R = 0,994)	(R = 0,991)	(R = 0,992)
*В-Н, <i>К_{стс}</i>	505±52	531±38	397±34	309±64	400±133	429±118	424±122
(mol ⁻¹ L)							

Tabela 4. Valores de K_{SV} para C_nbis(4CP)²⁺ (4,3x10⁻⁶ mol L⁻¹) e C_n4CP⁺ (8,6x10⁻⁶ mol L⁻¹) tendo l⁻ como supressor, e K_{CTC} calculados pelo método B-H em acetonitrila a 30,0 °C.

* Valores já apresentados na Tabela 1.

4.4.2 Efeito da temperatura na região de baixa e alta concentração de l

Para verificar se a tendência linear do plot de Stern-Volmer permanecia constante mesmo em altas quantidades de supressor, realizou-se o experimento com o $C_8 bis(4CP)^{2+}$ (concentração fixa em 4,3x10⁻⁶ mol L⁻¹) em concentrações de iodeto acima de 1,50x10⁻² mol L⁻¹, como ilustrado na Figura 10A. A não linearidade deste plot sugere a ocorrência de dois mecanismos simultâneos de supressão de energia de estados excitados, o processo estático e o dinâmico (colisional)⁷⁸. Para investigação destes mecanismos de supressão tomaram-se duas regiões distintas de concentrações fixas de iodeto, baixa e alta, e avaliaram-se o efeito da temperatura sobre estes sistemas (Figura 10B, tendo-se o $C_4 bis(4CP)^{2+}$ como exemplo).

Figura 10. (A) Plot de Stern-Volmer para a supressão do C₈bis(4CP)²⁺ (4,3x10⁻⁶ mol L⁻¹) em função da adição de l⁻ (0,015 a 0,150 mol L⁻¹) a 30,0 °C. **(B)** Fluorescência *versus* temperatura para o C₄bis(4CP)²⁺ (4,3x10⁻⁶ mol L⁻¹) em acetonitrila a diversas temperaturas, $\lambda_{\text{excit}} = 278 \text{ nm e } \lambda_{\text{emis}} = 308 \text{ nm: baixa [l⁻]} = 1,50x10⁻³ mol L⁻¹ (•), e alta [l⁻] = 7,50x10⁻³ mol L⁻¹ (•).$

Conforme se observa na Figura 10B, nas duas condições de concentrações de iodeto ocorre aumento da supressão de fluorescência à medida que se aumenta a temperatura. Porém, observa-se que as inclinações das retas são diferentes. Quando a concentração de l⁻ é baixa o efeito do aumento da temperatura é mais sensível do que em altas concentrações l⁻. Conhecidamente⁷⁸ o aumento da temperatura: (i) favorece a supressão dinâmica devido à diminuição do coeficiente de viscosidade do solvente favorecendo o processo colisional (alta inclinação) e (ii) não favorece a supressão estática devido à desestabilização do complexo implicando em uma baixa eficiência de supressão (menor inclinação). Desta forma, o elevado efeito da temperatura em baixas concentrações de l⁻ sugere o predomínio da supressão colisional enquanto que em altas concentrações do ânion a supressão colisional é diminuída em favor da estática, como pode ser

observada pela menor inclinação na Figura 10B. Assim em regiões de elevada concentração de l⁻, além da supressão dinâmica ocorre à supressão estática.

Segundo Lakowicz⁷⁸, no caso colisional o complexo que leva a supressão de fluorescência não estaria previamente formado, sendo a supressão dependente de colisões entre o fluoróforo excitado (piridínio) e o supressor ($D = I^{-}$). Já no estático o complexo piridínio - iodeto (D-A) estaria formado com ambas as espécies no estado fundamental, e o piridínio (no complexo), ao absorver luz teria esta energia imediatamente suprimida pelas colisões do I⁻. Estes fatos são condizentes com os resultados obtidos onde aparentemente nas regiões de baixas concentrações de iodeto, o par piridínio-iodeto não se encontraria previamente formado. Porém nas regiões de altas concentrações do iodeto, a pré-existência do par é factível. Em resumo os resultados indicam a existência dos dois tipos de mecanismos de supressão que são dependentes das condições experimentais.

4.5 Estimativa dos parâmetros termodinâmicos de formação do CTC

Na Figura 11 temos os espectros de absorção UV-Vis para o sistema C_4 bis $(4CP)^{2+}/I^-$. Nesta figura observa-se um aumento da absorção do CTC com o aumento da temperatura, indicando que a extensão da complexação aumenta à medida que a temperatura aumenta. Esta observação é comprovada numericamente através dos valores de K_{CTC} e do fator multiplicativo K_{CTC} x ε_{CTC} calculados em várias temperaturas e apresentados na Tabela 5. Observamos também que, em cada sistema, o parâmetro ε_{CTC} praticamente se mantém invariável com a temperatura, sugerindo que a temperatura não influência na probabilidade de transição de transferência de carga de cada substrato. O mesmo comportamento espectral ilustrado nesta figura foi verificado para os demais complexos.

55

Figura 11. Espectros de absorção UV-Vis em acetonitrila do CTC formado entre C_4 bis $(4CP)^{2+}$ (6,0x10⁻⁴ mol L⁻¹) e l⁻ (2,00x10⁻³ mol L⁻¹). A seta indica o aumento da absorbância com o aumento da temperatura (15,0 a 55,0 °C).

Através das K_{CTC} para $C_n bis(4CP)^{2+}/I^-$ em séries de experimentos (variando-se a $[D]_o$ e mantendo a $[A]_o$ constante) realizados a diferentes temperaturas fixas para cada derivado utilizando o método B-H, determinou-se a entalpia de formação (ΔH^o_t) e a entropia de formação (ΔS^o_t). Estes foram calculados através do coeficiente angular e linear, respectivamente, do plot de van't Hoff de ln K_{CTC} versus 1/T, Figura 12, aplicando a equação 7:

$$\ln K_{CTC} = -\frac{\Delta H^o{}_f}{RT} + \frac{\Delta S^o{}_f}{R}$$
(7)

onde R é a constante dos gases e T a temperatura. Para todas as estimativas os experimentos foram realizados em triplicata.

Figura 12. Plot de van't Hoff para os CTC $C_n bis(4CP)^{2+}/I^-$ em acetonitrila: $C_3 bis(4CP)^{2+}$ (**•**), $C_4 bis(4CP)^{2+}$ (**•**), $C_6 bis(4CP)^{2+}$ (**•**), $C_6 bis(4CP)^{2+}$ (**•**).

A inclinação negativa como mostrado na Figura 12 indica que a formação dos CTC é um processo endotérmico ($\Delta H^{o}_{f} > 0$); este termo desfavorece a espontaneidade o que é de difícil entendimento e será discutido mais adiante. Estes resultados sugerem que os CTC formados entre C_nbis(4CP)²⁺ e l⁻ não são complexos comuns⁷⁹.

Todas as retas apresentaram coeficiente de correlação (R) aproximadamente 0,995 o que atesta o bom ajuste dos pontos experimentais à equação 7. Os valores de ΔG^o dos CTC foram calculados através da equação de energia livre de Gibbs, a 30,0 °C, de acordo com a equação 8:

$$\Delta G^{o} = -RT \ln K_{CTC}$$
 (8)

onde ΔG° é a energia livre padrão do CTC. Os valores de ΔH°_{f} , $\Delta S^{\circ}_{f} e \Delta G^{\circ}$ juntamente com os valores de K_{CTC} e ε_{CTC} em cada temperatura estão mostrados na Tabela 5.

Aceptores	Т	Кстс	Естс	$K_{CTC} \times \varepsilon_{CTC}$	∆ H⁰ _f	∆ Sº _f	∆G⁰
•	(°C)	(mol ⁻¹ L)	(mol ⁻¹ L cm ⁻¹)	$(10^3, \text{mol}^{-2} \text{ L}^2 \text{ cm}^{-1})$	(kJ mol ^{⁻1})	(J mol ⁻¹ K ⁻¹)	(kJ mol⁻¹)
C ₃ bis(4CP) ²⁺	15	427	847	362			
,	20	437	847	370			
	25	476	847	403			
	30	505	905	457	6,9±0,5	74,2±7	-15,7
	35	510	870	445			
	40	525	870	456			
	45	557	877	488			
	50	583	885	516			
	55	610	901	550			
C ₄ bis(4CP) ²⁺	15	446	848	378			
	20	476	840	400			
	25	489	840	411			
	30	531	847	449	6,8±0,2	74,2±6	-15,8
	35	535	847	453			
	40	545	855	466			
	45	572	855	489			
	50	608	847	515			
	55	649	840	545			
C ₆ bis(4CP) ²⁺	15	349	763	266			
	20	358	769	275			
	25	386	752	290			
	30	397	762	303	6,3±0,7	70,8±7	-15,1
	35	420	752	316			
	40	469	752	353			
	45	469	746	350			
	50	501	741	371			
	55	510	758	387			
C ₈ bis(4CP) ²⁺	15	244	617	151			
	20	267	571	152			
	25	300	636	191			
	30	309	674	208	8,0±0,6	72,6±4	-14,4
	35	331	617	204			
	40	353	614	217			
	45	382	602	230			
	50	389	632	246			
	55	408	658	268			

Tabela 5. Valores de K_{CTC} , ε_{CTC} , ΔH^{o}_{f} , $\Delta S^{o}_{f} \in \Delta G^{o} \operatorname{dos} C_{n} \operatorname{bis}(4CP)^{2+}/l^{-}$ em acetonitrila.

Realmente os ΔH^{o}_{f} resultaram em valores positivos (processo endotérmica) de modo que a espontaneidade do processo, isto é $G^{o} < 0$, é decorrente de favorecimento entrópico ($\Delta G^{o} = \Delta H^{o}_{f} - T \Delta S^{o}_{f}$). Para avaliar melhor este fenômeno incomum em processo agregativo, é importante lembrar o caráter pouco polar do solvente, que nestes sistemas deve se apresentar muito bem organizado para poder acomodar o doador (l⁻) e o aceptor (cátions piridínicos) na forma separada, devido às cargas dos mesmos. Ao redor do CTC as moléculas do solvente estão menos organizadas, pois as cargas de ambas as espécies reativas são parcialmente neutralizadas. Assim no total, o complexo leva a um aumento de entropia do sistema ($\Delta S^{o}_{f} >> 0$) devido ao menor estado de organização das moléculas do solvente ao redor do CTC, efeito entrópico este que se sobressai ao do estado de organização do próprio CTC. Este efeito é o mesmo observado na formação de micelas⁵³. Os valores de ΔG^{o} mostram que a complexação dos C_nbis(4CP)²⁺ com l⁻ são processos espontâneos, sendo ainda mais favoráveis termodinamicamente nos complexos de n = 3 e 4.

4.6 Curva analítica para determinação espectrofotométrica de iodeto

A afinidade dos derivados piridínicos pelo ânion iodeto e a facilidade de monitorar, *via* UV-Vis, a formação dos complexos $C_n bis^{2+}/l^-$ tornam estes compostos bons candidatos para um futuro desenvolvimento de método espectrofotométrico para determinação deste ânion. Os estudos realizados neste trabalho mostraram que o derivado mais adequado para complexar com o iodeto é o $C_3 bis(4CP)^{2+}$ devido a sua alta afinidade pelo ânion (altos valores de K_{CTC} e ε_{CTC}) em comparação com os demais derivados estudados, como discutidos anteriormente. Assim, para demonstrar a possibilidade de desenvolver este método, construiu-se uma curva analítica empregando o sistema $C_3 bis(4CP)^{2+}/l^-$, Figura 13. Através desta curva foi possível estimar algumas figuras de mérito para uma possível aplicação do método, tais como faixa linear, sensibilidade, limite de detecção e de quantificação.

Figura 13. Espectros de absorção UV-Vis para o C_3 bis $(4CP)^{2+}$ (1,20x10⁻³ mol L⁻¹) em acetonitrila, a 30,0 °C, com adições crescentes de [I⁻] de 2,00x10⁻³ a 11,0x10⁻³ mol L⁻¹. A seta mostra o aumento da absorbância com o aumento da [I⁻]. **Inserção**: Curva analítica para determinação de iodeto.

A curva analítica mostrada na Figura 13 (inserção) mostra uma linearidade na faixa de concentração de l⁻, 2,00x10⁻³ a 11,00x10⁻³ mol L⁻¹, com bom coeficiente de correlação de 0,998 e coeficiente angular (sensibilidade) de 33,49982 mol⁻¹L, Figura 13 Inserção. O limite de detecção (LD) e o limite de quantificação (LQ) foram de 0,78x10⁻³ mol L⁻¹ e 2,30x10⁻³ mol L⁻¹, respectivamente; estimados através de medidas de sinais do branco da curva analítica utilizando as seguintes equações⁸⁰:

$$LD = \frac{3,3.s}{s}$$
 (9)

$$LQ = \frac{10.s}{S}$$
 (10)

onde *s* é o desvio padrão do branco da regressão linear e *S* é o coeficiente angular da curva analítica.

Portanto, nestas condições o método se mostrou relativamente sensível para determinação de iodeto na ordem de mmol L⁻¹. Sabe-se que o complexo esta em equilíbrio com as espécies não complexadas e o aumento da concentração do $C_3 bis(4CP)^{2+}$ ocasionalmente poderia promover um deslocamento do equilíbrio no sentido da formação de mais CTC (princípio de Le Châtelier) o que poderia melhorar a intensidade do sinal analítico e a faixa linear de detecção de l⁻.

4.7 Efeito do ânion Br e SCN sobre a banda do CTC

Visando uma futura aplicação do CTC na determinação do ânion l⁻ por espectrofotometria ou através de um eletrodo de íon-seletivo, foi verificado o efeito dos ânions Br⁻ e SCN⁻ sobre a banda do CTC com l⁻. Estas análises foram realizadas através do monitoramento da BTC em 410 nm, Figura 14.

Figura 14. (A) Espectros de absorção UV-Vis em acetonitrila a 30,0 °C do CTC formado entre $C_3 bis(4CP)^{2+}$ (8,9x10⁻⁴ mol L⁻¹) e l⁻ (5,00x10⁻³ mol L⁻¹) com adições crescentes de Br⁻ (1,80x10⁻³ a 2,90x10⁻³ mol L⁻¹). A seta indica a diminuição da absorbância do $C_3 bis(4CP)^{2+}/l^-$ com o aumento da [Br⁻]. **(B)** Variação da absorbância dos CTC ($C_3 bis(4CP)^{2+}/l^-$) na região de 410 nm e 311 nm ($C_3 bis(4CP)^{2+}/Br^-$).

A Figura 14A mostra que o Br⁻ influencia significativamente na BTC. Tal influencia é mais bem visualizada na Figura 14B, onde se mostra a diminuição da absorbância em 410 nm, referente ao CTC com I⁻ (C₃bis(4CP)²⁺/I⁻) e o aumento da absorbância em 311 nm, proveniente do CTC com Br⁻ (C₃bis(4CP)²⁺/Br⁻). Este resultado mostra que o ânion Br⁻ compete com o I⁻ na formação do complexo com C₃bis(4CP)²⁺. Deve ser salientado que estes dados foram obtidos para baixas concentrações de piridínio, quando comparados as concentrações dos ânions I⁻ e Br⁻. Para condições de excesso de piridínio não é esperado diminuição significativa da banda do C₃bis(4CP)²⁺/I⁻, mas sim apenas um aumento da banda do C₃bis(4CP)²⁺/Br⁻, abrindo uma oportunidade futura para desenvolver um método de determinação simultânea para estes ânions, pois os respectivos CTC absorvem em comprimentos de onda distintos.

Na Figura 15A é mostrado que nas mesmas concentrações de Br⁻, o SCN⁻ praticamente não interfere na formação do CTC com I⁻, pois não houve uma variação significativa na absorbância do CTC na região de 410 nm, sendo melhor visualizado na Figura 15B.

Figura 15. (A) Espectros de absorção UV-Vis em acetonitrila a 30,0 °C do CTC formado entre $C_3 bis(4CP)^{2+}$ (8,9x10⁻⁴ mol L⁻¹) e l⁻ (5,00x10⁻³ mol L⁻¹) com adições crescentes de SCN⁻ (1,80x10⁻³ a 2,90x10⁻³ mol L⁻¹). **(B)** Variação da absorbância dos CTC ($C_3 bis(4CP)^{2+}/l^-$) na região de 410 nm e 365 nm ($C_3 bis(4CP)^{2+}/SCN^-$).

O ânion SCN⁻ só se mostrou ser uma espécie interferente na banda do complexo $C_3 bis(4CP)^{2+}/I^-$ em concentrações elevadas (~ acima de 8,00x10⁻³ mol L⁻¹), como mostra a Figura 16A. Este efeito pode ser melhor visualizado na Figura 16B que mostra a diminuição da absorbância de 410 nm e o aumento da absorbância de 365 nm, proveniente do CTC com SCN⁻ ($C_3 bis(4CP)^{2+}/SCN^-$). No entanto, deve ser considerado novamente que este efeito foi observado para condições de baixas concentrações de $C_3 bis(4CP)^{2+}$, ou seja, em excesso de I^- , o que inibe a formação do CTC com SCN⁻, provavelmente por este

apresentar uma constante de formação da mesma ordem de grandeza dos CTC com l⁻. Este fato dá um indicativo da possibilidade de se determinar conjuntamente l⁻, Br⁻ e SCN⁻, deste que as condições do meio sejam ajustadas, principalmente a concentração do C_3 bis(4CP)²⁺.

Figura 16. (A) Espectros de absorção UV-Vis em acetonitrila a 30,0 °C do CTC formado entre $C_3 bis(4CP)^{2+}$ (8,9x10⁻⁴ mol L⁻¹) e l⁻ (5,00x10⁻³ mol L⁻¹) com adições crescentes de SCN^- (0 a 1,00x10⁻² mol L⁻¹). A seta indica a diminuição da absorbância do $C_3 bis(4CP)^{2+}/l^$ com o aumento da [SCN⁻]. **(B)** Variação da absorbância para os CTC na região de 410 nm ($C_3 bis(4CP)^{2+}/l^-$) e 365 nm ($C_3 bis(4CP)^{2+}/SCN^-$).

Comparando a interferência na banda de transferência de carga (410 nm) causada pelo ânion Br⁻ e o SCN⁻, na mesma faixa de concentração, observa-se que o Br⁻ interfere muito mais do que o SCN⁻, como pode ser observado na Figura 17.

Figura 17. Variação da absorbância do CTC (C_3 bis(4CP)²⁺/l⁻) na região de 410 nm em acetonitrila a 30,0 °C utilizando como ânion interferente o Br⁻ (\blacksquare) e o SCN⁻ (\bullet).

4.8 Efeito da porcentagem de água sobre o CTC

A Figura 18 mostra que a estabilidade do CTC diminui quando se aumenta a porcentagem de água, mostrando que a água também poderia atuar como espécie interferente em uma determinação do iodeto.

Figura 18. Espectros de absorção UV-Vis ilustrando a influência da porcentagem de água sobre a BTC do complexo formado entre $C_3 bis(4CP)^{2+} (3,0x10^{-4} \text{ mol } L^{-1}) \text{ e I}^- (4,00x10^{-3} \text{ mol } L^{-1})$ em acetonitrila a 30,0 °C.

A banda diminui de intensidade à medida que se adiciona água devido à estabilização dos íons separadamente, inibindo a complexação entre as espécies, o que refletir-se-ia como uma menor K_{CTC} e ε_{CTC} . Adicionalmente ocorre um deslocamento hipsocrômico na banda de absorção do CTC. Este resultado sugere que a água estabiliza mais os elétrons nos orbitais não ligantes do doador HOMO (n-*D*) do que o LUMO aceptor, aumentando o valor da energia de transição de transferência de carga. Desta maneira, a mesma transição eletrônica, ocorrerá numa região mais energética do espectro^{75,76}.

4.9 Determinação dos parâmetros espectroscópicos e potencial de ionização do l⁻, Br⁻ e SCN⁻

Com os dados experimentais de absorção eletrônica no UV-Vis foi possível calcular alguns parâmetros teóricos dos CTC como, por exemplo, força do oscilador, momento de dipolo de transição, energia de ressonância, a razão b^2/a^2 , e o potencial de ionização do

doador. Apesar das equações terem sido deduzidas em meados da década de sessenta, estas vem sendo utilizadas em trabalhos recentes⁸¹⁻⁹⁰.

A força do oscilador (f) mostra a força da interação entre o par doador-aceptor de elétrons e a probabilidade de transição de transferência de carga. Esta pode ser calculada pela seguinte equação, cujos valores estão listados na Tabela 6:

$$f = 4,39 \times 10^{-9}$$
. $\int \varepsilon_{CTC} dv$ (11)

onde $\int \varepsilon_{CTC} dv$ é a área sob a curva de absortividade molar da banda de absorção do CTC em unidades de frequência. Esta equação pode ser aproximada, segundo Tsubomura e Lang⁹¹, na seguinte expressão:

$$f = 4,39x10^{-9}.(\varepsilon_{CTC}.\Delta v_{1/2})$$
 (12)

onde ε_{CTC} é a absortividade molar junto ao máximo de absorção e $\Delta v_{1/2}$ é a largura de meia banda.

O momento de dipolo de transição (μ_{EN}) expressa à afinidade eletrônica do aceptor e a intensidade da transição de transferência de carga, e pode ser calculada pela seguinte equação³³:

$$\mu_{EN} = 0,0958 \cdot \left(\frac{\varepsilon_{CTC} \cdot \Delta \upsilon_{1/2}}{\upsilon_{max}}\right)^{1/2}$$
(13)

onde $\upsilon_{máx}$ é a frequencia do pico máximo do CTC. Os valores estão apresentados na Tabela 6.

A energia de ressonância (R_N) de acordo com a teoria de Mulliken² é referente à ressonância do complexo no estado fundamental. Este parâmetro exibe a estabilidade do CTC. A equação para o calculo desta energia foi deduzido teoricamente por Briegleb e Czekalla⁹²:

$$\varepsilon_{CTC} = \frac{7,7x10^{-4}}{hv_{CTC}/[R_N] - 3,5}$$
 (14)

onde $h\nu_{CTC}$ é a energia de máxima absorção referente a transição de transferência de carga. Os valores estão apresentados na Tabela 6

A razão b^2/a^2 fornece a quantidade relativa de cada espécie (*A*,*D* e *A*⁻,*D*⁺), dando subsidio para sugerir se o CTC formado é do tipo fraco ou forte, como já foi descrito. Esta razão pode ser calculada pela seguinte equação, proposta por Ketelaar⁹³:

$$\frac{b^2}{a^2} = -\frac{\Delta H^o{}_f}{h\upsilon_{CTC}}$$
 (15)

onde *a* e *b* são os coeficientes que representam à quantidade de cada espécie ($A,D \in A^-$, D^+) na função de onda do estado fundamental e ΔH^{o_f} é a entalpia padrão de formação dos CTC. Os valores das razões estão apresentados na Tabela 6.

Tabela 6. Comprimento de onda de máxima absorção ($\lambda_{máx}$), força do oscilado (f), momento de dipolo de transição (μ_{EN}), energia de ressonância (R_N) e valores de (b/a)² para os CTC de l⁻ com diferentes aceptores em acetonitrila.

Aceptores	$\lambda_{máx}$ (nm)	f	<i>μ_{EN}</i> (D)	R _ℕ (10 ⁻³ , eV)	- (<i>b</i> /a) ²
C ₃ bis(4CP) ²⁺	410	0,13	4,75	3,55	0,024
C ₄ bis(4CP) ²⁺	410	0,11	4,85	3,32	0,023
C ₆ bis(4CP) ²⁺	410	0,08	4,70	2,99	0,022
C ₈ bis(4CP) ²⁺	410	0,06	3,09	2,64	0,027

Os dados da Tabela 6 mostram que os valores de força do oscilador e momento de dipolo de transição para os CTC com iodeto, com base nos resultados de AL-Attas, Mukherjee e Singh^{85,89,90}, indicam a existência de uma forte interação entre o par doadoraceptor de elétrons $(C_n bis(4CP)^{2+}/I^{-})$ com uma probabilidade e intensidade de transição de transferência de carga relativamente alta. Estes resultados estão de acordo com os valores de absortividade molar, relativamente altos, encontrados pelo método B-H (Tabela 1) e iterativo (Tabela 3). No entanto, observou-se que os valores de f e μ_{EN} tende a aumentar à medida que diminui a cadeia metilênica interligante (n), sugerindo que os complexos com baixo valor de n apresentam maior probabilidade de transição de transferência de carga. Esta tendência confirma os resultados experimentais de que a intensificação do efeito de densidade de carga positiva e "sanduíche" quando n diminui contribui para formação de complexos com maior grau de superposição de orbitais doador-aceptor (maior valor de ϵ_{CTC}). Os valores dos momentos de dipolo de transição também indicam que todos os C_n bis(4CP)²⁺, apresentam afinidade eletrônica relativamente baixa⁸⁹. aceptores. geralmente aumentando a medida que n diminui.

Nos valores de energia de ressonância, observou-se que a mesma aumenta à medida que n diminui, sugerindo que, de acordo com a teoria de Mulliken², os complexos com n menores são mais estabilizados no estado fundamental do que os complexos com n maiores. Este resultado teórico, mais uma vez, confirma os experimentais de que a intensificação do efeito de densidade de carga positiva e efeito "sanduíche" quando n diminui contribui para formação de complexos mais estáveis (maiores valores de K_{CTC} e ϵ_{CTC}).

Os valores encontrados para a razão b^2/a^2 são comparáveis aos resultados de Mulliken e Rabie^{2,94} para casos que envolve forte complexação entre doador e aceptor. Estes resultados confirmam os valores encontrados para a força do oscilador e momento de dipolo de transição que indicam que o complexo formado (C_nbis(4CP)²⁺/l⁻) é do tipo forte.

O potencial de ionização do doador (I_D) diz respeito à facilidade do doador em doar elétrons para o aceptor no complexo de transferência de carga; desta forma estes complexos se tornam uma ferramenta útil na determinação do I_D de um doador. Este pode ser calculado empregando a equação empírica deduzida por Aloisi e Pignataro⁹⁵:

$$I_D(eV) = 5,76 + 1,53 \times 10^{-4} . \upsilon_{CTC}$$
 (16)

onde v_{CTC} é o numero de onda em cm⁻¹ de máxima absorção do CTC. Os valores estão apresentados na Tabela 7.

Tabela 7. Comprimento de onda de máxima absorção ($\lambda_{máx}$), potencial de ionização (I_D) experimental e da literatura (em água) e energia de transição (hv_{CTC}) do complexo formado com C₃bis(4CP)²⁺ em acetonitrila.

Doador (D)	$\lambda_{máx}$ (nm)	I _D (eV)	I _D (e∨)*	hυ_{CTC} (eV)
Ī	410	9,49	10,45	3,03
SCN	350	10,13	-	3,55
Br	313	10,64	11,81	3,97

*W. J. Weast editor. Handbook of chemistry and physics, 66th ed. Boca Raton (FL): CRC Press, 1985, E-74. Em água.

Os resultados da Tabela 7 mostram que o l[°] apresenta menor potencial de ionização, caracterizando este ânion como sendo um melhor doador de elétrons em comparação aos outros ânions estudados, indicando que o iodeto tem maior facilidade de formar um CTC⁸¹. Os valores da literatura (Tabela 7) confirmam este fato. Alem disso, observou-se que a energia da transição tende a diminuir à medida que diminui o potencial de ionização do doador de elétrons. Esta tendência também é verificada no gráfico de $h\nu_{CTC}$ versus I_D , como mostra a Figura 19. Este resultado indica uma aproximação maior dos níveis de energia (orbital do doador e aceptor) com doadores de baixo potencial de ionização.

Figura 19. Plot de $h\nu_{CTC}$ junto ao comprimento de onda de máxima absorbância do complexo (C₃bis(4CP)²⁺/*D*) versus *I*_D da espécie doadora de elétrons em acetonitrila.

A Figura 19 mostra uma tendência linear o que esta de acordo com a Monk e lchida^{8,81}, onde pela equação 3 ($hv_{CTC} = I_D - E_A - W$), considerando que E_A e W são constantes, verifica-se que a energia de transição e o potencial de ionização do doador são grandezas diretamente proporcionais. Este resultado confirma o fato de que a banda adicional formada nos sistemas $C_n bis(4CP)^{2+}/I^-$ é proveniente de uma transição de transição de transferência de carga⁹⁶ iodeto \rightarrow piridínio ($D \rightarrow A$).

Verificou-se também a influência do solvente na energia de ressonância do complexo, no potencial de ionização do iodeto e na energia de transição de transferência de carga do complexo. Os valores estão apresentados na Tabela 8.

Tabela 8. Comprimento de onda de máxima absorção ($\lambda_{máx}$), absortividade molar (ε_{CTC}) calculada pelo método B-H, energia de transição ($h\upsilon_{CTC}$), potencial de ionização (I_D) e energia de ressonância (R_N) para o C₃bis(4CP)²⁺/I⁻.

Solventes	$\lambda_{máx}$ (nm)	ECTC (mol ⁻¹ L cm ⁻¹)*	hυ_{CTC} (eV)	I _D (eV)	R_N (10 ⁻⁴ , eV)
DMSO (ξ = 45,0)	400	232	3,10	9,59	7,68
Acetonitrila (ξ = 37,5)	410	457	3,03	9,49	35,5
Dioxano (ξ = 2,2)	450	15.253	2,76	9,16	179

* Valores já apresentados na Tabela 2.

A Tabela 8 mostra que a energia da transição tende a diminuir à medida que diminui a constante dielétrica do solvente devido a uma maior desestabilização do orbital com elétrons n do doador em solventes apolares, como discutido anteriormente. Observou-se que o potencial de ionização do iodeto também diminui quando a constante dielétrica do solvente diminui, indicando que o iodeto tem maior facilidade de doar elétrons em solventes mais apolares. Esta maior facilidade de doar elétrons contribui para um maior valor de absortividade molar (ε_{CTC}), ou seja, uma maior superposição entre os orbitais doador-aceptor de elétrons, como pode ser observado na tabela acima (Tabela 8).

Verifica-se também que quanto menor a constante dielétrica do solvente (ξ), maior é o valor de energia de ressonância do estado fundamental do CTC. Este resultado sugere que os complexos são mais estabilizados em solventes mais apolares, devido à maior interação entre o doador e aceptor de elétrons provavelmente pelo fato destas espécies serem íons carregados⁸.

4.10 Estudo eletroquímico dos CTC

4.10.1 Observação do pico redox dos CTC

Os processos redox dos CTC foram avaliados utilizando-se da voltametria cíclica. Através desta técnica obtiveram-se os seguintes parâmetros eletroquímicos: potencial de pico catódico (E_{pc}), potencial de pico anôdico (E_{pa}), corrente de pico catódico (i_{pc}), corrente de pico anódico (i_{pa}) e potencial de meia onda ($E_{1/2}$) sendo este último calculado a partir da equação 17. Para a adição de íons Br⁻ e l⁻ utilizaram-se de haletos de tetrabutilamônio (But₄NBr e But₄NI) devido a maior solubilidade destes sais no solvente utilizado. Optou-se para obtenção dos voltamogramas uma varredura anódica para todos os sistemas e E^o = 0,503 V *versus* EPH.

$$E_{1/2} = \frac{E_{pc} + E_{pa}}{2} \quad (17)$$

Na Figura 20A observa-se um par de picos redox característico para os $C_3 bis(4CP)^{2+}/I^-$ ($E_{1/2} = -0.85$ V) e $C_3 bis(4CP)^{2+}/Br^-$ ($E_{1/2} = -0.92$ V) com velocidade de varredura (v) de 100 mV s⁻¹. Estes picos não correspondem ao solvente e nem aos haletos de tetrabutil amônio, como pode ser melhor observado na Figura 20B. Como as espécies de interesse são os CTC, direcionaremos nossas análises apenas para seu pico redox.

Figura 20. (A) Voltamogramas cíclicos com eletrodo de C_{vitreo} em acetonitrila, v = 100 mVs⁻¹, 30,0 °C, [ânion] = 4,00x10⁻³ mol L⁻¹ e [C₃bis(4CP)²⁺] = 6,0x10⁻⁴ mol L⁻¹. **(A)** CH₃CN sem substrato (—), But₄NBr (—), But₄NI (—), C₃bis(4CP)²⁺/Br⁻ (—) e C₃bis(4CP)²⁺/I⁻ (—). **(B)** Ampliação da Figura A.

Sabendo que tanto os complexos com iodeto quanto com brometo exibem potencial redox (Figura 20), verificou-se a influência do tamanho da cadeia metilênica, concentração de ânion sobre o pico redox para os complexos com iodeto e brometo e a influência do numero de anéis piridínicos sobre o pico redox para os complexos com iodeto.

Para os complexos com iodeto, na Figura 21 e Tabela 9 observa-se que os valores de $E_{1/2}$ nas mesmas condições de concentração de anéis piridínicos para todos os CTC com l⁻ apresentaram-se próximos. Porém ocorre deslocamento para a região de mais fácil redução (região mais positiva) à medida que: (i) passa-se de piridínios dímeros para monômeros de mesmo n (C₄4CP⁺/l⁻e C₄bis(4CP)²⁺/l⁻); (ii) nos C_nbis(4CP)²⁺, n diminui , Tabela 9.

Figura 21. Sobreposição dos voltamogramas dos CTC, com eletrodo de C_{vitreo} em acetonitrila a 30,0 °C e v = 100 mV s⁻¹, $[C_n bis(4CP)^{2+}] = 6,0x10^{-4}$ mol L⁻¹, $[C_44CP^+] = 12,0x10^{-4}$ mol L⁻¹ e $[I^-] = 4,00x10^{-3}$ mol L⁻¹. C_44CP^+/I^- (—), $C_8bis(4CP)^{2+}/I^-$ (—), $C_4bis(4CP)^{2+}/I^-$ (—) e $C_3bis(4CP)^{2+}/I^-$ (—).

Nossos estudos espectrofotométricos utilizando o método de Job apontaram uma estequiometria 1:1 para todos os CTC. Desta forma, sugere-se que o deslocamento do $E_{1/2}$ não esta relacionado com a estequiometria destes complexos, mas sim com a facilidade dos mesmos em reduzir devido à geometria mais favorável nos derivados dímeros, especialmente aqueles com baixo valor de n em consequência do efeito "sanduíche". Tal efeito pode contribuir para uma maior densidade de carga positiva nestes complexos, levando em consideração seu volume compacto, o que facilitaria sua redução. Assim o processo redox em CTC com baixo valor de n é energeticamente mais favorável do que em CTC com n maiores.

Aceptores	E_{pa} (V)	$E_{pc}(V)$	E _{1/2} (V)
C ₃ bis(4CP) ²⁺	-0,73	-0,97	-0,85
C ₄ bis(4CP) ²⁺	-0,85	-1,05	-0,95
C ₈ bis(4CP) ²⁺	-0,88	-1,09	-0,99
C_44CP^+	-0,89	-1,11	-1,00

Tabela 9. Parâmetros eletroquímicos em condições de $[C_n bis(4CP)^{2^+}] = 6,0x10^{-4} mol L^{-1}$, $[C_44CP^+] = 12,0x10^{-4} mol L^{-1} e [I^-] = 4,00x10^{-3} mol L^{-1}$.

Os dados sugerem também que o potencial redox dos $C_n bis(4CP)^{2+}/I^-$ de cadeia interligante longa tende a se igualar ao do $C_4 4CP^+/I^-$ (monômero). Este fato reforça a proposta de que nos homólogos dímeros $C_n bis(4CP)^{2+}$ onde os anéis piridínicos estão distantes, a transição de transferência de carga não é tão efetiva quanto aqueles de n menor; ou seja, para esta transição os anéis estariam se comportando de maneira quase independente, como se fossem monômeros. Essa tendência é semelhante à verificada através de metodologias cinéticas para derivados dímeros de n maiores frente à reatividade com íons hidroxilas^{17,61-63} e íons azida⁶³.

Outro resultado interessante nestes experimentos é o fato das intensidades das correntes de pico catódico (i_{pc}) dos complexos serem muito semelhantes entre si, Tabela 10. Essas intensidades estão correlacionadas com a quantidade de espécies eletroativas (CTC) na superfície do eletrodo; sendo assim, intensidades semelhantes implicam em quantidades semelhantes de espécies eletroativas que se difundem até a superfície do eletrodo. Desta forma verifica-se que o numero de anéis piridínicos e o tamanho da cadeia metilênica interligante aparentemente não influência na intensidade de corrente de pico.

Aceptores	E _{1/2} (∨)	i_{pa} (10⁻⁵, A)	İ_{pc} (10 ⁻⁵ , A)
C ₃ bis(4CP) ²⁺	-0,85	1,9	-2,6
C ₄ bis(4CP) ²⁺	-0,95	1,9	-2,5
C ₈ bis(4CP) ²⁺	-0,99	2,4	-2,6
C ₄ 4CP ⁺	-1,00	2,4	-2,8

Tabela 10. Parâmetros eletroquímicos em condições de $[C_n bis(4CP)^{2^+}] = 6,0x10^{-4} mol L^{-1}$, $[C_44CP^+] = 12,0x10^{-4} mol L^{-1} e [I^-] = 4,00x10^{-3} mol L^{-1}$.

Nas Figuras 22A, 22B, 22C e 22D estão apresentados os voltamogramas para os $C_n bis(4CP)^{2+}/I^-$ com n = 3, 4 e 8 e $C_4 4CP^+/I^-$ avaliando o efeito da concentração de I⁻. Em todos os sistemas utilizou-se da mesma concentração de anéis piridínicos.

Figura 22. Voltamogramas cíclicos com eletrodo de C_{vitreo} em acetonitrila, $v = 100 \text{ mV s}^{-1}$ a 30,0 °C, com adições crescentes de l⁻ (0 a 4,00x10⁻³ mol L⁻¹), [C_nbis(4CP)²⁺] = 6,0x10⁻⁴ mol L⁻¹ e [C₄4CP⁺] = 12,0x10⁻⁴ mol L⁻¹. As setas indicam o aumento do pico catódico com o aumento da [l⁻]. (A) C₃bis(4CP)²⁺, (B) C₄bis(4CP)²⁺, (C) C₈bis(4CP)²⁺ e (D) C₄4CP⁺/l⁻.

Os voltamogramas acima (Figura 22) mostram um deslocamento elevado para potencial mais positivo na primeira adição de l⁻, em comparação com o deslocamento nas demais adições. Este fato indica a mudança do CTC com Br⁻ (contra íon do piridínio) para o CTC com I⁻. Nas adições subsequentes tal deslocamento é mínimo, indicando a

existência de apenas um tipo de complexo (CTC com l⁻) cuja estequiometria é conhecida (1:1).

O mesmo estudo realizado com íons l⁻ foi realizado com Br⁻, porém neste caso, apenas com os derivados dímeros de n = 3 e 4, Figura 23.

Figura 23. Sobreposição dos voltamogramas dos CTC com eletrodo de C_{vitreo} em acetonitrila a 30,0 °C e v = 100 mV s⁻¹, [C_n bis(4CP)²⁺] = 6,0x10⁻⁴ mol L⁻¹ e [Br⁻] = 4,00x10⁻³ mol L⁻¹: C_3 bis(4CP)²⁺/Br⁻ (—) e C_4 bis(4CP)²⁺/Br⁻ (—).

A Figura 23 e a Tabela 11 mostram que os valores de $E_{1/2}$ dos CTC com Br⁻ apresentaram-se próximos, porém com deslocamento para região de potencial mais positivo à medida que n diminui, Tabela 11, confirmando a tendência observada para os CTC com I⁻. Observou-se que as intensidades de corrente também são semelhantes, sugerindo que para estes complexos o tamanho da cadeia metilênica interligante também não influência na intensidade de corrente de pico.

Tabela 11. Parâmetros eletroquímicos em condições de $[C_n bis(4CP)^{2+}] = 6,0x10^{-4} mol L^{-1} e$ [Br⁻] = 4,00x10⁻³ mol L⁻¹.

Aceptores	$E_{pa}(\vee)$	$E_{pc}(\vee)$	E _{1/2} (V)
C ₃ bis(4CP) ²⁺	-0,80	-1,04	-0,92
C ₄ bis(4CP) ²⁺	-0,85	-1,13	-0,99

Nas Figuras 24A e 24B estão apresentados os voltamogramas para os $C_n bis(4CP)^{2+}/Br^{-}$ com n = 3 e 4 avaliando o efeito da concentração de Br⁻. Em todos os sistemas utilizou-se da mesma concentração de anéis piridínicos.

Figura 24. Voltamogramas cíclicos com eletrodo de C_{vitreo} em acetonitrila, $v = 100 \text{ mV s}^{-1}$ a 30,0 °C, com adições crescentes de Br⁻ (1,20x10⁻³ a 4,00x10⁻³ mol L⁻¹) e [C_nbis(4CP)²⁺] = 6,0x10⁻⁴ mol L⁻¹, **(A)** C₃bis(4CP)²⁺/Br⁻. **(B)** C₄bis(4CP)²⁺/Br⁻.

Nos voltamogramas acima observou-se um deslocamento gradual para potencial mais positivo nas primeiras concentrações de Br⁻ sendo que nas últimas o deslocamento é

minimizado. Este resultado sugere que pode haver a existências de diferentes tipos de CTC com Br⁻.

4.10.2 Efeito do ânion sobre os potenciais redox

Para avaliar o efeito do ânion (*D*), comparou-se os voltamogramas dos $C_n bis(4CP)^{2+}/Br^- e C_n bis(4CP)^{2+}/I^-$, com n = 3 e 4 (Figura 25 e Tabela 12). Os resultados com estes derivados mostram que os valores de $E_{1/2}$ do complexo com I⁻ é mais positivo do que para os com Br⁻, Tabela 12. Este resultado deve estar relacionado com a alta polarizabilidade do I⁻, que faz deste um melhor doador de elétrons do que o Br⁻. Esta alta capacidade doadora de elétrons torna o CTC com I⁻ mais fácil de ser reduzido do que para os com Br⁻, ou seja, no primeiro o processo redox é energeticamente mais favorável.

Figura 25. Comparação dos voltamogramas dos CTC com eletrodo de C_{vitreo} em acetonitrila a 30,0 °C e $v = 100 \text{ mV s}^{-1}$, $[C_n \text{bis}(4\text{CP})^{2+}] = 6,0x10^{-4} \text{ mol L}^{-1} \text{ e [Br}^{-}] = 4,00x10^{-3} \text{ mol.L}^{-1}$: **(A)** $C_3 \text{bis}(4\text{CP})^{2+}/\text{Br}^{-}$ (—) $C_3 \text{bis}(4\text{CP})^{2+}/\text{I}^{-}$ (—). **(B)** $C_4 \text{bis}(4\text{CP})^{2+}/\text{Br}^{-}$ (—) $C_4 \text{bis}(4\text{CP})^{2+}/\text{I}^{-}$ (—).

Tabela 12. Parâmetros eletroquímicos em condições de $[C_n bis(4CP)^{2^+}] = 6,0x10^{-4} mol L^{-1} e$ $[D] = 4,00x10^{-3} mol L^{-1}.$

Doador (<i>D</i>) Br		ľ				
Aceptores	$E_{pa}(V)$	$E_{pc}(V)$	E _{1/2} (∨)	$E_{pa}(V)$	$E_{pc}(V)$	E _{1/2} (V)
C ₃ bis(4CP) ²⁺	-0,80	-1,04	-0,92	-0,73	-0,97	-0,85
C ₄ bis(4CP) ²⁺	-0,85	-1,13	-0,99	-0,85	-1,05	-0,95

A Figura 26 mostra o efeito observado acima, gradualmente, onde se aumentou a concentração de l⁻, tendo a concentração de Br⁻ constante.

Figura 26. Voltamogramas cíclicos realizados em acetonitrila com eletrodo de C_{vítreo}, $v = 100 \text{ mV s}^{-1}$, $[C_4 \text{bis}(4\text{CP})^{2+}] = 6,0 \times 10^{-4} \text{ mol L}^{-1}$ e $[\text{Br}^-] = 4,00 \times 10^{-3} \text{ mol L}^{-1}$. A seta indica o deslocamento do potencial a medida que adiciona-se I⁻. 0 de I⁻ (—), 2,00 \times 10^{-3} \text{ mol L}^{-1} de I⁻ (—), 4,00 \times 10^{-3} \text{ mol L}^{-1} de I⁻ (—) e 6,00 \times 10^{-3} \text{ mol L}^{-1} de I⁻ (—).

Este resultado mostra a competição do ânion l⁻ com o Br⁻ na formação do CTC com o C₄bis(4CP)²⁺, indicando provavelmente afinidades semelhantes destes ânions pelos C_n bis(4CP)²⁺.

4.10.3 Reversibilidade

Para verificar o grau de reversibilidade do processo redox dos CTC variou-se a velocidade de varredura no intervalo de 50 a 250 mV s⁻¹ numa dada concentração de doador, Figura 27.

O mesmo comportamento apresentado nas Figuras 27A e 27B foram observados para os demais CTC com l⁻ e Br⁻ respectivamente. Estes resultados mostram o aumento da corrente com o aumento da velocidade de varredura, sem deslocamentos significativos nos potenciais redox.

Figura 27. Variação da velocidade de varredura em acetonitrila, v = 50 a 250 mV s⁻¹ com eletrodo de C_{vítreo}, [C_nbis(4CP)²⁺] = 6,0x10⁻⁴ mol L⁻¹, [C₄4CP⁺] = 12,0x10⁻⁴ mol L⁻¹ e [Doador] = 4,00x10⁻³ mol L⁻¹ a 30,0 °C: **(A)** C₈bis(4CP)²⁺/l⁻ e **(B)** C₃bis(4CP)²⁺/Br⁻.

Nas Figuras 28A e 28B observa-se a linearidade das retas de i_{pc} *versus* $v^{1/2}$ (todas com R ~ 0,9950). Adicionalmente os valores de $-i_{pa}/i_{pc}$ resultaram em próximos a 1 como pode ser observado na Tabela 13.

Figura 28. Variação da corrente do pico catódico (i_{pc}) do CTC em função da $v^{1/2}$, com eletrodo de $C_{v(treo)}$, $[C_n bis(4CP)^{2+}] = 6,0x10^{-4}$ mol L⁻¹, $[C_44CP^+] = 12,0x10^{-4}$ mol L⁻¹ e [Doador] = 4,00x10^{-3} mol L⁻¹ a 30,0 °C. **(A)** $C_3 bis(4CP)^{2+}/l^-$ (**•**), $C_4 bis(4CP)^{2+}/l^-$ (•), $C_8 bis(4CP)^{2+}/l^-$ (**•**), $C_4 dCP^+/l^-$ (**•**). **(B)** $C_3 bis(4CP)^{2+}/Br^-$ (**•**) e $C_4 bis(4CP)^{2+}/Br^-$ (•).

Estes resultados: (i) a não dependência do potencial redox com a velocidade de varredura; (ii) a linearidade das retas de i_{pc} versus $v^{1/2}$; e (iii) a simetria dos picos ($-i_{pa}/i_{pc} \sim$ 1) indicam que para todos os CTC, o processo redox pode ser reversível e controlado por difusão.
Aceptores	i_{pa} (10⁻⁵, A)	i_{pc} (10 ⁻⁵ , A)	-i _{pa} /i _{pc}
C_3 bis(4CP) ²⁺ /l ⁻	1,9	-2,6	0,7
C ₄ bis(4CP) ²⁺ /I ⁻	1,9	-2,5	0,8
C ₈ bis(4CP) ²⁺ /I ⁻	2,4	-2,6	0,9
C₄4CP⁺/I⁻	2,4	-2,8	0,9
C ₃ bis(4CP) ²⁺ /Br ⁻	2,0	-2,8	0,7
C ₄ bis(4CP) ²⁺ /Br ⁻	2,5	-2,7	0,9

Tabela 13. Parâmetros eletroquímicos, em condições de $[C_n bis(4CP)^{2^+}] = 6,0x10^{-4} mol L^{-1}$, $[C_44CP^+] = 12,0x10^{-4} mol L^{-1} e [D] = 4,00x10^{-3} mol L^{-1}$.

5. CONCLUSÃO

Mostrou-se que os $C_n bis(4CP)^{2+}$, $C_n bis(2BP)^{2+}$, $C_n 4CP^+$ e $C_1 2BP^+$ formam complexos de transferência de carga com o ânion l⁻, e na estequiometria 1:1. O K_{CTC} e o ε_{CTC} dependem significativamente da densidade de carga positiva do aceptor, do número de anéis piridínicos, da conformação estrutural, da temperatura, da constante dielétrica do solvente (ξ), da posição e do tipo de substituinte. A banda de transferência de carga do CTC aparentemente é mais afetada pelo grau de superposição entre orbitais do *D-A* do que o K_{CTC} . O cálculo das $K_{CTC,lim}$ e $\varepsilon_{CTC,lim}$ utilizando o método iterativo parcialmente confirma os resultados obtidos pelo método B-H (K_{CTC} e ε_{CTC}).

Os resultados de supressão de fluorescência dos $C_n bis(4CP)^{2+}$ e $C_n 4CP^+$ pelo I⁻, confirmam a tendência observada nas constantes de formação dos CTC obtidas pelo método B-H e pelo método iterativo. Experimentos variando a temperatura indicam supressão predominantemente dinâmica em baixas concentrações de supressor (I⁻) e supressão dinâmica e estática em altas concentrações, que caracterizam diferentes complexos.

A magnitude dos valores de *K* e ε que estão relacionados com a formação dos CTC seguem a seguinte ordem, a medida que n diminui ou quando passa de monômero para dímero: $C_3 bis(4CP)^{2+} > C_4 bis(4CP)^{2+} > C_6 bis(4CP)^{2+} > C_8 bis(4CP)^{2+} > C_4 4CP^+ \approx C_6 4CP^+ \approx$ $C_{16} 4CP^+$. Os valores positivos de ΔH^{o}_{f} , processos endotérmicos, e os valores positivos de ΔS^{o}_{f} indicam que o processo é controlado pelo fator entrópico.

Através da curva analítica para determinação espectrofotométrica do iodeto utilizando o sistema C_3 bis $(4CP)^{2+}/I^-$, verificou-se uma linearidade na faixa de concentração estudada com bom coeficiente de correlação, com limite de detecção e quantificação na

ordem de mmol L⁻¹ nas condições estudas. Estudos futuros utilizando amostras reais poderiam tornar o método válido para aplicação. O ânion Br⁻ exerce influência significativa na banda do CTC com I⁻, enquanto que a influência do ânion SCN⁻ ocorre somente em altas concentrações deste ânion, nas condições estudadas. Estudos posteriores em condições de alta concentração de C₃bis(4CP)²⁺ abrem a possibilidade de determinação dos três ânions simultaneamente, visto que estes ânions formam CTC com absorção em comprimentos de onda distintos. A porcentagem de água no sistema influencia significativamente no espectro de absorção dos CTC, atuando como interferente na determinação de iodeto mudando a intensidade e a região de absorção dos complexos, devido à estabilização das formas iônicas não complexadas.

Os parâmetros espectroscópicos força do oscilador, momento de dipolo de transição e os valores da razão b^2/a^2 indicam que a interação doador-aceptor no complexo é do tipo forte com probabilidade de transição de transferência de carga relativamente alta, caracterizando um complexo do tipo forte. Os valores de energia de ressonância indicam que complexos com n menores são mais estabilizados no estado fundamental do que os complexos com n grande, confirmando os valores de K_{CTC} e ε_{CTC} encontrados. Em solventes pouco polares o valor de energia de ressonância mostra uma estabilização ainda maior do estado fundamental do complexo devido à maior interação doador-aceptor. Os valores de potencial de ionização apontaram o l⁻ como melhor doador de elétrons. O potencial de ionização do iodeto diminui à medida que diminui a constante dielétrica indicando que este ânion é um melhor doador de elétrons em solventes pouco polares. A energia de transição diminui à medida que diminui o potencial de ionização.

Os CTC $C_n bis(4CP)^{2+}/I^{-}$ com n = 3, 4 e 8, $C_4 4CP^{+}/I^{-}$ e $C_n bis(4CP)^{2+}/Br^{-}$ com n = 3 e 4 apresentaram potencial redox característico. A facilidade de redução do CTC aumenta quando n diminui (entre os dímeros) e quando aumenta o numero de anéis (entre monômeros e dímeros) de mesmo valor de n. O numero de anéis piridínicos e o tamanho da cadeia metilênica interligante aparentemente não influência na intensidade de corrente de pico. Os CTC formados com o l⁻ apresentaram maior facilidade de redução do que com Br⁻ devido a maior polarizabilidade do primeiro. Todos os CTC apresentaram processos reversíveis e controlados por difusão.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- 1 H. A. Benesi, J. H. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703.
- 2 R.S. Mulliken, J. Am. Chem. Soc. 74 (1952) 811.

3 - C. N. R. Rao, J. R. Ferraro, Spectroscopy in Inorganic Chemistry. vol. 1, editora Academic Press, New York, **1970**.

- 4 D. L. A. Faria, P. S. Santos, Quím. Nova, 16, 5 (1993) 449-453.
- 5 C. J. Bender, Chem. Soc. Rev. 15 (1986) 475.
- 6 H. H. McConnel, J. S. Ham, J. R. Platt, J. Chem. Phys. 21 (1964) 66.
- 7 I. Isenberg, S. L. Jr. Baird, J Am Chem Soc. 84 (1962) 3803.
- 8 P. M. S. Monk, N. M. Hodgkinson, R. D. Partridge, Dyes and Pigments 43 (1999) 241.

9 - M. J. Dewar, A. R. Lepley, J. Am. Chem. Soc. 83 (1961) 4560.

10 - R. S. Mulliken, W. B. Person, J. Am. Chem. Soc. 91 (1969) 3409.

11 - M. A. Slifkin, Charge Transfer Interactions of Biomolecules, Academic Press, New York **1971**.

12 - F. Gutmann, Charge Transfer Complex in Biological Systems, CRC Press, New York **1997**.

13 - R. Foster, J. Phys. Chem. 84 (1980) 2135.

14 - G. L. Miessler, D. A. Tarr, Inorganic Chemistry 3° edição, Pearson Education, New Jersey, **2004**.

15 - J. K. Kochi, J. M. Masnovi, j. Org. chem. 50 (1985) 5245.

16 - J. K. Kochi, S. V. Rosokha, J. Org. Chem. 67, 6 (2002) 1727.

17 - S. Fiori, I. T. A. Schuquel, I. N. Silva, M. J. Politi, L. H. Catalani, H. Chaimovich, E.

Meyer, N. Hioka, J. Braz. Chem. Soc., submetido (2010).

18 - A. K. Mukherjee, A. Saha, Spectrochim. Acta Part A 60 (2004) 1731.

19 - H. Duymus, M. Arslan, M. Kucukislamoglu, M. Zengin Spectrochim. Acta Part A 65 (2006) 1120.

20 - H. F. Askal, Talanta 44 (1997) 1749.

21 - A. S. Al-Attas, J. Pharm. Saudi 11 (2003) 3.

22 - T. N. Al-Sabha, Arabian J. Sci. Engineering 35 (2010) 2A.

- 23 A. A. Mostafa, L. I. Refaat, J. Pharm. Biomed. Anal. 27 (2002) 889.
- 24 N. Rahman, N. Anwar, M. Kashif, II Farmaco 60 (2005) 605.
- 25 M. Arslan, H. Duymus, Spectrochim. Acta Part A 67 (2007) 573.
- 26 C. E. R. Paula, V. G. K. Almeida, R. J. Cassella, Quim. Nova, 33, 4 (2010) 914.
- 27 J. G. Hardaman, L. E. Limbird, A. G. Gilman, Goodman and Gilman's The Pharmacological Basic of Therapeutics, 9^a ed., McGraw-Hill: New York, **1995**.
- 28 R. V. Oliveira, A. C. De Pietro, Q. B. Cass, Talanta 71 (2007) 1233.
- 29 Y. Sun, Y. Tang, H. Yao, X. Zheng, Talanta 64 (2004) 156.

30 - Y. Mrestania, R. H. H. Neuberta, A. Hartl, J. Wohlrab, Anal. Chim. Acta 349 (**1997**) 207.

- 31 H. P. Trommnosolarff, J. Chem. Phys. 56 (1972) 5358.
- 32 K. Basavaiah, II Fármaco 59 (2004) 315.
- 33 R. Rathone, S. V. Lindeman, J. K. Kochi, J. Am. Chem. Soc. 119 (1997) 9393.
- 34 Y. Imai, N.Tajima, T. Sato, R. Kuroda, Org. Lett. 8 (2006) 2941.
- 35 Y. Imai, K. Kamon, T. Kinuta, N. Tajima, T. Sato, R. Kuroda, Y. Matsubara, Cryst. Growth Des. 8 (**2008**) 3493.
- 36 T. Kinuta, Y. Kise, K. Kamon, N. Tajima, T. Sato, R. Kuroda, Y. Matsubara, Y. Imai, Tetrahedron Lett. 50 (**2009**) 5786.
- 37 J. B. Torrance, Acc. Chem. Res. 12 (1979) 79.
- 38 M. Arslan, J. Masnovi, R. Krafcik, Spectrochim. Acta Part A 66 (2007) 1063.

39 - M. S. A. Abdou, F. P. Orfino, Y. Son, S. Holdcroft, J. Am. Chem. Soc. 119 (**1997**) 4518.

- 40 O. D. Parashchuk, A. Y. Sosorev, V. V. Bruevich, D. Y. Paraschuk, Jetp Lett. 91 (**2010**) 7.
- 41 G. J. Meyer, Inorg. Chem. 44 (2005) 6852.
- 42 N. S. Lewis, Inorg. Chem. 44 (2005) 6900.
- 43 F. Witt, M. Kruszynska, H. Borchert, J. Parisi J. Phys. Chem. Lett. 1 (2010), 2999.
- 44 G. Khayatian, H. Rezatabar, F. S. Karonian, A. Salami, J. Chin. Chem. Soc. 53 (**2006**) 1133.
- 45 A. Rouhollahi, M. Shamsipur, Anal. Chem. 71 (1999) 1350.
- 46 S. Sadeghi, G. R. Dashti, Anal. Chem. 74 (2002) 2591.
- 47 I. Silva e col., Noções sobre o organismo humano e utilização de medicinais, 3ª Ed.,
- Assoeste Editora Educativa Cascavel Pr., **1995**.
- 48 H. Melo e col., Quím. Nova, 22, 1 (1999) 26.
- 49 L. Golbo-Neto, P. N. Lopes, Quím. Nova, 30, 2 (2007) 374.
- 50 T. B. Bisol, M. M. Sá, Quím. Nova, 30, 1 (2007) 106.
- 51 J. A. Joule, K. Mills, Heterocyclic Chemistry at a Glance, Blackwell Puplishing, 2007.
- 52 C. Tanford, The Hidrophobic Effect: formation of micellles and biological membranes, John Wiley & Sons, USA, **1973**.
- 53 J. H. Fendler, Membrane Mimetic Chemistry, Wiley Interscience, New York, 1982.
- 54 A. L. Lehninger, Princípios de Bioquímica, Sarvier, SP, 1985.
- 55 D. Voet, J. G. Voet, C. W. Pralt, Fundamentos de Bioquímica, Artmed Editora, Porto Alegre, **2000**.
- 56 E. M. Kosower, J. C. Burbach, J. Am. Chem. Soc. 78 (1956) 5838.
- 57 E. M. Kosower, J. Am. Chem. Soc. 80 (1958) 3253.

- 58 E. M. Kosower, J. W. Patton, Tetrahedron 22 (1966) 2081.
- 59 M. J. Politi, Dissertação de Mestrado, Universidade de São Paulo, Brasil, 1980.
- 60 M. J. Politi, H. Chaimovich, J. Phys. Chem. 4 (1991) 207.
- 61 N. Hioka, Tese de Doutorado, Universidade de São Paulo, Brasil (1992).
- 62 C. Fernandez, V. G. Toscano, H. Chaimovich, M. J. Politi, N. Hioka, J. Phys. Org. Chem. 11 (**1998**) 25.
- 63 M. das G. N. Corrêa, M. J. Politi, N. Hioka, J. Phys, Org. Chem. 12 (1999) 842.
- 64 J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, MC Graw-Hill, Inc, New York, USA. **1981**.
- 65 N. Hioka, J. M. Politi, H. Chaimovich, Tetrahedron Lett. 30, 9 (1989) 1051.

66 - S. Fiori, Tese de Doutorado, Universidade Estadual de Maringá, Brasil, **2010**.

- 67 S. Mehtab, A. K. Sinth, Talanta 74 (2008) 806.
- 68 P. Singha, P. Kumarb, A. Katyal, R. Kalrad, S. K. Dasse, S. Prakashf, R. Chandrab, Spectrochim. Acta Part A 75 (**2010**) 983.
- 69 D. Nacapricga, K. Uraisin, N. Ratanawimarnwong, K. Grudpan, Anal. Bioanal. Chem. 378 (**2004**) 816.
- 70 O. Chailapakul, M. Amatatongchai, P. Wilairat, K. Grudpan, D. Nacapricga, Talanta 64 (2004) 1253.
- 71 P. Job, Ann. Chim. Phys. 9 (1928) 113.
- 72 M. T. Beck, Chemistry of Complex Equilibria, Van Nostrand Reinhold Company LTD, New York, **1970**.
- 73 B. Valeur, J. Pouget, J. Bourson, M. Kaschke, N. P. Ernsting, J. Phys. Chem. 96 (1992) 6545.
- 74 E. M. Kosower, J. Am. Chem. Soc. 80 (1958) 3253.
- 75 E. M. Kosower, J. Am. Chem. Soc. 80 (1958) 3261.

- 76 M. Pandeeswaran, K. P. Elango, Int. J. Chem. Kinet. 40 (2008) 559.
- 77 Z. Kebede, S. E. Lindquist, Sol. Energy Mater. Sol. Cells 57 (1999) 259.
- 78 J. R. Lakowicz, Principles of Fluorescence Spectroscopy; Kluwer Academic/Plenum Publishers, New York, **1999**.
- 79 A. K. Ghosh, A. K. Mukherjee, S. Bagchi, Energy Fuels 23 (2009) 392.
- 80 C. C. Chan, H. Lan, Y. C. Lee, X. M. Zhang, Analitical Method Validation and Instrument Performance Verification, John Wiley & Sons, Inc. USA, **2004**.
- 81 M. Ichida, T. Sohda, A. Nakamura, Chem. Phys. Lett. 310 (1999) 373.
- 82 T. Veeraiah, G. Anjaiah, P. K. Reddy, J. Sci. Ind. Res. 64 (2005) 504.
- 83 M. S. Refat, S. A. Sadeek, Can. J. Anal. Sci. Spectrosc. 51 (2006) 6.
- 84 M. Pandeeswaran, K. P. Elango, Spectrochim. Acta Part A 65 (2006) 1148.
- 85 A. S. AL-Attas, M. M. Habeeb, M. T. Basha, World J. Chem. 2 (2007) 16.
- 86 P. Mukherjee, S. K. Nayak, S. Banerjee (Bhattacharya), S. Chattopadhyay, S. Bhattacharya, J. Mol. Struct. 889 (**2008**) 352.
- 87 M. E. El-Zaria, Spectrochim. Acta Part A 69 (2008) 216.
- 88 N. Singh, A. Ahmad, Can. J. Anal. Sci. Spectrosc. 54 (2009) 1.
- 89 P. Mukherjee, S. Bhattacharya (Banerjee), S. K. Nayak, S. Chattopadhyay, S. Bhattacharya, Chem. Phys. 360 (**2009**) 116.
- 90 N. Singh, I. M. Khan, A. Ahmad, Spectrochim. Acta Part A 75 (2010) 1347.
- 91 12 H. Tsubomura, R. Lang, J. Am. Chem. Soc. 83 (1961) 2085.
- 92 G. Briegleb, J. Czekalla, Z. Phys. chem. 24 (1960) 237.
- 93 J. A. A. Ketelaar, J. Phys. Radium 15 (1954) 197.
- 94 U. M. Rabie, B. P. Patel, R. H. Crabtree, Inorg. Chem. 36 (1997) 2236.
- 95 G. Aloisi, S. Pignataro, J. Chem. Soc., Faraday Trans. 69 (1972) 534.

96 - M. Baldwin, A. Maccoll, A. Kirkien-Konasiewicz and B. Saville, Chem. Ind. London (1966) 286.

ANEXO 1 - Dedução da equação do método de Job de variação contínua

Considerando-se o seguinte equilíbrio:

 $mA + nD \longrightarrow A_m D_n$

onde *D*: doador de elétrons e *A*: aceptor de elétrons, no caso referindo-se a l⁻ e $C_n bis(4CP)^{2+}$ (ou $C_n 4CP^+$), respectivamente, e *DA*: CTC.

$$[A]_{o} + [D]_{o} = C \qquad \qquad x_{D} = \frac{[D]_{o}}{[D]_{o} + [A]_{o}}$$

A concentração inicial em termos de fração molar do doador (x_D) é dada por:

$$[D]_{o} = x_{D}.([D]_{o} + [A]_{o}) \qquad [A]_{o} = C - [D]_{o}$$
$$[D]_{o} = x_{D}.C \qquad [A]_{o} = C - x_{D}.C$$
$$[A]_{o} = C.(1 - x_{D})$$

concentração de cada espécie no equilíbrio:

$$[D] = [D]_{o} - n.[D_{n}A_{m}]$$

$$[A] = [A]_{o} - m.[D_{n}A_{m}]$$

$$[A] = C.(1 - x_{D}) - m.[D_{n}A_{m}]$$

$$[A_{m}D_{n}] = K_{CTC}.[A]^{m}.[D]^{n}$$

$$[A_{m}D_{n}] = K_{CTC}.(C.(1 - x_{D}) - m.[A_{m}D_{n}])^{m}.(x_{D}.C - n.[A_{m}D_{n}])^{n}$$

Como a $[A_m D_n] \propto$ absorbância (Abs), plotando um gráfico de Abs *versus* x_D observamos uma região de máximo onde neste ponto temos:

$$\frac{d[A_m D_n]}{dx_D} = 0$$

$$\frac{d[A_m D_n]}{dx_D} = K_{CTC} \cdot \{(-C).m.(C.(1 - x_D) - m.[A_m D_n])^{m-1}.(C.x_D - n.[A_m D_n])^n + C.n.(C.x_D - n[A_m D_n])^{n-1}.(C.(1 - x_D) - m.[A_m D_n])^m\} = 0$$

$$K_{CTC}.C.m.(C.(1 - x_D) - m.[A_m D_n])^{m-1}.(C.x_D - n.[A_m D_n])^n = 0$$

$$K_{CTC}$$
. $C.n.(C.x_D - n[A_mD_n])^{n-1}.(C.(1-x_D) - m.[A_mD_n])^m$

rearranjando, temos:

$$\frac{(C.(1-x_D)-m.[A_mD_n])^{m-1}}{(C.(1-x_D)-m.[A_mD_n])^m} = \frac{n.(C.x_D-n[A_mD_n])^{n-1}}{m.(C.x_D-n.[A_mD_n])^n}$$
$$\frac{1}{C.(1-x_D)-m.[A_mD_n]} = \left(\frac{n}{m}\right) \cdot \frac{1}{C.x_D-n.[A_mD_n]}$$
$$n.(C.(1-x_D)-m.[A_mD_n]) = m.(C.x_D-n.[A_mD_n])$$
$$n.C-n.C.x_D-n.[A_mD_n] = m.C.x_D-m.[A_mD_n]$$

$$m_{\mathcal{C}} \cdot x_D = \mathcal{C} \cdot n \cdot (1 - x_D)$$

assim tem-se:

$$\frac{n}{m} = \frac{x_D}{1 - x_D}$$

desta forma, se x_D = 0,5, teremos m = n, ou seja, a relação estequiométrica é de 1:1.

ANEXO 2 - Dedução da equação do método Benesi-Hildebrand (B-H)

Considerando-se o seguinte equilíbrio:

 $D + A \longrightarrow DA$

considerando-se a estequiometria entre D:A como sendo 1:1, no equilíbrio temos:

$$K_{DA} = \frac{[DA]}{[D].[A]}$$
 onde a $[D] = [D]_o - [DA]$ e a $[A] = [A]_o - [DA]$

porém sabendo que a $[D]_o >> [A]_o \Rightarrow [D]_o >> [DA] \Rightarrow ([D]_o - [DA]) \sim [D]_o$, então:

$$K_{DA} = \frac{[DA]}{[D]_{o}.([A]_{o} - [DA])} \rightarrow \text{tomando-se sua recíproca:}$$
$$\frac{1}{K_{DA}} = \frac{[D]_{o}.([A]_{o} - [DA])}{[DA]} \rightarrow \frac{1}{K_{DA}.[D]_{o}} = \frac{[A]_{o} - [DA]}{[DA]} \Rightarrow \frac{1}{K_{DA}.[D]_{o}} = \frac{[A]_{o}}{[DA]}$$

$$\frac{[A]_o}{[DA]} = \frac{1}{K_{DA} \cdot [D]_o} + 1 \text{ e sabendo que} \quad [DA] = \frac{Abs_{DA}}{\varepsilon_{DA}}$$

então temos:

onde $Abs_{DA} = Abs$, $K_{DA} = K_{CTC}$ e $\varepsilon_{DA} = \varepsilon_{CTC}$, desta forma:

$$\frac{[A]_o}{Abs} = \frac{1}{K_{CTC} \cdot [D]_o \cdot \varepsilon_{CTC}} + \frac{1}{\varepsilon_{CTC}}$$

1

ANEXO 3 - Dedução da equação do método iterativo de ajuste de curva

Considerando-se o seguinte equilíbrio:

 $D + A \longrightarrow DA$

considerando-se a estequiometria entre D:A como sendo 1:1, no equilíbrio temos:

$$K_{DA} = \frac{[DA]}{[D].[A]}$$
 onde a $[D] = [D]_o - [DA]$ e a $[A] = [A]_o - [DA]$.

sabendo que a $[D]_o \gg [A]_o \Rightarrow [D]_o \gg [DA] \Rightarrow ([D]_o - [DA]) \sim [D]_o$, então:

$$K_{DA} = \frac{[DA]}{[D]_{o} \cdot ([A]_{o} - [DA])} \Longrightarrow [DA] = K_{DA}[D]_{o} \cdot ([A]_{o} - [DA]) .$$
(7)

A dedução considera que todo o $C_n bis(4CP)^{2+}$ (ou $C_n 4CP^+$) esta na forma de CTC, ou seja deve-se trabalhar em regiões de altas [l⁻] e baixa de [$C_n bis(4CP)^{2+}$] (ou [$C_n 4CP^+$]), região onde ocorre saturação (limite máximo de absorção do CTC). Levando-se em conta a Lei de Lambert-Beer:

$$Abs_o = \varepsilon_A \cdot [A]_o \Longrightarrow \varepsilon_A = \frac{Abs_o}{[A]_o}$$
 (8)

em situação onde todo o aceptor **A** foi complexado, tem-se $[A]_o = [DA]$ e

$$Abs_{\lim} = \varepsilon_{DA} \cdot [A]_o \Longrightarrow \varepsilon_{DA} = \frac{Abs_{\lim}}{[A]_o}$$
 (9)

onde ε_A e ε_{DA} é a absortividade molar do aceptor e do CTC ($\varepsilon_{CTC,lim}$), e $[A]_o$ é a concentração do aceptor podendo ser expressa como:

$$[A]_{o} = [A] + [DA]$$
 (10)

sendo a [*A*], a concentração do aceptor livre que pode ser considerada próximo a zero na região do limite de saturação de absorbância.

A absorbância do *DA* (*Abs_{DA}*) após a adição do doador em cada concentração do mesmo pode ser escrita da seguinte forma:

$$(Abs_{DA} = \varepsilon_A \cdot [A] + \varepsilon_{DA} \cdot [DA])_{\lambda}$$
(11)

junto ao comprimento de onda de máxima absorção λ do DA.

Substituindo a equação 8, 9 e 10 na equação 11, temos:

$$Abs_{DA} = \frac{Abs_o}{[A] + [DA]} \cdot [A] + \frac{Abs_{\lim}}{[A] + [DA]} \cdot [DA]$$

sabendo que no equilíbrio $[A] = ([A]_o - [DA])$, então:

$$Abs_{DA} = \frac{Abs_o}{([A]_o - [DA]) + [DA]} \cdot ([A]_o - [DA]) + \frac{Abs_{\lim}}{([A]_o - [DA]) + [DA]} \cdot [DA]$$
(12)

substituindo a equação 7 na equação 12 tem-se:

$$Abs_{DA} = \frac{Abs_o}{([A]_o - [DA]) + K_{DA} \cdot [D]_o \cdot ([A]_o - [DA])} \cdot ([A]_o - [DA]) + \frac{Abs_{\lim}}{([A]_o - [DA]) + K_{DA} \cdot [D]_o \cdot ([A]_o - [DA])} \cdot K_{DA} \cdot [D]_o \cdot ([A]_o - [DA])$$

$$Abs_{DA} = \frac{Abs_o}{([A]_o - [DA]).(1 + K_{DA}.[D]_o)}.([A]_o - [DA]) + \frac{Abs_{lim}}{([A]_o - [DA]).(1 + K_{DA}.[D]_o)}.K_{DA}.[D]_o.([A]_o - [DA])$$

$$Abs_{DA} = \frac{Abs_o}{1 + K_{DA} \cdot [D]_o} + \frac{Abs_{\lim}}{1 + K_{DA} \cdot [D]_o} \cdot K_{DA} \cdot [D]_o$$
$$Abs_{DA} = \frac{Abs_o + Abs_{\lim} \cdot K_{DA} \cdot [D]_o}{1 - K_{DA} \cdot [D]_o}$$

$$DS_{DA} = \frac{1 + K_{DA} \cdot [D]_a}{1 + K_{DA} \cdot [D]_a}$$

onde Abs_{DA} = Abs, K_{DA} = K_{CTC} , assim tem-se:

$$Abs = \frac{Abs_o + Abs_{\lim} \cdot K_{CTC} \cdot [D]_o}{1 + K_{CTC} \cdot [D]_o}$$