
Universidade Estadual de Maringá
Departamento de Estatística

Programa de Pós-graduação em Bioestatística

Paulo Vitor da Costa Pereira

Modelando precipitação extrema no Brasil pela
teoria dos valores extremos

Modeling daily rainfall in Brazil with extreme value theory

Maringá
2016



Paulo Vitor da Costa Pereira

Modelando precipitação extrema no Brasil pela teoria
dos valores extremos

Dissertação apresentada à Universidade
Estadual de Maringá, como parte das ex-
igências do Programa de Pós-Graduação
em Bioestatística, área de concentração
em Estatística Aplicada, para a obtenção
do título de Mestre em Bioestatística.

Orientadora: Isolde T. S. Previdelli
Coorientador: Anthony C. Davison1

26 de Agosto de 2016

1 Chair of Statistics, École polytechnique fédérale de Lausanne



 

 

 

 

 

 

 

 

 

 

 

 

              Dados Internacionais de Catalogação na Publicação (CIP) 

                 (Biblioteca Central - UEM, Maringá, PR, Brasil) 
 

        Pereira, Paulo Vitor da Costa 

P436m      Modelando precipitação extrema no Brasil pela 

teoria dos valores extremos / Paulo Vitor da Costa 

Pereira. – - Maringá, 2016. 

           69 f. : il., figs., gráf.  

 

           Orientadora: Prof.ª Dr.ª Isolde Terezinha Santos 

Previdelli. 

           Co-orientador:  Prof. Dr. Anthony Christopher 

Davison.          

           Dissertação (mestrado)- Universidade Estadual de 

Maringá, Centro de Ciências Exatas, Departamento de 

Estatística, Programa de Pós-Graduação em 

Bioestatística, 2016.  

 

           1. Teoria estatística bayesiana. 2. Decisões 

estatísticas. 3. Modelo hierárquico bayesiana.  4. 

Precipitação pluviométrica – Análise. 5. Análise 

estatística. I. Previdelli, Isolde Terezinha Santos,  

orient. II. Davison, Anthony Christopher, co-orient. 

III. Universidade Estadual de Maringá. Centro de 

Ciências Exatas. Departamento de Estatística. 

Programa de Pós-Graduação em Bioestatística. IV. 

Título.  

CDD 22. ed.519.542 

                                               MGC - 001736 



Acknowledgements

Agradeço principalmente à Isolde Previdelli pela orientação e companheirismo tanto
dentro da universidade quanto fora. Agradeço também pela oportunidade que me foi dada
em passar 6 meses fora do país, na cidade de Lausanne, na Suíça, com o professor Anthony
Davison da École polytechnique fédérale de Lausanne. Sou extremamente grato ao Anthony
por financiar minha estadia no exterior, e pela sua paciência e gentileza em ler e contribuir
com este trabalho. A Isolde e o Anthony são fontes de inspiração para a minha vida pessoal e
profissional, a experiência fora do país foi um divisor de águas nesses dois apectos da minha
vida.

Agradeço aos professores e alunos do programa de pós-graduação em Bioestatística
da Universidade Estadual de Maringá pela convivência agradável e construtiva. E também aos
alunos com os quais tive contato na École polytechnique fédérale de Lausanne.

Agradeço ao suporte material ou financeiro da Universidade Estadual de Maringá, da
École polytechnique fédérale de Lausanne, e da Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior.



Abstract
The accurate modeling of extreme events is growing in relevance, particularly in the environ-
mental sciences in which such events can be seen as a result of climate change. In particular,
measuring rainfall risk is also important for the design of hydraulic structures (dams, levees,
drainage systems, bridges, etc.) and for flood mapping and zoning. The Brazilian regulatory
agency, Agência Nacional de Águas (ANA), makes available rainfall series for 11,368 rain sta-
tions throughout Brazil, some of them dating from the 19th century. One of our goals was to
produce, using the framework of extreme value theory, maps with reliable estimates of the 25-
year return level of a extreme rainfall for each locality covered by ANA. Such dataset present
many complex challenges: first, evaluating its quality; then, modeling spatial extremes over
large random fields; modeling temporal nonstationarity of the extreme rainfall process due to
natural climate seasonality and due to a possible trend owing to climate change; correcting
biases resulting from misspecification of the model or from a small sample. In this study, we
tackle all these issues. We perform a detailed quality control, and we make a deep discussion
of biases resulting either from misspecification of the model or from a small sample, while pro-
viding important information regarding the modeling of rainfall extremes, and complementing
recent previous studies. In particular, the shape parameter of the extreme-value model seems
to have a mean asymptotic value of 0.06.

Key-words: Bayesian hierarchical model; penultimate bias; precipitation field; return level
map; small sample bias.
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Chapter 1

Introduction

In many regions of the world, changes in rainfall patterns are affecting quantity and
quality of water resources. According to the “Summary for Policymakers” for the year of
2014 from the Intergovernmental Panel on Climate Change, “many human systems and some
ecosystems reveal significant vulnerability and exposure to current climate variability.” The
amount of certainty about this statement was classified with “very high confidence.”

In Brazil, where the main natural hazard comes from the lack or excess of rain (cyclones
and earthquakes, for example, are rare and of relative low magnitude), when catastrophes
happen, it is easy to be critical ex post facto of the absence of prevention. However, such
catastrophic events are often seen as so unpredictable or implausible that even to the eyes of
public managers they can be neglected. And prevention measures usually take place when it
is too late. A good example is the city of São Paulo, which suffered severe floods and rainfall
in 2010, and, shortly after, endured intense droughts that depleted its main reservoir system.
So, not only we usually have optimism bias and underestimate true risks, but we also hare
difficulty in making long-term policies and plans.

According to Parmesan, Root e Willig [2000], changes in extremes of temperature are
more responsible for changes in the nature than changes in mean temperature. Similarly, in
finance, “financial solubility of an investment is likely to be determined by extreme changes in
market conditions rather than typical changes” [COLES, 2001, p. 11]. As well put by Davison
e Huser [2015], “in an evolving climate, changes in the sizes and frequencies of rare events,
rather than changes in the averages, may be what lead to the most devastating losses of life
and the greatest damage to infrastructure.”

According to Parmesan, Root e Willig [2000], changes in extremes of temperature are
more responsible for changes in the nature than changes in mean temperature. Similarly, in
finance, “financial solubility of an investment is likely to be determined by extreme changes in
market conditions rather than typical changes” [COLES, 2001, p. 11]. As well put by Davison
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e Huser [2015], “in an evolving climate, changes in the sizes and frequencies of rare events,
rather than changes in the averages, may be what lead to the most devastating losses of life
and the greatest damage to infrastructure.”

Extreme events are characterized as being of low frequency and having large time
periods. In practice, very often it is required to estimate probabilities of events that have
never yet been observed. In the absence of empirical or logical arguments to formulate an
extrapolation rule, we are left with asymptotic arguments. This is the basis of extreme value
theory, which provides techniques to estimate future extreme levels from a data-generating
process [COLES, 2001].

However, due to the complex stochastic structure of the environment and of financial
markets, naïve application of extreme value theory can provide illusory results and lead to
a false sense of security. For example, in Venezuela, according to Coles e Pericchi [2003],
“prior to 1999, simple extreme value techniques were used to assess likely future levels of
extreme rainfall, and these gave no particular cause for concern. In December 1999, a daily
precipitation event of more than 40 cm, almost three times the magnitude of the previously
recorded maximum, caused devastation and an estimated 30,000 deaths.” A more recent study
of this catastrophic rainfall event was made by Süveges e Davison [2012].

In South America, floods and landslides are very frequent during the summer and occur
after heavy and continuous rainfall. In Brazil, the most prominent and recent case occurred
in the mountainous region of Rio de Janeiro State, between 11 and 12 January 2011, and
led to 947 deaths. This is considered to be the worst natural disaster in Brazil’s history. The
accumulated rainfall in 24 hours was 241.8 mm, with a peak 61.8 mm in an hour [DOURADO;
ARRAES; SILVA, 2012]. On the other hand, extreme droughts have severely affected eastern
Brazil since 2012, damaging the country’s agricultural and electrical production. According to
Getirana [2016], this extreme drought is mostly related to lower-than-usual precipitation rates,
and its impacts have been exacerbated by ineffective energy development and water manage-
ment policies. At the same time, record-breaking rainfall and floods happened in Amazonia
during the austral summer and fall of 2012 [MARENGO et al., 2013].

Of course the characterization of an extreme event depends on where it takes place.
For example, in March 2015, the city of Antofagasta in the Atacama Desert (northern Chile),
which usually receives about 1 to 3 mm of rain in a year, registered 24 mm of rain in just one
day [LIBERTO, 2015]. The Atacama Desert is probably the driest and oldest desert in the
world. Some weather stations there have never received rain. Although 24 mm seems small,
because of the rock-hard ground, which does not absorb water, and the lack of vegetation,
which leads to rapid erosion, dry river beds become rushing torrents of water capable of great
destruction.

Extreme quantile estimation of rainfall is interesting for flood mapping and zoning,
but also for the design of hydraulic structures (dams, levees, drainage systems, bridges, etc.)



Chapter 1. Introduction 8

since hydrological risk is highly dependent on rainfall risk [MULLER et al., 2009]. So, our main
objective was to model extreme rainfall in Brazil and provide reliable estimates of extreme
quantiles. There are two sources of error that we need to control: the error inherently present
when using asymptotic models, and the bias induced by small samples. We discuss these errors,
and complement the studies of Papalexiou e Koutsoyiannis [2013] and Serinaldi e Kilsby [2014].
We also investigated the relation between extreme rainfall and events such as El Niño and La
Niña, as well as other possible covariates like deforestation and carbon dioxide levels.

The idea of including deforestation as a covariate came from the recent extreme
drought events in eastern Brazil. The low precipitation in this region “seems unconnected
to ocean temperatures or other large-scale weather phenomena” and is probably related to cli-
mate change [ESCOBAR, 2015]. Another probable cause is deforestation in Amazonia, since
a large portion of the moisture produced in the Amazon basin is exported (through low-level
jets, also called aerial rivers1[ARRAUT et al., 2012]) to distant basins in southeast South
America [NAZARENO; LAURANCE, 2015]. Getirana [2016] recommends future studies on
these possible causes, considering, for example, “the simultaneous drought over eastern Brazil
and floods over the Amazon.”

In the next chapter, we describe the dataset and present the main concepts and meth-
ods used, illustrated with one rain station located in the city of Pomerode, in the state of
Santa Catarina. In Chapter 3, we present the main results. All analysis were done in the sta-
tistical software ○○○○○RR [R Core Team, 2016]. To produce the return level maps, we used the
SpatialExtremes package.

1 Aerial rivers are an analogy to surface rivers as a pathway of moisture flow in the atmosphere.
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Chapter 2

Dataset

The dataset used is publicly available on the Internet at the Hydrological Information
System (HidroWeb), administered by Agência Nacional de Águas (ANA), a Brazilian regulatory
agency. In its inventory, ANA has descriptive information about 20,164 rain stations spread
throughout South America, but mainly contained within Brazil’s borders. From these stations,
11,619 (57.62%) have daily rainfall values registered in the hydrological information system.

Each daily value was classified as being “blank” (missing value), “real” (accumulated
rainfall in 24 hours), “estimated”, “doubtful”, or “accumulated” (when the observer does not
make a measurement, rainfall accumulates until the measurement is done); the average pro-
portion of these possible values were 7.72%, 92.06%, 0.03%, 0.07%, and 0.12%, respectively.
The doubtful and accumulated values were removed. This reduced the number of stations to
11,368.

2.1 Selection of stations
Serinaldi e Kilsby [2014] selected from their database only time series covering the

same periods. More specifically, they worked with two subsets of their original data: rainfall
series spanning over the period 1970–2011, and series over 1900–2011, resulting in 1898 and
113 stations for each subset. As acknowledged by them, this is a very restrictive criterion, but
they argue that, in this way, the series reflect the climate conditions over homogeneous time
windows. Figure 1 shows the timeline of each station from ANA. For short time series, say a
40-year period, the homogeneous time windows criterion seems reasonable for some interval
after 1960.

Like Serinaldi e Kilsby [2014], we are going to retain two subsets: stations with rainfall
series spanning over the period 1972–2011, and stations with record length greater than 80
years. The distribution of record length, in years, for all stations is described in Table 1. This
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Figure 1 – Timelines of all stations. The first five plots corresponds to the five macroregions
of Brazil, and the last plot, the region outside Brazil. Timelines longer than 80
years are shown in red, and timelines with a record smaller or equal to one year are
shown as blue dots.

resulted in 1216 and 184 stations for the two subsets. The interval from 1972 to 2011 was
chosen to maximize the number of observations in a 40-year span. Only the stations with
less than 10% of missing values in this period were selected. The time windows for the 184
stations of the second subset are somewhat heterogeneous; see Figure 2. In order to obtain
more homogeneous time windows, we kept the stations with record length greater than 80
years starting from 1909, reducing the number of stations to 164.
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Table 1 – Distribution of the record lengths in years.

Interval Number of Cumulative Cumulative relative
stations frequency frequency (%)

149 1 1 0.01
[110, 140) 2 3 0.03
[100, 110) 33 36 0.32
[90, 100) 23 59 0.52
[80, 90) 125 184 1.62
[70, 80) 566 750 6.60
[60, 70) 493 1,243 10.93
[50, 60) 694 1,937 17.04
[40, 50) 1,416 3,353 29.50
[30, 40) 2,058 5,411 47.60
[20, 30) 1,797 7,208 63.41
[10, 20) 2,269 9,477 83.37
[5, 10) 998 10,475 92.14
[1, 5) 893 11,368 100.00

1830 1850 1870 1890 1910 1930 1950 1970 1990 2010

Year

S
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n 

in
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x

Figure 2 – Timelines of the 184 stations with record length over 80 years. Timelines beginning
before 1900 are shown in red.
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2.2 Quality control and homogenization
Before we attempt to do any kind of analysis, it is important that we check the quality

of the data and trust the measurements made. Since 70 stations in the subset with the longest
rainfall series are also in the subset containing the shortest series, we looked individually at
1310 unique stations (1216 + 164 - 70).

A rainfall series with no apparent causes of concern, may be useless if it stems from
inappropriate measurement conditions. Metadata like the stations’ history and photographs
showing their location and measurement conditions is crucial to assess the measuring quality.
As stated in the guidelines by the World Meteorological Organization on “climate observation
networks and systems,” an observation site should be representative of the climatic regime
for which it is intended. Otherwise, the site becomes representative of local features only
[PLUMMER et al., 2003]. The amount of rainfall measured is very sensitive to systematic
wind-field deformation. Neither completely open exposure nor big objects close to the gauge1is
desirable. The best sites for measuring precipitation are often found in places where objects act
as an effective wind-break from all directions, for example, clearings within forests or orchards,
among trees, in scrub or shrub forests. When there are no natural wind-breakers near the site,
windshields are used. Figure 3 shows a typical station from ANA. Unfortunately, not all their
stations have a corresponding photograph in the database, and we could not find photos for
stations belonging to other entities. Moreover, a photo from just one direction is not enough,
the photos have to show all possible obstacles around the rain gauge, and the land slope; see
Jarraud [2008, p. 38].

For the rain stations run by ANA, daily measures are always made at seven in the
morning. Stations from other entities may collect rainfall on smaller time intervals (three
times a day, hourly or on intervals of 15 minutes). In these cases, the original values are
transformed to accumulated daily values. None of the stations have measured negative rainfall
values, but 15 stations have registered values greater than 500 mm. It is difficult to distinguish
if these registered values were really observed or if they are outliers. Figure 4 exemplifies the
problems we found when visualizing the 1,310 rainfall time series one by one:

∙ The first image shows a possible outlier. The station is in the Amazon basin, it has a
measured daily rainfall of exactly 999.7 mm, the second largest value being 186.2 mm.
In all regions, it is not uncommon to find stations displaying daily precipitation amounts
greater than 300 mm or 400 mm. The volume capacity of some measuring devices might
not be large enough. Standard German Hellmann rain gauges, for example, can collect
only up to 200 mm, so they are not adequate for these regions;

∙ The following two plots (corresponding to stations 33 and 160) illustrate a very common
1 It is recommended that objects do not be closer to the gauge than a distance twice their height above the

gauge orifice.
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Figure 3 – A typical station run by ANA.

problem: truncation of high precipitation events. It may happen that only events bellow
a certain value are registered or a frequency peak at specific values are observed. These
frequency peaks are also observed as jumps in the empirical distribution function (out-
liers may difficult visualizing truncation, so these must be dealt with first). Truncation
happens when the observer does not properly understand how the measurement must
be done, and it is not always easy to detect (it can appear in many different ways on
the plot). Even though some of these stations seem to be registering extreme values,
we decided to exclude time series showing even the slightest sign of truncation;

∙ The next plot (station 59) show a similar problem to truncation, high precipitation events
seem to be hidden in a section of the time series, but no frequency peaks appears;

∙ The opposite behavior also happens (station 104), instead of seemingly unusual small
values, there are sections of the time series with suspiciously high values;

∙ Low precipitation gaps are another frequent issue (stations 384). These gaps appear
due to negligence of low precipitation measurements. With time, the scale and the
water marks of the device become weathered and faded, especially the marks for low
values, making the reading impossible, so the observer might erroneously interpret these
unrecognizable marks as zero precipitation. But the most frequent source of this error
comes from irregularly measures made by the observer, i.e., measures are made only
after “substantial” rain events, and very low amounts are ignored;
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Figure 4 – Visual quality control applied for each of the 1310 selected rainfall time series.
Top plot: daily rainfall values. Bottom line: empirical distribution function for the
whole rainfall time series starting at the point mass zero (left), and map of the
corresponding state with the displaying station in blue.

∙ Some stations had a large section of just zeros. Although this is probably just a classifi-
cation problem, it is something that needs to be checked.

From the 1310 stations, we removed outliers from 60 stations and discarded 200
stations that had any of the other problems listed above.

When the observer does not make a measurement, rainfall accumulates inside the mea-
suring device. So, if the observer misses one or more days, he must measure the accumulated
rainfall and tag this measurement as accumulated. However, because this can happen due to
negligence of the observer, accumulated values are often untagged [VINEY; BATES, 2004].
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Figure 5 – Map of Brazil, with an insert showing the altitude, showing the stations in the
subset with the shortest and longest rainfall series (left and right panels), selected
from the database available in the Hydrological Information System (HidroWeb),
administered by ANA.

And since daily routines differ on weekends from weekdays, the observer may fail to accomplish
his task more frequently on weekends. In order to detect stations with untagged rainfall accu-
mulation, we counted the number of dry and wet days for each day of the week, and performed
a Pearson’s chi-squared test for the homogeneity of the proportions. The null hypothesis was
rejected for about 10% of the stations. Air pollution related to human activity might cause
weekly cycles in rainfall time series, but its significance is dubious. Since accumulations of two
or more days may significantly alter daily extremes, we preferred to also exclude these stations,
remaining 893 and 104 stations for the subsets with the shortest and longest rainfall series.
Figure 5 shows the location of these stations.

All stations have an observer making the measurements, even the automatic stations
(so inconsistencies can be compared). The number of automatic stations in the “cleaned”
dataset is 145 (about 15%). The institutions responsible for the “cleaned” stations can be seen
in Table 2, almost all of them are government agencies or public companies. ANA classified
the instruments used for measuring rainfall in three categories: pluviometer, rain gauge, and
data logger. From the 997 stations, 990 used exclusively the pluviometer, the other 7 stations
used the other instruments briefly. The daily rainfall values were also classified into “raw” and
“consisted” (or “validated”). Consisted values, about 26% of the total, went through some
kind of analysis to identify and correct erroneous values as well as to input missing data.
Every year, agents of the Brazilian electrical sector are obliged to send reports to ANA on the
consistency of the data collected the previous year and the data itself [FREITAS; NóBREGA,
2012].

Climate time series often contains artificial changepoints, i.e., shifts in the mean due
to inevitable changes of the instrument used, changes in the instrument itself, changes of ob-
servers or procedures. The process of adjusting the time series in order to remove or diminish
the effect of artificial shifts is called homogenization. Wang et al. [2010] describe a specific
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Table 2 – Institutions responsible for the selected rain stations.

Institution Number of stations Proportion (%)
ANA1 464 46.77

DAEE-SP2 288 29.03
AGUASPARANÁ3 114 11.49

DNOCS4 26 2.62
CEEE5 25 2.52

FUNCEME6 24 2.42
INMET7 23 2.32
COPEL8 11 1.11

EMPARN9 6 0.60
Light10 4 0.40

Duke Energy11 3 0.30
CONS.CECS12 1 0.10
Itaipu dam13 1 0.10

SEMARH-AL14 1 0.10
Tractebel Energia15 1 0.10

1 Agência Nacional de Águas, a federal regulatory agency.
2 Departamento de Águas e Energia Elétrica, a state agency of São Paulo.
3 Instituto das Águas do Paraná, a state agency of Paraná.
4 Departamento Nacional de Obras Contras as Secas, a federal institution
that acts in the semi-arid region of Brazil.
5 Companhia Estadual de Geração e Transmissão de Energia Elétrica, a
government-controlled company in the state of Rio Grande do Sul.
6 Fundação Cearense de Meteorologia e Recursos Hídricos, a state agency of
Ceará.
7 Instituto Nacional de Meteorologia, a federal agency.
8 Companhia Paranaense de Energia, a government-controlled company in
the state of Paraná.
9 Empresa de Pesquisa Agropecuária do Rio Grande do Norte, a public com-
pany formed by the state of Rio Grande do Norte and the federal government.
10 A private company in the state of Rio de Janeiro.
11 A private company acting in the state of São Paulo.
12 Consórcio Energético Cruzeiro do Sul, a consortium between two public
companies in the state of Paraná.
13 A binational hydroelectric dam on the Paraná river.
14 Secretaria do Meio Ambiente e dos Recursos Hídricos do Estado de
Alagoas, a state agency of Alagoas.
15 A private company, the correspondent station is in the state of Paraná.

procedure for homogenizing (nonzero) daily precipitation series. When changepoints are doc-
umented, this is just a matter of estimating the shift sizes. However, the stations’ history
are often absent or incomplete, which is the case for the ANA stations, and the changepoints
themselves have to be estimated. WANG et al. claim that, by using their method, detected and
documented changepoints are in agreement 70% of the time. Using the software they provide,
we learned that the bulk of the data often appears to have some changepoints, but when
looking only at observations above some high quantile, the few changepoints detected seem
to be always false positives, from which we conclude that the possible artificial changepoints
do not influence significantly on extreme values or even values near the median; see Figure 6.

Changes of observers, instrument replacements, or new observer instructions, could
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Figure 6 – Daily rainfall series above the median, the 80% quantile, and the 90% quantile
(first, second, and third lines). The red line depicts possible mean shifts.

also cause the precision of measurements to change in time, although this is more apparent
for temperature than rainfall series. In the ANA database, the precision is always of 0.1 mm
for all stations and years.
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2.3 El Niño Southern Oscillation
The El Niño Southern Oscillation (ENSO) is an irregularly periodical coupled ocean-

atmosphere phenomenon that causes global climate variability. The warm and cold phases of
the ENSO are known as El Niño and La Niña. The warm phase corresponds to warmer-than-
average sea surface temperatures of the tropical eastern Pacific Ocean, accompanied by high
air pressure in the western Pacific and low air pressure in the eastern Pacific, and conversely.
Each phase typically lasts from three to four years.

Figure 7 summarizes the effects of the ENSO on weather in South America. Particularly
in Brazil, El Niño causes wetter-than-normal conditions in the south mainly during the spring
and early summer [GRIMM, 2003]. Drier and hotter weather occurs in north Amazon and
in the northeast region [MARENGO, 1992; HASTENRATH; GREISCHAR, 1993]. During La
Niña, the main effects are increased rainfall in the north-eastern region from December to
February [MARENGO, 1992], and severe droughts in the south [GRIMM; BARROS; DOYLE,
2000]. Thus, it is natural to investigate the impact of ENSO events on the extremal behavior
of the rainfall series.
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Figure 7 – Rough location of the ENSO effects on temperature and rainfall (when compared
to normal conditions) in South America. Top row: El Niño. Bottom row: La Niña.
Left column: months of December to February. Right column: June to August.
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Figure 8 – The multivariate ENSO index (MEI). It is a scalar measure of the intensity of
the ENSO phenomenon. The “multivariate” term comes from the way the index is
calculated: as the first principal component of six meteorological and oceanographic
variables. Source: National Oceanic and Atmospheric Administration, Earth System
Research Laboratory, Physical Sciences Division.

The multivariate ENSO index (MEI) is a monthly measure of the intensity of this
phenomenon (see Figure 8). It is the first principal component of six meteorological and
oceanographic variables: sea level pressure, zonal and meridional components of the surface
wind, sea surface temperature, surface air temperature and cloudiness. Negative and positive
values of the MEI represent the cold and warm ENSO phases, i.e., La Niña and El Niño
[WOLTER, 2000]. Therefore we expect to observe a negative association between MEI and
extreme rainfall in north-eastern Brazil, and a positive association in the southern region.

2.4 Deforestation
Since 1988, the National Institute for Space Research (INPE, in Portuguese) through

the Amazon Deforestation Monitoring Project (PRODES, in Portuguese) has annually mea-
sured the deforestation rate for clearcutting of forested areas (see Figure 10) in Legal Amazon,
using Landsat satellite imagery. The term “Legal Amazon” was created by the Brazilian gov-
ernment to designate an area of similar economical, political and social problems. This area
covers 59% of Brazilian territory and is home to all the Amazon rainforest biome within Brazil,
37% of the Cerrado biome and 40% of the Pantanal biome. Figure 9 illustrates the size of the
area covered by PRODES as well as the region covered by the Landsat images.

The annual deforestation rates are available by state and for the whole Legal Amazon
in the PRODES website. The annual and accumulated deforestation rates in Legal Amazon are
shown in Figure 11. As an example, in 2014, the total deforested area estimated by PRODES
from August 2013 to July 2014 was 5012 km2.



Chapter 2. Dataset 21

Brazil North region

Figure 9 – The left and right panels illustrate the size of the North region (in yellow) of Brazil
(in yellow and green) in comparison to a portion of Europe (in blue) and the region
covered by the Landsat images (about 230 images per year). Source: National
Institute for Space Research.

Figure 10 – Illustration of clear cut deforestation, i.e., total removal of forest cover in a short
period of time. PRODES identifies clear cut areas larger than 6.25 hectares.
Source: INPE’s website.
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PRODES.
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Chapter 3

Methodology

Extreme value theory deals with the asymptotic distributional behavior of extremes,
which can be defined as being the block maxima, the 𝑟 largest order statistics, or exceedances
over a high threshold. Block maxima are the maximum values extracted from blocks of obser-
vations, and the 𝑟 largest order statistics are the 𝑟 largest values within these blocks, whereas
the exceedances refer to observations that exceed a given threshold.

In applications, the process is usually measured at regular intervals. For example, Figure
12 shows the (accumulated) daily rainfall registered in the city of Pomerode, Santa Catarina
State. In this case, the blocks could correspond to the years, so the size of each block is the
number of observations per year. Since the data go from 1929 to 2015, there are 87 years
annual maxima. Using as a threshold the 98% quantile for all rainfall values, there are 624
exceedances, and for values greater than zero (wet days only), there are 294 exceedances.
In either case, the samples are much larger than using the block maxima procedure. The
exceedances approach is an attempt to include as much extremes as possible in the analysis.
If a complete time series of observations is available, then better use of the data is made by
adopting a threshold to characterize extreme values, avoiding blocking [COLES, 2001, p. 9,
74]. However, the choice of threshold involves a similar bias–variance trade-off when choosing
block length. Extreme value theory provides a link between these two types of extremes and
their underlying distributions.

3.1 Two types of extremes and their distributions
Consider a sequence of independent and identically distributed random variables,𝑋1, . . . , 𝑋𝑛,

with common distribution function 𝐹 (referred to as the parent distribution). The distribution
of the block maxima, 𝑍𝑛 = max{𝑋1, . . . , 𝑋𝑛}, is simply 𝐺𝑛(𝑧) = 𝐹 𝑛(𝑧), so one way to
estimate the distribution of 𝑍𝑛 is to first estimate 𝐹 , and then use 𝐹 𝑛. Unfortunately, very
small discrepancies in the estimate of 𝐹 can lead to substantial discrepancies for 𝐹 𝑛 [COLES,
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Figure 12 – Daily rainfall registered in the city of Pomerode, in the state of Santa Catarina.
The red and blue lines represent the 98% quantile for all rainfall values and for
values greater than zero (wet days only). The orange points are the annual maxima
series.

2001, p. 46].

If 𝑛 is not constant (for example, if we take only wet days), but rather can be regarded
as a realization of a Poisson distributed random variable, 𝑁 , with mean 𝜈, then the distribution
of 𝑍𝑁 is

𝐺′
𝜈(𝑧) = exp{−𝜈(1 − 𝐹 (𝑧))}. (3.1)

Since log 𝑢 .= 𝑢− 1 when 𝑢 → 1,

log𝐺𝑛(𝑧) = 𝑛 log𝐹 (𝑧) = 𝑛 log[1 − {1 − 𝐹 (𝑧)}] .= −𝑛{1 − 𝐹 (𝑧)} = log𝐺′
𝑛(𝑧).

Even for small 𝑛, the difference between 𝐺𝑛(𝑧) and 𝐺′
𝑛(𝑧) is very small. However, the evalu-

ation of 𝐺′
𝑛(𝑧) still requires the parent distribution to be known. An alternative is to consider

possible limiting distributions for 𝑍𝑛 as 𝑛 → ∞, using an extreme value analog of the central
limit theorem. But, just as the average �̄�𝑛 converges to the population mean 𝜇 with certainty,
i.e., has a degenerate distribution (converges to a constant), the limiting distribution of 𝑍𝑛 is
also degenerate, converging with probability 1 to the upper endpoint of 𝐹 or diverging if the
distribution has unbounded support. Therefore, a normalization is necessary. In the case of the
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sample average, the function
√
𝑛(𝑋𝑛 − 𝜇) converges in distribution to the standard normal

distribution.

A similar linear rescaling can be applied to the extreme order statistics, 𝑍𝑛, to obtain
a non-degenerate limit distribution. The extremal types theorem [FISHER; TIPPETT, 1928]
shows that if the distribution of the linearly rescaled block maxima as the size of the blocks
approaches infinity is non-degenerate, then this limiting distribution is one of three distributions
(Gumbel, Fréchet, or reverse Weibull), which can all be described in terms of the generalized
extreme-value distribution [JENKINSON, 1955],

𝐺(𝑧) =

⎧⎪⎨⎪⎩exp
[︁
− {1 + 𝜉(𝑧 − 𝜇)/𝜎}−1/𝜉

]︁
, 𝜉 ̸= 0,

exp [− exp {−(𝑧 − 𝜇)/𝜎}] , 𝜉 = 0,
(3.2)

whose domain is the set {𝑧 : 1 + 𝜉(𝑧 − 𝜇)/𝜎 > 0}, where 𝜇 ∈ R, 𝜎 > 0, and 𝜉 ∈ R are
the location, scale, and shape parameters. More precisely, if there are sequences of constants
{𝑎𝑛 > 0} and {𝑏𝑛} such that (𝑍𝑛−𝑏𝑛)/𝑎𝑛 has a non-degenerate limit distribution as 𝑛 → ∞,
then

lim
𝑛→∞

𝐹 𝑛(𝑎𝑛𝑧 + 𝑏𝑛) = 𝐺(𝑧) (3.3)

for every continuity point 𝑧 of 𝐺. In practice, we assume that

𝑃{𝑍𝑛 ≤ 𝑧} = 𝑃{𝑎−1
𝑛 (𝑍𝑛 − 𝑏𝑛) ≤ 𝑎−1

𝑛 (𝑧 − 𝑏𝑛)} .= 𝐺{𝑎−1
𝑛 (𝑧 − 𝑏𝑛)}

for a finite block size 𝑛, i.e., the distribution of block maxima can be approximated by a
generalized extreme-value distribution whose location and scale parameters depend on the
block size, but its shape parameter does not [COLES, 2001, p. 48].

If 𝜉 = 0, 𝜉 > 0, or 𝜉 < 0, the generalized extreme-value distribution is the Gum-
bel, Fréchet, or reverse Weibull distribution. The set of parent distributions 𝐹 for which the
block maxima have the same limit distribution is called a max-domain of attraction, de-
noted MDA(𝜉). For example, the uniform distribution is an element of MDA(−1), while the
𝑡-distribution, the Cauchy, log-gamma, and Pareto distributions belong to the Fréchet max-
domain of attraction, MDA(𝜉) with 𝜉 > 0. Koutsoyiannis [2004a] noted that, at least until the
date of his writing, the Gumbel distribution was commonly used to model extreme rainfall, to
the point where it was the only distribution mentioned in hydrological engineering textbooks.
He explained that one of the reasons for this was theoretical: “most types of parent distribu-
tion functions that are used in hydrology, such as exponential, gamma, Weibull, normal and
lognormal, belong to the domain of attraction of the Gumbel distribution.”

The relationship between the block maxima distribution, 𝐺′
𝜈(𝑥), and the tail of the

parent distribution, i.e, the distribution of threshold exceedances of 𝑢 > 0, 𝐻(𝑥) = 𝑃{𝑋 ≤
𝑥 | 𝑋 > 𝑢}, can be seen by taking 𝑢 such that the exceedance probability 1 − 𝐹 (𝑢) equals
1/𝜈, the reciprocal of the mean number of events in a block, and noting that

1 −𝐻(𝑥) = 1 − 𝐹 (𝑥)
1 − 𝐹 (𝑢) = 𝜈{1 − 𝐹 (𝑥)}, 𝑥 ≥ 𝑢.
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Comparing this with equation 3.1, we have

𝐻(𝑥) = 1 + log𝐺′
𝜈(𝑥).

Thus, if the parent distribution 𝐹 is in the domain of attraction of one of the extreme-value
distributions, then the distribution of 𝑌 = 𝑋 − 𝑢, conditional on 𝑋 > 𝑢, converges to the
generalized Pareto distribution as 𝑢 increases [PICKANDS, 1975],

𝐻(𝑦) =

⎧⎪⎨⎪⎩1 − (1 + 𝜉𝑦/𝜏𝑢)−1/𝜉 , 𝜉 ̸= 0,

1 − exp(−𝑦/𝜏𝑢), 𝜉 = 0,
(3.4)

whose domain is the set {𝑦 : 𝑦 > 0, 1 + 𝜉𝑦/𝜏𝑢 > 0}, where 𝜏𝑢 = 𝜎+ 𝜉(𝑢−𝜇) > 0. The value
of 𝜏𝑢 depends on the threshold except when 𝜉 = 0. When 𝜉 = 0 and 𝜉 = −1, the generalized
Pareto distribution is the exponential distribution with mean 𝜏𝑢 and the uniform distribution
on [0, 𝜏𝑢]. Pareto distributions are obtained when 𝜉 > 0. The probability density function is

ℎ(𝑦) =

⎧⎪⎨⎪⎩𝜏
−1
𝑢 (1 + 𝜉𝑦/𝜏𝑢)−(1+1/𝜉) , 𝜉 ̸= 0,

𝜏−1
𝑢 exp (−𝑦/𝜏𝑢) , 𝜉 = 0,

(3.5)

where 𝑦 = 𝑥−𝑢 with 𝑥 ≥ 𝑢 for 𝜉 ≥ 0, and 𝑢− 𝜏𝑢/𝜉 > 𝑥 ≥ 𝑢 for 𝜉 < 0. Thus, the support of
the generalized Pareto distribution is always bounded below by 𝑢, bounded above by 𝑢− 𝜏𝑢/𝜉

if 𝜉 < 0 and unbounded if 𝜉 ≥ 0.

The mean and variance of the generalized Pareto distribution exist only if 𝜉 ≤ 1 and
𝜉 ≤ 1/2, respectively. In such cases, E(𝑌 ) = 𝜏𝑢/(1−𝜉) and Var(𝑌 ) = 𝜏 2

𝑢/{(1−𝜉)2(1−2𝜉)}.
In general, the 𝑟th moment of (3.2) or (3.4) exists only if 𝜉 < 1/𝑟. For 𝜉 = 0, the limiting
distributions Gumbel and exponential have all moments finite.

In summary, if the block maxima have an approximate generalized extreme-value dis-
tribution, then the exceedances over a high threshold have a corresponding approximate dis-
tribution within the generalized Pareto family. Moreover, the parameters of the generalized
Pareto distribution are uniquely determined by those of the associated generalized extreme-
value distribution. In particular, the shape parameter has the same value in both distributions
[COLES, 2001, p. 75].

The value of 𝜉 determines the weight of the upper tail of the parent density, providing
very different representations for the behavior of extreme values:

∙ if 𝜉 < 0, the support has an upper bound;

∙ if 𝜉 > 0, the support is not bounded above and the density function decays polynomially
as 𝑦 → ∞, it is said to be heavy-tailed;

∙ if 𝜉 → 0, the generalized Pareto and generalized extreme-value distributions converge
to exponential and Gumbel distributions (light-tailed densities that decay exponentially
as 𝑦 → ∞).
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Usually, | 𝜉 |< 1 and estimates of 𝜉 lie in the interval (−1/2, 1/2), although this situ-
ation might be more common in environmental applications than in financial ones [DAVISON;
HUSER, 2015].

3.2 The point process characterization
In the previous section, a Poisson point process was implicit. If the rescaled 𝑍𝑛 con-

verges to the 𝐺(𝑧) given in equation (3.2), then, since log 𝑢 .= 𝑢− 1 when 𝑢 → 1,

log𝐹 𝑛(𝑧) = 𝑛 log𝐹 (𝑧) .= 𝑛{𝐹 (𝑧) − 1} → log𝐺(𝑧),

and after rearrangement, 1 − 𝐹 (𝑧) .= −𝑛−1 log𝐺(𝑧). For a threshold 𝑢, the number of
exceedances follows a binomial distribution with parameters 𝑛 and 𝑝 = −𝑛−1 log𝐺(𝑢). The
Poisson limit for the binomial distribution implies that the rescaled variates {(𝑋𝑖−𝑏𝑛)/𝑎𝑛 : 𝑖 =
1, . . . , 𝑛} converge to a Poisson process on R with mean measure Λ1{[𝑢,∞)} = − log𝐺(𝑢).
The two-dimensional point process 𝑁𝑛 = {(𝑖/(𝑛+1), (𝑋𝑖−𝑏𝑛)/𝑎𝑛) : 𝑖 = 1, . . . , 𝑛}, with mean
measure in the time direction Λ2{[𝑡1, 𝑡2]} = 𝑡2 − 𝑡1, 0 ≤ 𝑡1 < 𝑡2 ≤ 1, assuming homogeneity,
converges to a Poisson process 𝑁 on [0, 1] ×R with intensity measure Λ{[𝑡1, 𝑡2] × [𝑢,∞)} =
Λ2{[𝑡1, 𝑡2]} × Λ1{[𝑢,∞)}, i.e,

Λ{[𝑡1, 𝑡2] × [𝑢,∞)} =

⎧⎪⎨⎪⎩(𝑡2 − 𝑡1){1 + 𝜉(𝑢− 𝜇)/𝜎}−1/𝜉
+ , 𝜉 ̸= 0,

(𝑡2 − 𝑡1) exp{−(𝑢− 𝜇)/𝜎)}, 𝜉 = 0.
(3.6)

So, times of exceedances of 𝑢 occur according to a Poisson process of constant rate 𝜁𝑢 =
− log𝐺(𝑢), and the limiting distribution of threshold exceedances belong to the generalized
Pareto family, since

𝑃{𝑋 > 𝑢+ 𝑦 | 𝑋 > 𝑢} = Λ1{[𝑢+ 𝑦,∞)}
Λ1{[𝑢,∞)} = − log𝐺(𝑢+ 𝑦)

− log𝐺(𝑢) = 𝐻(𝑦).

On the other hand, given the Poisson point process 𝑁 , the event {(𝑍𝑛 − 𝑏𝑛)/𝑎𝑛 ≤ 𝑧} is
equivalent to the event of having no counts in the set 𝐴𝑧 = [0, 1] × [𝑧,∞), i.e, 𝑁𝑛(𝐴𝑧) = 0;
hence

𝑃{(𝑍𝑛 − 𝑏𝑛)/𝑎𝑛 ≤ 𝑧} = 𝑃{𝑁𝑛(𝐴𝑧) = 0} → 𝑃{𝑁(𝐴𝑧) = 0} = exp{−Λ(𝐴𝑧)},

which is of the generalized extreme-value form. This representation of extremes has the advan-
tage of accounting for the rate of exceedances 𝜁𝑢, and having the original parameters (𝜇, 𝜎, 𝜉),
which do not depend on the choice of 𝑢 [COLES, 2001; DAVISON; HUSER, 2015].

3.3 Extracting the annual maxima
For the block maxima approach, the ideal would be to have complete time series. For

example, for annual maxima taken over daily values, if there are many values missing, the
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Table 3 – Number of stations and proportion of remaining daily values left after excluding
from each station the years with more than a certain percentage of missing daily
values.

Missing Number of Relative number of
values (%) stations daily values (%)

0 940 70.84
5 940 73.58
10 947 89.91
15 947 89.97
20 950 95.03
25 950 95.76

maximum may not have been observed. However, rarely do data sets have complete records
and we will simply have to settle for less, maybe for just three quarters of the time series’
length [SVOBODA; HAYES; WOOD, 2012, p. 3]. Table 3 shows how many stations would
remain if we removed from each station the observed years that have more than a certain
percentage of missing values. To form the series of annual maxima, we adopt the same criteria
used by Papalexiou e Koutsoyiannis [2013]: the maximum of each year is extracted irrespective
of the year’s missing-values percentage, then if the rank of a value in the series is smaller than
or equal to 0.4×𝑚, where 𝑚 is the number of years, and the missing-values percentage within
the corresponding year is larger than or equal to 1/3, we exclude this value, assuming it to be
unknown.

3.4 Threshold selection
In the proof of the extremal types theorem, we see that a necessary condition for a

limiting distribution for maxima is the max-stability property. A distribution function 𝐺 is said
to be max-stable if for any 𝑛 ∈ N there are sequences of constants {𝑎𝑛 > 0} and {𝑏𝑛} such
that

𝐺𝑛(𝑎𝑛𝑧 + 𝑏𝑛) = 𝐺(𝑧), 𝑧 ∈ R.

In words, the max-stability property is satisfied when the distribution of a random variable
remains identical, apart from a change of the location and scale parameters, after taking the
maxima of 𝑛 copies of this random variable. Only the generalized extreme-value family satisfies
this property.

Similarly, the generalized Pareto distribution is also characterized by a threshold stabil-
ity property [DAVISON; SMITH, 1990]: if 𝑋 is a random variable having the generalized Pareto
distribution with scale and shape parameters 𝜎 and 𝜉, 𝑋 ∼ 𝐺𝑃𝐷(𝜎, 𝜉), then the conditional
distribution of𝑋−𝑢 given𝑋 > 𝑢 is also generalized Pareto,𝑋−𝑢 | 𝑋 > 𝑢 ∼ 𝐺𝑃𝐷(𝜎+𝜉𝑢, 𝜉).
This property motivates a method for selecting a threshold by trying increasing values of 𝑢 until
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the distribution of the exceedances is judged to be appropriately described by the generalized
Pareto distribution. If it is valid over a threshold 𝑢0, then its validity must hold over thresholds
𝑢 > 𝑢0. In equation (3.4), this implies that parameter 𝜉 must be constant for 𝑢 > 𝑢0, causing
𝜏𝑢 to vary linearly in 𝑢. Unfortunately, in practice this is not so clear-cut, and as mentioned
before, the choice of 𝑢0 involves a similar bias–variance trade-off when choosing block length:
lower 𝑢0 induces lower estimation variance but higher bias, and vice versa.

For the Poisson point process characterization, estimates of the parameters (𝜇, 𝜎, 𝜉)
should be stable across a range of thresholds. A plot of these estimates with pointwise confi-
dence intervals is called a parameter stability plot (see Figure 13) and it is the main tool used
in fixed threshold selection due to its simplicity. The threshold is selected as the lowest value
above which the parameters are deemed to be constant. However, parameter stability plots
suffer from a lack of interpretability, since the confidence intervals are strongly dependent.

As Wadsworth [2016] mentions, there is no panacea for this problem, but he proposes
two complementary threshold diagnostic plots. Using his notation, if X, of random length 𝑁 ,
contains realizations from a Poisson point process, with intensity 𝜆𝜃(𝑥) and mean measure
Λ𝜃(𝑅) on a interval 𝑅, where 𝜃 represents the parameters of the model, we need to maximize
the likelihood

𝐿𝑅(𝜃) =
{︃

𝑁∏︁
𝑖=1

𝜆𝜃(𝑥𝑖)
}︃

exp{−Λ𝜃(𝑅)},

partitioning 𝑅 into nested intervals 𝑅1, . . . , 𝑅𝑘, where

𝑅𝑗 = (𝑢𝑗,∞), 𝑗 = 1, . . . , 𝑘,

with 𝑢1 < · · · < 𝑢𝑘. The problem is to obtain the joint distribution of the maximum likelihood
estimators �̂�1, . . . , �̂�𝑘, which come from overlapping samples. Wadsworth [2016] describes
the asymptotic distribution of these estimators, and the immediate consequence that the
increments 𝜃1 − 𝜃2,𝜃2 − 𝜃3, . . . ,𝜃𝑘−1 − 𝜃𝑘 are independent. Isolating 𝜉 as the parameter of
interest, and denoting 𝜉*

𝑗 , for 𝑗 = 1, . . . , 𝑘 − 1, as the difference 𝜉𝑗 − 𝜉𝑗+1 standardized by its
asymptotic variance, the sequence 𝜉* = (𝜉*

1 , . . . , 𝜉
*
𝑘) is asymptotically a white-noise process,

i.e, is a sequence of independent standard normal variables. Wadsworth [2016] proposes a
simple changepoint model for 𝜉* in order to compare the likelihood for a threshold 𝑢𝑗 and that
for the lowest threshold 𝑢1. Therefore, the suggested two additional diagnostic plots show the
white noise process and a likelihood ratio statistic against the threshold; see Figure 13.

This likelihood-based approach for threshold selection can be automated by testing
the significance of the largest likelihood ratio statistic. If this test is not significant, the lowest
threshold is taken. For the Pomerode station, the selected threshold was the 63% quantile for
wet days, or 8.4 mm, resulting in 5,418 exceedances, which is about 4 and 7 times larger than
the 90% and 95% quantile.
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Figure 13 – Threshold diagnostic plots for 𝜉 using the data from the Pomerode station. Top
panel: parameter stability plot. Bottom panel: white noise process 𝜉* (left) and
likelihood ratio statistic (right). The blue line highlights the selected threshold.
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3.5 Penultimate approximations
Convergence to the limiting distributions mentioned in Section 3.1 should not be taken

for granted. Fisher e Tippett [1928] had already discussed this issue. They showed that con-
vergence in distribution of the rescaled 𝑍𝑛 to the Gumbel limit for underlying normal variables
is very slow (Davison e Huser [2015] illustrates this by means of an animation), and that the
reverse Weibull distribution provides a better approximation for 𝑍𝑛, 𝑛 finite. In other words,
even though the normal distribution belongs to the Gumbel max-domain of attraction, the
Weibull form provides a better representation for finite samples. The Weibull is the penulti-
mate approximation through which maxima from normal variables pass before reaching their
ultimate destination. In most cases, the penultimate approximation has 𝜉 ̸= 0 even if the limit-
ing distribution is of the Gumbel form [DAVISON; HUSER, 2015]. Fisher e Tippett [1928] and
Smith [1987] proposed approximating the shape parameter for finite 𝑛, 𝜉𝑛, by 𝑟′(𝑏𝑛), where

𝑟(𝑥) = 1 − 𝐹 (𝑥)
𝑓(𝑥)

is the reciprocal hazard function, and 𝑏𝑛 = 𝐹−1(1 − 1/𝑛).

Various distributions like the gamma, log-normal, Pareto, and mixed exponential have
been used to model (positive) daily rainfall. Wilson e Toumi [2005] provided a physical justifi-
cation, by interpretation of the water balance equation, for using the Weibull distribution for
heavy daily rainfall, i.e,

𝐹 (𝑥) = 1 − exp{−(𝑥/𝜆)𝑘},

for large 𝑥, with shape parameter 𝑘 = 2/3 and scale parameter 𝜆 > 0. They expressed
precipitation as the product of three independent random variables, each having approximately
a normal distribution for daily totals (but not for shorter or longer timescales); they are the
mass flux, the specific humidity, and the precipitation efficiency.

The probability of the product of 𝑘 independent variables 𝑋1, . . . , 𝑋𝑘 is controlled by
realizations where all terms in the product are of the same order, i.e, by the joint probability
of all variables assuming common values, 𝑋1/𝑘 [FRISCH; SORNETTE, 1997]. Therefore,
standardizing the three random variables that control rainfall, the probability density function
of their product is, to a leading order, just the product of three standard normal densities
evaluated at a common value 𝑥1/3. The tail of the resulting distribution is 𝑃{𝑋1𝑋2𝑋3 > 𝑥} ∝
exp{−(𝑥1/3)2}, which is of the stretched exponential form; hence the Weibull distribution with
shape parameter 𝑘 = 2/3. According to Wilson e Toumi [2005], the shape of the tail should
be “largely unaffected by climate change,” and “the robustness of the shape parameter may
now seem unsurprising given the physical basis of moisture conservation.”

Figure 14 shows the probability distribution for daily rainfall in Pomerode. The Weibull
distribution provides a great fit for all positive values and, indeed, the estimated shape pa-
rameter of 0.74 is close to the 2/3 constant (the estimated scale parameter is �̂� = 8.7). The



Chapter 3. Methodology 32

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

0 50 100 150 200

x (mm/day)

P
(X

>
x

 | 
X

>
0)

10−4

10−3

10−2

10−1

1 GPD
Weibull
Gamma

Figure 14 – The empirical probability 𝑃{𝑋 > 𝑥 | 𝑋 > 0} according to 𝑥 for the station in
Pomerode, in the state of Santa Catarina. The gamma and Weibull distributions
were fitted to all positive rainfall values, and the generalized Pareto distribution
(GPD) was fitted for values greater than 10 mm. The three distributions were
estimated by maximum likelihood.

generalized Pareto distribution is not so far off, with an estimated shape parameter of 0.10
(and 𝜏10 = 14.3), reflecting the stretched exponential tail of the Weibull distribution.

The Weibull distribution is not threshold stable, so fitting it to different thresholds will
provide different estimates for the shape parameter (in the example, 𝑘 = 3.14, 4.51 for values
larger than 50 and 100). However, suppose 𝐹 is Weibull. As mentioned before, the Weibull
distribution belongs to the Gumbel max-domain of attraction, but its convergence is very slow.
Koutsoyiannis [2004a] showed that even for 𝑛 = 106 some departure is apparent between the
Gumbel limit and the exact distribution function 𝑍𝑛. Indeed, calculating 𝜉𝑛 = 𝑟′(𝑏𝑛) for some
specific values of 𝑛, Table 4, we see that either for 90 wet days per year (approximately one
quarter of the year) or for 100% rainy days, the shape parameter will be close to 0.1, and only
for very large block sizes, of the order 1016, would 𝜉 be close to zero. For 𝑘 = 1/2, 𝜉𝑛 is doubled,
and for 𝑘 = 0, 𝜉𝑛 is always zero since the Weibull is reduced to the exponential distribution.
Global analyses have showed that 𝜉 is on average around 0.1 [KOUTSOYIANNIS, 2004b;
WILSON; TOUMI, 2005; PAPALEXIOU; KOUTSOYIANNIS, 2013; SERINALDI; KILSBY,
2014], so if a Weibull distribution can be assumed for rainfall, its shape parameter should be
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Table 4 – Values of 𝜉𝑛 = 𝑟′(𝑏𝑛) for the Weibull distribution with different shape parameters
𝑘.

aaaaa
𝑘 𝑛 90 365 3650 36500 365 × 1010 365 × 1012 365 × 1014

1/2 0.22 0.17 0.12 0.10 0.03 0.03 0.00
2/3 0.11 0.08 0.06 0.05 0.02 0.01 0.00
3/2 -0.07 -0.06 -0.04 -0.03 -0.01 -0.01 0.00

close to 2/3.

3.6 Checking the distributional assumptions
In order to diagnose and distinguish between distributions, we use the L-moment ratio

diagram, introduced by Hosking [1990], a very useful graphical tool when a large number of
samples are observed. This tool is especially useful for extreme values, since these are, by
definition, scarce, and it is often difficult to detect a lack of fit using a statistical test that has
enough power.

Hosking [1990] gathered and extended results about L-moments, providing a “unified
approach to the use of order statistics for the statistical analysis of univariate probability
distributions.” L-moments are expectations of certain linear combinations of order statistics.
Let 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ · · · ≤ 𝑋𝑛:𝑛 be the order statistics of a random sample of size 𝑛 drawn
from the distribution 𝐹 of a real-valued random variable 𝑋. The first four L-moments are

𝜆1 = E(𝑋),

𝜆2 = 1
2E(𝑋2:2 −𝑋1:2),

𝜆3 = 1
3E(𝑋3:3 − 2𝑋2:3 +𝑋1:3),

𝜆4 = 1
4E(𝑋4:4 − 3𝑋3:4 + 3𝑋2:4 −𝑋1:4).

These L-moments can be regarded as measures of location, scale, skewness and kurtosis. For
example, the third L-moment, 𝜆3, is the central second difference of the median of a sample of
size 3, i.e, the difference between the maximum and the median minus the difference between
the minimum and the median. In general,

𝜆𝑟 = 1
𝑟

𝑟−1∑︁
𝑘=0

(−1)𝑘
(︃
𝑟 − 1
𝑘

)︃
E(𝑋𝑟−𝑘:𝑟), 𝑟 = 1, 2, . . . . (3.7)

A finite mean implies finite expectation of all order statistics. Thus, if 𝑋 has finite mean, then
all its L-moments exist. And, as Hosking [1990] shows, they fully characterize 𝐹 . Moreover,
the standardized L-moments of 𝑋, called L-moment ratios, the quantities 𝜏𝑟 = 𝜆𝑟/𝜆2, 𝑟 =
3, 4, . . . , satisfy |𝜏𝑟| < 1, 𝑟 ≥ 3, which makes them easier to interpret. In particular, 𝜏3 and 𝜏4

are named L-skewness and L-kurtosis.
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Figure 15 – Observed and theoretical L-kurtosis and L-skewness for all stations. Left panel:
annual maxima. Right panel: exceedances above the 98% quantile for wet days.
The two subsets, containing the shortest and longest series, are distinguished.
The shape parameters of the generalized extreme-value and generalized Pareto
distributions are shown at the tops of the plots.

Natural estimators of L-moments are U-statistics, i.e., the corresponding function of
sample order statistics averaged over all subsamples of size 𝑟 which can be constructed from
the observed sample of size 𝑛. Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 be the sample and 𝑥1:𝑛 ≤ 𝑥2:𝑛 ≤ · · · ≤ 𝑥𝑛:𝑛

the ordered sample, the first four sample L-moments are

𝑙1 = 𝑛−1∑︁
𝑖

𝑥𝑖,

𝑙2 = 1
2

(︃
𝑛

2

)︃∑︁∑︁
𝑖>𝑗

(𝑥𝑖:𝑛 − 𝑥𝑗:𝑛),

𝑙3 = 1
3

(︃
𝑛

3

)︃∑︁∑︁∑︁
𝑖>𝑗>𝑘

(𝑥𝑖:𝑛 − 2𝑥𝑗:𝑛 + 𝑥𝑘:𝑛),

𝑙4 = 1
4

(︃
𝑛

4

)︃∑︁∑︁∑︁∑︁
𝑖>𝑗>𝑘>𝑙

(𝑥𝑖:𝑛 − 3𝑥𝑗:𝑛 + 3𝑥𝑘:𝑛 − 𝑥𝑙:𝑛).

The first four L-moments can be interpreted in the same way as the conventional moments,
but they are guaranteed to exist if the first L-moment exist, the L-ratios are constrained to lie
within the interval (−1, 1), and their estimates are more robust to outliers. Ordinary sample
moments of third and fourth order can be very unstable, especially when the sample consists
of extreme values. These moments characterize the shape of a distribution, and indeed, the
L-skewness and L-kurtosis for the generalized extreme-value distribution, or the generalized
Pareto distribution, are simple functions of the shape parameter alone. For the generalized
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Pareto distribution,
𝜏3 = (1 + 𝜉)/(3 + 𝜉),

𝜏4 = (1 + 𝜉)(2 + 𝜉)/{(3 + 𝜉)(4 + 𝜉)},

and for the generalized extreme-value distribution,

𝜏3 = 2(1 − 3𝜉)/(1 − 2𝜉) − 3,

𝜏4 = {5(1 − 4𝜉) − 10(1 − 3𝜉) + 6(1 − 2𝜉)}/(1 − 2𝜉).

Thus, for a large number of samples, we can compare the sample L-kurtosis and L-skewness of
the block maxima, or the exceedances above a threshold, with the line given by the theoretical
L-kurtosis and L-skewness; see Figure 15. We can also compare the resulting cloud of points
with other distributions if there are simple expressions for their first two L-ratios (expressions
which may define points, lines or regions in the L-moments ratio diagram), i.e., we can identify
distributions without fitting them. For example, in Figure 15 we can visualize how many rainfall
series are “close” to the Gumbel distribution, which is more informative than applying any of
the more than 13 tests for the hypothesis that the shape parameter is zero in the generalized
extreme-value distribution [HOSKING, 1984].

In Figure 15, there is not much difference between the two subsets, and the generalized
Pareto distribution seems to fit better the exceedances than the generalized extreme-value
distribution fits the annual maxima. Looking at the monthly maxima, Figure 16, there is a clear
difference between the two subsets in some months, and sometimes the Weilbull distribution
seems to provide a better description. Furthermore, for the last six months, the median point
corresponding to the longest series clearly lies on the right of the Gumbel distribution.

3.7 Estimation methods
Hosking, Wallis e Wood [1985] and Hosking e Wallis [1987] used E{𝑍𝐺(𝑍)𝑟} and

E[𝑌 {1 − 𝐻(𝑌 )}𝑟], 𝑟 = 0, 1, as particular probability-weighted moments for the generalized
extreme value and generalized Pareto distributions, respectively. The relationship between the
parameters and these quantities is simpler than their relationship with conventional moments.
Probability weighted moments are linear combinations of L-moments. As Hosking [1990] writes,
“L-moments are more convenient, however, because they are more directly interpretable as
measures of the scale and shape of probability distributions.” In small samples, parameters
estimates obtained from L-moments are less subject to bias, are closer to normality, and can
be more accurate than maximum likelihood estimates. In a simulation study, Hosking, Wallis
e Wood [1985] and Hosking e Wallis [1987] favored the probability-weighted moments when
compared to likelihood estimation. Even though maximum likelihood estimators have the small-
est possible asymptotic variances, the variance of the estimator by the probability-weighted
moments method was smaller for small samples (with sizes 𝑛 = 15, 25) and comparable for
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Figure 16 – Observed L-kurtosis and L-skewness for all stations and the theoretical lines of
the generalized extreme-value (green line) and Weibull distributions (dashed line).
The two subsets, containing the shortest and longest series, are distinguished.
The shape parameters of the generalized extreme-value is shown at the tops of
the plots.

moderate sample sizes (𝑛 = 50, 100). In both articles, they restricted their attention to the
case −1/2 < 𝜉 < 1/2. Smith [1985] showed that the maximum likelihood estimators obey
the regularity conditions that are required for the usual asymptotic properties to be valid only
if 𝜉 > −1/2. When 𝜉 > 1/4 and 𝜉 > 1/2, Hosking e Wallis [1987] showed that the variances
of the estimators by the method of moments and the probability-weighted moments are not
of asymptotic order 𝑛−1, respectively.

The likelihood framework provides a general approach to estimation and uncertainty
assessment, but it is often based on first-order asymptotic theory. When the samples are not
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Table 5 – Estimates with standard errors (in parentheses) for the parameters of the generalized
extreme-value (GEV) and generalized Pareto (GPD) distributions using maximum
likelihood (ML) and L-moments (LM). The threshold was set equal to 10 mm.

GPD GEV
𝜏𝑢 𝜉 𝜇 𝜎 𝜉

ML 14.29 (0.3) 0.096 (0.02) 78.1 (2.5) 21 (1.9) 0.05 (0.08)
LM 14.3 0.097 77.8 20.6 0.07

large, the maximum likelihood estimators may be unstable. And for the two extreme value
distributions considered, a potential difficulty arises when estimating the parameters, because
the end-points of the two extreme value distributions are functions of the parameter values.

For example, for a random sample 𝑌1, . . . , 𝑌𝑛 from the generalized Pareto distribution,
since the support of the distribution is 𝑦 ≥ 0 for 𝜉 ≥ 0, and 𝜏𝑢/𝜉 > 𝑦 ≥ 0 for 𝜉 < 0, the range
of 𝜏𝑢 is 𝜏𝑢 > 0 for 𝜉 ≥ 0, and 𝜏𝑢 > 𝜉𝑌(𝑛) for 𝜉 < 0, where 𝑌(𝑛) is the extreme order statistic.
When 𝜉 < −1, the log-likelihood is not bounded above, so to obtain a finite maximum,
the constraint 𝜉 ≤ −1 must be imposed. Therefore, maximum likelihood estimation is an
optimization problem on the constrained space {𝜏𝑢 > 0, 𝜉 > 0} ∪ {−1 ≤ 𝜉 < 0, 𝜏𝑢 > 𝜉𝑌(𝑛)}.

Differentiating the log-likelihood with respect to 𝜏𝑢 and 𝜉, the maximum with respect
to 𝜉 is achieved when

𝜉 = 1
𝑛

𝑛∑︁
𝑖=1

log
(︃

1 + 𝜉

𝜏𝑢
𝑌𝑖

)︃
. (3.8)

Reparametrizing the parameters (𝜏𝑢, 𝜉) to (𝜃, 𝜉), where 𝜃 = 𝜉/𝜏𝑢, and writing the profile
likelihood for 𝜃 (substituting 𝜉 with the expression in equation 3.8), yields

𝑙(𝜃) = −𝑛−
𝑛∑︁
𝑖=1

log(1 + 𝜃𝑌𝑖) − 𝑛 log
{︃
𝑛−1

𝑛∑︁
𝑖=1

𝜃−1 log(1 + 𝜃𝑌𝑖)
}︃
.

Maximum likelihood estimation is reduced to a one-dimensional search on the space {𝜃 <
1/𝑌(𝑛), 𝜃 ̸= 0} [DAVISON; SMITH, 1990]. However, the optimization algorithm still has to be
constrained, avoiding convergence to 0 and 1/𝑌(𝑛). And because of the behavior of the profile
log-likelihood near 1/𝑌(𝑛), its first derivative will have multiple roots, each of which must be
found. Grimshaw [1993] describes an efficient algorithm for obtaining the local maximum.

Table 5 shows the estimates for the parameters of the generalized extreme-value and
generalized Pareto distributions using the methods discussed. The shape parameter estimates
range approximately from about 0.05 to 0.1.
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3.8 Bias corrections
In Section 3.5, we discussed bias due to penultimate approximation. Another source of

bias comes from small samples. In Section 3.7, we mentioned that L-moments estimators are
less subject to bias, but we did not consider improved maximum likelihood inference for the
parameters of the extreme value distributions.

One question is how fast does the maximum likelihood estimator for 𝜉𝑛, given a finite
𝑛, converge to its mean. We simulated 1,000 rainfall series, each having 100-year length, from
the Weibull distribution with 𝑘 = 2/3 and 𝜆 = 1, considering three surreal cases: 90 and
104 wet days per year, and 100% rainy days, i.e, 𝑛 = 90, 365, 104. We split the series in
subsamples, taking the first 𝑚 = 10, 15, 20, . . . , 100 years, and fit by maximum likelihood the
generalized extreme-value distribution. Then, for each 𝑚, we computed the average and the
standard deviation of the estimates for the shape parameter. Plotting these empirical values
against the sample size 𝑚, see Figure 17, they follow very closely the curve

𝜑(𝑚) = 𝛼 + 𝛽𝑚−𝛾, 𝛼, 𝛽 ∈ R, 𝛾 > 0, (3.9)

where 𝜑(𝑚) can represent either the mean of the estimates, 𝜇𝜉(𝑚), or their standard deviation,
𝜎𝜉(𝑚). Parameter 𝛼 is the limit of 𝜑(𝑚) when 𝑚 → ∞, and parameter 𝛾 describes the rate
at which 𝜑(𝑚) converges to 𝛼. The estimates for these parameters are shown in Table 6. The
curves for the standard deviations are almost the same, irrespective of the block size. And, the
smaller the block size, the faster is the convergence to the asymptotic limit 𝛼, to the point
where the curve degenerates to a constant when the block size is 90.

Table 6 – Estimates with standard errors (in parentheses) for the parameters of equation (3.9)
according to the block size 𝑛, i.e, the number of wet days from the Weibull distri-
bution.

Statistic Parameter 𝑛 = 104 𝑛 = 365 𝑛 = 90

𝜇𝜉(𝑚)
𝛼𝜇 ≡ 𝜇𝜉 0.049 (0.002) 0.072 (0.001) 0.101 (0.003)
𝛽𝜇 −2.6 (2.1) −5.1 (5.8)
𝛾𝜇 1.78 (0.34) 2.15 (0.48)

𝜎𝜉(𝑚)
𝛼𝜎 ≡ 𝜎𝜉 0.031 (0.002) 0.04 (0.003) 0.035 (0.002)
𝛽𝜎 2.2 (0) 2.3 (0.1) 2.1 (0.1)
𝛾𝜎 0.83 (0.01) 0.87 (0.02) 0.82 (0.02)

This idea of splitting the rainfall series in subsamples appears in Papalexiou e Kout-
soyiannis [2013], where they propose a bias correction for an estimate of the shape param-
eter 𝜉 based on a short rainfall series. Under the hypothesis that, for any finite sample size
𝑚, 𝜉(𝑚) has a normal distribution with mean 𝜇𝜉(𝑚) and standard deviation 𝜎𝜉(𝑚) , i.e.,
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Figure 17 – Average and standard deviation of the maximum likelihood estimates for the shape
parameter of the generalized extreme-value distribution according to subsamples
of the 1,000 simulated rainfall series. The thick lines are fitted curves of the form
(3.9).

𝜉(𝑚) ∼ 𝑁{𝜇𝜉(𝑚), 𝜎𝜉(𝑚)}, where 𝜇𝜉(𝑚) = 𝜇𝜉 + 𝛽𝜇𝑚
−𝛾𝜇 , 𝜎𝜉(𝑚) = 𝜎𝜉 + 𝛽𝜎𝑚

−𝛾𝜎 , and
𝜇𝜉 ≡ 𝛼𝜇 and 𝜎𝜉 ≡ 𝛼𝜎, the estimate

𝜉(𝑚) = 𝜎𝜉

⎧⎨⎩𝜉(𝑚) − 𝜇𝜉(𝑚)
𝜎𝜉(𝑚)

⎫⎬⎭+ 𝜇𝜉, (3.10)

i.e., 𝜉(𝑚) standardized by its true mean and standard deviation, and then transformed to a
realization of the asymptotic limit distribution, 𝑁(𝜇𝜉, 𝜎𝜉), is bias corrected.

In order to estimate the curves 𝜇𝜉(𝑚) and 𝜎𝜉(𝑚), they used 15,137 rainfall series
in several parts of the world, with lengths from 40 to 163 years. They found the normal
distribution to be adequate, and the asymptotic parameters to be �̂�𝜉 = 0.114 and �̂�𝜉 = 0.045.

Since equation 3.10 is a linear transformation, the ranks of the original estimates are
preserved and also their spatial patterns (when present). After applying this transformation to
their data, they found that, for all stations, the shape parameter of the generalized extreme
value distribution was always positive, thus indicating that heavy-tailed distributions describe
extreme daily rainfall values more accurately.

Serinaldi e Kilsby [2014] used a subset of Papalexiou and Koutsoyiannis’ database to
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investigate the impact of threshold selection and record length on the upper tail behavior
of exceedances in the generalized Pareto model. After selecting 113 rainfall series spanning
from 1900 to 2011 with less than 5% of values missing and dividing them into four seasons
(summer, autumn, winter, and spring), they split the series in subsamples of length from 10
to 110 years by 5-year steps, and estimated via maximum likelihood the shape parameter of
the generalized Pareto distribution for each record length and season.

However, Serinaldi e Kilsby [2014] arrived at different results: their correction pre-
served a large number of negative estimates for 𝜉, raising the question of an upper limit for
precipitation in some geographic regions.

Aside from this empirical correction, a theoretical one can be obtained based on the
work of Cox e Snell [1968]. For a random sample of size 𝑛 from the generalized Pareto
distribution with scale and shape parameters 𝜎 and 𝜉, Giles et al. [2011] and Previdelli e Davison
[2011] showed that the biases of their maximum likelihood estimators are approximately

E
(︁
𝜉 − 𝜉

)︁ .= −(1 + 𝜉)(3 + 𝜉)
𝑛(1 + 3𝜉) , E (�̂� − 𝜎) .= 𝜎

(4𝜉2 + 5𝜉 + 3)
𝑛(1 + 3𝜉) , 𝜉 > −1/3. (3.11)

Since 𝜉 is expected to have a negative bias, and �̂� a positive bias, the tail weight is typically
underestimated. This correction is taking into account only the sample size bias, while the one
proposed first by Papalexiou e Koutsoyiannis [2013] also takes into account the penultimate
approximation bias. One can use the correction (3.10) or use the information gathered by this
kind of study into a Bayesian framework.

3.9 Return levels
In practice, our main interest relies on the estimation of extreme quantiles or return

levels. This is difficult since extreme values are, by definition, scarce. Moreover, we are often
required to estimate events that are rarer than those already observed. Extreme value theory
provides a class of models based on asymptotic arguments that allows extrapolation from
observed to non-observed (future extreme) levels.

For the generalized Pareto distribution with scale and shape parameters 𝜎 and 𝜉, high
quantiles, i.e., values satisfying

𝑃{𝑌 ≤ 𝑞𝑝} = 𝑃{𝑋 ≤ 𝑢+ 𝑞𝑝 | 𝑋 > 𝑢} = 1 − 𝑝

for values of 𝑝 close to 0, are obtained by solving the equation 𝑝 = 1 −𝐻(𝑞𝑝), giving

𝑞𝑝 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜎

𝜉

⎧⎨⎩
(︃

1
1 − 𝑝

)︃𝜉
− 1

⎫⎬⎭ , 𝜉 ̸= 0,

−𝜎 log(1 − 𝑝), 𝜉 = 0.
(3.12)
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In common terminology, 𝑞𝑝 is the return level associated with the return period 1/𝑝, since 𝑞𝑝
is expected to be exceeded on average once every 1/𝑝 years. If 𝜉 < 0, the upper endpoint of
the support of 𝑌 is 𝑞1 = −𝜎/𝜉.

Another way of obtaining a return level is in terms of the mean time for some level to
be to be exceeded. The (mean) level 𝑥𝑚 > 𝑢 that is exceeded once every 𝑚 observations is
the solution of the equation relating frequency and period:

𝑃{𝑋 > 𝑥𝑚} = 1
𝑚
, (3.13)

which can be solved by noting that

𝑃{𝑋 > 𝑥𝑚} = 𝑃{𝑋 > 𝑥𝑚, 𝑋 > 𝑢} = 𝑃{𝑋 > 𝑢}𝑃{𝑋 > 𝑥𝑚 | 𝑋 > 𝑢},

where
𝑃{𝑋 > 𝑥𝑚 | 𝑋 > 𝑢} = 𝑃{𝑌 > 𝑥𝑚 − 𝑢} = 1 −𝐻(𝑥𝑚 − 𝑢) = 𝑝.

Denoting 𝜁𝑢 = 𝑃{𝑋 > 𝑢}, the solution is the same as in equation 3.12, but 𝑢 is added and 1−𝑝
is replaced by (𝑚𝜁𝑢)−1. By construction, 𝑥𝑚 is the 𝑚-observation return level. If there are 𝑛
observations by year, the return level for 𝑁 years is given by equation (3.12) with 𝑚 = 𝑁 ×𝑛.
As with the generalized extreme value model for block maxima, this quantity requires the
estimation of three parameters, with 𝜎 and 𝜉 determining the distribution of exceedances, and
𝜁𝑢 the probability that the threshold 𝑢 is exceeded. This is analogous to a semiparametric
approximation to the parent distribution, using the empirical distribution function below the
threshold 𝑢, and fitting the generalized Pareto distribution for the observations above 𝑢.

The quantile function can also be written in terms of the Box–Cox transformation as
𝑞𝑝 = −𝜎𝑔(1 − 𝑝; −𝜉), where

𝑔(𝑧; 𝜉) =

⎧⎪⎨⎪⎩𝜉
−1(𝑧𝜉 − 1), 𝜉 ̸= 0,

log 𝑧, 𝜉 = 0.
(3.14)

For 𝜉 ̸= 0, the transformation 𝑔(1 − 𝑝; 𝜉) may be written, using the series expansions 𝑒𝑥 =
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1 + 𝑥+ (1/2)𝑥2 + · · · and log(1 + 𝑥) = 𝑥− (1/2)𝑥2 + · · · , as

𝑔(1 − 𝑝; 𝜉) = 1
𝜉

{︁
𝑒𝜉 log(1−𝑝) − 1

}︁
= 1
𝜉

{︂
𝑒𝜉(−𝑝− 1

2𝑝
2+··· ) − 1

}︂

= 1
𝜉

{︃
1 + 𝜉

(︂
−𝑝− 1

2𝑝
2 + · · ·

)︂
+ 1

2𝜉
2
(︂

−𝑝− 1
2𝑝

2 + · · ·
)︂2

+ · · · − 1
}︃

= −𝑝− 1
2𝑝

2 + 1
2𝜉
(︂

−𝑝− 1
2𝑝

2 + · · ·
)︂2

+ · · ·

= −𝑝− 1
2𝑝

2 + 1
2𝜉
{︂

−𝑝
(︂

1 + 1
2𝑝+ · · ·

)︂}︂2
+ · · ·

= −𝑝− 1
2𝑝

2 + 1
2𝜉𝑝

2
(︂

1 + 1
2𝑝+ · · ·

)︂2
+ · · ·

= −𝑝
{︂

1 + 1
2(1 + 𝜉)𝑝+𝑂(𝑝2)

}︂
, 𝑝 → 0.

Thus, for small 𝑝, the accuracy of 𝑞𝑝 is largely determined by the accuracy of �̂�.

For the generalized extreme-value distribution, high quantiles are obtained by solving
the equation 𝑝 = 1 −𝐺(𝑞𝑝), giving

𝑞𝑝 =

⎧⎪⎨⎪⎩
𝜇− 𝜎

𝜉

[︁
1 − {− log(1 − 𝑝)}−𝜉

]︁
, 𝜉 ̸= 0,

𝜇− 𝜎 log {− log(1 − 𝑝)} , 𝜉 = 0.
(3.15)

The (mean) level 𝑥𝑁 that is exceeded once every 𝑁 years is given by equation 3.15 with
𝑝 = 1/𝑁 .

For the city of Pomerode, the maximum likelihood estimate for the 25-year return level
is �̂�𝑚 = �̂�365×25 = 182 mm using the generalized Pareto distribution with a threshold at 10
mm. Thus, once every 25 years, we might expect a daily rainfall in Pomerode to exceed about
182 mm.

Engineers are often conservative, designing their structures according to the upper
bound of confidence intervals for the return level. A 95% Wald confidence interval for 𝑥𝑚 is
approximately (162 mm, 202 mm). Figure 18 displays the profile log-likelihoods for the shape
parameter and the 25-year return level. The confidence interval obtained via the likelihood ratio
statistic, (164 mm, 205 mm), is similar to the Wald interval. However, the profile likelihood is
usually highly asymmetric, reflecting greater uncertainty for extreme quantiles, and should be
preferred [COLES, 2001].

Taking annual maxima and using the generalized extreme-value distribution gives �̂�𝑁 =
�̂�25 = 151 mm and 95% confidence interval (135 mm, 180 mm), obtained via the likelihood
ratio statistic. In the next sections, we explore these differences in the estimates.
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Figure 18 – Profile likelihood for 𝜉 and the 25-year return level (left and right panels) using
the generalized Pareto distribution with a threshold at 10 mm.

3.10 Extremal dependence
Knowledge that it rained heavily today might influence the probability of extreme rain-

fall in one or two days’ time. Therefore, the independence assumption might not be reasonable
for daily or hourly observations. Moreover, if we define the blocks for the maxima as being the
weeks instead of the years, we may not even assume that we have an independent sample of
block maxima or that the generalized extreme-value distribution is adequate.

Fortunately, the convergence of block maxima to the generalized extreme-value dis-
tribution still holds if long-range dependence at extreme levels is sufficiently weak [COLES,
2001]. If 𝑋1, . . . , 𝑋𝑛 is a stationary sequence of random variables, then, under suitable con-
ditions, the distribution of 𝑍𝑛 is approximately 𝐹 𝑛𝜃, where 𝜃 ∈ (0, 1] is the extremal index,
which quantifies the extent of extremal dependence: 𝜃 = 1 for a independent process; 𝜃 → 0
for increasing levels of (extremal) dependence. The asymptotic distribution of 𝑍𝑛 is simply
𝐺𝜃, which is still a generalized extreme-value distribution due to the max-stability property.
However, when dependence is present, convergence of block maxima to the limit distribution
will be slower, effectively reducing the block size 𝑛.

The extremal index of a stationary process summarizes the degree of clustering of its
extremes [DAVISON; HUSER, 2015], and its value can be thought of as the reciprocal of
the expected number of exceedances in a block of small length. To estimate 𝜃, the intervals
estimator of Ferro e Segers [2003], based on an asymptotic result for the times between
threshold exceedances, can be used. For the station in Pomerode, the estimate is 0.77 with
95% confidence interval (0.72, 0.82), so the average cluster size is a little larger than 1 day.
Figure 19 illustrates how temporal dependence is weak for this rainfall series in Pomerode.

The modeling approach for dependent extremes is unchanged when using block max-
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Figure 19 – Rainfall series of the station in Pomerode plotted against itself at lag 1. The green
lines represents the 98% quantile for positive rainfall.

ima. For the threshold exceedance procedure, a popular approach is to filter out an approx-
imately independent set of excesses, i.e, identify independent clusters and extract only their
maximum. One way to identify clusters is through runs declustering, which assumes that ex-
ceedances belong to the same cluster if they are separated by fewer than a certain number,
the run length, of values below the threshold. So, this approach, often referred to as the peaks
over threshold approach [DAVISON; SMITH, 1990], works by:

1. choosing a run length 𝜅 (a “declustering parameter”);

2. identifying clusters through the entire series. A cluster of threshold excesses is deemed
to have terminated when at least 𝜅 consecutive observations fall below the threshold;

3. extracting the maximum observation from each cluster, and fitting the generalized Pareto
distribution to these “peaks”.

Although this is a very pragmatic method for dealing with clustered extremes, this and other
declustering schemes are very wasteful of data and can introduce serious bias when estimating
return levels [FAWCETT; WALSHAW, 2012]. When dependence is present, the return level
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𝑥𝑁 > 𝑢 that is exceeded once every 𝑁 years is the solution of the equation

𝑃{𝑋 > 𝑥𝑁}𝜃 = 1
𝑁
, (3.16)

since the distribution of 𝑍𝑛 at 𝑥𝑁 is approximately 𝐹 𝑛𝜃(𝑥𝑁) = 𝑃{𝑋 ≤ 𝑥𝑁}𝜃, which is
asymptotically [1 − 𝜁𝑢{1 −𝐻(𝑥𝑁 − 𝑢)}]𝜃. Solving for 𝑥𝑁 gives

𝑥𝑁 =

⎧⎪⎪⎨⎪⎪⎩
𝑢+ 𝜎

𝜉

[︁
𝜁−1
𝑢

{︁
1 − (1 − 1/𝑁)1/𝜃

}︁]︁−𝜉
− 1, 𝜉 ̸= 0,

𝑢− 𝜎 log
{︁
1 − 𝜁−1

𝑢 (1 − 1/𝑁)1/𝜃
}︁
, 𝜉 = 0.

(3.17)

Fawcett e Walshaw [2012] recommends the use of this equation, using all threshold excesses
to estimate (𝜁𝑢, 𝜎, 𝜉), and the use of bias-corrected, accelerated bootstrap confidence intervals
for 𝑥𝑁 . However, as we show in the next chapter, there is only a slight tendency for rainfall
extreme values to cluster, so the effect on inference is minimal.

3.11 Extremogram
The autocorrelation function determines the distribution of a stationary Gaussian se-

quence, but it does not capture the dependence structure of sequences whose finite-dimensional
distribution have power-law tails. Davis e Mikosch [2009] defined an analog of the autocorre-
lation function, the extremogram, for the extremes of strictly stationary sequences of random
vectors with finite-dimensional distributions regularly varying according to a positive tail index.
The tail dependence coefficient of a one-dimensional strictly stationary sequence 𝑋𝑡,

𝜌(ℎ) = lim
𝑢→∞

𝑃{𝑋𝑡+ℎ > 𝑢 | 𝑋𝑡 > 𝑢} ℎ = 0, 1, 2, . . . ,

is a special case of the extremogram, and it can be interpreted as a particular autocorrelation
function, providing quantitative descriptions of the persistence of a shock (an extreme event)
at future instants of time, i.e, it allows us to visually check the size of clusters of extreme values.
This quantity is a conditional probability of rare events, and its non-parametric estimation, the
joint exceedances at lag ℎ above some threshold 𝑢, requires large samples, which is why we
use the extremogram for the subset with the longest series.

The cross-extremogram, introduced by Davis, Mikosch e Cribben [2012], is a measure of
extremal serial dependence between two or more time series. For bivariate time series (𝑋𝑡, 𝑌𝑡),
one particular choice for the cross-extremogram is

𝜌(ℎ) = lim
𝑢→∞

𝑃{𝑌𝑡+ℎ > 𝑢 | 𝑋𝑡 > 𝑢} ℎ = 0, 1, 2, . . . .

When calculating the cross-extremograms between two stations, only the days for which there
are observations on both stations are used, so the sample sizes can be greatly reduced.
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3.12 Extremal coefficient
In order to check for spatial dependence among sites, we use the 𝐹 -madogram, a sum-

mary dependence measure similar to the semi-variogram. It was proposed by Cooley, Naveau
e Poncet [2006], and it is defined as

𝜈𝐹 (𝑠) = 1
2E [|𝐹{𝑍(𝑥)} − 𝐹{𝑍(𝑥+ 𝑠)}|] , 𝑥, 𝑠 ∈ R2, (3.18)

where 𝐹 denotes the cumulative distribution function of a max-stable process 𝑍(𝑥) over a
random (precipitation) field in R2. The 𝐹 -madogram is related to the extremal coefficient
function as follows:

𝜃(𝑠) = 1 + 2𝜈𝐹 (𝑠)
1 − 2𝜈𝐹 (𝑠) , 𝑠 ∈ R2. (3.19)

When 𝜃(𝑠) = 2, the process is an independent one, and when 𝜃(𝑠) → 1, the process exhibits
increasing levels of spatial extremal dependence.

The 𝐹 -madogram, and therefore the extremal coefficient function, is easily estimated
by its empirical counterpart. To reduce sample variability, a binned version of this estimate
is usually used, i.e., 𝜈𝐹 is averaged over suitable classes of pairwise distances. See Ribatet,
Dombry e Oesting [2016] for details.
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3.13 Nonstationary extremes
Environmental processes typically present temporal nonstationarity. Different seasons

may have different climate patterns, and long term trends might also be observable due to
climate change. Furthermore, as discussed in Section 2.3, a rainfall series may be associated
with other variables such as the multivariate ENSO index.

Davison e Smith [1990] discuss regression in the parameters of the generalized Pareto
distribution using least squares or maximum likelihood methods of estimation, while keeping
the threshold constant. Given a process 𝑋𝑡 with associated covariates V𝑡, they model the
exceedance rate,

𝜁𝑢(v𝑡) = 𝑃{𝑋𝑡 > 𝑢 | V𝑡 = v𝑡},

and the distribution of excesses 𝑌𝑡 of a threshold 𝑢 by a generalized Pareto distribution with
shape and scale parameters depending on the observed covariates v𝑡. Since the scale parameter,
𝜎(v𝑡), must be positive, it is natural to take its logarithm as a link function to the linear
predictor v𝑇𝑡 𝜎. For an independent sample of size 𝑛, this gives the likelihood

𝑛∏︁
𝑡=1

{1 − 𝜁𝑢(v𝑡)}1−𝐼(𝑥𝑡>𝑢)

⎡⎣𝜁𝑢(v𝑡)𝜎(v𝑡)−1
{︃

1 + 𝜉(v𝑡)
𝑥𝑡 − 𝑢

𝜎(v𝑡)

}︃−1/𝜉(v𝑡)−1

+

⎤⎦𝐼(𝑥𝑡>𝑢)

. (3.20)

The conditional return level 𝑞𝑝,𝑡, defined as the solution of

𝑃{𝑋𝑡 > 𝑞𝑝,𝑡 | V𝑡 = v𝑡} = 𝑝,

is, for 𝑞𝑝,𝑡 > 𝑢,

𝑞𝑝,𝑡 = 𝑢+ 𝜎(v𝑡)
𝜉(v𝑡)

⎡⎣{︃𝜁𝑢(v𝑡)
𝑝

}︃𝜉(v𝑡)

− 1
⎤⎦ . (3.21)

To obtain a (marginal) return level 𝑞𝑝, we can assume a model for the joint density 𝑓V𝑡 of the
covariates V𝑡 and integrate them out,

𝑃{𝑋𝑡 > 𝑞𝑝} =
∫︁

v𝑡

𝑃{𝑋𝑡 > 𝑞𝑝 | V𝑡 = v𝑡}𝑓V𝑡(v𝑡)𝑑v𝑡.

Under the assumption that the observerd covariates form a representative sample from this
joint distribution in some specified period of interest, we can estimate it empirically,

𝑃{𝑋𝑡 > 𝑞𝑝} = 1
𝑛

𝑛∑︁
𝑡=1

𝑃{𝑋𝑡 > 𝑞𝑝 | V𝑡 = v𝑡}. (3.22)

For 𝑞𝑝 > 𝑢,

𝑃{𝑋𝑡 > 𝑞𝑝} = 𝑃{𝑋𝑡 > 𝑞𝑝, 𝑋𝑡 > 𝑢}

= 1
𝑛

𝑛∑︁
𝑡=1

𝑃{𝑋𝑡 > 𝑢 | V𝑡 = v𝑡}𝑃{𝑋𝑡 > 𝑞𝑝 | 𝑋𝑡 > 𝑢,V𝑡 = v𝑡}

= 1
𝑛

𝑛∑︁
𝑡=1

𝜁𝑢(v𝑡)
{︃

1 + 𝜉(v𝑡)
𝑞𝑝 − 𝑢

𝜎(v𝑡)

}︃−1/𝜉(v𝑡)

+
= 𝑝. (3.23)
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After maximizing the likelihood (3.20), the maximum likelihood estimate 𝑞𝑝 can be found by
replacing the parameters in equation (3.23) by their estimates, and solving it numerically.

Due to the threshold stability property (see Section 3.4), the same covariates used
for 𝜎 must be used for 𝜉 so that this property remains valid. This is not desirable since
the shape parameter can usually be considered as fairly constant. Moreover, 𝜎(v𝑡) can only
retain the same functional form if the link function is linear. These disadvantages were first
noted by Eastoe e Tawn [2009], who suggested preprocessing the data before carrying out the
extreme value analysis. Their strategy is first to try modeling nonstationarity in the bulk of
the data, and then to apply a extreme value model to its residuals. Since the extremes might
have a different form of nonstationarity than in the central portion of the data, or even after
preprocessing, there may still have some nonstationarity leftover, they still include covariates
in the generalized Pareto model, hoping the lack of threshold stability will at least be a minor
problem.

As mentioned in the previous chapter, we are unsure about the quality of the data in
its body, and, as pointed out by Davison e Smith [1990], preprocessing seems best confined
to cases where the physical origin of the nonstationarity is well understood. So, we pursue
another strategy; we use block maxima with linear covariate models in the parameters, taking
the logarithm as a link for the scale parameter. The series might be considered approximately
stationary during the period in which maxima occur, although the resulting effective block
size may then be much reduced [DAVISON; HUSER, 2015]. Taking annual maxima would
completely avoid the need to model seasonality, but it would also result in a loss of information
(as seen in the beginning of this chapter, the number of annual maxima is several times smaller
than the number of exceedances of some high threshold).

We divide the year into separate seasonal units and assume that extremes within each
unit are stationary. There may be no natural or obvious partition of the year. For example, Coles
e Pericchi [2003] used in their initial analyses a three-season structure (November-February,
March-June, July-October), and they ended up using a two-season pattern, using the Bayesian
paradigm to make inference on the changepoint between the seasons. They found evidence
for “a seasonal breakdown that constitutes mid-November to April as the winter period, and
the remaining months as the summer period.”

Reboita et al. [2010] identified eight rainfall patterns in South America. They based
their classification on the shape of several monthly rainfall series spread across South Amer-
ica, showed in Figure 20, which is very illustrative of the typical rainfall regimes present in
South America. In the central parts (most of Peru, Bolivia, Paraguay, Brazil, and the north of
Argentina), the monthly rainfall series have a typical “U” shape.

Brazil, in particular, has various rainfall regimes, but for the most part, the rainy season
occurs during the austral summer (November through March). Exceptions are: the northern
parts of the Amazon basin, where the wet season happens in the boreal summer (mostly from



Chapter 3. Methodology 49

Figure 20 – Monthly rainfall series in South America and rough boundaries of the different
rainfall patterns. The figure was elaborated by Universidad de Buenos Aires, and
the boundaries were added by Reboita et al. [2010]. The graphs for some of the
stations correspond to the period 1931–1960, and for others, the period 1951–
1960.

June to August); the south region, which does not have a clear rainy and dry season (rainfall is
relatively uniform across time); and the northeast of Brazil, where most of the rainfall occurs
in a span of three months (this 3 month interval is quite heterogeneous for the whole region).
A recent and detailed description of the rainfall patterns in Brazil can be found in Rao et
al. [2016]. They mention that the central parts of the country have the main characteristic
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of a monsoon region: “6 months of rain during the austral summer followed by 6 months of
scanty rainfall in austral winter.” Figure 2 in the aforementioned article shows the six rainiest
consecutive months across Brazil. We use their figure to divide the year into two seasons of
six months, one rainy and the other dry.

Retaining only the data from the rainy season, we use four approaches to rainfall
extremes. For the longest series, we fit the generalized extreme-value distribution with time-
varying parameters to monthly maxima. To account for seasonality and possible trend, we
suppose the linear predictor for the location and scale parameters have the form

𝑝4(𝑡) + 𝛽1 sin(2𝜋𝑡/365) + 𝛽2 cos(2𝜋𝑡/365), (3.24)

where 𝑡 is indexing, on a daily scale, when the maxima occurred, 𝛽2 and 𝛽3 are the ampli-
tudes of the harmonic terms, and 𝑝4 is an orthogonal polynomial of degree 4. We are taking
nonstationarity into account only to properly estimate the shape parameter 𝜉, and borrow
this information into a Bayesian setting to estimate return levels and covariate effects, using
the shortest series, because the longest ones are too sparse, and the covariates have a short
record. The monthly mean carbon dioxide and the deforestation rates start in 1980 and 1988,
respectively. As for the multivariate ENSO index, the National Oceanic and Atmospheric Ad-
ministration provides two data sets, one from 1950 to 2016, and the other data from 1871 to
2005. Only the former dataset is updated regularly.

So, we estimate 25-year return levels using a Bayesian hierarchical model, described
in the next section, to extreme areal rainfall. This model could theoretically include temporal
covariates, but its current implementation in the package SpatialExtremes only allows spatial
covariates. So, to investigate the effect of ENSO, CO2 levels, and deforestation rates, we take
an approach similar to the one used for the longest series, keeping the seasonal components
in (3.24), and replacing 𝑝4(𝑡) by a linear trend plus the covariates of interest. We note that
there is no need to consider the lag of the ENSO effect on precipitation because of the way
the ENSO index is built.

As to the dependence measures mentioned in Sections 3.11 and 3.12, we need to have
stationary series, and so, some kind of preprocessing of the data is necessary. Eastoe e Tawn
[2009] use a Box–Cox location–scale model of the form

𝑋
𝜈(v𝑡)
𝑡 − 1
𝜈(v𝑡)

= 𝜇(v𝑡) + 𝜎(v𝑡)𝑍𝑡,

where 𝜇, log 𝜎, and 𝜈 are linear functions of the covariates. The residuals, 𝑍𝑡, should be
approximately stationary. Instead, we use a generalized additive model for location, scale and
shape (GAMLSS), assuming a Box–Cox 𝑡 distribution, a generalization of the Box–Cox normal
distribution, to 𝑋𝑡, i.e,

𝑍𝑡 = 1
𝜎(v𝑡)𝜈

{︃(︃
𝑋𝑡

𝜇𝑡(v𝑡)

)︃𝜈
− 1

}︃
, 𝜇𝑡, 𝜎𝑡 > 0, 𝜈 ̸= 0. (3.25)
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Table 7 – Number of parameters 𝑝, negative maximized log-likelihood 𝑙, and 𝑝-value of the
likelihood ratio test for the successive nested models.

Model 𝑝 𝑙 𝑝-value
1. Time homogeneous 3 744
2. As 1. plus the ENSO effect in 𝜇 and log 𝜎 5 743 0.49
3. As 2. plus the CO2 effect in 𝜇 and log 𝜎 7 743 1.00
4. As 3. plus linear trend in 𝜇 and log 𝜎 9 743 0.99
5. As 3. plus the deforestation effect in 𝜇 and log 𝜎 9 743 0.96
6. As 3. but periodic in 𝜇 9 742 0.00
7. As 6. but periodic in log 𝜎 11 742 0.46

Table 8 – Estimates with standard errors (in parentheses) for the parameters of the selected
model.

Intercept ENSO CO2 Sine Cosine
𝜇 40.6 (33) −0.7 (1.7) 0 (0.1) 2.2 (2) 1 (4.8)

log 𝜎 2.79 −0.07 (0.08) 0
𝜉 0.06 (0.06)

The residuals 𝑍𝑡 should follow a truncated 𝑡 distribution with 𝜏 > 0 degrees of freedom. 𝑋𝑡 is
said to have a Box–Cox 𝑡 distribution with parameters 𝜇, 𝜎, 𝜈, and 𝜏 . This distribution and its
extension to regression are described in Rigby e Stasinopoulos [2006]. The covariates in 𝜇 and
log 𝜎 were the seasonal components in (3.24) plus a B-spline with three degrees of freedom.
We could include covariates in 𝜈, the parameter controlling skewness, but we found out, by
using the generalized Akaike information criterion with different penalties for the parameters,
that this was not necessary for any of the rainfall series.

Table 7 shows some possible models fitted to the data in Pomerode. Based on the
likelihood ratio statistics, we selected model number 5, which does not include a linear trend
in log 𝜎. Table 8 shows the parameters estimates for the selected model. The effect of the
ENSO phenomenon is expected to be positive (see Figure 7), but it is not significant (at least
not for this particular station and time period). There is also no evidence for a carbon dioxide
effect. Figure 21 shows the conditional return levels for some return periods. These return
levels are much smaller than those found in Section 3.9. Marginal return levels are obtained
using equation (3.22) and solving for 𝑞𝑝, with 𝑝 small,

𝑝 = 𝑃{𝑍𝑡 > 𝑞𝑝} = 1
𝑛

𝑛∑︁
𝑡=1

{︁
1 − exp

(︁
− [1 + 𝜉 {𝑞𝑝 − 𝜇(𝑡)} /𝜎(𝑡)]−1/𝜉

)︁}︁
, (3.26)

where 𝑍𝑡 is the monthly maxima at time 𝑡, and 𝑛 is the sample size. Solving equation (3.26),
the estimate for the marginal 25-year return level is 𝑞1/25 = 104.

If conditional on the fitted parameter values, the maxima at month 𝑘, 𝑍𝑘, follows an
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Figure 21 – Conditional return levels and monthly maxima at the station of Pomerode.

extreme-value distribution with parameters {�̂�(𝑘), �̂�(𝑘), 𝜉}, then the standardized variable

𝑍𝑘 = − log
[︃
− log

{︃
exp

(︃
−
[︁
1 + 𝜉 {𝑍𝑘 − �̂�(𝑘)} /�̂�(𝑘)

]︁−1/𝜉
)︃}︃]︃

= − log
(︃

−
[︁
1 + 𝜉 {𝑍𝑘 − �̂�(𝑘)} /�̂�(𝑘)

]︁−1/𝜉
)︃

= 𝜉−1 log
[︁
1 + 𝜉 {𝑍𝑘 − �̂�(𝑘)} /�̂�(𝑘)

]︁
has a standard Gumbel distribution, and we can make probability and quantile plots of the
observed 𝑧𝑘 with reference to this distribution [COLES, 2001]; see Figure 22. On both scales,
the linearity of the points indicates a good fit of the model.
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Figure 22 – Residual probability and quantile plots (left and right panels) of a nonstationary
model using the generalized extreme-value distribution for monthly maxima at the
station of Pomerode.



Chapter 3. Methodology 54

3.14 Bayesian hierarchical model
We take rainfall annual maxima (in order to avoid modeling seasonality), and we

use the same latent variable model described in Davison, Padoan e Ribatet [2012], assum-
ing that the generalized extreme-value parameters in each station with coordinates 𝑠 ∈ R2,
{𝜂(𝑠), 𝜏(𝑠), 𝜉(𝑠)}, vary linearly according to three independent Gaussian processes, i.e,

𝜑(𝑠) = 𝑓𝜑(𝑠; 𝛽𝜑) + 𝑆(𝑠;𝛼𝜑, 𝜆𝜑), 𝜑 = 𝜂, 𝜏, 𝜉,

where 𝑓𝜑 is a deterministic function depending on regression parameters 𝛽𝜑, and 𝑆𝜑 is a zero
mean, stationary Gaussian process with exponential covariance function 𝛼𝜑 exp(−‖ℎ‖/𝜆𝜑),
where 𝛼𝜑 is the sill parameter and exp(−‖ℎ‖/𝜆𝜑) is the Matérn correlation function with
shape parameter 𝜅 = 0.5. For the location and scale parameters of the generalized extreme-
value distribution, we allow their means to depend on spatial covariates (longitude, latitude,
and mean annual precipitation – MAP),

𝜂(𝑠) = 𝛽0,𝜂 + 𝛽1,𝜂 lon(𝑠) + 𝛽2,𝜂 lat(𝑠) + 𝛽3,𝜂(𝑠)MAP(𝑠), (3.27)

𝜏(𝑠) = 𝛽0,𝜏 + 𝛽1,𝜏 lon(𝑠) + 𝛽2,𝜏 lat(𝑠) + 𝛽3,𝜂(𝑠)MAP(𝑠), (3.28)

𝜉(𝑠) = 𝛽0,𝜉. (3.29)

Thus, conditional on the values of the Gaussian processes, the maxima for 𝑛 years observed
at 𝐷 stations are assumed to be independent with

𝑌𝑡(𝑥𝑑) | {𝜂(𝑥𝑑), 𝜏(𝑥𝑑), 𝜉(𝑥𝑑)}

∼ GEV{𝜂(𝑥𝑑), 𝜏(𝑥𝑑), 𝜉(𝑥𝑑)}, 𝑡 = 1, . . . , 𝑛, 𝑑 = 1, . . . , 𝐷.

A joint prior density must be defined for the mean parameters, 𝛽𝜂, 𝛽𝜏 , and 𝛽0,𝜉, and for
those of the covariance function, 𝛼 = (𝛼𝜂, 𝛼𝜏 , 𝛼𝜉)𝑇 , 𝜆 = (𝜆𝜂, 𝜆𝜏 , 𝜆𝜉)𝑇 . So, we first did an
exploratory analysis of the marginal distributions for the rainfall annual maxima. After fitting
of the generalized extreme-value distribution and obtaining estimates {𝜂(𝑥), 𝜏(𝑥), 𝜉(𝑥)}, we
compute their empirical variograms and fit the exponential covariance function by maximum
likelihood.

Since the inverse gamma and the multivariate normal distributions are conjugate pri-
ors for 𝛼 and 𝛽, they are used in order to reduce the computational burden. We attribute
independent priors with large variances, but with means similar to the maximum likelihood
estimates:

∙ Normal priors for the regression parameters with means 𝜇*
𝜂 = (80, 0, 0)𝑇 , 𝜇*

𝜏 = (20, 0, 0)𝑇 ,
and 𝜇*

𝜉 = 0.06, and covariance matrices Σ*
𝜂 = Σ*

𝜏 = diag(400, 100, 100), and Σ*
𝜉 = 50;

∙ Inverse gamma distributions as priors for 𝛼, with shape parameters 𝜅*
𝛼 = (𝜅*

𝛼𝜂
, 𝜅*

𝛼𝜏
, 𝜅*

𝛼𝜉
)𝑇 =

(1/2, 1/2, 1/2)𝑇 and scale parameters 𝜃*
𝛼 = (𝜃*

𝛼𝜂
, 𝜃*
𝛼𝜏
, 𝜃*
𝛼𝜉

)𝑇 = (180/2, 30/2, 0.03/2)𝑇 ;
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∙ Gamma priors for 𝜆 with shapes 𝜅*
𝜆 = (𝜅*

𝜆𝜂
, 𝜅*

𝜆𝜏
, 𝜅*

𝜆𝜉
)𝑇 = (10, 10, 5)𝑇 and scales 𝜃*

𝜆 =
(𝜃*
𝜆𝜂
, 𝜃*
𝜆𝜏
, 𝜃*
𝜆𝜉

)𝑇 = (7, 7, 3)𝑇 .

The joint density for the data, y, and all these parameters, Θ, is

𝜋(y,Θ) = 𝜋(y,𝜂, 𝜏 , 𝜉,𝛽𝜂,𝛽𝜏 , 𝛽0,𝜉,𝛼,𝜆,𝜅
*
𝛼,𝜃

*
𝛼,𝜅

*
𝜆,𝜃

*
𝜆,𝜇

*
𝜂,𝜇

*
𝜏 , 𝜇

*
𝜉 ,Σ*

𝜂,Σ*
𝜏 ,Σ*

𝜉)

= 𝜋(y | 𝜂, 𝜏 , 𝜉)

× 𝜋(𝜂 | 𝛽𝜂, 𝛼𝜂, 𝜆𝜂)𝜋(𝛼𝜂 | 𝜅*
𝛼𝜂
, 𝜃*
𝛼𝜂

)𝜋(𝜆𝜂 | 𝜅*
𝜆𝜂
, 𝜃*
𝜆𝜂

)𝜋(𝛽𝜂 | 𝜇*
𝜂,Σ*

𝜂)

× 𝜋(𝜏 | 𝛽𝜏 , 𝛼𝜏 , 𝜆𝜏 )𝜋(𝛼𝜏 | 𝜅*
𝛼𝜏
, 𝜃*
𝛼𝜏

)𝜋(𝜆𝜏 | 𝜅*
𝜆𝜏
, 𝜃*
𝜆𝜏

)𝜋(𝛽𝜏 | 𝜇*
𝜏 ,Σ*

𝜏 )

× 𝜋(𝜉 | 𝛽0,𝜉, 𝛼𝜉, 𝜆𝜉)𝜋(𝛼𝜉 | 𝜅*
𝛼𝜉
, 𝜃*
𝛼𝜉

)𝜋(𝜆𝜉 | 𝜅*
𝜆𝜉
, 𝜃*
𝜆𝜉

)𝜋(𝛽0,𝜉 | 𝜇*
𝜉 ,Σ*

𝜉). (3.30)

The posterior distribution is approximated using a Gibbs sampler. The full conditional distribu-
tion of a parameter 𝜓 needed for this Markov chain Monte Carlo computation is obtained, up
to a normalizing constant, by dropping the terms of the joint distribution in equation (3.30)
which do not depend on 𝜓. For example, for the location parameter,

𝜋(𝜂 | y,Θ−𝜂) ∝ 𝜋(y | 𝜂, 𝜏 , 𝜉)𝜋(𝜂 | 𝛽𝜂, 𝛼𝜂, 𝜆𝜂),

𝜋(𝛽𝜂 | y,Θ−𝛽𝜂
) ∝ 𝜋(𝜂 | 𝛽𝜂, 𝛼𝜂, 𝜆𝜂)𝜋(𝛽𝜂 | 𝜇*

𝜂,Σ*
𝜂),

𝜋(𝛼𝜂 | y,Θ−𝛼𝜂) ∝ 𝜋(𝜂 | 𝛽𝜂, 𝛼𝜂, 𝜆𝜂)𝜋(𝛼𝜂 | 𝜅*
𝛼𝜂
, 𝜃*
𝛼𝜂

),

𝜋(𝜆𝜂 | y,Θ−𝜆𝜂) ∝ 𝜋(𝜂 | 𝛽𝜂, 𝛼𝜂, 𝜆𝜂)𝜋(𝜆𝜂 | 𝜅*
𝜆𝜂
, 𝜃*
𝜆𝜂

),

where Θ−𝜓 contains all the model’s parameters except 𝜓. Given a value of the Markov chain
at iteration 𝑖, the next state of the chain is obtained as follows. Each component of 𝜂𝑖 =
{𝜂𝑖(𝑥1), . . . , 𝜂𝑖(𝑥𝐷)} is updated separately. For station 𝑑, a proposal 𝜂𝑝(𝑥𝑑) is generated from
a symmetric random walk and the acceptance probability (a likelihood ratio times a ratio of
multivariate normal distributions),

𝛼{𝜂𝑖(𝑥𝑑), 𝜂𝑝(𝑥𝑑)} = min
[︃
1, 𝜋{y𝑑 | 𝜂𝑝(𝑥𝑑), 𝜏𝑖(𝑥𝑑), 𝜉𝑖(𝑥𝑑)}
𝜋{y𝑑 | 𝜂𝑖(𝑥𝑑), 𝜏𝑖(𝑥𝑑), 𝜉𝑖(𝑥𝑑)}

𝜋(𝜂𝑝 | 𝛽𝜂, 𝛼𝜂, 𝜆𝜂)
𝜋(𝜂𝑖 | 𝛽𝜂, 𝛼𝜂, 𝜆𝜂)

]︃
,

is computed. With probability 𝛼{𝜂𝑖(𝑥𝑑), 𝜂𝑝(𝑥𝑑)}, the component 𝜂𝑖(𝑥𝑑) is updated to 𝜂𝑝(𝑥𝑑),
otherwise it remains the same. For the regression parameters, 𝛽𝜂 is drawn directly from a
multivariate normal distribution having covariance matrix and mean vector

{(Σ*
𝜂)−1 + X𝑇

𝜂 Σ−1
𝜂 X𝜂}−1, {(Σ*

𝜂)−1 + X𝑇
𝜂 Σ−1

𝜂 X𝜂}−1{(Σ*
𝜂)−1𝜇*

𝜂 + X𝑇
𝜂 Σ−1

𝜂 𝜂},

where Σ𝜂 is a 𝐷 × 𝐷 matrix determined by the covariance function, and X𝜂 is the design
matrix related to the regression coefficients 𝛽𝜂. Also due to the use of a conjugate prior,
𝛼𝜂 is drawn directly from an inverse gamma distribution. For the range parameter 𝜆𝜂, the
same procedure for the components in 𝜂𝑖 is used. The parameters of the other two Gaussian
processes are updated similarly (the proposal distributions in the Metropolis–Hastings steps
are log-normal for the scale parameter).
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Chapter 4

Results and discussion

In the first section, we consider the impact of record length on the estimate of the
shape parameter, taking only the subset of the longest series. In the other sections, we use
the subset of the shortest series to plot estimates of return level maps and the effects of some
covariates, and to estimate dependence measures in extreme levels.

4.1 Impact of record length
For each station, we fitted by maximum likelihood the nonstationary model (3.24) to

the monthly maxima in the rainy season, and proceeded as in Section 3.8, splitting the series
in subsamples, taking the first 𝑚 = 10, 15, 20, . . . , 95 years, and refitting the model. Then,
for each subsample, we computed the average and the standard deviation of the estimates for
the shape parameter. Figure 23 shows the plot of these empirical values against the sample
size 𝑚. We excluded 9 stations for having very discrepant estimates for 𝜉, leaving 95 stations.

Interestingly, a logistic model for 𝜇𝜉(𝑚) was more appropriate than model (3.9), i.e,

𝜇𝜉(𝑚) = 𝛼

1 + exp {(𝜈 −𝑚)/𝛿} , 𝛼 ∈ R, 𝜈, 𝛿 > 0, (4.1)

where 𝛼 is the horizontal asymptote as 𝑚 → ∞, 𝜈 is the inflection point of the curve, and 𝛿
represents the distance between 𝜈 and the point where the curve is approximately 3𝛼/4. The
parameters estimates are given in Table 9. The estimate for the asymptotic value of 𝜇𝜉 is 0.06,
lower than the value of more or less 0.1 found by previous studies [KOUTSOYIANNIS, 2004b;
WILSON; TOUMI, 2005; PAPALEXIOU; KOUTSOYIANNIS, 2013; SERINALDI; KILSBY,
2014]. Our sample is most representative of northeast Brazil, about 65% of the 95 stations,
followed by the southeast and the south (about 21% and 13% of the stations).
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Figure 23 – Maximum likelihood estimates for the shape parameter of the nonstationary gener-
alized extreme-value model according to subsamples of the longest rainfall series.
Equations (3.9) and (4.1) were fitted to the average and the standard deviation
of the estimates (blue and black lines).

Table 9 – Estimates with standard errors (in parentheses) for the parameters of equations (4.1)
and (3.9), corresponding to 𝜇𝜉 and 𝜎𝜉, respectively.

Parameter 𝜇𝜉 Parameter 𝜎𝜉

𝛼 0.06 (0.002) 𝛼 −0.03 (0.03)
𝜈 27 (1.5) 𝛽 1.05 (0.12)
𝛿 4 (1.3) 𝛾 0.49 (0.08)
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Table 10 – Porcentage of rejection, at the 5% significance level, of the likelihood ratio test for
successive nested models.

Model Rejection rate (%)
1. Time homogeneous
2. As 1. plus the ENSO effect in 𝜇 and log 𝜎 12
3. As 2. plus the CO2 effect in 𝜇 and log 𝜎 8
4. As 3. plus linear trend in 𝜇 and log 𝜎 2
5. As 3. plus the deforestation effect in 𝜇 and log 𝜎 4
6. As 3. but periodic in 𝜇 88
7. As 6. but periodic in log 𝜎 17

4.2 Covariate effects
Since we are interested in plotting the covariate effects, we need to select the same

model for each station. So, we follow the same approach as in the previous section, but we
substitute 𝑝4(𝑡) in (3.24) for the covariates. Based on Table 10, we opted not to include
neither a linear trend nor a deforestation effect, keeping only an intercept plus the effects for
the ENSO phenomenon and the carbon dioxide levels.

Then, we estimated the selected model by a Bayesian approach, using a informative
prior for the shape parameter, a normal distribution with mean 0.06 (the asymptotic value
found in Section 4.1) and standard deviation 0.02, and vague priors for the other parameters.

The next figures show, for the north and south regions and for the state of São Paulo,
the posterior mean estimate of each covariate, as well as ordinary kriging based on maximum
likelihood estimation for the underlying Gaussian random fields. As expected, we have a strong
positive effect of the ENSO phenomenon in the south region (but not in São Paulo), and a
negative effect in the north, while the effects due to the carbon dioxide levels are almost
negligible. Surprisingly, there is also a strong seasonal effect in the south region despite the
monthly mean being almost constant across the year.
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Figure 24 – Map of the south region and ordinary kriging for the coefficient estimates corre-
sponding to each covariate in the location parameter of the generalized extreme-
value distribution.



Chapter 4. Results and discussion 60

ENSO

−1
0
1
2

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●
●

●

● ●

●

● ●

● ●
●

●
●

●

●
●

● ●●●
●

●

● ●
●

●●
●●

●
●

●●●
●●

●

●

●● ●●● ●
●

●
●

●● ●

●
●
●

●●

●●
●●● ● ●●
● ●
●

●

●

●

●

●
●

●

●●● ● ●

●
●

●

●
●

●

●

●● ●
●

●●
● ●

●● ●● ●● ●
●● ●● ●●● ●●●● ●

●
●●

●
●

●●

●●
●

●

●

●
●

●

●
●● ●●

●

●

●● ●●● ●●
● ●●● ●

●

● ●● ●● ●
● ●

●●●

●

●●

●

●

●
●

● ●●
● ●

●

●●
●

● ●●

●
●●

●

●

●

●

● ●

●

●
●●●

● ●
●

●
● ●

●● ●
●

●

●
●

●

●●
●

●
●●

●●●
● ●

●●

●
●

●

●

●
●●

●
●

●

●
●

● ●●●● ●
●

●●●
●

●
● ●●

●

●

●

●

●

●

●● ●●●
●●● ●

●●●● ●

●

●
●

●●
●

●●●●

●
●

●

●●

●

●●●
●●

●

●●●●
● ●
● ●● ●● ●

● ●●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

● ●

●

●●

●

● ●

●

● ●

●●●
●●

●
●

●
● ●●●
●

●

● ●●
●●

●●●●
●●●●●

●

●

●● ●●● ●
●

●
●

●● ●

●
●●
●●

●●
●●● ●●●
● ●●●

●

●

●

●●

●
●●●● ●

●
● ●

●
●

●
●

●● ●
●

●●
● ●

●● ●●●● ●
●● ●● ●●● ●●●● ●

●
●●

● ●●●

●● ●
●

●

●●

●

●
●● ●●

●

●

●● ●●● ●●
● ●●● ●

●
● ●●●●●

● ●
●●●

●

●●
●
●

●
●

● ●●
● ●

●

●● ●● ●●
● ●●●

●

●

●

● ●

●

●
●●●

● ●
●

●
● ●●● ●
●

●
●

●
●

●●
●● ●●●●●

● ●
●●

●
●

●
●
●

●●

●
●

●

●
●

● ●●●● ●
●

●●● ●

●
● ●●

●

●

●

●

●

●

●● ●●●●●● ●
●●●● ●

●

●
●

●●
●

●●●●
●
●

●

●●

●

●●● ●●

●

●●●●●●
● ●● ●● ●

● ●●●

●
●

●

●

CO

−0.020
−0.015
−0.010
−0.005
0.000

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●
●

●

● ●

●

● ●

● ●
●

●
●

●

●
●

● ●●●
●

●

● ●
●

●●
●●

●
●

●●●
●●

●

●

●● ●●● ●
●

●
●

●● ●

●
●
●

●●

●●
●●● ● ●●
● ●
●

●

●

●

●

●
●

●

●●● ● ●

●
●

●

●
●

●

●

●● ●
●

●●
● ●

●● ●● ●● ●
●● ●● ●●● ●●●● ●

●
●●

●
●

●●

●●
●

●

●

●
●

●

●
●● ●●

●

●

●● ●●● ●●
● ●●● ●

●

● ●● ●● ●
● ●

●●●

●

●●

●

●

●
●

● ●●
● ●

●

●●
●

● ●●

●
●●

●

●

●

●

● ●

●

●
●●●

● ●
●

●
● ●

●● ●
●

●

●
●

●

●●
●

●
●●

●●●
● ●

●●

●
●

●

●

●
●●

●
●

●

●
●

● ●●●● ●
●

●●●
●

●
● ●●

●

●

●

●

●

●

●● ●●●
●●● ●

●●●● ●

●

●
●

●●
●

●●●●

●
●

●

●●

●

●●●
●●

●

●●●●
● ●
● ●● ●● ●

● ●●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

● ●

●

●●

●

● ●

●

● ●

●●●
●●

●
●

●
● ●●●
●

●

● ●●
●●

●●●●
●●●●●

●

●

●● ●●● ●
●

●
●

●● ●

●
●●
●●

●●
●●● ●●●
● ●●●

●

●

●

●●

●
●●●● ●

●
● ●

●
●

●
●

●● ●
●

●●
● ●

●● ●●●● ●
●● ●● ●●● ●●●● ●

●
●●

● ●●●

●● ●
●

●

●●

●

●
●● ●●

●

●

●● ●●● ●●
● ●●● ●

●
● ●●●●●

● ●
●●●

●

●●
●
●

●
●

● ●●
● ●

●

●● ●● ●●
● ●●●

●

●

●

● ●

●

●
●●●

● ●
●

●
● ●●● ●
●

●
●

●
●

●●
●● ●●●●●

● ●
●●

●
●

●
●
●

●●

●
●

●

●
●

● ●●●● ●
●

●●● ●

●
● ●●

●

●

●

●

●

●

●● ●●●●●● ●
●●●● ●

●

●
●

●●
●

●●●●
●
●

●

●●

●

●●● ●●

●

●●●●●●
● ●● ●● ●

● ●●●

●
●

●

●

Sin

0

5

10

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●
●

●

● ●

●

● ●

● ●
●

●
●

●

●
●

● ●●●
●

●

● ●
●

●●
●●

●
●

●●●
●●

●

●

●● ●●● ●
●

●
●

●● ●

●
●
●

●●

●●
●●● ● ●●
● ●
●

●

●

●

●

●
●

●

●●● ● ●

●
●

●

●
●

●

●

●● ●
●

●●
● ●

●● ●● ●● ●
●● ●● ●●● ●●●● ●

●
●●

●
●

●●

●●
●

●

●

●
●

●

●
●● ●●

●

●

●● ●●● ●●
● ●●● ●

●

● ●● ●● ●
● ●

●●●

●

●●

●

●

●
●

● ●●
● ●

●

●●
●

● ●●

●
●●

●

●

●

●

● ●

●

●
●●●

● ●
●

●
● ●

●● ●
●

●

●
●

●

●●
●

●
●●

●●●
● ●

●●

●
●

●

●

●
●●

●
●

●

●
●

● ●●●● ●
●

●●●
●

●
● ●●

●

●

●

●

●

●

●● ●●●
●●● ●

●●●● ●

●

●
●

●●
●

●●●●

●
●

●

●●

●

●●●
●●

●

●●●●
● ●
● ●● ●● ●

● ●●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

● ●

●

●●

●

● ●

●

● ●

●●●
●●

●
●

●
● ●●●
●

●

● ●●
●●

●●●●
●●●●●

●

●

●● ●●● ●
●

●
●

●● ●

●
●●
●●

●●
●●● ●●●
● ●●●

●

●

●

●●

●
●●●● ●

●
● ●

●
●

●
●

●● ●
●

●●
● ●

●● ●●●● ●
●● ●● ●●● ●●●● ●

●
●●

● ●●●

●● ●
●

●

●●

●

●
●● ●●

●

●

●● ●●● ●●
● ●●● ●

●
● ●●●●●

● ●
●●●

●

●●
●
●

●
●

● ●●
● ●

●

●● ●● ●●
● ●●●

●

●

●

● ●

●

●
●●●

● ●
●

●
● ●●● ●
●

●
●

●
●

●●
●● ●●●●●

● ●
●●

●
●

●
●
●

●●

●
●

●

●
●

● ●●●● ●
●

●●● ●

●
● ●●

●

●

●

●

●

●

●● ●●●●●● ●
●●●● ●

●

●
●

●●
●

●●●●
●
●

●

●●

●

●●● ●●

●

●●●●●●
● ●● ●● ●

● ●●●

●
●

●

●

Cos

0

5

10

15

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●
●

●

● ●

●

● ●

● ●
●

●
●

●

●
●

● ●●●
●

●

● ●
●

●●
●●

●
●

●●●
●●

●

●

●● ●●● ●
●

●
●

●● ●

●
●
●

●●

●●
●●● ● ●●
● ●
●

●

●

●

●

●
●

●

●●● ● ●

●
●

●

●
●

●

●

●● ●
●

●●
● ●

●● ●● ●● ●
●● ●● ●●● ●●●● ●

●
●●

●
●

●●

●●
●

●

●

●
●

●

●
●● ●●

●

●

●● ●●● ●●
● ●●● ●

●

● ●● ●● ●
● ●

●●●

●

●●

●

●

●
●

● ●●
● ●

●

●●
●

● ●●

●
●●

●

●

●

●

● ●

●

●
●●●

● ●
●

●
● ●

●● ●
●

●

●
●

●

●●
●

●
●●

●●●
● ●

●●

●
●

●

●

●
●●

●
●

●

●
●

● ●●●● ●
●

●●●
●

●
● ●●

●

●

●

●

●

●

●● ●●●
●●● ●

●●●● ●

●

●
●

●●
●

●●●●

●
●

●

●●

●

●●●
●●

●

●●●●
● ●
● ●● ●● ●

● ●●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

● ●

●

●●

●

● ●

●

● ●

●●●
●●

●
●

●
● ●●●
●

●

● ●●
●●

●●●●
●●●●●

●

●

●● ●●● ●
●

●
●

●● ●

●
●●
●●

●●
●●● ●●●
● ●●●

●

●

●

●●

●
●●●● ●

●
● ●

●
●

●
●

●● ●
●

●●
● ●

●● ●●●● ●
●● ●● ●●● ●●●● ●

●
●●

● ●●●

●● ●
●

●

●●

●

●
●● ●●

●

●

●● ●●● ●●
● ●●● ●

●
● ●●●●●

● ●
●●●

●

●●
●
●

●
●

● ●●
● ●

●

●● ●● ●●
● ●●●

●

●

●

● ●

●

●
●●●

● ●
●

●
● ●●● ●
●

●
●

●
●

●●
●● ●●●●●

● ●
●●

●
●

●
●
●

●●

●
●

●

●
●

● ●●●● ●
●

●●● ●

●
● ●●

●

●

●

●

●

●

●● ●●●●●● ●
●●●● ●

●

●
●

●●
●

●●●●
●
●

●

●●

●

●●● ●●

●

●●●●●●
● ●● ●● ●

● ●●●

●
●

●

●

Figure 25 – Map of São Paulo and ordinary kriging for the coefficient estimates correspond-
ing to each covariate in the location parameter of the generalized extreme-value
distribution.
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Figure 26 – Map of the north region and ordinary kriging for the coefficient estimates corre-
sponding to each covariate in the location parameter of the generalized extreme-
value distribution.
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Table 11 – Total and fitting number of stations per region.

Region Abbreviation Total Fitting stations
North* North 28 19

Bahia, Sergipe BA, SE 32 21
Rio Grande do Sul RS 71 47

Paraná PR 165 110
Rio de Janeiro RJ 52 35
Espírito Santo ES 52 35
Minas Gerais MG 103 69

São Paulo SP 322 107
* The “north” region includes the states of Tocantins, Amapá, Pará, Piauí,
and Maranhão.

4.3 Return level maps
Due to the intense computational burden of the Bayesian hierarchal model, we fit it

to separate regions of Brazil, as indicated in Table 11. For each region, we used two thirds
of the stations to fit the model, and left the remaining to validation, except for the state of
São Paulo. The mean of the prior distribution for 𝜉 was set to 0.06 (the asymptotic value
found in Section 4.1), and the standard deviation to 0.02. The priors used were the same for
all regions, and are described in Section 3.14. We set the mean of the prior densities similar
to the maximum likelihood estimates of each parameter, and the variance to some arbitrary
large value. When estimating the parameters via maximum likelihood, we verified the adequacy
of the exponential covariance function, and we noted that spatial correlation for the shape
parameter is almost non-existent.

Our climate space consisted of longitude, latitude, and mean annual precipitation, but
we also fitted the latent model without this last covariate, and compared this nested model
using the deviance information criterion; see Table 12. For the states of Paraná, Rio de Janeiro,
Minas Gerais, and São Paulo, the mean precipitation seems to be significant, so we used it to
make the return level maps (using ordinary kriging like in the previous section). The maps can
be seen in Figures 27 and 28, and a summary of the posterior for the covariance parameters
is given in Table 13. These results were obtained after 20,000 iterations of the Markov chain,
thinned by a factor of 30, preceded by a burn-in of 5,000 iterations.
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Table 12 – Deviance information criterion (according to region).

Region Model 1 Model 2
North 6,884 6,884

BA, SE 8,058 8,112
RS 17,691 17,688
PR 38,717 38,666
RJ 13,012 13,001
ES 12,704 12,699
MG 24,839 24,820
SP 39,224 39,107

Table 13 – Posterior means and associated 95% credible intervals for the covariance parame-
ters of the latent processes (according to region) in each generalized extreme-value
parameter.

Region Sill Range Region Sill Range

𝜂

North 67 (27, 148) 76 (36, 130) ES 43 (18, 93) 76 (37, 128)
BA, SE 109 (48, 226) 78 (40, 127) RJ 372 (172, 738) 69 (35, 117)

RS 22 (11, 41) 85 (44, 139) MG 26 (14, 46) 77 (41, 128)
PR 38 (21, 64) 84 (47, 135) SP 173 (100, 283) 86 (50, 136)

𝜏

North 16 (5, 38) 72 (35, 122) ES 8 (3, 18) 79 (40, 132)
BA, SE 7 (2, 16) 76 (37, 129) RJ 39 (15, 84) 72 (36, 121)

RS 5 (2, 11) 78 (37, 131) MG 6 (3, 12) 73 (35, 126)
PR 3 (2, 6) 93 (49, 149) SP 38 (22, 62) 91 (54, 141)

𝜉

North 0.011 (0.003, 0.03) 15 (5, 31) ES 0.011 (0.004, 0.02) 19 (6, 38)
BA, SE 0.011 (0.003, 0.03) 15 (5, 31) RJ 0.012 (0.004, 0.03) 16 (6, 33)

RS 0.006 (0.002, 0.01) 15 (5, 31) MG 0.009 (0.004, 0.02) 15 (5, 31)
PR 0.004 (0.002, 0.01) 14 (5, 29) SP 0.008 (0.003, 0.01) 15 (5, 30)
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Figure 27 – Maps with predictive pointwise posterior mean estimates for the 25-year return
level. The points represent the marginal maximum likelihood estimates. Points
with a cross correspond to validation stations.

Figure 28 – Continuation of Figure 27.
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Figure 29 – Boxplot of the extremogram for the daily rainfall time series. For each series, the
98% quantile for wet days was used as the threshold.

4.4 Dependence measures
We assume that the quality in the body of the data is reasonable, and we apply model

(3.25) to positive rainfall in order to obtain stationary residuals, and then proceed to calculate
the various dependence measures.

Figure 29 shows the tail dependence coefficient until lag 4. The dependence at lag 1
is small, the largest value being 0.22, so there is only a slight tendency for rainfall extreme
values to cluster. However, the upper 97.5% confidence limit for independent data, obtained by
random permutation of the data, is exceeded around 39%, 14%, 11%, and 8% of the stations
for lags 1, 2, 3, and 4, respectively.

Figure 30 displays the sample cross-extremogram for temporal lags ℎ = 0, 1, and for
pairs of stations classified in terms of the distance from the stations in each pair. When
calculating the cross-extremograms between two stations, only the days for which there are
observations on both stations are used, so the sample sizes can be greatly reduced. We kept
only the pairs of stations that had more than 10 years of recording period in common. The
cross-extremograms depicts a strong spatial pattern and significant dependence at lag 0 (i.e.,
extreme events happening in the same day) for stations distancing as far as 100 km. The
empirical estimates for the pairwise extremal coefficient also shows this weak, but long range
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Figure 30 – Boxplot of the sample cross-extremogram for temporal lags ℎ = 0, 1, and all
pairwise combinations of stations distancing less than 25 km (red), between 25
km and 50 km (green), between 50 km and 100 km (blue), and greater than
100 km (purple). For each series, the 98% quantile for wet days was used as the
threshold.

dependence; see Figure 31.
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Figure 31 – Empirical estimates of the binned extremal coefficients (obtained from 300 bins).
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Chapter 5

Final considerations

The ideal would be to have a large number of stations with long and stationary time
series that were truly representative of the climatic regime of their sites, and that had good
quality measurements. We did our best to select reliable rain stations in Brazil, and we noticed
several obstacles in doing so, mainly the lack of important metadata like the stations’ history
and photographs showing their location and measurement conditions.

However, just the gathering of rainfall series made by the Agência Nacional de Águas
(ANA) is already very valuable. This dataset, containing 11,619 stations, was never analyzed
before, at least not with the scope we adopted. Despite the large number of stations, only
104 with record length greater than 80 years satisfied our selection criteria. Since our criteria
required a detailed visual inspection of each rainfall series, we only retained the stations which
had a record length greater than 80 years, and which had less than 10% of missing values in
the period from 1972 to 2011. This second subset was necessary because the covariates we
were interested in including in the analysis only had observations in limited time intervals, and
the first subset did not have enough stations to produce return levels maps.

This study continues the work of Papalexiou e Koutsoyiannis [2013] and Serinaldi e
Kilsby [2014], and complements their findings using another large dataset. Besides the return
levels maps in Brazil, we make a deeper discussion about quality control, biases, and the
application of extreme value theory to rainfall processes. We also investigate the effects of the
ENSO phenomenon, CO2 levels, and deforestation on extreme rainfall, as well as spatial and
temporal dependence in extreme levels. Future developments in producing return level maps
should allow temporal covariates in the mean of the latent variable model.
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