

CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Estudo da Regioquímica da Ciclocondensação de Enaminodicetona Frente à Hidrazinas: Síntese de Pirazóis, Pirazolopiridazinonas e Derivados com Potencial Atividade Antitumoral

Dissertação apresentada por *Michael Jackson Vieira da Silva* ao Programa de Pós-Graduação em Química do Departamento de Química do Centro de Ciências Exatas da Universidade Estadual de Maringá como parte dos requisitos para a obtenção do título de Mestre em Química

MARINGÁ, ABRIL/2014

Universidade Estadual de Maringá

Centro de Ciências Exatas/Departamento de Química Programa de Pós-Graduação em Química - PQU

Estudo da regioquímica da ciclocondensação de Enaminodicetona Frente à Hidrazinas: Síntese de Pirazóis, Pirazolopiridazinonas e Derivados com Potencial Atividade Antitumoral

Mestrando: Michael Jackson Vieira da Silva Orientadora: Prof^a. Dr^a. Fernanda Andréia Rosa

Dados Internacionais de Catalogação na Publicação (CIP) (Biblioteca Central - UEM, Maringá, PR, Brasil)

S586e	Silva, Michael Jackson Vieira da Estudo da regioquímica da ciclocondensação de enaminodicetona frente à hidrazinas: síntese de pirazóis, pirazolopiridazinonas e derivados com potencial atividade antitumoral / Michael Jackson Vieira da Silva Maringá, 2014. 169 f. : il. color., figs., tabs. + Anexos
	Orientador: Prof.ª Dr.ª Fernanda Andreia Rosa. Dissertação (mestrado) - Universidade Estadual de Maringá, Centro de Ciências Exatas, Departamento de Química, Programa de Pós-Graduação em Química, 2014.
	1. Química orgânica. 2. ß-enaminodicetona. 3. Pirazóis. 4. pirazolo[3,4-d]piridazinonas. I. Rosa, Fernanda Andreia, orient. II. Universidade Estadual de Maringá. Centro de Ciências Exatas. Departamento de Química. Programa de Pós-Graduação em Química. III. Título.
	CDD 21.ed. 547

Um dia você aprende... Que o tempo não é algo que possa voltar. Portanto, plante seu jardim e decore sua alma, em vez de esperar que alguém lhe traga flores.

(William Shakespeare)

À minha orientadora e grande amiga Prof^a. Dr^a. **Fernanda A. Rosa**, pela oportunidade de realizar este trabalho, bem como o crescimento profissional e pessoal alcançados. A todos os meus familiares, em especial aos meus pais **Walcineia M. da Silva e Mauro V. da Silva**, mesmo distantes, pelo total apoio em todas as minhas decisões, incentivo, carinho e dedicação.

AGRADECIMENTOS

- A todo do corpo docente do programa de pós-graduação em química da Universidade Estadual de Maringá, em especial aos professores Emerson Meyer, Maria Helena Sarragiotto e Ernani Abicht Basso pela contribuição direta ou indireta na realização deste trabalho;
- Aos colegas e amigos do laboratório, Davana S. Gonçalves, Diego A. dos S.
 Yamazaki, Mariane C. Bagatin, Narcimário P. Coelho, Thiago de C.
 Rozada, Thiago F. de Souza e Ulisses Z. Melo, obrigado pelo acolhimento, amizade e convivência;
- Aos alunos de iniciação cientifica Daniela H. Arita, Thais Pavani, Breno R. M.
 Oliveira, Rai G. M. da Silva e Carolina D. L. Norato pela colaboração no trabalho experimental, convivência e amizade;
- Aos colegas do laboratório da professora Maria Helena Sarragiotto, pelos empréstimos de materiais e pelas agradáveis "conversas no corredor do bloco 31";
- A professora **Debora Cristina Baldoqui** pela amizade e incentivo;
- A Camila S. S. Tozatti, Juliana C. G. Moraes e Sabrina A. A. Batista pelo apoio, incentivo e amizade;
- A **Ivânia T. A. Schuquel** e **Ana Maria A. Barelli** pelas análises de RMN, convivência e amizade;
- Aos órgãos financiadores CAPES, CNPQ e Fundação Araucária, pelo incentivo à pesquisa;
- E, sobretudo a minha orientadora Prof^a. Dr^a. Fernanda Andreia Rosa, pela oportunidade, confiança e dedicação. Por estar sempre disponível a ajudar e dar bons conselhos. Pela determinação e esforço em proporcionar tudo que foi necessário para a realização deste trabalho. O meu muito obrigado professora e AMIGA!

Universidade Estadual de Maringá

Centro de Ciências Exatas/Departamento de Química Programa de Pós-Graduação em Química - PQU

Este é o exemplar definitivo da Dissertação apresentada por **Michael Jackson Vieira da Silva**, perante a Comissão Julgadora do Programa de Pós-Graduação em Química em 25 de abril de 2014.

COMISSÃO JULGADORA

andra A. Rosa

Profa. Dra. Fernanda Andréa Rosa Presidente - DQI/UEM

vanc

Profa. Dra. Maria Helena Sarragiotto Membro - DQI/UEM

Prof. Dr. Cristiano Raminelli Membro - UFSP

RESUMO

Estudo da Regioquímica da Ciclocondensação de Enaminodicetona Frente à Hidrazinas: Síntese de Pirazóis, Pirazolopiridazinonas e Derivados com Potencial Atividade Antitumoral

A obtenção do novo e versátil bloco precursor para síntese de heterociclos, βenaminodicetona [EtCO₂C(O)C(=CHNMe₂)C(O)CO₂Et] (62%), foi possível a partir da reação de C-acilação da β-enaminocetona secundária [EtCO₂C(O)C(=CHNMe₂)] com cloreto de etil oxalila, em piridina, a baixa temperatura. A reação de ciclocondensação de tal precursor com monoidrato de hidrazina, fenilhidrazina e 4-clorofenilhidrazina, foi regiosseletiva, levando à obtenção dos heterociclos 5-carboxietil-4-[(oxo)acetiletoxi]-1H-pirazóis $1(R^1)$ -substituido ($R^1 = H$, Ph, 4-ClC₆H₄) (67-75%), caracterizados através de técnicas de RMN como regioisômeros-1,5. Uma série de heterociclos fundidos 4caboxietil-1H-pirazolo[3,4-d]piridazin-7-onas 1(R¹),6(R²)-substituídos (R¹= Ph e 4- CIC_6H_4 ; $R^2 = H$, Ph, 4- CIC_6H_4), foi sintetizada a partir de dois caminhos reacionais: através da reação do 5-carboxietil-4-[(oxo)acetiletoxi]-1H-pirazol 1(R¹)-substituidos com monohidrato de hidrazina, fenilhidrazina e 4-clorofenilhidrazina, sob refluxo de etanol, e catálise ácida (AcOH), quando $R^{1}\neq R^{2}$ (69-89%), e através de metodologia one-pot a partir do bloco precursor β-enaminodicetona com fenilhidrazina e 4-clorofenilhidrazina, sob refluxo de etanol, e catálise ácida (AcOH), quando R¹=R² (53-65%). Os intermediários da reação da síntese dos compostos pirazolo[3,4-d]piridazinonas, hidrazonil-pirazóis, foram isolados e caracterizados como estereoisômeros E e Z, os quais, através de testes de reatividade, proporcionaram o entendimento do mecanismo da reação, que se procede apenas através do estereoisômero E. Também, foi realizado a síntese de derivados N-acilhidrazínico (98%) e N-acilhidrazônico (96%) do composto pirazolo[3,4-d]piridazinona, demonstrando o potencial sintético do bloco precursor βenaminodicetona na síntese orgânica.

Palavras chave: β-enaminodicetona, reação de ciclocondensação, regioquímica, pirazolo[3,4-d]piridazinona.

ABSTRACT

Study of the Regiochemistry of the Enaminodiketone Cyclocondensation Front Hydrazines: Synthesis of Pyrazoles, Pyrazolopyridazinones and Derivatives with Potential Antitumoral Activity

The new and versatile precursor block [EtCO₂C(O)C(=CHNMe₂)C(O)CO₂Et] (62%) for the synthesis of heterocycles was obtained from the C-acylation reaction of secondary β -enaminoketone [EtCO₂C(O)C(=CHNMe₂)] with ethyl oxalyl chloride in pyridine and low temperature. The cyclocondensation reaction of such precursor with hydrazine monohydrate, phenylhydrazine and 4-chlorophenylhydrazine was regioselective leading to the heterocycles 5-carboxyethyl-4-[(oxo)acethylethoxy]-1H-pirazoles 1(R¹)substituted (R¹= H, Ph, 4-ClC₆H₄) (67-75%) characterized using NMR techniques as regioisomers-1,5. A set of fused heterocycles 4-carboxyethyl-1H-pyrazolo[3,4d]pyridazin-7-ones $1(R^1), 6(R^2)$ -substituted (R¹= Ph e 4-ClC₆H₄; R²= H, Ph, 4-ClC₆H₄) was synthetized from two reaction paths: by the reaction of 5-carboxyethyl-4-[(oxo)acethylethoxy]-1H-pirazole 1(R¹)-substituted with hydrazine monohydrate, phenylhydrazine and 4-chlorophenylhydrazine under ethanol reflux and acid catalysis (AcOH) when $R^1 \neq R^2$ (69-89%) and using an one-pot methodology from the precursor block β-enaminodiketone with phenylhydrazine and 4-chlorophenylhydrazine under ethanol reflux and acid catalysis (AcOH) when $R^1=R^2$ (53-65%). The hydrazonyl pyrazoles that are intermediates in the synthesis of compounds pyrazolo[3,4d]pyridazinones were isolated and characterized as E and Z stereoisomers which, by tests of reactivity afford the understanding of the reaction mechanism, which proceeds only through the stereoisomer E. Synthesis of N-acylhydrazine derivative (98%) and Nacylhydrazone derivative (96%) of the compound pyrazolo[3,4-d]pyridazinone was also conducted, demonstrating the synthetic potential of the precursor block β enaminodiketone in organic synthesis.

Key Words: β-enaminodiketone, cyclocondensation reaction, regiochemistry, pyrazole, pyrazolo[3,4-d]pyridazinone.

SUMÁRIO

1.	INTRODUÇÃO E OBJETIVOS	01
1.1.	Introdução	.02
1.2.	Objetivos	05
2.	REVISÃO DA LITERATURA	08
2.1.	Síntese de Pirazóis a partir de β-enaminodicetonas	.09
2.2.	Síntese de Pirazolo[3,4- <i>d</i>]piridazinona a partir de Piraz Polifuncionalizados com Hidrazinas	: óis 12
3.	APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS	.17
3.1.	Numeração e Nomenclatura dos Compostos	.19
3.2.	Síntese dos Compostos	.22
3.2.1.	Bloco precursor β-enaminodicetona (2)	22
3.2.2.	Pirazóis polifuncionalizados (3a-c): estudo da regioquímica da reação de enaminodicetona (2) com hidrazinas	;β- .24
3.2.3.	Síntese e isolamento dos intermediários hidrazonil-pirazóis 4b(<i>E/Z</i>)	27
3.2.4.	Pirazolo[3,4- <i>d</i>]piridazinonas (5)	.29
3.2.5.	Derivado N-acilidrazônico (7i)	34
3.3.	Caracterização Estrutural e Propriedades Físicas	.36
3.3.1.	Bloco precursor β-enaminodicetona (2)	36
3.3.2.	Pirazóis polifuncionalizados (3a-c)	.38
3.3.3.	Intermediários hidrazonil-pirazóis 4b(<i>E/Z</i>)	.39
3.3.4.	Pirazolo[3,4- <i>d</i>]piridazinonas (5b,c,e,f,h,i)	.42
3.3.5.	Hidrazida-pirazolo[3,4- <i>d</i>]piridazinona (6i)	.43

3.3.6.	Derivado N-acilidrazônico (7i)43
4.	CONCLUSÕES
5.	PARTE EXPERIMENTAL
5.1.	Instrumentação e Reagentes
5.2.	Técnicas de Síntese
5.2.1.	Composto 3-[(dimetilamino)metilideno]-2,4-dioxopentanodioato de dietila (2)
5.2.2.	Procedimento geral para síntese dos 5-carboxietil-4-[(oxo)acetiletoxi]-1 <i>H</i> - pirazol e 1-substituídos (3a-c)
5.2.3.	Procedimento para síntese para mistura dos estereoisômeros 5-carboxietil-4- [(1 <i>E/Z</i>)-2-etoxi-2-oxo-feniletahidrazonil]-1-fenil-1 <i>H</i> -pirazol (4b(<i>E/Z</i>))
5.2.4.	Procedimento geral para síntese dos 4-carboxietil-1 <i>H</i> -pirazolo[3,4- <i>d</i>]piridazim- 7-ona 1,6-disubstituídos (5b,c)
5.2.5.	Procedimento geral para síntese dos 4-carboxietil-1 <i>H</i> -pirazolo[3,4- <i>d</i>]piridazim- 7-ona 1-substituidos 6-substituídos (5e,f,h,i)
5.2.6.	Procedimento para síntese do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1 <i>H</i> - pirazolo[3,4- <i>d</i>]piridazin-7-ona (6i)
5.2.7.	Procedimento para síntese do 4-{carbo[(2 <i>E</i>)-2-benzilidenohidrazinil]}-1-(4- clorofenil)-6-fenil-1 <i>H</i> -pirazolo[3,4- <i>d</i>]piridazin-7-ona (7i)58
6.	REFERÊNCIAS BIBLIOGRÁFICAS

LISTA DE TABELAS

Tabela 1 -	Nomenclatura dos compostos sintetizados20-22
Tabela 2 -	Condições reacionais empregadas para otimização da síntese do pirazol polifuncionalizado 3
Tabela 3 -	Otimização da síntese dos compostos hidrazonil-pirazóis 4b(<i>E/Z</i>)28
Tabela 4 -	Otimização da síntese <i>one-pot</i> dos compostos pirazolo[3,4- <i>d</i>]piridazinonas (5b,c) a partir do bloco precursor 2
Tabela 5 -	Otimização da síntese dos compostos pirazolo[3,4- <i>d</i>]piridazinonas (5e,f,h,i) a partir do pirazol polifuncionalizado (3b,c)
Tabela 6 -	Otimização da síntese do composto carbohidrazinil-pirazolo[3,4- <i>d</i>]piridazinona (6i)
Tabela 7 -	Rendimentos, peso molecular (PM) e faixa de fusão (°C)46
Tabela 8 -	Dados de RMN de ¹ H e de ¹³ C dos compostos sintetizados47-49

LISTA DE FIGURAS

Figura 1 .	Estrutura química de fármacos contendo núcleos heterocíclicos02
Figura 2 .	Núcleos pirazolínicos e piridazinônico relatados na literatura com atividade antitumoral03
Figura 3 .	Numeração da série de compostos19
Figura 4 .	Nomenclatura da classe de compostos pirazolo[3,4- <i>d</i>]piridazinona - 5e 20
Figura 5 .	Espectro de RMN de ¹ H do composto β-enaminodicetona (2)36
Figura 6 .	Espectro de RMN de ¹³ C do composto β -enaminodicetona (2)37
Figura 7 .	Espectros de massas de alta resolução [ESI(+)-MS] e análise [ESI(+)- MS/MS] do bloco precursor β-enaminodicetona (2)
Figura 8 .	Principais fragmentações detectadas via espectrometria de massas da série de pirazóis (3a-c)
Figura 9 .	Correlação espacial observada via NOESY do grupo amínico para os estereoisômeros <i>E</i> e <i>Z</i> 41
Figura 10 .	Correlação espacial observada via NOESY para o derivado N- acilidrazônico (7i)45
Figura 11 .	Principais fragmentações detectadas via espectrometria de massas para os compostos 6i e 7i46
Figura 12 .	Espectro de RMN de ¹ H do (<i>E</i>)-4-(dimetilamino)-2-oxobut-3-enoato de etila (1) em CDCI ₃
Figura 13 .	Espectro de RMN de ¹³ C do (<i>E</i>)-4-(dimetilamino)-2-oxobut-3-enoato de etila (1) em CDCl ₃
Figura 14 .	Espectro de RMN de ¹ H do 3-[(dimetilamino)metilideno]-2,4- dioxopentanodioato de dietila (2) em CDCl ₃

Figura 15 .	Espectro de RMN de ¹³ C do 3-[(dimetilamino)metilideno]-2,4- dioxopentanodioato de dietila (2) em CDCl ₃ 70
Figura 16 .	Espectro de RMN de ¹ H do 5-carboxietil-4-[(oxo)acetiletoxi]-1 <i>H</i> -pirazol (3a) em CDCl ₃
Figura 17 .	Espectro de RMN de ¹³ C do 5-carboxietil-4-[(oxo)acetiletoxi]-1 <i>H</i> -pirazol (3a) em CDCl ₃
Figura 18 .	Espectro de RMN 2D HSQC do 5-carboxietil-4-[(oxo)acetiletoxi]-1 <i>H</i> -pirazol (3a) em CDCl ₃
Figura 19 .	Espectro de RMN 2D HMBC do 5-carboxietil-4-[(oxo)acetiletoxi]-1 <i>H</i> -pirazol (3a) em CDCl ₃
Figura 20 .	Espectro de RMN de ¹ H do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1 <i>H</i> - pirazol (3b) em CDCl ₃
Figura 21 .	Espectro de RMN de ¹³ C do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1 <i>H</i> - pirazol (3b) em CDCl ₃
Figura 22 .	Espectro de RMN NOESY 1D do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil- 1 <i>H</i> -pirazol (3b) em CDCl ₃
Figura 23 .	Espectro de RMN 2D HSQC do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil- 1 <i>H</i> -pirazol (3b) em CDCl ₃
Figura 24 .	Espectro de RMN 2D HMBC do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil- 1 <i>H</i> -pirazol (3b) em CDCl ₃
Figura 25 .	Expansão do espectro de RMN 2D HMBC do 5-carboxietil-4- [(oxo)acetiletoxi]-1-fenil-1 <i>H</i> -pirazol (3b) em CDCl ₃ 80
Figura 26 .	Espectro de RMN de ¹ H do 5-carboxietil-1-(4-clorofenil)-4- [(oxo)acetiletoxi]-1 <i>H</i> -pirazol (3c) em CDCl ₃
Figura 27 .	Espectro de RMN de ¹³ C do 5-carboxietil-1-(4-clorofenil)-4- [(oxo)acetiletoxi]-1 <i>H</i> -pirazol (3c) em CDCl ₃

- **Figura 32.** Espectro de RMN de ¹³C do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxofeniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b**(*E*)) em CDCl₃......87
- Figura 34. Expansão do espectro de RMN 2D NOESY do 5-carboxietil-4-[(1*E*)-2etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*E*)) em CDCl₃......89
- **Figura 35**. Espectro de RMN 2D HSQC do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxofeniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b**(*E*)) em CDCl₃......90
- **Figura 36**. Expansão do espectro de RMN 2D HSQC do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b**(*E*)) em CDCl₃......91
- Figura 37. Espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxofeniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*E*)) em CDCl₃......92
- **Figura 38**. Expansão do espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b**(*E*)) em CDCl₃......93
- **Figura 39.** Espectro de RMN de ¹H do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-N-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z)**) em CDCl₃......94
- **Figura 40**. Espectro de RMN de ¹³C do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-Nfeniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z)**) em CDCl₃......95

- **Figura 41.** Espectro de RMN 2D NOESY do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxofeniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z)**) em CDCl₃......96
- Figura 42. Expansão do espectro de RMN 2D NOESY do 5-carboxietil-4-[(1Z)-2etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(Z)) em CDCl₃.....97
- Figura 43. Expansão do espectro de RMN 2D NOESY do 5-carboxietil-4-[(1Z)-2etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(Z)) em CDCl₃.....98
- **Figura 45**. Expansão do espectro de RMN 2D HSQC do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z**)) em CDCl₃......100
- **Figura 46**. Espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxofeniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z)**) em CDCl₃......101
- **Figura 47**. Expansão do espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z**)) em CDCl₃......102
- **Figura 48**. Expansão do espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z**)) em CDCl₃......103
- **Figura 49.** Espectro de RMN de ¹H do 4-carboxietil-1,6-difenil-1*H*-pirazolo[3,4*d*]piridazin-7-ona (**5b**) em CDCl₃......104
- **Figura 50**. Espectro de RMN de ¹³C do 4-carboxietil-1,6-difenil-1*H*-pirazolo[3,4*d*]piridazin-7-ona (**5b**) em CDCl₃......105
- **Figura 51**. Espectro de RMN 2D HSQC do 4-carboxietil-1,6-difenil-1*H*-pirazolo[3,4*d*]piridazin-7-ona (**5b**) em CDCl₃......106
- **Figura 52**. Expansão do espectro de RMN 2D HSQC do 4-carboxietil-1,6-difenil-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**5b**) em CDCl₃......107

- Figura 54. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1,6-difenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5b) em CDCl₃......109
- **Figura 55**. Espectro de RMN de ¹H do 4-carboxietil-1,6-bis(4-clorofenil)-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**5c**) em CDCl₃......110

- **Figura 58.** Expansão do espectro de RMN 2D HSQC do 4-carboxietil-1,6-bis(4clorofenil)-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5c**) em CDCl₃......112
- **Figura 60**. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1,6-bis(4clorofenil)-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5c**) em CDCl₃......115
- **Figura 61.** Espectro de RMN de ¹H do 4-carboxietil-6-(4-clorofenil)-1-fenil-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**5e**) em CDCl₃......116

- **Figura 64**. Expansão do espectro de RMN 2D HSQC do 4-carboxietil-6-(4-clorofenil)-1-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5e**) em CDCl₃......119
- Figura 66. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-6-(4-clorofenil)-1-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5e) em CDCl₃......121

- **Figura 67.** Espectro de RMN de ¹H do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆......122
- **Figura 68.** Espectro de RMN de ¹³C do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆......123
- **Figura 69**. Espectro de RMN 2D HSQC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆......124
- **Figura 70**. Expansão do espectro de RMN 2D HSQC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆......125
- **Figura 71**. Espectro de RMN 2D HMBC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆......126
- **Figura 72**. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆......127
- **Figura 73**. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆......128
- **Figura 74**. Espectro de RMN de ¹H do 4-carboxietil-1-fenil-6,7-diidro-1*H*-pirazolo[3,4*d*]piridazin-7-ona (**5h**) em DMSO-d₆......129
- **Figura 75**. Espectro de RMN de ¹³C do 4-carboxietil-1-fenil-6,7-diidro-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**5h**) em DMSO-d₆......130
- **Figura 77**. Expansão do espectro de RMN 2D HSQC do 4-carboxietil-1-fenil-6,7diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5h**) em DMSO-d₆......132
- **Figura 79.** Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1-fenil-6,7diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5h**) em DMSO-d₆......134

- **Figura 80**. Espectro de RMN de ¹H do 4-carboxietil-1-(4-clorofenil)-6-fenil-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**5i**) em CDCl₃......135

- Figura 84. Espectro de RMN 2D HMBC do 4-carboxietil-1-(4-clorofenil)-6-fenil-1*H*pirazolo[3,4-*d*]piridazin-7-ona (5i) em CDCl₃......139
- **Figura 85**. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5**i) em CDCl₃......140
- **Figura 86**. Espectro de RMN de ¹H do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**6i**) em DMSO-d₆......141
- **Figura 87**. Espectro de RMN de ¹³C do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*pirazolo[3,4-*d*]piridazin-7-ona (**6i**) em DMSO-d₆......142
- **Figura 88**. Espectro de RMN 2D HSQC do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**6i**) em DMSO-d₆......143
- Figura 89. Expansão do espectro de RMN 2D HSQC do 4-carbohidrazinil-1-(4clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (6i) em DMSO-d₆....144
- **Figura 90**. Espectro de RMN 2D HMBC do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**6i**) em DMSO-d₆......145
- Figura 91. Expansão do espectro de RMN 2D HMBC do 4-carbohidrazinil-1-(4clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (6i) em DMSO-d₆....146
- **Figura 92**. Espectro de RMN de ¹H do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**7i**) em DMSO-d₆....147

- **Figura 93**. Espectro de RMN de ¹³C do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**7i**) em DMSO-d₆....148

- Figura 101. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 5-carboxietil-4-[(oxo)acetiletoxi]-1*H*-pirazol (**3a**)......157

LISTA DE ABREVIATURAS E SÍMBOLOS

АсОН	Ácido acético;
BF3.MeOH	Trifluoreto de boro em metanol;
Bn	Benzila;
Cat.	Catalisador;
CC	Cromatografia em Coluna;
CCD	Cromatografia em Camada Delgada;
DMFDEA	N,N-dimetilformamida dietil acetal;
DMSO	Dimetilsulfóxido;
Eq.	Equivalente;
EtOH	Etanol;
Hz	Hertz;
НМВС	Heteronuclear Multiple Bond Correlation;
HSQC	Heteronuclear Single Quantum Correlation;
HT29	Células de adenocarcinoma de colo;
J	Constante de acoplamento;
MCF-7	Células de adenocarcinoma de mama humano;
MeCN	Acetonitrila;
m/z	Relação massa carga em espectrometria de massas;
NOESY	Nuclear Overhauser Enhancement SpectroscopY;
p.f.	Ponto de fusão;
РМ	peso molecular;
PPA	Ácido polifosfórico;
ppm	parte por milhão;
RMN ¹ H	Ressonância Magnética Nuclear de Hidrogênio;
RMN ¹³ C	Ressonância Magnética Nuclear de Carbono 13;
SK-BR-3	Células de adenocarcinoma de colo;
t.a.	Temperatura ambiente.

1. INTRODUÇÃO E OBJETIVOS

1.1. Introdução

Grande parte dos compostos heterocíclicos são biologicamente ativos,¹⁻³ proporcionando a esses grande relevância na aplicação farmacológica e agrícola.^{1;4-10} Para se ter uma ideia da importância dessa classe de substâncias, uma pesquisa no *"Web of Science*", uma das ferramentas de busca científica mais importante da internet,¹¹ indicou 89.300 citações no período de 1945-2013 para a palavra-chave *"heterocycle*".

Nas últimas décadas, importantes fármacos estruturalmente nucleados por anéis heterocíclicos têm sido desenvolvidos, como por exemplo, o Sildenafila (Viagra[®]) – usado no tratamento da disfunção eréctil,¹² o Imatinib (Gleevec[®]) – tratamento da leucemia,¹³ o Esomeprazol (Nexium[®]) – tratamento de refluxo gastroesofágico,¹⁴ Rosuvastatina (Crestor[®]) – tratamento de hipercolesterolemia,¹⁵ Celecoxib (Celebrex[®]) – anti-inflamatório,¹⁶ Trenofovir (Atripla[®]) – anti-HIV¹⁷ e Sitagliptina (Januvia[®]) – antihiperglicemico¹⁸ (**Figura 1**), medicamentos os quais se encontram entre os mais vendidos no quarto trimestre de 2013 nos Estados Unidos da América, movimentando o valor montante de 5.424.572 dólares.¹⁹

Ao analisar os núcleos heterocíclicos presentes nas estruturas mostradas na **Figura 1**, observa-se a predominância de aza-heterociclos, tais como: heterociclos

fundidos pirazolopirimidinona, imidazolopirimidina e pirazolopiperazina (Sildenafila, Trenofovir e Sitagliptina, respectivamente), núcleos piperazínicos (Sildenafila, Imatinib), pirimidínicos (Imatinib, Rosuvastatina), piridínicos (Imatinib, Esomeprazol), imidazólico (Ezomeprazol) e pirazolínico (Celecoxib).

Os aza-heterociclos, tais como os pirazóis, núcleos aromáticos de cinco membros contendo dois átomos de nitrogênio nas posições um e dois,²⁰ e piridazinonas, de seis membros, têm sido objetos de estudos nos últimos anos, reflexo da ampla aplicação em diversas áreas,²¹⁻²⁵ com destaque na química medicinal como agentes quimioterápicos.²⁶⁻³⁵ A **Figura 2** ilustra alguns exemplos (descritos na literatura) dessas classes de compostos, obtidos sinteticamente, com potencial atividade antitumoral frente a células de adenocarcinoma de colo (HT29) e de mama humano (SK-BR-3 e MCF-7).³⁵⁻³⁷

Figura 2. Núcleos pirazolínicos e piridazinônico relatados na literatura com atividade antitumoral

Com relação à síntese de núcleos pirazolínicos, dentre as principais reações empregadas, destaca-se a ciclocondensação 3+2, onde 3 corresponde a um bloco com reatividade 1,3-dieletrofílica, constituído por três átomos de carbono, e 2 a um bloco com reatividade 1,2-dinucleofílica, contendo dois átomos de nitrogênio.³⁸ O **Esquema 1** descreve tal reação e os possíveis caminhos reacionais, através da utilização de compostos β-enaminodicetonas, os quais podem ser obtidos através da *C*-acilação de β-enaminocetonas,³⁹⁻⁴⁶ como blocos precursores dieletrofílicos frente a dinucleófilos hidrazinas.^{46;47} No entanto, a utilização de tais precursores torna-se limitada quando se objetiva a síntese de compostos específicos, visto que a reação pode prosseguir por

diferentes caminhos reacionais conduzindo a formação de produtos regioisômeros, A e A' – regioisômeros-1,3 e/ou B e B' – regioisômeros-1,5 (**Esquema 1**).

Esquema 1.

Os núcleos piridazinônicos, como descrito anteriormente, apresentam ampla aplicabilidade, com destaque a sua atividade farmacológica.⁴⁸⁻⁵² Tais núcleos, quando fundidos a outro heterociclo, tal como um anel pirazolínico, designado pirazolo[3,4*d*]piridazinona, são relatados na literatura farmacologicamente ativos, com propriedades anti-inflamatórias,⁵³⁻⁵⁵ antinociceptivas⁵⁶⁻⁵⁸ e cardiovasculares.⁵⁹ As pirazolo[3,4-*d*]piridazinonas podem ser sintetizadas através da reação de cicloadição de diazoalcanos com piridazin-3(2H)-onas (**Esquema 2**).⁶⁰ No entanto, a reação de pirazóis polifuncionalizados, contendo em suas estruturas duas carbonilas vicinais, cetona e ácido carboxílico ou derivados, com hidrazinas (**Esquema 2**), tem se mostrado como um método bastante eficiente para síntese desses compostos.⁶¹⁻⁶⁶

Esquema 2.

1.2. Objetivos

De acordo com a ampla aplicabilidade e importância farmacológica de compostos aza-heterocíclicos, o presente trabalho tem como objetivo a obtenção de estruturas inéditas polifuncionalizadas nucleadas por anéis aza-heterociclicos, via:

 Obtenção de um novo e versátil bloco precursor β-enaminodicetona (2) a partir da C-acilação da β-enaninocetona 1 (Esquema 3), o qual frente à dinucleófilos apresenta potencial reatividade dieletrofílica;

Esquema 3.

2- Estudo da regioquímica da reação de ciclocondensação desse precursor (2) frente à hidrazina e hidrazinas monossubstituidas, visando à síntese de pirazóis polifuncionalizados (3) (Esquema 4);

Esquema 4.

Obtenção de heterociclos fundidos pirazolo[3,4-*d*]piridazinonas (5) via reação do pirazol, obtido no item 2, com hidrazinas (Esquema 5);

- Isolamento, atribuição da estereoquímica e otimização da síntese do intermediário hidrazonil-pirazol (4);
- 5- Estudos do mecanismo da reação de heterociclização intramolecular a partir dos estereoisômeros *E* e *Z* do intermediário hidrazonil-pirazol (4) (Esquema 6);

Esquema 6.

6- Obtenção da pirazolo[3,4-*d*]piridazinona (5) utilizando metodologia *one-pot* a partir do bloco precursor β-enaminodicetona (2) com hidrazinas (Esquema 7);

Esquema 7.

7- Obtenção de derivados do composto 5 a partir do centro eletrofílico remanescente do bloco precursor β-enaminodicetona (2) (Esquema 8), visando demonstrar a aplicação sintética do bloco precursor.

Esquema 8.

2. REVISÃO DA LITERATURA

2.1. Síntese de Pirazóis a partir de β-enaminodicetonas

Através de uma breve revisão da literatura da síntese de pirazóis via ciclocondensação 3+2, utilizando blocos precursores β -enaminodicetonas e hidrazinas, observam-se inúmeras variáveis relacionadas com a regiosseletividade de tal reação, dentre as quais, a natureza do substituinte do dinucleófilo hidrazina e dos substituintes do bloco precursor β -enaminodicetona, são determinantes.

Hojo e col.,⁶⁷ em 1992, publicaram a síntese de pirazóis a partir do bloco precursor 3-trifluoracetil-1,1,1-trifluor-4-dimetilamino-3-buten-2-ona com metilhidrazina, cloridrato *terc*-butilhidrazina e fenilhidrazina (**Esquema 9**). A reação foi feita em acetonitrila, a temperatura ambiente, por uma hora, e a reação com cloridrato *terc*-butilhidrazina foi feita em presença de trietilamina.

Esquema 9.

De acordo com os resultados publicados,⁶⁷ observa-se que quando foi empregado metilhidrazina como dinucleófilo, o caminho reacional limitou-se inicialmente ao ataque do grupamento amino mais reativo da metilhidrazina ao carbono-β do bloco precursor β-enaminodicetona, seguido da heterociclização através do ataque intramolecular do segundo grupo amino ao carbono carbonílico, levando à obtenção do regioisômero-1,5 (**B** ou **B'** - **Esquema 1**). Por outro lado, quando foi utilizado cloridrato de *terc*-butilhidrazina, o caminho reacional se limitou a regioquímica inversa a obtenção do regioisômero-1,5, levando à obtenção do regioisômero-1,3 (**A** ou **A'** - **Esquema 1**). Em relação a tal diferença de reatividade relatada, dois fatores devem ser levados em consideração: a natureza do substituinte da hidrazina e a utilização de hidrazina na forma de cloridrato em meio à trietilamina. Quando foi

empregado fenilhidrazina como dinucleófilo, foi relatado à obtenção de mistura dos regioisomeros-1,3 e 1,5, sendo este último favorecido. Tal resultado, quando comparado a regioquímica definida para metilhidrazina reforça as evidências da influência da natureza do substituinte da hidrazina sobre a regioquímica da reação.

Lèvy e col.,⁶⁸ em 1993, relataram a síntese de pirazóis a partir do bloco precursor β -enaminodicetona 3-trifluoracetil-1,1,1-trifluor-4-dietilamino-3-buten-2-ona com hidrazina e fenilhidrazina. A reação foi realizada a temperatura ambiente, por 4h em acetonitrila (**Esquema 10**). Ao analisar os resultados que foram obtidos, observa-se que a estrutura do pirazol proveniente da reação do bloco precursor β -enaminodicetona com hidrazina não traz informações quanto a regioquímica da reação, devido a efeito tautomérico (A \longrightarrow B). No entanto, quando foi empregado fenilhidrazina como dinucleófilo, foi obtido uma mistura dos regioisomeros-1,3 e 1,5 (A e B – **Esquema 1**), mostrando a influência do substituinte do dinucleófilo na regioquímica da reação.

Esquema 10.

Comparando os resultados publicados por Lèvy e col.⁶⁸ com os que Hojo e col.⁶⁷ publicaram em 1992, observa-se que a troca dos substituintes metilas do grupamento amino por etilas, frente à fenilhidrazina, levou à obtenção de menor proporção do regioisomero 1,5 (**B** – **Esquema 1**). Tal variação deve estar relacionada com o maior impedimento estérico dos substituintes etilas, proporcionando ao carbono- β menor susceptibilidade ao ataque nucleofílico do dinucleófilo fenilhidrazina.

Em 2004, Mirand e col.⁶⁹ relataram a síntese de mistura de pirazóis regioisômeros através da reação dos blocos precursores β-enaminodicetonas 3benzoil-1,1,1-trifluor-4-dimetilamino-3-buten-2-ona e 3-(2,4-diclorobenzoil)-1,1,1-trifluor-4-dimetilamino-3-buten-2-ona com metilhidrazina e fenilhidrazina. Os resultados publicados mostraram que a inclusão dos átomos de cloro (X= Cl) proporcionaram menor reatividade ao centro eletrofílico do carbono carbonílico em que se encontram próximos. Fato evidenciado através da não formação do regioisômero **A'**, frente a metilhidrazina, e não formação do regioisômero **B'**, frente a fenilhidrazina, pois ambos regioisômeros foram formados quando X= H (**Esquema 11**).

Esquema 11.

Rosa e col.,⁷⁰ em 2008, publicaram a síntese regiosseletiva de uma série de pirazóis através do bloco precursor β -enaminodicetona, com variação em R¹, frente a cloridrato de *terc*-butilhidrazina, sob refluxo de etanol, por 1 hora. De acordo com os resultados publicados a variação em R¹ não influenciou na regioquímica da reação, conduzindo apenas ao regioisômero-1,5 (**B** - **Esquema 1**). Por outro lado, os autores relataram que através de testes preliminares foi observado que os compostos β -enaminodicetonas frente à monohidrato de hidrazina e fenilhidrazina, conduziram à mistura de regioisômeros-1,5 (**B** e **B**') (**Esquema 12**).

Esquema 12.

 $R^1 = Ph, 4-MeOC_6H_4, 4-ClC_6H_4, 4-FC_6H_4, 4-NO_2C_6H_4, 2-tienila, 2-benzofurila, CCl_3, CF_3.$

2.2. Síntese de Pirazolo[3,4-*d*]piridazinona a partir de Pirazóis Polifuncionalizados com Hidrazinas.

De acordo com **Esquema 2**, as pirazolo[3,4-*d*]piridazinonas podem ser sintetizadas através da reação de cicloadição de diazoalcanos com piridazin-3(2H)onas⁶⁰ e também através da reação de ciclocondensação de pirazóis polifuncionalizados com hidrazinas. No entanto, a revisão da literatura se restringiu a metodologia que equivale à reação de ciclocondensação de pirazóis polifuncionalizados com hidrazinas, visto que tal metodologia está relacionada com este trabalho. Vale ressaltar que as pirazolo[3,4-*d*]piridazinonas podem ser obtidas em quatro formas isoméricas distintas, proveniente da posição dos centros carbonílicos presentes no substrato pirazol empregado. Para este trabalho, tais formas foram nomeadas com base na nomenclatura sistemática: 1H-pirazolo[3,4-d]piridazin-4-ona (isômero 1,4), 1H-pirazolo[3,4-d]piridazin-7-ona (isômero 1,7), 2H-pirazolo[3,4d]piridazin-4-ona (isômero 2,4) e 2H-pirazolo[3,4-d]piridazin-7-ona (isômero 2,7), (Esquema 13).61-66

Esquema 13.

Gelin e col.,⁶¹ em 1978, publicaram a síntese das formas isoméricas 1,4 e 2,4 das pirazolo[3,4-*d*]piridazinonas a partir das reações dos pirazóis regioisômeros 5acil-4-carboxietil-1*H*-pirazol e 3-acil-4-carboxietil-1*H*-pirazol, respectivamente, com monoidrato de hidrazina e metilhidrazina. As reações foram realizadas a temperatura ambiente e na ausência de solvente (**Esquema 14**).

Sakamoto e col.,⁶² em 1980, relataram a síntese do isômero 1*H*-pirazolo[3,4*d*]piridazin-7-ona (**1**,**7**) através das reações do 4-acetil-5-carboxietil-1-fenil-1*H*-pirazol com dicloridrato de hidrazina e cloridrato de fenilhidrazina, e também a síntese do isômero 2*H*-pirazolo[3,4-*d*]piridazin-7-ona (**2**,**7**) via reação do 4-acetil-3-carboxietil-1metil-1*H*-pirazol com metilhidrazina. As reações foram realizadas em refluxo de etanol com tempo reacional de dez horas, quando foram empregadas as formas cloridrato das hidrazinas, e duas horas quando foi utilizado hidrazina na forma livre (**Esquema 15**).

Esquema 15.

Os autores⁶² também relataram a formação do subproduto 7-etóxi-4-metil-1-fenil-1*H*-pirazolo[3,4-*d*]piridazina a partir da reação do 4-acetil-5-carboxietil-1-fenil-1*H*-pirazol com dicloridrato de hidrazina (**Esquema 15**).

Kollenz e col.,⁶³ em 1997, relataram a síntese de 2,3,4,6-tetrafenil-2*H*pirazolo[3,4-*d*]piridazin-7-ona, isômero 2,7, a partir das reações do ácido 4-benzoil-1,5difenil-pirazol-3-carboxílico e seu derivado, cloreto de ácido 4-benzoil-1,5-difenil-pirazol-3-carboxílico, com fenilhidrazina, sob refluxo de xileno, durante 3h. Ambos os substratos pirazóis, ácido carboxílico e seu derivado cloreto, proporcionaram rendimentos equivalentes (70%). Também, foi relatado a síntese dos compostos 2,3,4trifenil-2*H*-pirazolo[3,4-*d*]piridazin-7-ona e 2,3-difenil-2*H*-pirazolo[3,4-*d*]piridazin-7-ona, ambos isômeros 2,7, através das reações dos ácido 4-benzoil-1,5-difenil-pirazol-3carboxílico com monoidrato de hidrazina, sob refluxo de etanol, durante 3h, e do ácido 4-benzoil-5-difenil-pirazol-3-carboxílico, gerado *in situ* via 4-benzoil-5-fenilfuran-2,3diona, com monoidrato de hidrazina, sob refluxo de xileno, durante 1h, respectivamente (**Esquema 16**).

Esquema 16.

Akçamur e col.,⁶⁴ em 2002, publicaram a obtenção da forma isomérica 2,7 dos compostos pirazolo[3,4-*d*]piridazinonas a partir das reações do ácido 4-benzoil-1- (4-nitrofenil)-5-fenil-1H-pirazol-3-benzóico e do ácido 1-(4-aminofenil)-4-benzoil-5-fenil-1H-pirazol-3-benzóico com monoidrato de hidrazina e fenilhidrazina, sob refluxo de xileno (**Esquema 17**).

Giovannoni e col.,⁶⁵ em 2010, relataram a síntese de pirazolo[3,4*d*]piridazinonas na forma isomérica 2,7 através das reações dos 3-carboxietil-1-(2clorofenil)-4-(2-metoxiacetil)-1*H*-pirazol e 4-acetil-3-carboxietil-5-metil-1-(3-nitrofenil)-1*H*-pirazol com monoidrato de hidrazina, em meio a etanol, a temperatura ambiente. Os autores relataram também a reação do 4-acetil-3-carboxietil-5-metil-1-(3-nitrofenil)-1*H*pirazol com oxalato de etilhidrazina, em meio a ácido polifosfórico (PPA), a temperatura de 80-90 °C, que também levou à obtenção da pirazolo[3,4-*d*]piridazinona na forma isomérica 2,7 (**Esquema 18**).

Esquema 18.

i = NH₂NH₂ (8-16 eq.), EtOH, t.a., 1-2h. / *ii* = NH₂NHEt . oxalato, PPA, 80-90 °C, 1h.

Frizzo e col.,⁶⁶ em 2013, relataram a síntese do isômero 1,7 das pirazolo[3,4-*d*]piridazinonas a partir das reações do 5-carboxietil-1-(1,1-dimetiletil)-1*H*-pirazol 4-acil substituido com monoidrato de hidrazina. As condições reacionais empregadas foram: etanol, temperatura ambiente, por 16 horas, (R= CF₃) e refluxo de etanol, sob catalise de trifluoreto de boro dietilerato (BF₃.OEt₂), por 16 horas, para os

Esquema 19.

i = EtOH, t.a., 16h. ii = EtOH, refluxo, BF₃.OEt₂, 16h

3. APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

3. Apresentação e Discussão dos Resultados

Neste capítulo serão apresentadas a numeração, nomenclatura, rota sintética, metodologia de síntese e a identificação estrutural dos compostos sintetizados (**Esquema 20**).

Esquema 20.

3.1. Numeração e Nomenclatura dos Compostos

A numeração da série de compostos sintetizados neste trabalho segue os seguintes critérios: sequência de números (1-7) para os diferentes compostos; letras (a-i) para variação em R¹ e R² e notação da estereoquímica (*E/Z*) para os compostos 4 (Figura 3).

A nomenclatura segundo *Chemical Abstracts* para os compostos sintetizados se encontra descrita na **Tabela 1**. Sendo a nomenclatura dos compostos das séries **5** e dos compostos **6** e **7** determinadas conforme regras desenvolvidas por Hantzch-Widman.⁷¹ As quais, estão representadas na **Figura 4** através da nomenclatura do composto pirazolo[3,4-*d*]piridazinona **5**e, baseada nos seguintes passos: [1] o heterociclo condensado é separado em dois heterociclos no ponto de intersecção; [2] a seguir, é determinado qual heterociclo apresenta maior prioridade, baseado no maior número de átomos de nitrogênio seguido pelo maior número de átomos de carbono (anel maior é o prioritário); [3] os heterociclos são numerados separadamente, letras são colocadas nas ligações do heterociclo principal e números nos átomos do heterociclo secundário; [4] os átomos comuns aos heterociclos são representados por letas e números dentro de colchetes, onde a sequência de números

deve corresponder a direção das letras do heterociclo principal; [5] finalmente, o composto é numerado colocando no quadrante superior direito o maior número de nitrogênios possível.

Figura 4. Nomenclatura da classe de compostos pirazolo[3,4-d]piridazinona - 5e

 $\label{eq:carboxietil-6-(4-clorofenil)-1-fenil-1} \textit{H-pirazolo}[3,4-d] \textit{piridazin-7-ona}$

Composto	Estrutura	Nomenclatura
1	EtO $N(Me)_2$	(<i>E</i>)-4-(dimetilamino)-2-oxobut-3-enoato de etila
2	EtO O O O OEt OEt $OK(Me)_2$	3-[(dimetilamino)metilideno]-2,4- dioxopentanodioato de dietila
3a	CO_2Et EtO_2C N H	5-carboxietil-4-[(oxo)acetiletoxi]-1 <i>H</i> -pirazol
3b	CO_2Et EtO_2C N Ph	5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1 <i>H</i> -pirazol

Tabela 1. Nomenclatura dos compostos sintetizados

Tabela 1. Nomenclatura dos compostos sintetizados (continuação)

Tabela 1. Nomenclatura dos compostos sintetizados (continuação).

3.2. Síntese dos Compostos

3.2.1. Bloco precursor β -enaminodicetona (2)

Para síntese do bloco precursor β -enaminodicetona (2) foi necessário sintetizar, primeiramente, o material de partida β -enaminocetona (1). Este composto foi obtido conforme metodologia descrita na literatura⁷² (**Esquema 21**), com algumas

Esquema 21.

A reação de acilação do intermediário β -enaminocetona (**1**) baseou-se em dados da literatura, os quais relatam a *C*-acilação ou *N*-acilação de substratos β -enaminocetonas, utilizando cloreto de etil oxalila (**Esquema 22**).⁷³

Esquema 22.

 $\begin{aligned} \mathsf{R} &= \mathsf{CF}_3, \mathsf{CCl}_3, \mathsf{Ph}, \mathsf{4}\text{-}\mathsf{FC}_6\mathsf{H}_4, \mathsf{4}\text{-}\mathsf{NO}_2\mathsf{C}_6\mathsf{H}_4, \mathsf{tien-2\text{-}il}\\ i &= \frac{\mathsf{ClC}(\mathsf{O})\mathsf{CO}_2\mathsf{Et}}{\mathsf{Et}}, \mathsf{piridina}, \mathsf{CH}_2\mathsf{Cl}_2, \mathsf{25\text{-}40}\ ^\circ\mathsf{C} \end{aligned}$

A regioquímica da reação depende do substrato β -enaminocetona, onde a presença do grupamento amino secundário conduz ao produto *N*-acilado, enquanto que o grupamento amino terciário conduz ao produto *C*-acilado (**Esquema 22**). Assim, a estrutura do intermediário β -enaminocetona (**1**) levará à formação do produto *C*-acilado (**Esquema 21**), fato que é observado experimentalmente.

Em relação à condição reacional empregada para obtenção do produto desejado, após testar inúmeras condições variando a estequiometria dos reagentes, temperatura e tempo, observou-se que, diferentemente das condições reacionais relatadas na literatura para *C*-acilação de compostos β -enaminocetonas,⁷³ a reação de *C*-acilação da β -enaminocetona **1** foi favorecida a baixa temperatura (-30 a -25 °C) e em curto intervalo de tempo. Sendo assim, foi possível a obtenção do novo

intermediário β-enaminodicetona com potencial aplicação na síntese de heterociclos, com rendimento moderado (62%) e tempo de reação de 15 minutos.

3.2.2. Pirazóis polifuncionalizados (3a-c): estudo da regioquímica da reação da βenaminodicetona (2) com hidrazinas

Relatos da literatura descrevem que a reação de ciclocondensação de compostos β -enaminodicetonas com dinucleófilos, na maioria das vezes, leva à obtenção de mistura de produtos regioisoméricos,⁶⁷⁻⁶⁹ os quais, provém da diferença de reatividade dos centros eletrofílicos presentes no bloco precursor β -enaminodicetona⁶⁹ e/ou da reatividade do dinucleófilo empregado,^{67;68} tornando tal metodologia inviável quando se objetiva a síntese de compostos específicos.

O bloco precursor β-enaminodicetona (2) apresenta cinco centros eletrofílicos em sua estrutura, os quais conferem ao mesmo reatividade polieletrofílica. O Esquema 23 apresenta a análise de tal reatividade frente à hidrazina, onde são mostrados os possíveis comportamentos 1,3 e 1,4 dieletrófilo via ciclocondensação.

Esquema 23.

i = 1,3-dieletrófilo frente NH₂NHR; ii = 1,4-dieletrófilo frente NH₂NHR.

No entanto, dados da literatura⁷⁰ demonstram que compostos β enaminodicetonas frente a hidrazinas, apresentam comportamento 1,3-dieletrofílico, o que sugere a obtenção dos produtos pirazol regioisômero-1,3, pirazol regioisomero-1,5 e/ou diidropirazol (**A**, **B** e/ou **C**, respectivamente - **Esquema 23**).

Inicialmente a reatividade do bloco precursor (2) foi avaliada frente à fenilhidrazina, sob refluxo de etanol, metodologia baseada na literatura.^{70;74-80} Após 30 minutos de reação, via análise de CCD (Cromatografia em Camada Delgada), observou-se o total consumo dos reagentes e a formação de produtos, os quais foram isolados do meio reacional via métodos cromatográficos e cristalização fracionada.

Através de técnicas de RMN ¹H, ¹³C, NOESY, HSQC e HMBC, foi possível a elucidação estrutural dos produtos obtidos: pirazol (**3b**), produto de condensação/ciclização 1,3 do bloco enaminodicetona (2) com fenilhidrazina; hidrazonil-pirazóis (4b), isômeros E e Z, os quais provem da reação de condensação do produto **3b** com fenilhidrazina; e pirazolo[3,4-*d*]piridazinona (**5b**), heterociclo fundido proveniente da heterociclização intramolecular dos produtos hidrazonil-pirazóis (4b) (Esquema 24). Vale ressaltar, que o pirazol 3b foi obtido regiosseletivamente, regioisômero-1,5, o que torna a metodologia utilizada bastante atrativa para síntese de tais compostos.

Esquema 24.

Assim, considerando que a reação entre o bloco precursor βenaminodicetona (**2**) com fenilhidrazina levou à mistura de quatro compostos, a mesma foi otimizada com o objetivo de desenvolver metodologias específicas para obtenção dos aza-heterociclos de formas regiosseletivas.

A **Tabela 2** apresenta as condições reacionais empregadas para otimização da síntese do núcleo pirazolínico **3**, bem como a proporção dos compostos obtidos em cada condição. Através da análise de tais resultados observou-se a influência da quantidade de fenilhidrazina e da temperatura reacional na formação dos subprodutos

4b(*E*/*Z*) e **5b**, respectivamente (**entradas 1** e **2** - **Tabela 2**). A obtenção do pirazol **3b** como único produto da reação foi possível quando utilizou-se pequeno excesso do reagente β-enaminodicetona (**2**) em relação à fenilhidrazina (**entrada 3 - Tabela 2**). Tal reação foi aplicada para os dinucleófilos monoidrato de hidrazina (**R** = H) e 4-cloro-fenilhidrazina (**R** = 4-ClC₆H4), com objetivo de observar o efeito do grupamento **R** sobre a regioquímica da heterociclização. No entanto, a reação se mostrou regiosseletiva, independentemente da estrutura de **R**, conduzindo, de forma semelhante à reação com fenilhidrazina, aos pirazóis regioisômeros-1,5, compostos **3a** e **3c** (**entradas 4** e **5**, respectivamente - **Tabela 2**).

Tabela 2. Condições reacionais empregadas para otimização da síntese do pirazolpolifuncionalizado 3

Entrada	Comp	P	÷		Produ	to (%) ^a		Rend $(%)^{b}$
Littiada	aua comp. ĸ		ι_	2	3	4(<i>E/Z</i>)	5	. iteria. (70)
1	3b	Ph	а	0	76,2	16,8	7,0	-
2	3b	Ph	b	0	75,5	24,2	0,3	-
3	3b	Ph	С	≤2	≥98	0	0	71
4	3a	Н	с	≤2	≥98	0	0	75
5	Зc	$4-CIC_6H_4$	С	≤2	≥98	0	0	67

a = hidrazina: β -enaminodicetona (1,2:1), refluxo, EtOH, 30 min.; b = hidrazina: β -enaminodicetona (1,2:1), t.a., EtOH, 30 min.; c = hidrazina: β -enaminodicetona (1:1,1), t.a., EtOH, 30 min.; ^aObtido por análise de RMN de ¹H em CDCl₃; ^bRendimento (%) para o composto isolado via CC.

Com relação ao mecanismo da reação de síntese do núcleo pirazolínico, baseado na literatura,⁷⁰ propõe-se que o grupo NH₂ da hidrazina, ataca o C-β do bloco precursor β-enaminodicetona **2** levando à formação do intermediário **I**, o qual sofre eliminação da dimetilamina formando a β-hidrazinocetona insaturada **II**. Assim, a subsequente heterociclização acontece com o ataque intramolecular do grupo NH ao carbono carbonílico vizinho ao grupo éster, conduzindo ao diidropirazol **III**, o qual através da eliminação de uma molécula de água estabelece o sistema aromático pirazol (**3a-c**) (**Esquema 25**).

3.2.3. Síntese e isolamento dos intermediários hidrazonil-pirazóis 4b(E) e 4b(Z)

A obtenção dos estereoisômeros **4b***E* e **4b***Z*, intermediários envolvidos na formação do composto **5**, fundamentou-se na otimização da reação de condensação do pirazol **3b** com fenilhidrazina (condição *b* - **Esquema 20**).

Inicialmente, tomou-se por base as observações da síntese do composto **3**, ou seja, adotou-se como temperatura reacional a temperatura ambiente, visto que o aquecimento favorece a heterociclização de tais intermediários levando à formação do composto **5**. Valendo-se de tal estratégia, empregou-se como solvente reacional diclometano (CH₂Cl₂), devido ao seu baixo pondo de ebulição, facilitando a remoção do mesmo do meio reacional. Ao analisar o produto bruto da reação descrita na **entrada 1** (**Tabela 3**), observou-se que apenas parte do reagente pirazol (**3b**) foi convertido aos produtos desejados hidrazonil-pirazóis (**4b**-*E*/*Z*). Sendo assim, no intuito de aumentar a conversão de tal reagente aos produtos desejados, a reação foi realizada sob catálise ácida, através da utilização do ácido de Lewis BF₃ (BF₃.MeOH) (**Entrada 2, Tabela 3**), a qual levou à formação dos hidrazonil-pirazóis (99,3%). Visto a eficiência da utilização da catalise ácida, empregou-se o ácido prótico, ácido acético (AcOH), como catalisador (**entrada 3, Tabela 3**), no entanto, a reação de ciclização intramolecular dos produtos hidrazonil-pirazóis foi favorecida, levando à obtenção de maior proporção do composto **5b**, quando comparada a utilização do ácido de Lewis BF₃ (**entrada 2 - Tabela 3**).

$\begin{array}{c} \begin{array}{c} CO_2 Et \\ O \\ EtO_2 C \end{array} \\ \begin{array}{c} N \\ Ph \end{array} \\ \begin{array}{c} NH_2 NHPh \\ i \end{array} \\ i \end{array}$		$\frac{\rm NH_2NHPh}{>}$	EtO_2C N $+$ EtO_2C N Ph Ph	EtO ₂ C	NHPh N + Ph N h	CO ₂ Et
3b			4b(<i>E</i>)	4b(<i>Z</i>)	4b(Z) 5b	
Entrada i			Produto (%) ^a		Rend (%) ^b Rend (%)	
Entrada	L	3b	4b(<i>E/Z</i>)	5b		
1	а	40,8	57,5	1,7	-	-
						70/44
2	b	0	99,3	0,7	96	78/14

Tabela 3. Otimização da síntese dos compostos hidrazonil-pirazóis 4b(E/Z)

DITTI

a = t.a., CH₂Cl₂, 1h; b = t.a., CH₂Cl₂, cat. BF₃.MeOH, 1h; c = t.a., CH₂Cl₂, cat. AcOH, 1h; ^aObtido por análise de RMN de ¹H em CDCl₃; ^bRendimento (%) para a mistura isomérica, ^cRendimento (%) para os isômeros *E*/*Z* separados por CC.

Com base no mecanismo, descrito na literatura,^{81;82} de adição de derivados nitrogenados a carbonilas de cetonas, sob catálise ácida, o Esquema 26 apresenta uma proposta do mecanismo da reação de condensação entre as espécies pirazol 3b e fenilhidrazina, sob catálise de ácido de Lewis BF₃ (BF₃.MeOH). Inicialmente, o ácido de Lewis ativa a carbonila ao se ligar ao oxigênio da mesma. Na segunda etapa, o NH₂ da fenilhidrazina promove a adição nucleofílica ao carbono carbonílico ativado, conduzindo ao intermediário tetraédrico II. Em seguida, o oxigênio do grupo F₃B⁻O é protonado através da transferência de próton (prototropismo) do nitrogênio amínico, levando à formação dos intermediários III e III', os quais apresentam diferentes arranjos conformacionais, grupos de maior prioridade (CO₂Et e NHPh) anti (III) ou sin (III'), de modo com que a formação da ligação dupla CN ocorra através de uma eliminação anti. Na última etapa os confôrmeros III e III' sofrem eliminação anti do grupamento ligado ao ácido de Lewis e subsequente neutralização através da perda do hidrogênio ligado ao nitrogênio imínico, levando à obtenção do produto hidrazona nas formas estereoisoméricas $E \in Z$, respectivamente, e o catalisador BF₃ é regenerado na forma de monoidrato de trifluoreto de boro (BF₃.H₂O).

Com relação à quantificação estereoisomérica, vale ressaltar que as hidrazonas são passíveis de isomerização dinâmica, a qual pode ser causada termicamente, fotoquimicamente, por solventes polares, por catálise ácido-base, ou ainda via tautomerização hidrazona-azo e hidrazona-azoenol,^{83, 84} dificultando tal

determinação. Entretanto, para a mistura estereoisomérica 4b(E)/4b(Z) obtida, foi possível observar que a formação do estereoisômero E (\leq 85%) é favorecida sobre o Z (\geq 15%), a qual pode ser explicada através da estabilidade conformacional dos intermediários tetraédricos III e III', sendo o confôrmero III, que leva ao estereoisômero E, o que apresenta maior estabilidade - menor repulsão estérica entre os grupamentos CO₂Et e NHPh (Esquema 26).

Esquema 26.

3.2.4. Pirazolo[3,4-d]piridazinonas (5)

De acordo com as observações da síntese dos compostos **3** e **4**, os compostos pirazolo[3,4-*d*]piridazinonas (**5**), podem ser obtidos por dois caminhos reacionais: reação *one-pot* a partir do bloco precursor enaminodicetona **2** ($R^1=R^2$); ou a partir do pirazol polifuncionalizado **3** ($R^1#R^2$) (**Esquema 27**).

Esquema 27.

Embora ambos os caminhos reacionais tenham como reagentes diferentes substratos (**Esquema 27**), as duas rotas levam à formação dos hidrazonil-pirazóis (**4**) como intermediários. Portanto, para maior entendimento do mecanismo da reação e otimização das condições reacionais, tais intermediários (**4b**), esteroisômeros $\boldsymbol{E} \in \boldsymbol{Z}$, obtidos e isolados anteriormente, foram avaliados quanto a reatividade frente a heterociclização intramolecular, reação a qual conduz ao produto **5b**. A condição reacional empregada para avaliação baseou-se nas observações da síntese dos compostos **3** e **4**, utilização de refluxo de etanol e catalise ácida (AcOH) (entrada **1** - **Tabela 2** e entrada **3** - **Tabela 3**). Após determinado o tempo reacional (48h), observou-se, através da analise de RMN de ¹H do produto bruto da reação, que o estereoisômero \boldsymbol{Z} apresentou-se inativo frente à reação de heterociclização intramolecular e que o estereoisômero \boldsymbol{E} foi convertido totalmente, ao produto desejado **5b** (91.7%), e ao estereoisômero \boldsymbol{Z} (8,3%) (**Esquema 28**).

Esquema 28.

A "inatividade" do estereoisômero **Z** pode ser explicada em virtude do efeito estabilizante promovido pela ligação intramolecular de hidrogênio, entre o hidrogênio

amínico (NH) e oxigênio carbonílico, a qual resulta na formação de um pseudo-anel de seis membros, possibilitando o tautomerismo hidrazona-azoenol.⁸³ (**Esquema 29**) Esse efeito estabilizante justifica a interconversão do estereoisômero *E* para *Z*, a qual provavelmente se procede através do mecanismo proposto no **Esquema 29**, onde, inicialmente a carbonila adjacente ao grupo hidrazonil é protonada, promovendo a deslocalização dos elétrons π , tornando possível a livre rotação da ligação C-N. Com a perda do hidrogênio ligado ao nitrogênio amínico e rotação de 180° da ligação C-N, o tautomero azoenol é formado e se rearranja para a forma tautomérica hidrazona, com estereoquímica *Z*.

Esquema 29.

A heterociclização intramolecular do estereoisômero *E* corresponde à reação de substituição nucleofílica acilica intramolecular, via mecanismo proposto no **Esquema 30**, o qual é promovido através da ativação da carbonila do éster ligado diretamente ao núcleo pirazolínico, via catalise ácida, e subsequente adição nucleofílica intramolecular do grupo amínico (NH) a carboníla ativada. Na segunda etapa, sob efeito de prototropismo intramolecular, EtOH/H⁺ são eliminados, levando à molécula neutra do produto pirazolo[3,4-*d*]piridazinona (**5**).

Tendo como base os resultados obtidos quanto à reatividade dos intermediários hidrazonil-pirazóis e objetivando a obtenção dos compostos pirazolo[3,4*d*]piridazinonas (**5a**, **5b** e **5c**) através de metodologia *one-pot* a partir do bloco precursor β -enaminodicetona **2**, alguns catalisadores foram testados (**Tabela 4**) no intuito de reduzir a formação do intermediário inativo hidrazonil-pirazol estereoisômero **Z**. No entanto, apenas a utilização de alta concentração (4-10 eq.) de ácido acético (AcOH) levou a obtenção de menor proporção do estereoisômero **Z** e obtenção do produto **5b** com rendimento moderado (53%) (entrada **5** e **6** – **Tabela 4**). Ao estender tal metodologia para síntese dos compostos **5a** e **5c**, apenas o composto **5c** foi obtido (65%) (entrada 8 – Tabela 4), não sendo possível o isolamento e caracterização do composto 5a.

Esquema 30.

Tabela 4. Otimização da síntese *one-pot* dos compostos pirazolo[3,4-*d*]piridazinonas (**5b,c**) a partir do bloco precursor **2**

a = AcOH (1 eq.), EtOH, refluxo, 1h; $b = HCO_2H$ (1 eq.), EtOH, refluxo, 1h; $c = CF_3CO_2H$ (1 eq.), EtOH, refluxo, 1h; d = p-TSA (1 eq.), EtOH, refluxo, 1h; e = AcOH (4 eq.), EtOH, refluxo, 1h; f = AcOH (10 eq.), EtOH, refluxo, 1h; g = AcOH, 80 °C, 1h; aObtido por análise de RMN de ¹H em CDCl₃; bRendimento (%) para o composto isolado via cristalização fracionada.

De acordo com o **Esquema 27**, os compostos pirazolo[3,4-*d*]piridazinonas que apresentam $R^{1}\neq R^{2}$ (**5d-i**) podem ser obtidos através da reação do pirazol polifuncionalizado (**3a-c**) com a respectiva hidrazina. Ao aplicar as condições reacionais da síntese *one-pot* dos compostos **5** (condição *e* – **Tabela 4**) para formação do produto **5i**, observou-se pequena taxa de conversão ao produto final (**5i**) (entrada **1** – **Tabela 5**). Objetivando maior conversão do mesmo, variações na concentração do catalisador (AcOH) e no tempo reacional foram realizadas (entradas **2-6** – **Tabela 5**). A entrada **4** (**Tabela 5**) descreve a condição reacional mais eficiente, com bom rendimento (69%), visto que o aumento do tempo reacional (entradas **5 e 6 – Tabela 5**) não proporcionou aumento significativo na taxa de conversão ao produto final (**5i**). Ao estender a metodologia para síntese dos demais compostos, resultados satisfatórios (rend. 69-89%) foram obtidos, no entanto os compostos em que R¹=H (**5a**, **5d** e **5g**) não foram isolados devido à dificuldade de purificação.

Tabela 5. Otimização da síntese dos compostos pirazolo[3,4-*d*]piridazinonas (**5e,f,h,i**) a partir do pirazol polifuncionalizado (**3b,c**)

	EtO ₂ C	O ₂ Et	i EtO	$0_{2}C \xrightarrow{N}_{R}^{N}$		>	R ^{2-N}	CO ₂ Et	
Entrada	Comp.	R ¹	R ²	i _		Produt	:0 (%) ª		Rend. (%) ^b
	p-				3	4(<i>E</i>)	4(<i>Z</i>)	5	
1	5i	$4-ClC_6H_4$	Ph	а	0	51,3	15,9	32,8	-
2	5i	$4-ClC_6H_4$	Ph	b	0	67,6	14,2	18,2	-
3	5i	$4\text{-}ClC_6H_4$	Ph	С	1,9	63,3	15,8	19,0	-
4	5i	$4-ClC_6H_4$	Ph	d	0	6,2	16,9	76,9	69
5	5i	$4-ClC_6H_4$	Ph	е	0	4,7	17,2	78,1	70
6	5i	$4-ClC_6H_4$	Ph	f	0	0	17,9	82,1	73
7	5e	Ph	$4-ClC_6H_4$	d	-	-	-	-	69
8	5f	$4-ClC_6H_4$	Н	d	-	-	-	-	89
9	5h	Ph	Н	d	-	-	-	-	84

a = AcOH (4 eq.), EtOH, refluxo, 1h; b = AcOH (1 eq.), EtOH, refluxo, 1h; c = AcOH (10 eq.), EtOH, refluxo, 1h; d = AcOH (4 eq.), EtOH, refluxo, 12h; e = AcOH (4 eq.), EtOH, refluxo, 24h; f = AcOH (4 eq.), EtOH, refluxo, 48h; ^aObtido por análise de RMN de ¹H em CDCl₃; ^bRendimento (%) para o composto isolado via cristalização fracionada.

3.2.5. Derivado N-acilidrazônico (7i)

Com o intuito de explorar a funcionalidade remanescente do bloco precursor enaminodicetona (2) presente no produto pirazolo[3,4-d]piridazinona (5), o composto 5i foi submetido a subsequentes reações objetivando a obtenção do derivado Nacilidrazonico 7i (Esquema 31). Este composto pertence à classe das Bases de Schiff, compostos de grande relevância na síntese orgânica, como reagentes versáteis em reações de adição radicalar, cicloadição, cianação, alilação, reação de Mannich e redução.⁸⁵ Vale também ressaltar a pronunciada aplicabilidade farmacológica de tais antimicrobianos,⁸⁶ anticonvulsionantes,⁸⁷ analgésicos,⁸⁸ derivados. como antiinflamatórios,⁸⁹ antivirais,⁹⁰ antitumorais,⁹¹ antimaláricos,⁹² antidepressivos⁹³ е vasodilatadores.94

Esquema 31.

A rota sintética proposta para obtenção do derivado *N*-acilidrazônico **7**i, envolve a reação de transformação do grupo éster, presente no composto **5**i, para hidrazida (**6**i) (**Esquema 31**). Reação a qual, refere-se à substituição nucleofílica acílica, descrita na literatura⁹⁵⁻⁹⁷ via refluxo de etanol e utilização de excesso de monoidrato de hidrazina. A **Tabela 6** lista as condições reacionais empregadas para otimização da síntese do composto **6**i. Onde, a entrada **5** (**Tabela 6**) corresponde a condição reacional que conduziu a total conversão do reagente **5**i ao produto **6**i com excelente rendimento (98%), sendo necessário a utilização de grande excesso de monoidrato de hidrazina (20 eq.) e mistura de solventes, sendo este último para promover maior homogeneidade dos reagentes, visto que o reagente **5**i apresenta baixa solubilidade em etanol e maior solubilidade em acetonitrila, contrariamente ao monoidrato de hidrazina.

	$p_{h} - N_{x}$	$ \begin{array}{c} $		HNH_2 N $_5H_4Cl-4$	
Entrada	NH2NH2	Solvente	Produ	ito (%) ^a	Rend (%) ^b
Entrada		Convente	5i	6i	
1	5 eq.	EtOH	83	17	-
2	10 eq.	EtOH	64	36	-
4	10 eq.	MeCN: EtOH (1:1)	44	55	-
5	20 eq.	MeCN: EtOH (1:1)	0	100	98

Tabela 6. Otimização da síntese do composto carboxhidrazinil-pirazolo[3,4*d*|piridazinona (**6i**)

^aObtido por análise de RMN de ¹H em CDCl₃; ^bRendimento (%) para o composto isolado via evaporação do solvente reacional.

A hidrazida obtida (**6i**) não se restringe apenas como intermediário da rota sintética do derivado *N*-acilidrazona (**7i**) (**Esquema 31**), pois, tal classe de compostos, devido reatividade 1,2-dinucleofilíca, é amplamente relatada na literatura⁹⁸⁻¹⁰¹ como reagentes de grande relevância na síntese orgânica, o que proporciona ao composto **6i** grande aplicabilidade.

O derivado *N*-acilidrazona (**7i**) foi obtido com excelente rendimento (96%) a partir da reação de condensação da hidrazida **6i** com benzaldeido (**Esquema 32**). A condição reacional empregada baseou-se em dados da literatura:¹⁰² utilização de solvente polar (DMSO), catalise ácida (HCI) e temperatura ambiente.

Esquema 32.

3.3. Caracterização Estrutural e Propriedades Físicas

A caracterização estrutural dos compostos obtidos foi feita via RMN uni (¹H, ¹³C e NOESY 1D) e bidimensional (HSQC e HMBC), utilizando CDCl₃ ou DMSO-d₆ como solvente e espectrometria de massas de alta resolução. As propriedades físicas, tais como peso molecular e ponto de fusão, foram determinadas através de espectrometria de massas de alta resolução e aparelho ponto de fusão, respectivamente. As constantes físicas juntamente com os rendimentos (**Tabela 7**) e os dados espectroscópicos de RMN (**Tabela 8**) dos compostos obtidos se encontram listados nas páginas 46-49.

3.3.1. Bloco precursor β -enaminodicetona (2)

No espectro de RMN de ¹H em CDCl₃ (**Figura 5**) do composto **2**, foi observado dois sinais referentes aos hidrogênios das duas metilas do grupamento N(Me)₂ como dois simpletos, um com deslocamento químico de 2,95 ppm, e outro com 3,42 ppm. O sinal do hidrogênio vinílico foi observado em 7,95 ppm e os sinais referentes aos hidrogênios dos dois grupos etoxilas, o qual se apresenta como um conjunto de tripleto e quarteto, foi observado em 1,35 ppm e 4,27 ppm, respectivamente, indicando que os grupamentos etoxilas são equivalentes.

Figura 5. Espectro de RMN de ¹H do composto β -enaminodicetona (2)

O espectro de RMN ¹³C (**Figura 6**) apresentou os dois sinais característicos para os carbonos vinílicos, com deslocamento químico de 106,1 ppm para C3 e de 162,6 ppm para C4. Os sinais referentes aos carbonos carbonílicos foram observados em 164,0 ppm, carbonila de éster (C1), e em 181,6 ppm, carbonila cetônica (C2), ambos sinais se encontram em regiões característica da janela espectral de tais grupamentos.

Figura 6. Espectro de RMN de ¹³C do composto β -enaminodicetona (2)

Através da espectrometria de massas de alta resolução confirmou-se a obtenção do bloco β -enaminodicetona (2). Na **Figura 7 - a** observa-se picos relativos ao íon molecular na forma protonada e cationizada: [M+H]⁺ de *m*/*z* 272,1128 (calculado: 272,1134), [M+Na]⁺ de *m*/*z* 294,0943 (calculado: 294,0954) e [M+K]⁺ de *m*/*z* 310,0680 (calculado: 310,0693). No espectro MS/MS do íon molecular [M+H]⁺ (**Figura 7 - b**), observa-se que o fragmento mais estável, pico base em *m*/*z* 170,0809 (calculado: 170,0817), refere-se à perda do grupamento C(O)CO₂Et.

Figura 7. (**a**) Espectro de massas de alta resolução [ESI(+)-MS] e (**b**) análise [ESI(+)-MS/MS] do bloco precursor β-enaminodicetona (**2**)

3.3.2. Pirazóis polifuncionalizados (3a-c)

Os dados obtidos por RMN de ¹H em CDCl₃ (**Figuras 16, 20** e **26** – **Anexos I**) apresentou conjunto de sinais característicos de um único composto, estrutura **A** ou **B** (**Esquema 23**): onde observou-se um simpleto com deslocamento químico no intervalo de 8,33–8,51 ppm, atribuído ao hidrogênio imínico H3; sinais característicos de hidrogênios aromáticos, com deslocamentos químico na faixa de 7,46-7,49 ppm, como simpleto com integração de quatro hidrogênios, atribuído aos hidrogênios do substituinte 4-clorofenila (**3c**) e como simpleto alargado com integração de cinco hidrogênios atribuído aos hidrogênios do substituinte fenila (**3b**); e sinais característicos de grupamentos etoxilas, tripletos e quartetos, com deslocamentos na faixa de 1,23-1,40 ppm e 4,31-4,45 ppm, respectivamente. No entanto, esses dados não permitiram a distinção entre as estruturas **A** e **B** (**Esquema 23**) para os compostos **3b** e **3c**. Assim, utilizando a técnica de RMN NOESY 1D (*Nuclear Overhauser Enhancement SpectroscopY*) foi possível observar interações espaciais entre os hidrogênios do grupamento etoxila (O-C-CH₃ – δ 1,23 ppm) com os hidrogênios do substituinte fenila (δ 7,49 ppm), correlação possível apenas para a estrutura **B**, a qual corresponde ao regioisômero-1,5 (**Figura 22 – Anexos I**).

Os espectros de ¹³C (**Figuras 17**, **21** e **27** – **Anexos I**) apresentaram número de sinais equivalentes ao número de átomos de carbono das estruturas propostas, onde, os deslocamentos químicos na faixa de 13,8-14,2 ppm e 62,5-63,3 ppm correspondem aos carbonos metílicos e metilênicos, respectivamente. Deslocamentos na faixa de 120,5-142,7 correspondem aos carbonos aromáticos referentes aos substituintes fenila ou 4-clorofenila e ao núcleo pirazolínico e deslocamentos químico na faixa de 160,00-178,2 ppm para os carbonos carbonílicos, carbonilas de éster com deslocamentos próximos a 160 ppm e carbonilas de cetona próximo de 178 ppm.

A análise de espectrometria de massas de alta resolução (**Figuras 101** – **103** – **Anexos II**) apresentou padrão de fragmentação para a série de pirazóis, tendo como pico base o íon molecular. Em relação às demais fragmentações observadas, a perda do grupamento C(O)CO₂Et para os compostos **3b** e **3c** apresentou fragmentos relativamente estáveis, detectados em quantidades de 86,98% e 46,99%, respectivamente, em relação ao pico base. Já para o composto **3a**, a perda do grupamento carboetoxi conduziu a fragmento relativamente mais estável, detectado em quantidade de 54,15% em relação ao pico base, que a perda do grupamento C(O)CO₂Et, detectado em quantidade de 3,47% (**Figura 8**).

Figura 8. Principais fragmentações detectadas via espectrometria de massas da série de pirazóis (**3a-c**)

3.3.3. Intermediários hidrazonil-pirazóis (4b(E/Z))

Os espectros de RMN de ¹H dos estereoisômeros hidrazonil-pirazóis em $CDCI_3$ (**4b**(*E*) e **4b**(*Z*)) (**Figuras 31** e **39** – **Anexos I**) apresentaram sinais característicos de dois grupamentos etoxilas, tripletos e quartetos, com deslocamentos

químicos no intervalo de 1,11-1,35 ppm e 4,15-4,32 ppm, respectivamente. Tais sinais são coerentes com as estruturas propostas, confirmando o isolamento dos intermediários hidrazonil-pirazóis, visto que a ciclização intramolecular dos mesmos leva à eliminação de um dos grupamentos etoxila. Na faixa de 7,79-7,87 ppm observou-se sinal referente ao hidrogênio imínico na forma de um simpleto. Na região característica de hidrogênios aromáticos observou-se sinais, padrão de segunda ordem, na forma de multipleto com integração equivalente a um hidrogênio e deslocamento químico na faixa de 6,97-7,02 ppm (4b(E) e 4b(Z)), multipleto com integração de quatro hidrogênios na faixa de 7,20-7,34 ppm (4b(E) e 4b(Z)) e multipleto (4b(Z)) ou simpleto alargado (4b(E)) com integração de cinco hidrogenios na faixa de 7,41-7,50 ppm. O sinal referente à NH, simpleto, foi observado em regiões distintas, 8,25 ppm e 12,42 ppm, a qual possibilitou a diferenciação dos etereoisômeros E e Z, pois, de acordo com a literatura,⁸³ o deslocamento químico do hidrogênio amínico em 12,42 ppm se deve a formação de uma ligação hidrogênio intramolecular, resultando na formação de um pseudo-anel de seis membros (Esquema 29), interação a qual pode ser observada apenas para o estereoisômero Z. Os espectros de NOESY 2D (Figuras 33, 34, 41-43 – Anexos I) confirmaram tal observação, pois, apenas o estereoisômero **E** apresentou interações espaciais entre o hidrogênio imínico (H3 – δ 7,79 ppm) e o hidrogênio amínico (δ 8,25 ppm) (Figura 9).

Os espectros de RMN de ¹³C (**Figuras 32** e **40** – **Anexos I**) apresentaram sinais condizentes ao número de átomos de carbono em relação às estruturas propostas, dentre os quais, os carbonos metílicos e metilênicos foram observados no intervalo de 13,8-14,5 ppm e 61,3-62,0 ppm, respectivamente. Os carbonos aromáticos referentes aos substituintes fenilas e ao núcleo pirazolínico se apresentaram com deslocamento químico na faixa de 114,3-143,1 ppm, atribuídos via HSQC e HMBC (**Figuras 35-38** e **44-48** – **Anexos I**). O sinal de carbono imínico foi observado na faixa de deslocamento de 120,8-126,6 ppm, atribuído via HMBC e os sinais referentes as carbonilas de éster na faixa de 158,8-164,4 ppm.

Os dados obtidos de espectrometria de massas de alta resolução (**Figuras 104** e **105** – **Anexos II**), mostraram diferentes padrões de fragmentação para os estereoisômeros E e Z. Os íons moleculares de ambos os estereoisômeros foram detectados com uma unidade a mais, indicando que as moléculas foram protonadas, e em quantidades diferentes, 30,14% para E e 85,05% para Z, em relação aos correspondentes picos base. Observou-se que o fragmento de maior estabilidade, pico base, para o estereoisômero *E*, corresponde à perda de uma etoxila, *m*/*z* 361,1290 (calculado: 361,1301). Já para o estereoisômero *Z*, o pico base corresponde ao fragmento protonado *m*/*z* 242,0938 (calculado: 241,0851), o qual equivale a perda de um dos grupamentos carboetoxi e do grupamento NHPh. Em relação ao mecanismo de fragmentação do pico base em *m*/*z* 242,0938, supõe-se que o mesmo deve estar relacionado à interação intramolecular de ligação hidrogênio presente no estereoisômero *Z* (Figura 9), no entanto estudos mais detalhados são necessários para confirmação de tal evidência e proposta de um mecanismo de fragmentação.

Figura 9. Correlação espacial observada via NOESY do grupo amínico para os estereoisômeros *E* e *Z*

3.3.4. Pirazolo[3,4-d]piridazinonas (5b,c,e,f,h,i)

Os espectros de RMN de ¹H em CDCl₃ (**5b**,**c**,**e**,**i**) e DMSO-d₆ (**5f**,**h**) (**Figuras 49**, **55**, **61**, **67**, **74**, **80** – **Anexos I**) dos compostos apresentaram como características o sinal do hidrogênio imínico H3, obtido como um simpleto com deslocamento químico na região de 8,54-8,61 ppm. Na região de 7,37-7,77 ppm observou-se multipletos correspondente aos hidrogênios dos substituintes fenilas (**5b**,**e**,**h**,**i**) e 4-clorofenilas (**5c**,**e**,**f**,**i**). Também, foram observados sinais referentes a grupamento etoxila com deslocamentos químicos na região de 1,39-1,48 ppm (tripleto) e 4,43-4,55 ppm (quarteto). Para os compostos **5f**,**h**, observou-se um simpleto com deslocamento químico na região de 13,38-13,41 ppm, o qual refere-se ao hidrogênio do grupo NH.

Os espectros de RMN de ¹³C (Figuras 50, 56, 62, 68, 75, 81 – Anexos I) apresentaram números de sinais equivalentes ao número de átomos de carbono da estrutura proposta e com deslocamentos químico em faixas coerentes com a literatura.⁶¹⁻⁶⁶ Os sinais referentes aos carbonos metílicos e metilênicos foram observados nas regiões de 14,0-14,5 ppm e 61,7-62,8 ppm, respectivamente. Na faixa de 120,2-141,0 ppm observou-se sinais, atribuídos via HSQC e HMBC (Figuras 51-54, 57-60, 63-66, 69-73, 76-79 e 82-85 - Anexos I), referentes aos carbonos dos sistemas aromáticos. Onde os sinais equivalentes ao sistema aromático pirazol se apresentaram com deslocamentos químico nas faixas de 120,2-120,9 ppm para C3a, 131,4-132,2 ppm para C7a e 136,3-137,1 ppm para o carbono imínico C3. Os carbonos imínico C4 e carbonílicos de amida (C7) e de éster (CO2Et), foram observados com deslocamentos químico nas faixas de 131,6-133,6 ppm, 152,7-153,1 ppm e 162,0-162,5 respectivamente, sendo estas regiões das janelas espectrais ppm, características de tais funcionalidades.

Os dados de espectrometria de massas de alta resolução dos compostos 5b e 5e (Figuras 106 e 108 – Anexos II) mostraram que os fragmentos mais estáveis, m/z 361,1283 (calculado: 361,1295) е m/z395,0905 (calculado: 395,0905), respectivamente, referem-se ao íon molecular, detectado com uma unidade a mais, indicando que as moléculas foram protonadas [M+H]⁺. Para os compostos 5c, 5f e 5h (Figuras 107, 109 e 110 – Anexos II) os picos bases correspondem aos fragmentos *m*/*z* 401,0190 (calculado: 401,0203), *m*/*z* 291,0246 (calculado: 291,0279) e *m*/*z* 257,0671 (calculado: 257,2243), respectivamente, os quais equivalem a fragmentos protonados provenientes da perda do grupamento etila da função éster. Já para o

composto **5i** (**Figura 111** – **Anexos II**) o pico base, m/z 321,0905 (calculado: 321,0538), corresponde à perda do grupamento carboetoxila.

3.3.5. Hidrazida-pirazolo[3,4-*d*]piridazinona (6i)

O espectro de RMN de ¹H (**Figura 86 – Anexos I**) apresentou sinais característicos, simpletos alargados, dos hidrogênios referentes aos grupos NH₂ e NH, como deslocamentos químico de 4,65 ppm e 9,94 ppm, respectivamente. O sinal do hidrogênio imínico H3, atribuído via HSQC (**Figuras 88, 89 – Anexos I**), foi observado como simpleto com deslocamento químico de 8,63 ppm. Na faixa de 7,40-7,81 ppm observou-se multipletos referente aos hidrogênios dos substituintes aromáticos fenila e 4-clorofenila.

O espectro de RMN de ¹³C (**Figura 87** – **Anexos I**) apresentou 14 sinais, quantidade equivalente ao número de carbonos para estrutura proposta. Os sinais atribuídos aos carbonos aromáticos C3a, C7a e C3, via HSQC e HMBC (**Figuras 88-91** – **Anexos I**), foram observados com deslocamentos químico de 119,6 ppm, 132,5 ppm e 136,6 ppm, respectivamente, e os sinais atribuídos aos carbonos dos substituintes fenila e 4-clorofenila, via HSQC e HMBC, foram observados na faixa de 126,5-140,9 ppm. Os sinais referentes aos carbonos imínico C4 e carbonílicos de amida (C7) e hidrazida (<u>C</u>NHNH₂), foram observados com deslocamentos químico de 134,8 ppm, 152,0 ppm e 160,7 ppm, respectivamente, valores condizentes com tais funcionalidades.

3.3.6. Derivado N-acilidrazônico (7i)

O espectro de RMN de ¹H em DMSO-d₆ (**Figura 92 – Anexos I**) apresentou dois simpletos na região característica de hidrogênios imínicos, os quais foram atribuídos via HSQC e HMBC (**Figuras 96-99 – Anexos I**) aos hidrogênios H8' com deslocamento químico de 8,59 ppm e H3 com deslocamento químico de 8,72 ppm. Na faixa de 7,43-7,84 ppm observou-se multipletos, atribuídos aos hidrogênios aromáticos dos substituintes fenilas e 4-clorofenila. Observou-se também um simpleto em 11,95 ppm, o qual foi atribuído ao hidrogênio amídico. Em relação à disposição espacial do grupamento *N*-acilidrazona, de acordo com a literatura,¹⁰³ quatro diferentes arranjos são possíveis, dois conformacionais e dois configuracionais (**Esquema 33**).

Esquema 33.

No entanto, através da atribuição do conjunto de sinais dispostos no espectro de RMN de ¹H, observou-se que a estrutura do composto **7i** corresponde a um único isômero. O qual, foi atribuído através da técnica de RMN NOESY 2D (**Figura 10**), ao estereoisômero *E*, devido a interação espacial observada entre o hidrogênio amídico (11,95 ppm) com o hidrogênio amínico (8,59 ppm) (**Figura 10**), possível apenas para tal estereoisômero. Em relação à isomeria conformacional, são necessários estudos mais aprofundados envolvendo cálculos computacionais e análises de RMN sob controle de temperatura em diferentes solventes.

De acordo com a estrutura proposta, 19 átomos de carbonos em ambientes químicos diferentes são possíveis, valor o qual foi observado no espectro de RMN de ¹³C (**Figura 93** – **Anexos I**). A atribuição dos 19 sinais fundamentou-se nas técnicas de HSQC e HMBC (**Figuras 96-99** – **Anexos I**). Aos carbonos dos heterociclos fundidos pirazolo[3,4-*d*]piridazinona, C3 (imínico), C3a, C4 (imínico), C7(amídico) e C7a, os deslocamentos de 136,8 ppm, 119,7 ppm, 134,4 ppm, 152,1 ppm e 132,5 ppm foram atribuídos, respectivamente. Na faixa de 126,8-140,8 ppm observou-se sinais que foram atribuídos aos carbonos aromáticos dos substituintes fenilas e 4-clororofenila. Os carbonos C5' (amídico) e C8' (imínico) do grupo *N*-acilidrazono foram atribuídos aos sinais com deslocamentos químico de 158,4 ppm e 149,6 ppm, respectivamente.

Figura 10. Correlação espacial observada via NOESY para o derivado *N*-acilidrazônico (7i)

Por fim, os compostos Hidrazida-pirazolo[3,4-*d*]piridazinona (**6**i) e derivado *N*-acilidrazônico (**7**i) foram submetidos a análises de espectrometria de massas de alta resolução para determinação dos pesos moleculares e dos padrões de fragmentação. Os espectros obtidos, de ambos os compostos, apresentaram íons moleculares com uma unidade a mais [M+H]⁺, *m*/z 381,0861 (calculado: 381,0861) - **6i** e *m*/z 469,1167 (calculado: 469,1174) – **7i**, indicando que as moléculas foram protonadas (**Figuras 112a** e **113a** – **Anexos II**). Os espectro MS/MS de tais íons moleculares [M+H]⁺ (**Figuras 112b** e **113b** – **Anexos II**), mostraram que os fragmentos de maior estabilidade, picos base, correspondem à quebra da ligação nitrogênio-nitrogênio presente nos grupamentos hidrazida (**6**i) e *N*-acilidrazônico (**7**i) (**Figura 11**). As demais fragmentações detectadas correspondem principalmente a perda dos grupamentos hidrazida m/z 321,0527 (calculado: 321,0543), hidrazida + cloro m/z 286,0849 (calculado: 286,0855) - (**6**i), *N*-acilidrazona m/z 321,0531 (calculado: 321,0543) e *N*-acilidrazona + cloro m/z 286,0859 (calculado: 286,0855) - (**7**i).

Figura 11. Principais fragmentações detectadas via espectrometria de massas para os compostos 6i e 7i

Tabela 7. Rendimento	, peso molecular	([M+H] ⁺)	e faixa de fusão
----------------------	------------------	-----------------------	------------------

Comp.	Rend. (%)	Fórmula Molecular	[M+H]⁺ Calculado	[M+H] ⁺ Experimental ^a	Faixa de fusão (° C)⁵
2	62	C ₁₂ H ₁₇ NO ₆	272,1129	272,1128	_C
3a	75	$C_{10}H_{12}N_2O_5$	241,0819	241,0823	107,7 - 109,8
3b	71	$C_{16}H_{16}N_2O_5$	317,1132	317,1125	38,4 - 39,1
3c	67	$C_{16}H_{15}CIN_2O_5$	351,0742	351,0754	57,2 - 59,0
4b(<i>E</i>)	78	$C_{22}H_{22}N_4O_4$	407,1714	407,1710	124,0 - 126,5
4b(<i>Z</i>)	14	$C_{22}H_{22}N_4O_4$	407,1714	407,1720	101,2 - 104,1
5b	53	$C_{20}H_{16}N_4O_3$	361,1295	361,1283	179,3 - 181,9
5c	65	$C_{20}H_{14}CI_2N_4O_3$	429,0516	429,0511	239,8 - 241,4
5e	69	$C_{20}H_{15}CIN_4O_3$	395,0905	395,0905	220,1 - 223,0
5f	89	$C_{14}H_{11}CIN_4O_3$	319,0592	319,0587	265,3 - 267,8
5h	84	$C_{14}H_{12}N_4O_3$	285,0982	285,0991	214,6 - 217,5
5i	69	$C_{20}H_{15}CIN_4O_3$	395,0905	395,0905	197,3 - 200,1
6i	98	$C_{18}H_{13}CIN_6O_2$	381,0861	381,0861	283,6 - 286,0
7 i	96	$C_{25}H_{17}CIN_6O_2$	469,1174	469,1167	265,2 - 267,4

^aadquiridos através de espectrômetro de massas híbrido (Bruker Scientific) de alta resolução e alta precisão (5 μ/L) microTof (Q-TOF); ^bdeterminados via aparelho de ponto de fusão tendo como padrão interno ácido benzoico; ^ccomposto obtido na forma de óleo.

Composto	Estrutura	RMN ¹ H, δ, <i>J</i> (Hz)	RMN ¹³ C, δ
1	$EtO \underbrace{1}_{O} \underbrace{1}_{2} \underbrace{3}_{4} N(Me)_{2}$	1,37 [1,36] ^c (t, 3H, $J = 7,1$ Hz, O-CH ₂ -C <u>H₃</u>), 2,95 (s, 3H, NMe), 3,19 (s, 3H, NMe), 4,30 (q, 2H, $J = 7,1$ Hz, O- C <u>H₂-CH₃</u>), 5,82 (dl, 1H, $J =$ 12,4 Hz, H3), 7,83 (d, 1H, $J =$ 12,4 Hz, H4)	14,3 (O-CH ₂ - <u>C</u> H ₃), 37,8 (NMe), 45,6 (NMe), 61,9 (O- <u>C</u> H ₂ -CH ₃), 91,8 (C3), 156,3 (C4), 164,7 (C1), 178,2 (C2).
2	$EtO \underbrace{1}_{O} \underbrace{2}_{A} \underbrace{3}_{A} \underbrace{1}_{O} OEt \\ O \underbrace{1}_{A} \underbrace{1}_{A} OEt \\ O \underbrace{1}_{N(Me)_{2}} OEt$	1,37 (t, 6H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 2,97 (s, 3H, NMe), 3,43 (s, 3H, NMe), 4,29 (q, 4H, $J = 7,1$ Hz, O- C <u>H₂</u> -CH ₃), 7,97 (s, 1H, H4).	14,2 (O-CH ₂ - <u>C</u> H ₃), 44,1 (NMe), 48,9 (NMe), 62,5 (O- <u>C</u> H ₂ -CH ₃), 106,1 (C3), 162,6 (C4), 164,0 (C1), 181,6 (C2).
3a	$CO_{2}Et$ $CO_{2}Et$ $CO_{2}Et$ $N 2$ H^{1}	1,41 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -CH ₃), 1,41 (t, 3H, $J = 7,1$ Hz, O-CH ₂ -CH ₃), 4,40 (q, 2H, $J = 7,1$ Hz, O-CH ₂ -CH ₃), 4,45 (q, 2H, $J = 7,1$ Hz, O- CH ₂ -CH ₃), 8,51 (s, 1H, H3), 14,01 (sl, 1H, NH).	14,2 (1C, O-CH ₂ - \underline{C} H ₃), 14,3 (1C, O-CH ₂ - \underline{C} H ₃), 62,5 (1C, O- \underline{C} H ₂ -CH ₃), 62,8 (1C, O- \underline{C} H ₂ -CH ₃), 119,3 (C4), 136,5 (C3), 143,2 (C5), 161,7 (\underline{C} OOEt), 162,3 (\underline{C} OOEt), 180,0 (CO).
3b	$EtO_2C \xrightarrow{CO_2Et}_{N_1}N_2$	1,23 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -CH ₃), 1,42 (t, 3H, $J = 7,1$ Hz, O-CH ₂ -CH ₃), 4,31 (q, 2H, $J = 7,1$ Hz, O-CH ₂ -CH ₃), 4,41 (q, 2H, $J = 7,1$ Hz, O- CH ₂ -CH ₃), 7,49 (sl, 5H, Ar), 8,34 (s, 1H, H3).	13,8 (1C, O-CH ₂ - \underline{C} H ₃), 14,2 (1C, O-CH ₂ - \underline{C} H ₃), 62,9 (1C, O- \underline{C} H ₂ -CH ₃), 63,1 (1C, O- \underline{C} H ₂ -CH ₃), 120,5 (C4), 124,7; 129,5; 129,7; 138,8 (Ar), 138,0 (C5), 142,6 (C3), 160,2 (\underline{C} OOEt), 161,7 (\underline{C} OOEt), 178,2 (CO).
Зс	$CO_{2}Et$ $CO_{2}Et$ $CO_{2}Et$ $CO_{2}Et$ $N 2$ $CO_{2}Et$ $N 2$ $H 2$	1,26 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 1,42 (t, 3H, $J = 7,1$ Hz, O-CH ₂ -C <u>H₃</u>), 4,33 (q, 2H, $J = 7,1$ Hz, O-C <u>H₂-CH₃</u>), 4,40 (q, 2H, $J = 7,1$ Hz, O- C <u>H₂-CH₃</u>), 7,46 (sl, 4H, Ar), 8,33 (s, 1H, H3).	13,9 (1C, O-CH ₂ - \underline{C} H ₃), 14,2 (1C, O-CH ₂ - \underline{C} H ₃), 63,0 (1C, O- \underline{C} H ₂ -CH ₃), 63,3 (1C, O- \underline{C} H ₂ -CH ₃), 120,8 (C4), 126,0; 129,6; 135,6; 137,3 (Ar), 137,9 (C5), 142,7 (C3), 160,0 (\underline{C} OOEt), 161,5 (\underline{C} OOEt), 178,1 (CO).

Tabela 8. Dados de RMN de ¹H e de ¹³C dos compostos sintetizados^a

^aOs espectros de RMN de ¹H (300,06 MHz) e ¹³C (75,46 MHz) foram registrados em Espectrômetro VARIAN modelo Mercury Plus, usando CDCl₃ como solvente ou ^bDMSO-d₆.

Composto	Estrutura	RMN ¹ H, δ, <i>J</i> (Hz)	RMN ¹³ C, δ
4b(<i>E</i>)	$\begin{array}{c} & & & \\ N = & 4 & 3 \\ Ph - NH & 5 & N^2 \\ EtO_2C & & N^1 \\ Ph \end{array}$	1,12 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 1,35 (t, 3H, $J = 7,1$ Hz, O-CH ₂ -C <u>H₃</u>), 4,15 (q, 2H, $J = 7,1$ Hz, O-C <u>H₂-CH₃</u>), 4,32 (q, 2H, $J = 7,1$ Hz, O- C <u>H₂-CH₃</u>), 6,97-7,02 (m, 1H, Ar), 7,20-7,34 (m, 4H, Ar), 7,49 (sl, 5H, Ar) 7,79 (s, 1H, H3), 8,25 (s, 1H, NH).	13,8 (1C, O-CH ₂ - <u>C</u> H ₃), 14,5 (1C, O-CH ₂ - <u>C</u> H ₃), 61,5 (1C, O- <u>C</u> H ₂ -CH ₃), 62,0 (1C, O- <u>C</u> H ₂ -CH ₃), 114,4; 122,6; 125,8; 129,0; 129,3; 129,5; 140,0; 142,8 (Ar), 114,8 (C4), 126,6 (C=N), 132,8 (C5), 139,8 (C3), 158,8 (<u>C</u> OOEt), 164,4 (<u>C</u> OOEt).
4b(<i>Z</i>)	Ph-NH N= $\begin{pmatrix} CO_2Et \\ & & \\ & & \\ & & \\ EtO_2C \\ & & N \\ & & $	1,11 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 1,32 (t, 3H, $J = 7,1$ Hz, O-CH ₂ -C <u>H₃</u>), 4,16 (q, 2H, $J = 7,1$ Hz, O-C <u>H₂</u> -CH ₃), 4,29 (q, 2H, $J = 7,1$ Hz, O- C <u>H₂</u> -CH ₃), 6,97-7,02 (m, 1H, Ar), 7,21-7,34 (m, 4H, Ar), 7,41-7,50 (m, 5H, Ar) 7,87 (s, 1H, H3), 12,42 (s, 1H, NH).	14,0 (1C, O-CH ₂ - \underline{C} H ₃), 14,2 (1C, O-CH ₂ - \underline{C} H ₃), 61,3 (1C, O- \underline{C} H ₂ -CH ₃), 61,7 (1C, O- \underline{C} H ₂ -CH ₃), 114,3; 122,8; 125,5; 128,7; 128,9; 129,5; 140,3; 143,1 (Ar), 120,8 (C=N), 122,5 (C4), 132,2 (C5), 140,5 (C3), 160,7 (\underline{C} OOEt), 163,5 (\underline{C} OOEt)
5b	$Ph \xrightarrow{6}{N} \xrightarrow{7}{7a} \xrightarrow{N}{1} \xrightarrow{1}{Ph}$	1,48 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 4,54 (q, 2H, $J = 7,1$ Hz, O-C <u>H₂</u> -CH ₃), 7,37- 7,71 (m, 10H, Ar), 8,60 (s, 1H, H3).	14,5 (O-CH ₂ - \underline{C} H ₃), 62,6 (O- \underline{C} H ₂ -CH ₃), 120,7 (C3a), 125,8; 126,5; 128,7; 128,8 129,1(2C); 138,7; 141,0 (Ar), 131,9 (C7a), 132,9 (C4), 136,8 (C3), 152,8 (C7), 162,5 (\underline{C} OOEt).
5c	4-ClH ₄ C ₆ $-\frac{6}{N}$, 7 , 7 , N 2 O $-\frac{1}{C_6}$, N 2 O	1,48 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 4,55 (q, 2H, $J = 7,1$ Hz, O-C <u>H₂</u> -CH ₃), 7,43- 7,49 (m, 4H, Ar), 7,54-7,58 (m, 2H, Ar), 7,63-7,67 (m, 2H, Ar), 8,61 (s, 1H, H3).	14,5 (O-CH ₂ - \underline{C} H ₃), 62,8 (O- \underline{C} H ₂ -CH ₃), 120,9 (C3a), 127,0; 127,8; 129,1; 129,3; 134,7; 135,2; 137,0; 139,3 (Ar), 131,8 (C7a), 133,3 (C4), 137,2 (C3), 152,7 (C7), 162,3 (\underline{C} OOEt).
5e	$4-\text{ClH}_4\text{C}_6 \xrightarrow{6}^{\text{CO}_2\text{Et}}_{\text{O}} \xrightarrow{7}_{7a} \xrightarrow{N}_{1} \xrightarrow{N}_{1} \xrightarrow{1}_{Ph} \xrightarrow{1}_{Ph}$	1,48 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 4,54 (q, 2H, $J = 7,1$ Hz, O-C <u>H₂</u> -CH ₃), 7,42- 7,59 (m, 7H, Ar), 7,65-7,70 (m, 2H, Ar), 8,60 (s, 1H, H3).	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Tabela 8. Dados de RMN de ¹H e de ¹³C dos compostos sintetizados (continuação).

^aOs espectros de RMN de ¹H (300,06 MHz) e ¹³C (75,46 MHz) foram registrados em Espectrômetro VARIAN modelo Mercury Plus, usando CDCl₃ como solvente ou ^bDMSO-d₆.

Composto	Estrutura	RMN ¹ H, δ, <i>J</i> (Hz)	RMN ¹³ C, δ
5f ^b	$H^{\frac{6}{N}} N^{\frac{7}{7a}} N^{\frac{3a}{N}} N^{\frac{3}{2}} N^$	1,39 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 4,43 (q, 2H, $J = 7,1$ Hz, O-C <u>H₂</u> -CH ₃), 7,63 (d, 2H, $J = 8,7$ Hz, Ar), 7,76 (d, 2H, $J = 8,7$ Hz, Ar), 8,55 (s, 1H, H3), 13,41 (s, 1H, NH).	14,0 (O-CH ₂ - \underline{C} H ₃), 61,7 (O- \underline{C} H ₂ -CH ₃), 120,3 (C3a), 127,1; 128,6; 133,1; 137,1 (Ar), 132,2 (C7a), 131,6 (C4), 136,5 (C3), 153,1 (C7), 162,0 (\underline{C} OOEt).
5h ^b	H = N + N + N + N + N + N + N + N + N + N	1,39 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 4,43 (q, 2H, $J = 7,1$ Hz, O-C <u>H₂</u> -CH ₃), 7,48- 7,61 (m, 3H, Ar), 7,68-7,75 (m, 2H, Ar), 8,54 (s, 1H, H3), 13,38 (s, 1H, NH).	14,1 (O-CH ₂ - \underline{C} H ₃), 61,7 (O- \underline{C} H ₂ -CH ₃), 120,2 (C3a), 125,4; 128,6(2C); 138,3 (Ar), 131,4 (C7a), 132,2 (C4), 136,3 (C3), 153,1 (C7), 162,0 (\underline{C} OOEt).
5i	$Ph \stackrel{6}{\longrightarrow} N \stackrel{7}{\xrightarrow{7a}} N \stackrel{1}{\xrightarrow{1}} CO_2Et$	1,48 (t, 3H, $J = 7,1$ Hz, O- CH ₂ -C <u>H₃</u>), 4,54 (q, 2H, $J = 7,1$ Hz, O-C <u>H₂</u> -CH ₃), 7,39- 7,69 (m, 9H, Ar), 8,60 (s, 1H, H3).	14,5 (O-CH ₂ - <u>C</u> H ₃), 62,7 (O- <u>C</u> H ₂ -CH ₃), 120,9 (C3a), 126,5; 126,9; 128,9; 129,0; 129,1; 135,0; 137,1; 140,9 (Ar), 131,9 (C7a), 132,9 (C4), 137,1 (C3), 152,8 (C7), 162,4 (<u>C</u> OOEt).
6i ^b	Ph ⁶ N ⁷ / _{7a} N ^{3a} / ₁ C ₆ H ₄ Cl-4	4,65 (sl, 2H, NH ₂), 7,40-7,81 (m, 9H, Ar), 8,63 (s, 1H, H3), 9,94 (s, 1H, NH).	119,6 (C3a), 126,5; 127,4; 128,0; 128,4; 128,5; 133,2; 137,2; 140,9 (Ar), 132,5 (C7a), 134,8 (C4), 136,6 (C3), 152,0 (C7), 160,7 (<u>C</u> NHNH ₂).
7i ^b	$p_{h} = \begin{pmatrix} 5' & H & 3' & 5' & 0 \\ 0 & 5' & N & 3' & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	7,43-7,84 (m, 14H, Ar), 8,59 (s, 1H, H8'), 8,72 (s, 1H, H3), 11,95 (s, 1H, NH).	119,7 (C3a), 126,8; 127,2; 127,4; 128,3; 128,5; 128,6; 128,9; 130,4; 133,2; 134,2; 137,2 140,8 (Ar), 132,5 (C7a), 134,4 (C4), 136,8 (C3), 149,6 (C8'), 152,1 (C7), 158,4 (<u>C</u> ONH).

Tabela 8. Dados de RMN de ¹H e de ¹³C dos compostos sintetizados (continuação).

^aOs espectros de RMN de ¹H (300,06 MHz) e ¹³C (75,46 MHz) foram registrados em Espectrômetro VARIAN modelo Mercury Plus, usando CDCl₃ como solvente ou ^bDMSO-d₆.
4. CONCLUSÕES

4. Conclusões

A partir dos resultados obtidos as seguintes conclusões podem ser apresentadas:

- A reação de acilação da β-enaminocetona 1, conduziu ao produto C-acilado, obtendo o novo e versátil bloco precursor β-enaminodicetona (2) com rendimento moderado (62%);
- O bloco β-enaminodicetona (2) obtido, apresenta cinco centros eletrofílicos em sua estrutura, o que torna tal composto potencial precursor a síntese de heterociclos polifuncionalizados via reação de ciclocondensação com nucleófilos/dinucleófilos;
- Apesar dos diferentes centros eletrofílicos presentes na estrutura do bloco precursor β-enaminodicetona (2), a reação de ciclocondensação com hidrazinas, conduziu à síntese regiosseletiva de núcleos pirazolínicos polifuncionalizados (3a-c), com bons rendimentos (67-75%);
- As metodologias desenvolvidas permitiram um controle da regiosseletividade da reação do precursor β-enaminodicetona (2) com hidrazina, levando a formação de pirazóis polifuncionalizados (3a-c), hidrazonil-pirazóis (4b(*E/Z*)), ou pirazolo[3,4*d*]piridazinonas (5b,c,e,f,h,i);
- O sistema 1,4-dicarbonílico presente nos pirazóis polifuncionalizados (3b,c), confere a estes compostos potencial reatividade, frente a dinucleófilos, para síntese de heterociclos fundidos, tais como pirazolo[3,4-d]piridazinonas, através da reação com hidrazinas;
- Duas eficientes metodologias foram desenvolvidas possibilitando a obtenção de heterociclos fundidos pirazolo[3,4-*d*]piridazinonas 1(R¹),6(R²)-substituídos: a partir da reação dos pirazóis polifuncionalizados (**3b,c**) com diferentes hidrazinas (rend. 69-89%), para R¹≠R² (**5e,f,h,i**), e através de metodologia *one-pot* a partir do bloco precursor β-enaminodicetona (**2**) com dois equivalentes de hidrazinas (rend. 53-65%), para R¹=R² (**5b,c**);

- Através do desenvolvimento de metodologia específica, foi possível a obtenção e isolamento do intermediário da síntese do composto pirazolo[3,4-*d*]piridazinona, o qual foi caracterizado, via RMN e espectrometria de massa de alta resolução, como hidrazonil-pirazol (4b) nas formas estereoisoméricas *E* e *Z* (*E*/*Z* 78/14%);
- Estudos da reatividade dos estereoisômeros *E* e *Z* dos intermediários hidrazonilpirazóis, demostraram que o estereoisômero *Z* se apresenta inativo, e que apenas o estereoisômero *E* leva ao produto pirazolo[3,4-*d*]piridazinona, possibilitando assim o entendimento do mecanismo da reação;
- A partir da derivatização da pirazolo[3,4-*d*]piridazinona 5i, foi possível a obtenção dos derivados *N*-acilhidrazínico 6i (98%) e *N*-acilhidrazônico 7i (96%) com excelentes rendimentos. Sendo que tais compostos apresentam potencial sintético e farmacológico;
- Por fim, a partir das metodologias propostas foi possível a síntese de 13 azaheterociclos, sendo todos inéditos, os quais possuem potencial atividade antitumoral.

5. PARTE EXPERIMENTAL

5. Parte Experimental

5.1. Instrumentação e Reagentes

Todos os reagentes e solventes empregados nas sínteses, caracterizações e purificações foram adquiridos de fontes comerciais (Sigma-Aldrich, Merck, Acros Organics, JTBaker, Carlo Erba, Nuclear, Vetec e Synth). Diclorometano seco e Piridina purificada foram obtidos seguindo a literatura.¹⁰⁴ Reagentes e demais solventes foram utilizados sem prévia purificação.

Para reação realizada a baixa temperatura, empregou-se banho de acetona com nitrogênio líquido.

As reações foram monitoradas por CCD em placas de vidro de 5,0 x 20,0 cm. A espessura da camada de gel de sílica (sílica gel 60G e 60GF254 – Merck) utilizada na confecção das placas foi de aproximadamente 0,25 milímetros. As revelações das placas foram feitas com iodo ressublimado.

As cromatografias em coluna foram realizadas em colunas de vidro, utilizando sílica gel 60 (0,063 – 0,200 mm) da Merck, como fase estacionária. O diâmetro interno e altura da coluna variaram de acordo com a quantidade de material a ser cromatografado. As eluições foram realizadas com solventes orgânicos puros ou combinados em ordem crescente de polaridade e as frações coletadas foram evaporadas a pressão reduzida em evaporador rotativo.

Os espectros de RMN de ¹H (300,06 MHz) e RMN de ¹³C (75,46 MHz) foram registrados com um espectrômetro VARIAN modelo Mercury Plus. As amostras foram submetidas à análise de RMN utilizando solventes deuterados (CDCl₃ e DMSO-d₆) empregando tetrametilsilano como padrão interno. Os padrões de acoplamento foram designados como: s (simpleto); sl (simpleto largo); d (dupleto); dl (dupleto largo); t (tripleto); q (quarteto) e m (multipleto).

Os espectros de massa de alta resolução foram obtidos em um espectrômetro de alta resolução e alta precisão (5 µL/L) microTof (Q-TOF) Bruker Scientific via injeção de amostra por HPLC (Shymadzu).

O ponto de fusão foi determinado através do aparelho de ponto de fusão MQAPF-307 – Microquímica, tendo como padrão interno ácido benzoico (Sigma-Aldrich).

5.2. Técnicas de Síntese

5.2.1. Composto 3-[(dimetilamino)metilideno]-2,4-dioxopentanodioato de dietila (2)

A uma solução contendo cloreto de etil oxalila (0,37 mL, 3,3 mmol) em diclorometano seco (5 mL), sob agitação, atmosfera inerte de nitrogênio, temperatura entre -30 e -25 °C, foi adicionado, no período de 1 h, uma mistura da β -enaminocetona **1** (0,514 g, 3,0 mmol) e piridina tratada (0,6 mL, 7,26 mmol) em diclorometano seco (10 mL). Após o término da adição, a mistura foi mantida durante 15 minutos, entre -30 e -25 °C, sob agitação. Em seguida a mistura foi lavada com solução aquosa 10% HCI (3 x 20 mL) e posteriormente com solução aquosa saturada de NaCI (3 x 20 mL). A fase orgânica foi seca com sulfato de sódio anidro e, após filtração, o solvente foi evaporado sob pressão reduzida. O produto obtido foi purificado em coluna cromatográfica de sílica gel, utilizando-se uma mistura 70:30 de acetato de etila:hexano como eluente. Após purificação, o produto foi obtido como óleo amarelo viscoso (rendimento, propriedades físicas e dados espectroscópicos constam nas **Tabelas 7 e 8** – pg. 46-49).

5.2.2. Procedimento geral para síntese dos 5-carboxietil-4-[(oxo)acetiletoxi]-1*H*-pirazol e 1-substituídos (3a-c)

Uma mistura do composto **2** (0,271 g, 1 mmol) e hidrazina (hidrazina monoidrato: 0,036 g; fenilhidrazina: 0,099 g; 4-clorofenilhidrazina: 0,131 g - 0,9 mmol) em etanol (3 mL), foi agitada a temperatura ambiente por 30 min. Após este período, o

solvente foi evaporado sob pressão reduzida e o resíduo foi lavado com solução aquosa saturada de cloreto de sódio (25 mL), extraído com acetato de etila (3 x 20 mL) e seco com sulfato de sódio anidro. Após filtração, o solvente foi evaporado novamente sob pressão reduzida e o produto obtido foi purificado em coluna cromatográfica de sílica gel, utilizando-se uma mistura 90:10 de hexano:acetato de etila como eluente. Após purificação, o produto foi obtido como sólido amorfo amarelo para **3b,c** e branco para **3a** (rendimento, propriedades físicas e dados espectroscópicos constam nas **Tabelas 7 e 8** – pg. 46-49).

5.2.3. Procedimento para síntese dos estereoisômeros 5-carboxietil-4-[(1*E*/*Z*)-2etoxi-2-oxo-feniletahidrazonil]-1-fenil-1*H*-pirazol (4b(*E*/*Z*))

Em uma solução de diclorometano (1 mL) do composto **3b** (0,158 g, 0,5 mmol), sob agitação, e a temperatura ambiente, foram adicionadas gotas de solução metanólica de trifluoreto de boro (20%) e fenilhidrazina (0,067 g, 0,6 mmol) em solução de diclorometano (1 mL). A reação foi mantida a temperatura ambiente, sob agitação, por 1 h. Ao término do tempo reacional, o solvente foi evaporado sob pressão reduzida e o resíduo foi lavado com solução aquosa saturada de cloreto de sódio (25 mL), extraído com diclorometano (3 x 20 mL), e seco com sulfato de sódio anidro. Após filtração, novamente o solvente foi evaporado sob pressão reduzida e os produtos obtidos foram isolados em coluna cromatográfica de sílica gel, utilizando-se uma mistura 90:10 de hexano:acetato de etila como eluente. Os produtos foram obtidos como um sólido amorfo amarelo (rendimento, propriedades físicas e dados espectroscópicos constam nas **Tabelas 7** e **8** – pg. 46-49).

5.2.4. Procedimento geral para síntese dos 4-carboxietil-1*H*-pirazolo[3,4*d*]piridazim-7-ona 1,6-disubstituídos (5b,c)

Uma mistura do composto **2** (0,50 mmol, 0,136 g), hidrazina (1,1 mmol – fenilhidrazina: 0,121 g; 4-clorofenilhidrazina: 0,160 g) e ácido acético (2 mmol – 0,1 mL), em etanol (5 mL), foi agitada sob refluxo durante 1h. Em seguida a reação foi resfriada em banho de gelo e o sólido obtido foi filtrado, lavado com etanol gelado (10 mL) e seco sob vácuo (rendimento, propriedades físicas e dados espectroscópicos constam nas **Tabelas 7** e **8** – pg. 46-49).

5.2.5. Procedimento geral para síntese dos 4-carboxietil-1*H*-pirazolo[3,4*d*]piridazim-7-ona 1-substituidos 6-substituídos (5e,f,h,i)

Uma mistura do composto **3** (0,50 mmol - **3b**: 0,158 g; **3c**: 0,175 g), hidrazina (0,55 mmol – fenilhidrazina: 0,61 g; 4-clorofenilhidrazina: 0,80 g) e ácido acético (2 mmol, 0,1 mL), em etanol (5 mL), foi agitada sob refluxo durante 12h. Em seguida a reação foi resfriada em banho de gelo e o sólido obtido foi filtrado, lavado com etanol gelado (10 mL) e seco sob vácuo (rendimento, propriedades físicas e dados espectroscópicos constam nas **Tabelas 7** e **8** – pg. 46-49).

5.2.6. Procedimento para síntese do 4-carboxihidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (6i)

Em um balão contendo uma solução do composto **5i** (0,3 mmol, 0,118 g) em 5 mL de etanol:acetonitrila (1:1), foi adicionado monoidrato de hidrazina (6 mmol, 0,25 mL). A mistura foi mantida sob refluxo e agitação por 24h. Após resfriamento a t.a., o solvente foi evaporado via pressão reduzida e o produto foi obtido na forma de um sólido branco amorfo, o qual foi seco sob vácuo (rendimento, propriedades físicas e dados espectroscópicos constam nas **Tabelas 7** e **8** – pg. 46-49).

5.2.7. Procedimento para síntese do 4-{carboxi[(2*E*)-2-benzilidenohidrazinil]}-1-(4clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (7i)

A uma solução do composto **6i** (0,3 mmol, 0,114 g) em dimetilsulfóxido (1 mL), sob agitação, a temperatura ambiente, foi adicionado 2 gotas de ácido clorídrico (37%), e em seguida benzaldeído (0,36 mmol, 0,039 g) em solução de dimetilsulfóxido (1 mL). A reação foi mantida a temperatura ambiente, sob agitação, por 1h. Após este período, foi adicionada água destilada gelada (20 mL) ao meio reacional, levando À precipitação do produto, na forma de um sólido branco amorfo, o qual foi filtrado, lavado com água gelada e seco sob vácuo (rendimento, propriedades físicas e dados espectroscópicos constam nas **Tabelas 7** e **8** – pg. 46-49).

6. REFERÊNCIAS BIBLIOGRÁFICAS

6. Referências Bibliográficas

- 1. Bhat, G. A.; Montero, J. L. G.; Panzica, R. P.; Wotring, L. L.; Townsend, L. B. *J. Med. Chem.* **1981**, *24*, 1165.
- 2. Petrie III, C. R.; Cottam, H. B.; McKernan, P. A.; Robins, R. K.; Revankar, G. R. *J. Med. Chem.* **1985**, *28*, 1010.
- Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. *J. Med. Chem.* **1997**, *40*, 1347.
- 4. Isacson, O.; Brundin, P.; Kelly, P. A.; Gage, F. H.; Bjorklund, A. Nature 1984, 311, 458.
- 5. Patel, J. B.; Malick, J. B.; Salama, A. I.; Goldberg, M. E. Pharmacol. Biochem. Behav. 1985, 23, 675.
- 6. Becker, A.; Grecksch, G.; Bernstein, H. G.; Hollt, V.; Bogerts, B. Psychopharmacology 1999, 144, 333.
- 7. Vicentini, C. B.; Mares, D.; Tartari, A.; Manfrini, M.; Forlani, G. J. Agri. Food. Chem. 2004, 52, 1898.
- 8. Dadiboyena, S.; Xu, J.; Hamme II, A. T. Tetrahedron Lett. 2007, 48, 1295.
- 9. Dadiboyena, S.; Nefzi, A. Eur. J. Med. Chem. 2010, 45, 4697.
- 10. Dadiboyena, S.; Hamme II, A. T. Tetrahedron Lett. 2011, 52, 2536.
- 11. http://apps.webofknowledge.com Via portal de Periódicos Capes http://www.periodicos.capes.gov.br. (accessed Março 02, 2014).
- 12. http://www.drugs.com/viagra.html. (accessed Março 02, 2014).
- 13. http://www.drugs.com/gleevec.html. (accessed Março 02, 2014).
- 14. http://www.drugs.com/nexium.html. (accessed Março 02, 2014).
- 15. http://www.drugs.com/crestor.html. (accessed Março 02, 2014).
- 16. http://www.drugs.com/celebrex.html. (accessed Março 02, 2014).
- 17. http://www.drugs.com/atripla.html. (accessed Março 02, 2014).
- 18. http://www.drugs.com/januvia.html. (accessed Março 02, 2014).
- 19. http://www.drugs.com/stats/top100/2013/q4/sales. (accessed Março 02, 2014).
- 20. Davies, D. T. Aromatic Heterocyclic Chemistry; Oxford Science Publication: Oxford, 1992; p cap. 4.

- 21. Catalán, J.; Fabero, F.; Claramunt, R. M.; Maria, M. D. S. M.; Foces-Foces, M. J. Am. Chem. Soc. **1992**, *114*, 5039.
- 22. Catalán, J.; Fabero, F.; Guijarro, M. S.; Claramunt, R. M.; Maria, M. D. S.; Foces-Foces, M. d. l. C.; Cano, F. H.; Elguero, J.; Sastre, R. J. *J. Am. Chem. Soc.* **1990**, *112*, 747.
- 23. Palacios, F.; Retana, A. M. O.; Pagalday, J. Tetrahedron 1999, 55, 14451.
- 24. Mey, M. V. d.; Hatzelmann, A.; Laan, I. J. V. d.; Sterk, G. J.; Thibaut, U.; Timmerman, H. J. Med. Chem. 2001, 44, 2511.
- 25. Giovannoni, M. P.; Vergelli, C.; Biancalani, C.; Cesari, N.; Graziano, A.; Biagini, P.; Gracia, J.; Gavaldà, A.; Piaz, V. D. J. Med. Chem. **2006**, *49*, 5363.
- 26. F., S. A.; Rostom, S. A. F.; Shalaby, M. A.; El-Demellawy, M. A. Eur. J. Med. Chem. 2003, 38, 959.
- 27. Baraldi, P. G.; Beria, I.; Cozzi, P.; Geroni, C.; Espinosa, A.; Gallo, M. A.; Entrena, A.; Bingham, J. P.; Hartleyd, J. A.; Romagnolia, R. *Bioorg. Med. Chem.* **2004**, *12*, 3911.
- 28. Kreusch, A.; Han, S.; Brinker, A.; Zhou, V.; Choi, H.; He, Y.; Lesley, S. A.; Caldwell, J.; Gu, X. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 1475.
- 29. McDonald, E.; Jonesa, K.; Broughb, P. A.; Drysdaleb, M. J.; Workmana, P. *Curr. Top. Med. Chem.* **2006**, *6*, 1193.
- 30. Xia, Y.; Fan, C. D.; Zhao, B. X.; Zhao, J.; Shin, D. S.; Miao, J. Y. Eur. J. Med. Chem. 2008, 43, 2347.
- 31. Ding, X. L.; Zhang, H. Y.; Qi, L.; Zhao, B. X.; Lian, S.; Lv, H. S.; Miao, J. Y. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 5325.
- 32. Insuasty, B.; Tigreros, A.; Orozco, F.; Quiroga, J.; Abonia, R.; Nogueras, M.; Sanchez, A.; Cobo, J. *Bioorg. Med. Chem.* **2010**, *18*, 4965.
- 33. Zhang, D.; Wang, G.; Zhao, G.; Xu, W.; Huo, L. Eur. J. Med. Chem. 2011, 46, 5868.
- 34. Thaher, B. A.; Arnsmann, M.; Totzke, F.; Ehlert, J. E.; Kubbutat, M. H. G.; Schachtele, C. S.; Zimmermann, M. O.; Koch, P.; Boeckler, F. M.; Laufer, S. A. *J. Med. Chem.* **2012**, *55*, 961.
- 35. Zheng, Y.; Zheng, M.; Ling, X.; Liu, Y.; Xue, Y.; An, L.; Gu, N.; Jin, M. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 3523.
- 36. Al-Tel, T. H. Eur. J. Med. Chem 2010, 45, 5724.
- 37. Huang, X.-F.; Lu, X.; Zhang, Y.; Song, G.-Q.; He, Q.-L.; Li, Q.-S.; Yang, X.-H.; Wei, Y.; Zhu, H.-L. *Bioorg. Med. Chem.* **2012**, *20*, 4895.
- 38. Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Comprehensive Heterocyclic Chemistry II; Elsevier

Science: New York, 1996; Vol. 3, p 1.

- 39. Palmieri, G.; Cimarelli, C. *Tetrahedron* **1998**, *54*, 915.
- 40. Soufyane, M.; Van den Broek, S.; Khamliche, L.; Mirand, C. Heterocycles 1999, 51, 2445.
- 41. Mellor, J. M.; Andrew, R. J. Tetrahedron 2000, 56, 7267.
- 42. Berber, H.; Soufyane, M.; Mirand, C.; Schmidt, S.; Aubertin, A. M. Tetrahedron 2001, 57, 7369.
- 43. Berber, H.; Soufyane, M.; Santillana-Hayat, M.; Mirand, C. Tetrahedron Lett. 2002, 43, 9233.
- 44. Valès, M.; Lokshin, V.; Pèpe, G.; Guglielmetti, R.; Samat, A. Tetrahedron 2002, 58, 8543.
- 45. Hogenkamp, D. J.; Johnstone, T. B. C.; Huang, J. -C.; Li, W. -Y.; Tran, M.; Whittemore, E. R.; Bagnera, R. E.; Ge, K. W. J. Med. Chem. **2007**, *50*, 3369.
- 46. Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Rosa, F. A.; Marzari, M. R. B.; Zanatta, N.; Bonacorso, H. G. *Catal. Commun.* 2008, *9*, 1375.
- 47. Venkov, A. P.; Angelov, P. A. Synthesis 2003, 2221.
- 48. Yamamoto, A.; Iwama, T.; Takeda, H.; Nagai, H. Jpn. J. Pharmacol. 1995, 68, 47.
- 49. Horino, H.; Mimura, T.; Kagechika, K.; Ohta, M.; Kubo, H.; Kitagawa, M. *Chem. Pharm. Bull.* **1998**, *46*, 602.
- 50. Akahane, A.; Katayama, H.; Mitsunaga, T.; Kato, T.; Kinoshita, T.; Kita, Y.; Kusunoki, T.; Terai, T.; Yoshida, K.; Shiokawa, Y. J. Med. Chem. **1999**, *42*, 779.
- 51. Tsubaki, K.; Taniguchi, K.; Tabuchi, S.; Okitsu, O.; Hattori, K.; Seki, J.; Sakane, K.; Tanaka, H. *Bioorg. Med. Chem. lett.* **2000**, *10*, 2787.
- 52. Piaz, V. D.; Vergelli, C.; Giovannoni, M. P.; Scheideler, M. A.; Petrone, G.; Zaratin, P. *Farmaco* **2003**, *58*, 1063.
- 53. Pieretti, S.; Dominici, L.; Giannuario, A.; Cesari, N.; Piaz, V. D. Life Sci. 2006, 79, 791.
- 54. Piaz, V. D.; Givannoni, M. P.; Castellana, C. J. Med. Chem. 1997, 40, 1417.
- 55. Piaz, V. D.; Giovannoni, M. P.; Castellana, C.; Palacios, J. M.; Beleta, J.; Doménich, T.; Segarra, V. *Eur. J. Med. Chem.* **1998**, *33*, 789.
- 56. Vegelli, C.; Giovannoni, M. P.; Pieretti, S.; Giannuario, A.; Piaz, V. D.; Biagini, P.; Biancalani, C.; Graziona, A.; Cesari, N. *Bioorg. Med. Chem.* **2007**, *15*, 5563.
- 57. Giovannoni, M. P.; Vergelli, C.; Ghelardini, C.; Galeotti, N.; Bartolini, A.; Piaz, V. D. *J. Med. Chem.* **2003**, *46*, 1055.

- 58. Piaz, V. D.; Giovannoni, M. P.; Cicianil, G.; Barlocco, D.; Giardina, G.; Petrone, G.; Clarke, G. D. *Eur. J. Med. Chem.* **1996**, *31*, 65.
- 59. Abouzid, K.; Hakeem, M. A.; Khalil, O.; Maklad, Y. Bioorg. Med. Chem. 2008, 16, 382.
- 60. Stanovnik, B.; Stimac, A.; Tisler, M. J. Heterocycl. Chem. 1991, 28, 427.
- 61. Gelin, S.; Hatmam, D. J. Heterocycl. Chem. 1978, 15, 813.
- 62. Kurihara, T.; Uno, T.; Sakomoto, Y. J. Heterocycl. Chem. 1980, 17, 231.
- 63. Akaçamur, Y.; Sener, A.; Ipekoglu, A. M.; Kollenz, G. J. Heterocycl. Chem 1997, 34, 221.
- 64. Sener, A.; Kasimogullari, R.; Sener, M. K.; Bildirici, I.; Akaçamur, Y. *J. Heterocycl. Chem.* **2002**, *39*, 869.
- Biagini, P.; Biancalani, C.; Graziano, A.; Cesari, N.; Giovannoni, M. P.; Cilibrizzi, A.; Piaz, V. D.; Vergelli, C.; Crocetti, L.; Delcanale, M.; Armani, E.; Rizzi, A.; Puccini, P.; Gallo, P. M.; Spinabelli, D.; Caruso, P. *Bioorg. Med. Chem.* **2010**, *18*, 3506.
- 66. Frizzo, C. P.; Villetti, M. A.; Tier, A. Z.; Gindri, I. M.; Buriol, L.; Rosa, F. A.; Claramunt, R. M.; Sanz, D.; Martins, M. A. P. *Thermochim. Acta* **2013**, *574*, 63-72.
- 67. Okada, E.; Masuda, R.; Hojo, M. Heterocycles 1992, 34, 791.
- 68. Soufyane, M.; Mirand, C.; Lévy, J. Tetrahedron Lett. **1993**, *34*, 7737.
- 69. Touzo, A.; Soufyane, M.; Berber, H.; Toupet, L.; Mirand, C. J. Fluorine Chem. 2004, 125, 1299.
- 70. Rosa, F. A.; Machado, P.; Vargas, P. S.; Bonacorso, H. G.; Zanatta, N.; Martins, M. A. P. *Synlett* **2008**, *11*, 1673.
- 71. Eicher, T.; Hauptmann, S. *The Chemistry of Heterocycles;* Georg Thieme Verlag Stuttgart: New York, 1995.
- 72. Hanzlowsky, A.; Jelencic, B.; Recnick, S.; Svete, J.; Golobic, A.; Stanovnik, B. *J. Heterocycl. Chem.* **2003**, *40*, 487.
- 73. Rosa, F. A.; Machado, P.; Rossatto, M.; Vargas, S. P.; Bonacorso, H. G.; Zanatta, N.; Martins, M. A. P. *Synlett* **2007**, *20*, 3165.
- 74. Braibante, M. E. F.; Clar, G.; Martins, M. A. P. J. Heterocycl. Chem. 1993, 30, 1159.
- 75. Martins, M. A. P.; Fretag, R.; Flores, A. F. C.; Zanatta, N. Synthesis 1995, 30, 1159.
- 76. Bonacorso, H. G.; Wastowski, A. D.; Zanatta, N. M. M. A. P.; Naue, J. A. *J. Fluorine Chem.* **1998**, *92*, 23.

- 77. Bonacorso, H. G.; Wastowski, A. D.; Zanatta, N.; Martins, N. A. P. Synth. Commun. 2000, 30, 1457.
- 78. Flores, A. F. C.; Rosa, A.; Flores, D. C.; Zanatta, N.; Bonacorso, H. G.; Martins, M. A. P. Synth. *Commun.* **2002**, *32*, 1585.
- Bonacorso, H. G.; Oliveira, M. R.; Costa, M. B.; Silva, L. B.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P. J. Heterocycl. Chem. 2005, 42, 631.
- 80. Martins, M. A. P.; Machado, P.; Rosa, F. A.; Cunico, W.; Bonacorso, H. G.; Zanatta, N. *Mini-Rev. Org. Chem.* **2008**, *5*, 53.
- 81. CAREY, F. A.; SUNDBERG, R. J. Advanced Organic Chemistry Part A: Structure and Mechanisms, 4th ed.; Kluwer Academic/Plenum Publishers: New York, 2000; pp 456-462.
- 82. Costa, P.; Pilli, R.; Pinheiro, S.; Vasconcellos, M. *Substâncias Carboniladas e Derivados;* Bookman: Porto Alegre, 2003.
- Mahmudov, K. T.; Maharramov, A. M.; Aliyeva, R. A.; Chyragov, F. M.; Askerov, R. K.; Hasanov, P. Q.; Kopylovich, M. N.; Pombeiro, A. J. L. *J. Mol. Struct.* **2011**, *1006*, 576.
- 84. Demange, C. D. a. L. Chem. Rev. 2003, 103, 2475-2532.
- 85. Kobayashi, M. S. a. S. Angew. Chem. Int. Ed. 2005, 44, 5176-5189.
- 86. Vicini, P.; Zani, F.; Cozzini, P.; Doytchinova, I. Eur. J. Med. Chem. 2002, 37, 553-564.
- 87. Dimmock, J. R.; Vashishtha, S. C.; Stables, J. P. Eur. J. Med. Chem. 2000, 241-248.
- Silva, G. A.; Costa, L. M. M.; Brito, F. C. F.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. *Bioorg. Med. Chem.* 2004, 12, 3149-3158.
- Buarte, C. D.; Tributino, J. L. M.; Lacerda, D. I.; Martins, M. V.; Alexandre-Moreira, M. S.; Dutra, F.; Bechara, E. J. H.; De-Paula, F. S.; Goulart, M. O. F.; Ferreira, J.; Calixto, J. B.; Nunes, M. P.; Bertho, A. L.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. *Bioorg. Med. Chem.* **2007**, *15*, 2421-2433.
- 90. Abdel-Aal, M. T.; El-Sayed, W. A.; El-Ashry, E. H. Arch. Pharm. Chem. Life Sci. 2006, 339, 656-663.
- 91. Terzioğlu, N.; Gürsoy, A. Eur. J. Med. Chem. 2003, 38, 781-786.
- Bernardino, A.; Gomes, A. . C. K.; Freitas, A.; Machado, G.; Canto-Cavalheiro, M.; Leon, L.; Amaral, V. Eur. J. Med. Chem. 2006, 41, 80-87.
- 93. Ergenç, N.; Günay, N. S. Eur. J. Med. Chem. 1998, 33, 143-148.
- 94. Silva, A. G.; Zapata-Suto, G.; Kummerle, A. E.; Fraga, C. A. M.; Barreiro, E. J.; Sudo, R. T. *Bioorg. Med. Chem.* **2005**, *13*, 3431-3437.

- 95. Yale, H. L.; LoseE, K.; Martins, J.; Holsing, M.; Perry, M. F.; Bernstein, J. J. Am. Chem. Soc. **1953**, 75, 1933-1942.
- 96. Bukowski, L.; Janowiec, M. Pharmazie 51 1996, 51, 27-30.
- 97. Yoshida, S.; Ohigashi, A.; Morinaga, Y.; Hashimoto, N.; Takahashi, T. Org. Process Res. Dev. 2013, 17, 1252-1260.
- 98. Abd alla, M. S. M.; Hegab, M. I. H.; Taleb, N. A. A.; Hasabelnaby, S. M.; Goudah, A. *Eur. J. Med. Chem.* **2010**, *45*, 1267-1277.
- 99. Guo, S.; Wang, J.; Guo, D.; Zhang, X.; Fan, X. Tetrahedron 2012, 68, 7768-7774.
- 100. Mlostón, G.; Pieczonka, A. M.; Wróblewska, A.; Linden, A.; Heimgartner, H. *Tetrahedron: Asymmetry* **2012**, *23*, 795-801.
- 101. Kudelko, A.; Zielinski, W. Tetrahedron Lett. 2012, 53, 76-77.
- 102. Unsal-Tan, O.; Ozden, K.; Rauk, A.; Balkan, A. Eur. J. Med. Chem. 2010, 45, 2345-2352.
- 103. Palla, G.; Predieri, G.; Domiano, P.; Vignali, C.; Turner, W. Tetrahedron 1986, 42, 3649-3654.
- 104. Perrin, D. D.; Armarego, L. F. *Purification of Laboratory Chemicals,* 3rd ed.; Pergamon Press: New York, 1996.

ANEXOS I

Espectros de RMN de ¹H, ¹³C, NOESY 1D e 2D, HSQC e HMBC

Figura 12. Espectro de RMN de ¹H do (*E*)-4-(dimetilamino)-2-oxobut-3-enoato de etila (1) em CDCl₃

Figura 13. Espectro de RMN de ¹³C do (*E*)-4-(dimetilamino)-2-oxobut-3-enoato de etila (1) em CDCl₃

Figura 14. Espectro de RMN de ¹H do 3-[(dimetilamino)metilideno]-2,4-dioxopentanodioato de dietila (2) em CDCl₃

Figura 15. Espectro de RMN de ¹³C do 3-[(dimetilamino)metilideno]-2,4-dioxopentanodioato de dietila (2) em CDCl₃

Figura 16. Espectro de RMN de ¹H do 5-carboxietil-4-[(oxo)acetiletoxi]-1*H*-pirazol (3a) em CDCl₃

Figura 17. Espectro de RMN de ¹³C do 5-carboxietil-4-[(oxo)acetiletoxi]-1*H*-pirazol (3a) em CDCl₃

Figura 19. Espectro de RMN 2D HMBC do 5-carboxietil-4-[(oxo)acetiletoxi]-1H-pirazol (3a) em CDCl3

Figura 20. Espectro de RMN de ¹H do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1*H*-pirazol (3b) em CDCl₃

Figura 21. Espectro de RMN de ¹³C do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1*H*-pirazol (3b) em CDCl₃

Figura 22. Espectro de RMN NOESY 1D do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1H-pirazol (3b) em CDCl₃

Figura 23. Espectro de RMN 2D HSQC do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1*H*-pirazol (3b) em CDCl₃

Figura 24. Espectro de RMN 2D HMBC do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1*H*-pirazol (3b) em CDCl₃

Figura 25. Expansão do espectro de RMN 2D HMBC do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1H-pirazol (3b) em CDCl₃

Figura 26. Espectro de RMN de ¹H do 5-carboxietil-1-(4-clorofenil)-4-[(oxo)acetiletoxi]-1H-pirazol (3c) em CDCl₃

Figura 27. Espectro de RMN de ¹³C do 5-carboxietil-1-(4-clorofenil)-4-[(oxo)acetiletoxi]-1*H*-pirazol (3c) em CDCl₃

Figura 28. Espectro de RMN 2D HSQC do 5-carboxietil-1-(4-clorofenil)-4-[(oxo)acetiletoxi]-1H-pirazol (3c) em CDCl₃

Figura 30. Expansão do espectro de RMN 2D HMBC do 5-carboxietil-1-(4-clorofenil)-4-[(oxo)acetiletoxi]-1H-pirazol (3c) em CDCl3

Figura 31. Espectro de RMN de ¹H do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*E*)) em CDCl₃

Figura 32. Espectro de RMN de ¹³C do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*E*)) em CDCl₃

Figura 33. Espectro de RMN 2D NOESY do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b**(*E*)) em CDCl₃

Figura 34. Expansão do espectro de RMN 2D NOESY do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*E*)) em CDCl₃

Figura 35. Espectro de RMN 2D HSQC do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*E*)) em CDCl₃

Figura 36. Expansão do espectro de RMN 2D HSQC do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*E*)) em CDCl₃

Figura 37. Espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b**(*E*)) em CDCl₃

Figura 38. Expansão do espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*E*)) em CDCl₃

Figura 39. Espectro de RMN de ¹H do 5-carboxietil-4-[(1Z)-2-etoxi-2-oxo-N-feniletanohidrazonil]-1-fenil-1H-pirazol (4b(Z)) em CDCl₃

Figura 40. Espectro de RMN de ¹³C do 5-carboxietil-4-[(1Z)-2-etoxi-2-oxo-N-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(Z)) em CDCl₃

Figura 42. Expansão do espectro de RMN 2D NOESY do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b**(*Z*)) em CDCl₃

Figura 43. Expansão do espectro de RMN 2D NOESY do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z)**) em CDCl₃

Figura 44. Espectro de RMN 2D HSQC do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z**)) em CDCl₃

Figura 45. Expansão do espectro de RMN 2D HSQC do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*Z*)) em CDCl₃

Figura 46. Espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b(Z)**) em CDCl₃

Figura 47. Expansão do espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*Z*)) em CDCl₃

Figura 48. Expansão do espectro de RMN 2D HMBC do 5-carboxietil-4-[(1*Z*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (4b(*Z*)) em CDCl₃

Figura 49. Espectro de RMN de ¹H do 4-carboxietil-1,6-difenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5b) em CDCl₃

Figura 50. Espectro de RMN de ¹³C do 4-carboxietil-1,6-difenil-1*H*-pirazolo[3,4-d]piridazin-7-ona (5b) em CDCl₃

Figura 51. Espectro de RMN 2D HSQC do 4-carboxietil-1,6-difenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5b) em CDCl₃

Figura 53. Espectro de RMN 2D HMBC do 4-carboxietil-1,6-difenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5b) em CDCl₃

Figura 55. Espectro de RMN de ¹H do 4-carboxietil-1,6-bis(4-clorofenil)-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5c) em CDCl₃

Figura 56. Espectro de RMN de ¹³C do 4-carboxietil-1,6-bis(4-clorofenil)-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5c) em CDCl₃

Figura 58. Expansão do espectro de RMN 2D HSQC do 4-carboxietil-1,6-bis(4-clorofenil)-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5c**) em CDCl₃

Figura 59. Espectro de RMN 2D HMBC do 4-carboxietil-1,6-bis(4-clorofenil)-1H-pirazolo[3,4-d]piridazin-7-ona (5c) em CDCl₃

Figura 60. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1,6-bis(4-clorofenil)-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5c**) em CDCl₃

Figura 61. Espectro de RMN de ¹H do 4-carboxietil-6-(4-clorofenil)-1-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5e) em CDCl₃

Figura 63. Espectro de RMN 2D HSQC do 4-carboxietil-6-(4-clorofenil)-1-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5e) em CDCl₃

Figura 64. Expansão do espectro de RMN 2D HSQC do 4-carboxietil-6-(4-clorofenil)-1-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5e**) em CDCl₃

Figura 65. Espectro de RMN 2D HMBC do 4-carboxietil-6-(4-clorofenil)-1-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5e) em CDCl₃

Figura 66. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-6-(4-clorofenil)-1-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5e**) em CDCl₃

Figura 67. Espectro de RMN de ¹H do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5f) em DMSO-d₆

Figura 68. Espectro de RMN de ¹³C do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5f) em DMSO-d₆

Figura 69. Espectro de RMN 2D HSQC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5f) em DMSO-d₆

Figura 70. Expansão do espectro de RMN 2D HSQC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆

Figura 71. Espectro de RMN 2D HMBC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1H-pirazolo[3,4-d]piridazin-7-ona (5f) em DMSO-d6

Figura 72. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆

Figura 73. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5f**) em DMSO-d₆

Figura 74. Espectro de RMN de ¹H do 4-carboxietil-1-fenil-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5h) em DMSO-d₆

Figura 75. Espectro de RMN de ¹³C do 4-carboxietil-1-fenil-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5h) em DMSO-d₆

Figura 77. Expansão do espectro de RMN 2D HSQC do 4-carboxietil-1-fenil-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5h**) em DMSO-d₆

Figura 78. Espectro de RMN 2D HMBC do 4-carboxietil-1-fenil-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5h) em DMSO-d₆

Figura 79. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1-fenil-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5h**) em DMSO-d₆

Figura 80. Espectro de RMN de ¹H do 4-carboxietil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5i) em CDCl₃

Figura 81. Espectro de RMN de ¹³C do 4-carboxietil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5i) em CDCl₃

Figura 82. Espectro de RMN 2D HSQC do 4-carboxietil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5i) em CDCl₃

Figura 83. Expansão do espectro de RMN 2D HSQC do 4-carboxietil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5i**) em CDCl₃

Figura 85. Expansão do espectro de RMN 2D HMBC do 4-carboxietil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5i**) em CDCl₃

Figura 86. Espectro de RMN de ¹H do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (6i) em DMSO-d₆

Figura 87. Espectro de RMN de ¹³C do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (6i) em DMSO-d₆

Figura 88. Espectro de RMN 2D HSQC do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (6i) em DMSO-d₆

Figura 89. Expansão do espectro de RMN 2D HSQC do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**6i**) em DMSO-d₆

Figura 90. Espectro de RMN 2D HMBC do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (6i) em DMSO-d6

Figura 91. Expansão do espectro de RMN 2D HMBC do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**6i**) em DMSO-d₆

Figura 92. Espectro de RMN de ¹H do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (7i) em DMSO-d₆

Figura 93. Espectro de RMN de ¹³C do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (7i) em DMSO-d₆

Figura 94. Espectro de RMN 2D NOESY do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**7i**) em DMSO-d₆

Figura 95. Expansão do espectro de RMN 2D NOESY do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**7i**) em DMSO-d₆

Figura 96. Espectro de RMN 2D HSQC do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**7i**) em DMSO-d₆

Figura 97. Expansão do espectro de RMN 2D HSQC do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4*d*]piridazin-7-ona (**7i**) em DMSO-d₆

Figura 98. Espectro de RMN 2D HMBC do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (7i) em DMSO-d₆

Figura 99. Expansão do espectro de RMN 2D HMBC do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4*d*]piridazin-7-ona (**7i**) em DMSO-d₆

ANEXOS II

Espectros de Massas de Alta Resolução

Figura 100. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 3-[(dimetilamino)metilideno]-2,4-dioxopentanodioato de dietila (2)

Figura 101. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 5-carboxietil-4-[(oxo)acetiletoxi]-1*H*-pirazol (**3a**)

Figura 102. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 5-carboxietil-4-[(oxo)acetiletoxi]-1-fenil-1*H*-pirazol (**3b**)

Chemical Formula: C₁₆H₁₆N₂O₅ Exact Mass: 316,1059

+MS, 0,2-0,4min

+MS2 (317,1125)

#	m/z	Ι	#	m/z	Ι
1	225.0648	9728	1	128.0495	190
2	243.0759	7273	2	144.0442	636
3	317.1131	88378	3	145.0743	204
4	318.1161	16167	4	171.0549	940
5	339.0951	45379	5	172.0604	129
6	340.0966	8557	6	173.0709	1112
7	340.2599	59964	7	174.0728	139
8	340.7610	23423	8	189.0665	1028
9	345.0910	8638	9	190.0686	165
10	354.0969	13999	10	215.0443	5453
11	355.0711	9582	11	216.0481	674
12	357.1025	9548	12	217.0670	1085
13	359.2338	12951	13	243.0771	2234
14	453.3430	19224	14	244.0775	273
15	494.1398	31525	15	245.0904	2937
16	494.6409	17397	16	246.0924	428
17	503.1446	17629	17	289.0808	1429
18	503.6461	9785	18	290.0867	233
19	655.2004	12567	19	317.1125	6269
20	679.5092	8701	20	318.1139	1274

Figura 103. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 5-carboxietil-1-(4-clorofenil)-4-[(oxo)acetiletoxi]-1*H*-pirazol (**3c**)

Chemical Formula: C₁₆H₁₅ClN₂O₅ Exact Mass: 350,0669

+MS, 0,1-1,3min

+MS2 (351,0754)

#	m/z	Ι	#	m/z	Ι
1	87.0278	1400	1	178.0053	65
2	96.0334	3307	2	179.0409	88
3	105.0398	1701	3	205.0157	119
4	116.0501	2588	4	206.0205	67
5	125.0554	1265	5	207.0315	180
6	182.1040	3647	6	223.0279	153
7	242.0469	2185	7	249.0064	647
8	351.0753	12131	8	250.0056	84
9	352.0785	2213	9	251.0261	263
10	353.0732	4171	10	277.0394	398
11	369.0858	2697	11	278.0356	102
12	373.0577	6786	12	279.0528	615
13	374.0602	1225	13	280.0488	83
14	375.0551	2474	14	281.0536	123
15	388.0592	1334	15	323.0437	320
16	389.0390	2739	16	324.0527	54
17	391.0598	2940	17	325.0412	57
18	554.0878	1028	18	351.0744	1377
19	555.0862	1041	19	352.0782	365
20	723.1254	1008	20	353.0704	265

Figura 104. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 5-carboxietil-4-[(1*E*)-2-etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b**(*E*))

+MS, 0,2min

+MS2 (406,8627)

#	m/z	Ι	#	m/z	Ι
1	169.0721	1044	1	92.0501	293
2	261.0889	1470	2	105.0424	56
3	315.0873	2085	3	214.0563	81
4	333.1340	911	4	242.0917	204
5	361.1291	14186	5	287.0906	512
6	362.1317	3130	6	288.0967	82
7	407.1712	18489	7	289.1037	84
8	408.1736	4574	8	305.1036	240
9	426.1455	2484	9	306.0981	81
10	426.6463	1257	10	315.0875	9785
11	429.1528	11596	11	316.0914	1446
12	430.1555	2678	12	333.1344	3660
13	445.1265	5393	13	334.1369	798
14	446.1285	1281	14	361.1290	13145
15	629.2275	4245	15	362.1324	2833
16	629.7281	3093	16	363.1380	157
17	630.2297	1287	17	406.1572	56
18	835.3158	8380	18	407.1710	3962
19	836.3190	4028	19	408.1724	934
20	837.3198	1033	20	409.1778	69

Figura 105. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 5-carboxietil-4-[(1*Z*)-2 etoxi-2-oxo-feniletanohidrazonil]-1-fenil-1*H*-pirazol (**4b**(*Z*))

Chemical Formula: $C_{22}H_{22}N_4O_4$ Exact Mass: 406,1641

+MS, 0,2-0,4min

+MS2 (406,9351)

				•	,
#	m/z	Ι	#	m/z	Ι
1	78.0226	3091	1	92.0510	28
2	87.0279	5965	2	204.1096	12
3	96.0337	14012	3	214.0572	20
4	105.0395	7017	4	242.0938	281
5	108.0605	1661	5	243.0868	52
6	116.0501	7275	6	252.9742	14
7	125.0554	3445	7	285.9451	13
8	143.0023	4474	8	287.0966	23
9	161.0128	3673	9	288.0940	23
10	182.1043	5720	10	289.0986	30
11	252.9750	1790	11	305.1019	38
12	340.2606	7696	12	315.0908	80
13	340.7629	3114	13	316.0988	14
14	351.2505	1332	14	333.1428	83
15	359.2357	2800	15	334.1179	15
16	407.1721	3992	16	338.5520	17
17	429.1541	1773	17	407.1720	239
18	453.3455	5108	18	408.1828	31
19	453.8473	2022	19	408.7356	23
20	475.3266	2467	20	547.9252	24

Figura 106. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 4-carboxietil-1,6-difenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5b**)

Chemical Formula: C₂₀H₁₆N₄O₃ Exact Mass: 360,1222

Figura 107. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 4-carboxietil-1,6-bis(4-clorofenil)-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5c**)

Figura 108. (a) Espectros de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 4-carboxietil-6-(4-clorofenil)-1-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5e**)

Ħ	m/z	1	\overline{H}	m/z	1	
1	78.0226	909	1	326.0551	79	
2	87.0274	1807	2	335.1028	26	
3	96.0333	4482	3	337.0634	32	
4	105.0391	2460	4	349.0457	78	
5	116.0494	3136	5	359.2435	55	
6	120.0483	891	6	367.0543	159	
7	125.0549	1513	7	369.0550	43	
8	143.0017	3008	8	378.5149	27	
9	161.0119	2821	9	381.6283	37	
10	166.9690	859	10	381.8785	34	
11	175.0191	1004	11	386.6370	28	
12	182.1031	5590	12	395.0905	1055	
13	184.9783	882	13	396.0934	213	
14	201.0436	885	14	397.0829	313	
15	340.2596	1775	15	398.1006	27	
16	361.1291	1370	16	443.6980	37	
17	395.0913	3047	17	613.7017	28	
18	397.0900	1087	18	669.1284	27	
19	417.0731	1391	19	985.1355	31	
20	453.3442	1389	20	1101.6617	28	

Figura 109. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do carboxietil-1-(4-clorofenil)-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5f**)

Chemical Formula: C₁₄H₁₁ClN₄O₃ Exact Mass: 318,0520

Figura 110. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 4-carboxietil-1-fenil-6,7-diidro-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**5h**)

Chemical Formula: C₁₄H₁₂N₄O₃ Exact Mass: 284,0909

Figura 111. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 4-carboxietil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (5i)

Figura 112. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 4-carbohidrazinil-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**6i**)

Figura 113. (a) Espectro de massas de alta resolução [ESI(+)-MS] e (b) análise [ESI(+)-MS/MS] do 4-{carbo[(2*E*)-2-benzilidenohidrazinil]}-1-(4-clorofenil)-6-fenil-1*H*-pirazolo[3,4-*d*]piridazin-7-ona (**7i**)

Chemical Formula: C₂₅H₁₇ClN₆O₂ Exact Mass: 468,1102

