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ABSTRACT

Vehicle detection and classification is a fundamental component in intelligent traffic

systems. In the last years, with the decreasing costs of digital images acquisition by

surveillance cameras, the proposal of methods that uses digital images as the main source

of information have been increased. This work proposes two convolutional neural networks

backbones – α and ω – to be used with the YOLO method for detection and classification

of vehicles present in digital images into six categories: Bus, Microbus, Minivan, Sedan,

SUV, and Truck. Experimental results with the BIT-Vehicle Dataset (Dong et al., 2015)

reports values 93.20% and 91.24% of the standard mean average precision for the models

α and ω, respectively. The tests in three distinct environments exhibit the inference

latency is always under one second in both models. We conclude that the model is

discriminative and capable of generalizing the patterns of the vehicle type detection and

classification task while not requiring expensive computational resources. These features

suggest that the model can be useful in the development of embedded intelligent traffic

systems, improving accuracy and decision latency.

Keywords: Vehicle detection; Convolutional Neural Networks; Machine learning; Com-

puter vision.



RESUMO

A detecção e classificação de véıculos é um componente fundamental para sistemas

inteligentes de tráfego. Nos últimos anos, com o decĺıneo do custo de aquisição de imagens

por meio de câmeras de vigilância, a proposta de métodos que utilizam imagens digitais

como principal fonte de informação aumentou consideravelmente. Este trabalho propõe

duas configurações de redes neurais convolucionais – α e ω – para serem utilizadas junto ao

método YOLO na detecção de véıculos presentes em imagens digitais além da classificação

em seis categorias: Ônibus, Microônibus, Minivan, Sedan, SUV e Caminhão. Resultados

experimentais com o conjunto de dados BIT-Vehicle (Dong et al., 2015) reportam valores

de 93.20% e 91.24% de precisão média entre as categorias para os modelos equipados com

α e ω, respectivamente. Testes realizados em três ambientes distintos exibem que uma

latência de inferência sempre abaixo de um segundo em ambos os modelos. Conclui-se que

o modelo é discriminativo e capaz de generalizar padrões para a detecção e categorização

de tipos de véıculos ao mesmo tempo que não requer muitos recursos computacionais.

Essa caracteŕıstica sugere que o modelo pode ser útil para o desenvolvimento de sistemas

inteligentes de tráfego, melhorando a acurácia e a latência na tomada de decisão.

Palavras-chave: Detecção de véıculos; Redes neurais convolucionais; Aprendizado de

máquina; Visão computacional.
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1

Introduction

The usage of digital cameras in traffic surveillance has been growing in the last years

mostly because of the decreasing costs of this hardware device. Fixed traffic cameras

acquire a large amount of vehicles’ frontal view images every day and can provide a rich

source of information for intelligent traffic systems at a relatively low cost. However, in

order to properly take advantage of the data collected by the cameras, it is necessary to

extract information from the images with reasonable latency. The recognition of vehicles

presented in a scene captured by these cameras is useful information and can empower, for

example, traffic density estimators, router’s optimizers, and detectors of traffic’s violation.

Object recognition is a core problem in computer vision and usually is separated into

two main tasks: object detection and object classification. Humans glance at an image

and almost instantly can localize, identify and delimit the objects presented on it by using

key aspects such as trademarks, forms, and ornaments. For computer systems, however,

this task can be challenging mostly because digital image inputs have high-dimensional

features (Szeliski, 2010) and the acquisition of images in the traffic is also subject to

surrounding conditions such as lighting, noising, partial occlusion, and weather. In this

sense, fast and accurate algorithms for object detection are quite desirable, because they

can unlock the potential for the development of responsive systems.

In current times, traffic play a vital role in people lives. The growth of the number of

vehicles is one of the effects of quicken pace of urbanization, especially in developing

countries. This amount of vehicles can cause severe issues such as traffic jams and

congestion which leads to air contamination and increase in fuel burning. Along these

lines, traffic management and control administration, especially in the field of speed

measurement should be noticed as an important subject for authorities.
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1.1 Context and challenges

The use of Intelligent Transportation Systems (ITS) has gained an extensive interest in

current years. An ITS approach the traffic problem by using transportation guidelines

united with the available technologies. Instruments installed in roadways, like inductive

surveillance cameras, loop detectors and microwave detectors, are the first act to collect

data to bolster an ITS. Between them, cameras are a common equipment due its low-cost

installation and maintenance. These cameras are commonly placed in a high exposure

location to provide suitable data for traffic monitoring. But the main point is that the

data collected by the cameras can be stored as video and afford the advantage of using

computer vision analysis and techniques. In this context, the video captured by the

camera can be used as the input of the system that process the each image frame with

algorithms to extract vehicles information. Such system is called a video-based system

hence it extracts information from videos.

Even though video-based systems have advantages when compared with its alterna-

tives, they face many different kinds of challenges. Video-based systems are susceptible to

environment conditions like weather or illumination which may result in less accuracy and

reliability. Furthermore, when regarding different orientation, vehicles come in different

shapes and sizes since there are multiple vehicle categories. This can be seen as an

advantage hence these feature discriminate each vehicle category. Although, the cameras

are usually placed in locations where the most common perspective is the frontal view of

the vehicle.

The frontal view of the vehicles imposes a challenge when comparing similar vehicle

categories. Different vehicle categories, such as sedans and SUVs, when viewed from a

frontal perspective, can be very similar and sometimes indistinguishable from each other.

If the detection system is performs a classification of vehicles using their appearance

features some vehicles may be misclassified in this context. Figure - 1.1 display some

cases of high similarity between vehicles when viewed from a frontal perspective.

Another challenge concerning the vehicle detection task is the lack of standard evalua-

tion methodology. There are a wide range of datasets reported by the research community

claiming its usage on the vehicle detection task, but is common that the datasets are

over adapted to specific circumstances and do not generalize enough. Furthermore, the

inherent distribution of vehicle categories also stands as a challenge on the datasets and

this unbalance can affect the accuracy of the methods considering some metrics. All of

these issues make difficult to directly compare the results of works.
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(a) (b)

(c) (d)

Figure 1.1: Some vehicle categories, when viewed in a frontal perspective, can have high
similarity as can be seen between the SUV (a) and Sedan (b) or in between
Truck (c) and Minivan (d).

1.2 Approaches and limitations

In the last years, several works proposed methods for vehicle type recognition in digital

images. Dong et al. (2015) group these approaches in two categories: model-based

methods and appearance-based methods. Model-based methods address the problem

by using dimensional attributes of the vehicle, such as length, area, and height, to create

a model (Gupte et al., 2002; Zhang et al., 2012). On the other hand, appearance-based

methods address the problem by extracting visual features from the vehicle, such as edges,

filters and visual descriptors (Ji et al., 2007; Jiang and Li, 2014).

In these circumstances, the use of an appearance-based method is a better alternative,

since the model-based method may perform poorly due to the lack of variance of

perspectives in viewpoints. However, most of the appearance-based methods use multiple

handcrafted features, which cannot efficiently describe the complexity of the patterns for

vehicle type classification in images.
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In the last decades, methods inspired on the biological behavior of the mammal’s

visual cortex were proposed, including the NeoCognitron (Fukushima, 1980), the HMAX

(Hierarchical Model and X (Serre et al., 2007)) and the CNN (Convolutional Neural

Networks (Lecun, 1989)). Convolutional neural networks are a specialized kind of neural

network for processing data that have spatial interactions and have gained prominence

recently due to its high capacity to generalize patterns in images. This characteristic

is useful for the vehicle type classification because it minimizes the problems previously

mentioned.

The field of object recognition has seen a tremendous progress the increasing employ-

ment of CNN approaches (Girshick, 2015; Girshick et al., 2014; He et al., 2017; Huang et

al., 2017; Lin et al., 2017; Ren et al., 2017), providing state-of-art results on well-known

datasets such as Microsoft COCO (Lin et al., 2014b) or Pascal VOC (Everingham et

al., 2015). These models are well suitable for usage in a resource plentiful environment

such as computer servers equipped with powerful graphics processing units (GPU). When

employed in a resource-constrained environment, these models can have a high latency

and its usage can be prohibitively for a near real-time application.

Unfortunately, in the context of vehicle detection and classification for intelligent

traffic systems, a local plentiful computational resource environment is usually difficult to

maintain due to the climatic hazards and deploying in remote locations. Some systems

propose to transmit the images captured by cameras to servers specially dedicated to

processing the images, but there are downfalls in this approach as the system relies on

the network infrastructure and there is inherent latency associated. Models that do

not require expensive computational resources and can be locally deployed are desired

since these costs and decision latency are minimized while the maintainability and the

fault-tolerance are increased.

1.3 Objectives, contributions and organization

The present master’s degree dissertation has the main objective to propose two models

to detect and classify vehicles in images presented in the frontal view. As secondary

objectives we want to test the models in different environments, to evaluate the accuracy

and inference latency with constrained resources. We also aim to compare the models

with alternatives proposed by the research community regarding its accuracy and the

inference latency.

The development of the research has applied nature, with exploratory purposes and

quantitative approach to measuring the models’ performance and inference latency at
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well-known datasets. The main contributions of the present work is: (i) the development

of models that are able of detect and classify multiple vehicles present in digital images

in a frontal-view perspective; (ii) an evaluation and discussion of the proposed model

regarding its accuracy and inference time and; (iii) a comparison between the proposed

model with similar methods presented by the research community.

Among the contributions, two papers were published. The first, entitled “Automatic

vehicle type classification with convolutional neural networks”1, proposed a convolutional

neural network to classify vehicles in low resolution images in a frontal-view perspective.

The second paper, entitled “Vehicle detection and classification in traffic images using

ConvNets with constrained resources”2, is the continuation of the first paper and proposed

a convolutional neural model to detect and classify vehicles in images and evaluated the

results concerning the accuracy and the inference time. Both papers were published on

the International Conference on Systems, Signals and Image Processing (IWSSIP) in the

years of 2018 and 2019, respectively.

This document is organized as follows: Chapter 2 presents the theoretic foundations

of the research, detailing the object detection task and convolutional neural networks.

Next, in Chapter 3 we detail related works of general object using convolutional neural

networks and vehicle detection with multiple approaches. We present and describe the

models proposed along with the methodology used by this work in Chapter 4. Chapter 5

contains the results of the experimental results regarding accuracy and inference latency.

Final considerations and future works are presented in Chapter 6. The references of this

work is listed at the end.

1.4 Final considerations

In this chapter, we introduced the computer vision’s problem of object detection and

scrutinize the application of its methods in the context of Intelligent Transportation

Systems. We addressed the challenges of the problem and also described some approaches

along with its drawbacks. Next, we defined the primary and secondary objectives this

work and its contributions to the research community. We also described the organization

of the work, summarizing the next chapters of the document.

In Chapter 2, we will go deeper into the theoretical fundamental concepts to better

comprehend this work, detailing the field of the object detection research and the

convolutional neural networks.

1Roecker et al. (2018)
2Roecker et al. (2019)
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2

Theoretical foundations

In this chapter we’ll approach the theoretical foundations of this work. Firstly, in

Section 2.1 we describe the computer vision problem of object detection, defining some

concepts and evaluation methodology. Next, in the Section 2.2, we will approach the

convolutional neural networks more deeply, explaining its formal definition, properties

and differences between standard neural networks. Lastly, in Section 2.3, we have some

final considerations of the chapter.

2.1 Object detection

The main goal of the computer vision is to create and develop methods that take an image

as input and produce a significant interpretation describing objects and actions along

with the semantic information. Our visual system is able to carry out such task with

little effort. Humans can detect and recognize objects from a library of thousands if not

tens of thousands in very complex scenes. However, the goal of developing computational

methods for these tasks is still a newly research area with relative success in the last few

years. Object detection is, in general terms, the process of discovery of an object within

an image (Szeliski, 2010) and can be grouped under three classes: presence detection,

boundary detection and semantic detection.

Presence detection methods performs the simplest form of an object detection by

receiving an image as input and outputting, normally along with a probability, if an set of

objects is present in the image. In this type of method, the entire image can be classified

in one or more categories. Presence detection is similar to image classification, but the
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method must be prepared to receive as input multiple kinds and variations of objects and

images that does not includes any desirable object at all. Figure - 2.1(a) illustrates an

example of presence detection.

Methods in the second group, called boundary detection, not only outputs the

probability of the presence of an set of objects in a image, but also outputs dimensional

coordinates of the region of the image in which the object is located. These coordinates

are called the boundaries of the object and can be used to segment the object from the

rest of the image. In this type of method, regions of the images can be classified in one

or more categories. Figure - 2.1(b) shows an method that performs a boundary detection

in a sample image.

Methods in the last group, called semantic detection, perform the most exhaustive

form of detection. In a semantic detection, each unit of the image (a pixel) can be classified

in only one of the available categories. Methods in this group, formally, maps each pixel

into a category and a object can be located in clusters of equally classified pixels. These

methods usually take into consideration some semantic information – and hence its name

– to correctly infers and detect objects that are partially occluded or composed by non

contiguous pixel clusters. In Figure - 2.1(c) we depict an semantic detection method.

Each group of object detections has its own specific evaluation metrics and methodol-

ogy. However, in the development of this work, we will describe a model grouped under

the boundaries detections. Thus, in the next paragraphs, we will detail and formally

describe the concepts and metrics used when evaluating these kind of methods.

A fundamental concept when evaluating object’s boundaries detection is the function

of Intersection over Union (IoU). The IoU, also formally known as the Jaccard

similarity coefficient, is a function used to compare similarity between two finite sets.

In the context of object’s boundaries detection, the IoU evaluates the overlap between

two bounding boxes. Let bl be the ground truth bounding box and bp the predicted

bounding box, the IoU of bl and bp is defined as in Equation 2.1.

IoU(bl,bp) =
area(bl ∩ bp)

area(bl ∪ bp)
(2.1)

When applying the IoU, we can define if the detection is a true positive (TP), false

positive (FP) or a false negative (FN). Let t ∈ R be a threshold value, a true positive

is a correct detection of the model where IoU(bl,bp) ≥ t. A false positive is a wrong

detection of the model where IoU(bl,bp) < t. A false negative is a case where the ground

truth bl is not predicted by the model. The true negative case does not apply to the

object’s boundaries detection context because it would represent a correct misdetection.
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(a) Presence detection is similar to image classification with multiple categories. In this example, we
illustrate the input and the output of presence detection method. The output represents the probability of
each category be present in the image.

(b) Boundaries detection encloses the region of image that contains the object and label it with a category.
Usually, this boundaries are defined by two coordinates that represents an rectangular region where the
object is located. In this example, we portray the input and the output of boundaries detection method.
The output shows the object’s rectangular boundaries detected: one label as a person (red) and other label
as a horse (yellow).

(c) Semantic detection maps each pixel of the image into a category. As a result, we have an image with
clusters of pixels that are equally labelled that can be inferred as objects. Along with some semantic
information, objects partially occluded or composed of multiple clusters can be detected. In this example,
the input and the output of semantic detection method are illustrated. The output shows the object’s
detected: one object composed of one cluster labelled as person (red) and another object composed of
multiple clusters labelled as horse (yellow).

Figure 2.1: Object detection methods can be classified under in three main groups:
presence detection, boundaries detection and semantic detection. In this
image, we depict examples of the method input and output of each group.



19

(a) (b) (c)

Figure 2.2: The three cases of inferences when evaluating an object boundaries detection
with IoU: a true positive (a), a false positive (b) and a false negative (c).

To measure the information retrieved by an object detection method, we need to define

metrics that can be extracted from the model and then prescribe an evaluation. Precision

and Recall metrics can be applied in the context of object detection in images. In this

context, the precision expresses the percent of how many objects selected by the model

are relevant and is formally defined by the ratio between true positives and all detections.

In addition, the recall expresses the percent of how many relevant objects were selected

by the model and is formally defined as the ratio between true positives and all ground

truth bounding boxes.

With the metrics defined we can analyze object detection models. Precision×Recall

curve (PR-curve) is a method that can portray the quality of an object detection model.

An model – for some particular category – is considered good if its precision stays high

as recall increases, i.e., if we increment the threshold t value, the precision and recall of

a good model should not drastically drop. A poor model needs to increase the number

of the detected objects – and thus increasing the number of false positives – in order to

retrieve all ground truth objects. This justifies why PR-curves usually have decreasing

precision values as the recall increases.

Since the PR-curve often has many fluctuations, use it to compare detectors is not an

easy task. So, to compare models, we use the average precision (AP) across all recall

values between 0 and 1. This provides an concise metric that ables comparison between

the models. Accordingly to Everingham et al. (2015), the Pascal VOC Challenge defines

the AP metric as interpolation of all data points as in Equation 2.2, where p(r̃) is the

measured precision at recall r̃.
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1∑
r=0

(rn+1 − rn) pi(rn+1) with pi(rn+1) = max
r̃:r̃≥rn+1

p(r̃) (2.2)

All the metrics previously described are relative to one single category of the method.

When the method outputs multiple categories, a common single numeric value used to

evaluate the model is the mean of all categories AP metrics (mAP). Most of the evaluation

standards set t = 0.5, but in the last years, with recent increase in the accuracy of the

methods, t = 0.75 is considered a standard value (Everingham et al., 2015; Lin et al.,

2014b).

2.2 Convolutional neural networks

Introduced by Lecun (1989), a convolutional neural network (CNN) is a specialized

kind of neural network that employs a convolution in place of ordinary matrix multiplica-

tion in at least one of its steps (Goodfellow et al., 2016). The convolution is an operation

on two functions of a real-valued argument that produces a third function. Formally, a

convolution of f : R→ R and g : R→ R, written as f ∗ g, is defined as the integral of the

product of the two functions after one is reversed and shifted. As such, it is a particular

kind of integral transform defined as Equation 2.3

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (2.3)

In the convolutional network terminology, the first argument, f , is named to as the

input, and the second argument, g, as the kernel or filter. The output is defined as

the feature map. Since in machine learning methods the input is usually a tensor —

high dimensional generalizations of matrices represented as multidimensional arrays —

of the features values; the kernel is also a tensor of parameters that are adjusted by

the optimization algorithm. Thus, the convolution of an input I ∈ Rp×q and a kernel

K ∈ Rr×s is defined as in Equation 2.4.

(I ∗K)i,j =

p∑
n=1

q∑
m=1

Im,nKi−m,j−n (2.4)

The convolution is commutative; i.e., it is equivalent to Equation 2.5; which is

habitually more straightforward to implement because there is less variation in the range

of values of m and n since the kernel is commonly much smaller than the input.



21

(I ∗K)i,j = (K ∗ I)i,j =
r∑

n=1

s∑
m=1

Ii−m,j−nKm,n (2.5)

The commutative property of the convolution arises because the kernel was flipped,

which can be useful to write proofs but is usually not important in a neural network

implementation. Thus, is common for many implementations to use a related function

called cross-correlation, which is the same as convolution but without kernel flipping.

In the context of the machine learning, it is rare for a convolution to be used alone,

and normally is used with other functions and combinations, which does not commute

regardless of whether the kernel is flipped or not. Figure - 2.3 illustrates an example of a

convolution (without kernel flipping) applied to a two-dimensional tensor.

Figure 2.3: An example of a 2-D convolution without kernel flipping. The output
consists of the positions where the kernel lies entirely in the input. The
arrows indicate the upper-left element of the output tensor. Source:
Goodfellow et al. (2016, p. 330)
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According to Goodfellow et al. (2016), the use of convolution leverages three impor-

tant concepts that can help to improve the induction algorithm when processing data

with spatial interactions: sparse interactions, parameter sharing, and equivariant

representations.

Traditionally, standard neural networks, also called fully-connected neural networks,

use a matrix multiplication of an input and the parameters to describe the interaction of

each input element and each output element. Thus, every output element interacts with

every input unit, creating a dense interaction between them. Alternatively, convolutional

networks have sparse interactions (or sparse connectivity). For example, when process-

ing an image, the input might have millions of units (in this case, pixels), but the network

can detect small and meaningful features such as edges with kernels that occupy only

hundreds of pixels. This means that we need to store fewer parameters, which reduces

memory requirements of the model and improves statistical efficiency. The improvements

in efficiency are quite large. If there are m inputs and n outputs, a matrix multiplication

requires m× n parameters, and the algorithms usually have an O(m× n) runtime. If the

number of connections is limited as each output may have k units, the sparsely connected

operation requires only k×n and O(k×n) runtime. In pratical applications, it is possible

to obtain a value for k that is several orders of magnitude smaller than m. Figure - 2.4

illustrates the sparse connectivity from the perspective of a input unit of a convolutional

neural network when comparing with the dense connectivity of a standard neural network.

Even if the output unit is not directly connected to all the input units, when more

layers of convolutions are employed, the deeper units may indirectly interact with a

broader portion of the original input, as can be seen in Figure - 2.5. This allows the

network to efficiently describe complicated interactions between the units by constructing

it from simple ones.

Parameter sharing refers to the use of the same parameter for more than one

function in a model. In traditional neural networks, each parameter element is used

one time with the input to compute the output and never revisited. On the other hand,

in the convolutional networks, each unit of the kernel is applied many times in all units

of the input (except perhaps in the boundary of the image).

The parameter sharing used by the convolution operation means that rather learning

the parameters of each unit for every location, the network learns only one set. This does

not improve the runtime propagation – it is still O(k × n) – but reduces the requirement

of storage of parameters to k, and k is very small when compared to m × n. Figure -

2.6 illustrates a comparison of the sharing of the parameters between standard neural

networks and a convolutional neural network.
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Figure 2.4: The sparse connectivity as viewed by the highlighted input x3 and the
affected output units. (Top) When the output is formed by a convolution
of a kernel of width 3, only three output units are connected with the input
x3. (Bottom) When the output is formed by a matrix multiplication, all the
output units are connected to x3. Source: Goodfellow et al. (2016, p. 331)

Figure 2.5: The receptive field of deeper layers of a convolutional neural network is
larger than the receptive field of shallow layers. The effect increases if the
network includes features like strided convolution or pooling. Thus, even
though direct connections are sparse, units in deeper layers can indirectly
connect to all or most of the original input. Source: Goodfellow et al. (2016,
p. 330)
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Figure 2.6: Comparison of the parameters usage between standard neural networks and
convolutional neural networks. (Top) The highlighted arrows indicates the
shared central parameter in a convolutional neural network with a kernel
with width of 3. (Bottom) The single arrow indicates the parameter used
only one time in the output of a standard neural network, with no parameter
sharing. Source: Goodfellow et al. (2016, p. 333)

Due to the parameter sharing, the convolution has the property of being equivariant

to translation. A function f : X → Y is said to be equivariant to a function g : X → Y

if f(g(x)) = g(f(x)). Let c be a convolution of an input i and a kernel k, i.e., c(i, k) =

i ∗ k. Also, let t be a function that shifts the input i by some constant value a, i.e.,

t(x) = x + a. In this case, c is equivariant to t, because c(t(i), k) = t(c(i, k)). When

processing time-series data, this means that the convolutions can detect a feature that is

placed later or earlier than the original without penalty. In a two dimensional space, this

means that the convolution can detect a trait even when it is translated in the image.

The convolution is not naturally equivariant to other transformations, such changes in

the scale or rotation.

Typically, a convolutional neural network layer consists of three stages main stages –

the convolutional stage, the detector stage and the pooling stage – and optional

shortcut connections. The Figure - 2.7 illustrates an feed-forward diagram with

the interactions of each stage. The first stage, called convolutional stage, performs

convolutions of the input units and one or more kernels to produce a set of one or more

feature maps, each feature map corresponding to a kernel. This is a affine transformation

does not adds non-linearity to the representation.
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Figure 2.7: Common terminology used to describe a convolutional neural network layer.
Adapted from Goodfellow et al. (2016, p. 336)

In the second stage, called detector stage, each unit of the feature maps is trans-

formed by a activation function. Accordingly to Goodfellow et al. (2016), a desirable

activation function is non-linear, continuously differentiable, and monotonic. A two-layer

network can be proven to be a universal function approximator if it is equipped with

a non-linear activation function (Cybenko, 1989). A continuously differentiable function

have enables gradient-based optimization methods. A monotonic function guarantees that

the error surface associated with a single model is convex (Wu, 2009).

Regarding activation function, specific properties are also desired in its range. An

activation function with a finite range tends to stabilize the gradient on training because

the pattern’s presentations significantly affect only limited weights of the parameters. In

contrast, with an infinite range, the training is usually more efficient because pattern’s

presentations significantly affect most of the weights but requires smaller learning rates.

An approximate identity behavior near the origin is also desirable, because the neural

network can learn efficiently when it is initialized with small random values. There are

several activation functions proposed by the research community with distinct results

in each use case, the choice of an activation function is usually an hyperparameter

(Goodfellow et al., 2016).
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The sigmoid function σ : R → [0, 1], defined as σ(x) = 1/1+e−x, has seen frequent

use historically since it has a nice interpretation as the firing rate of a neuron: zero (0)

when the neuron is not firing and one (1) when the neuron is fully-saturated. As can

be seen in Figure - 2.8(a), the sigmoid function is non-linear, continuously differentiable

and monotonic, but has fallen out of favor because it super-saturates the gradients when

training with back-propagation and does not approximates identity behavior near the

origin.

The hyperbolic tangent function tanh(x) : R → [−1, 1], defined as tanh(x) =

e2x−1/e2x+1, like the sigmoid function, has a similar interpretation when the neuron is firing

and is also non-linear, continuously differentiable and monotonic. Although, as can be

seen in Figure - 2.8(b) the range of the tanh function is centered on zero and approximates

identity behavior near the origin. Ergo, in practice, the tanh is always preferred to the

sigmoid.

The rectified linear unit ReLU : R → R+
0 is a non-linear monotonic function that

has become very popular in the last years due its good results concerning the accuracy

results and the convergence time during training. Firstly introduced by Hahnloser et al.

(2000), it is defined as ReLU(x) = max(0, x) and has multiple desired properties like

having a better gradient propagation and an efficient computation (Glorot et al., 2011;

Krizhevsky et al., 2012). Figure - 2.8(c) illustrates the behavior of the ReLU function

near the origin.

As demonstrated by Maas et al. (2013), neural networks employing ReLU func-

tions often suffers from the “dying ReLU” problem where a gradient flowing through

a ReLU-equipped neuron could cause its weights to update in such a way that the

neuron will never activate on any input again. The proportion of “dead” neurons can

be up to 40% of the entire model. The “leaky” variation of the rectified linear unit,

LReLU : R × R → R, defined as LReLU(ι, x) = max(ιx, x), attempts to minimize this

problem by adding a hyperparameter ι to create a small negative slope, as can be seen in

Figure - 2.8(d).

The third stage of the convolutional neural network layer, called pooling stage,

applies a pooling function that can replace each unit of the feature map as a summary

statistic of nearby units. This behavior helps on preventing over-fitting by providing an

abstract form of the representation whilst optionally reducing the dimensionality of the

output. There are a wide range of pooling functions available, but in general we can

categorize each pooling function as a spatial pooling or a cross-filter pooling.

A spatial pooling summarizes an dimensional neighborhood area of the input and

subsamples it based on a prior. Formally, let (x, y) be the size of the neighborhood, the
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Figure 2.8: The behavior of some activation functions near the origin.

pooling operation reports one unit for every (x, y) units thus improving the statistical

efficiency of the model because the next layer has roughly (x, y) times fewer inputs to

process. For example, let the input I ∈ R4×4 be applied by a max-pooling (Zhou

and Chellappa, 1988) with a (2, 2) sized neighborhood. As illustrated in Figure - 2.9,

this pooling results in a output with all the maximum values of each non-overlapping

neighborhood of the image.

Figure 2.9: The application of the max-pooling function with a (2,2) neighborhood’s
size and a stride of (2,2) into a 4 × 4 input results in a 2 × 2 output with
maximum values of each neighborhood.

Other popular spatial pooling functions includes the average of a rectangular neigh-

borhood and the weighted average based on the distance from the neighborhood center.

Regardless its popularity, the use of spatial pooling is not required to create a convolu-

tional neural layer. Springenberg et al. (2015), for example, demonstrated that there is no

accuracy penalty on using a (2, 2) stridden convolution instead a (2, 2) sized max-pooling.
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On the other hand, a cross-filter pooling summarizes units in the same coordinates

of various distinct inputs into small number of outputs and is usually obtained by using

“one-by-one” convolutions. Firstly introduced by Lin et al. (2014a), a “one-by-one”

convolution acts like a coordinate-dependent transformation in the filter space that is

strictly affine, but is usually equipped with a non-linear activation. For example, let

I ∈ Rx×y×z be a feature map where x and y are spatial dimensions and z are number of

previously applied convolutional filters. The convolution and application of an activation

function of I with K ∈ R1×1×z′ results in new feature map I′ ∈ Rx×y×z′ . Since we choose

z′ < z, this type of pooling adds non-linearity to the representation whilst reducing

dimensions only of the filter space of previous layers and helping a faster computation.

Aside the main stages, convolutional layers can employ shortcut connections that

transforms the output with independent operations. Residual layers are popular

instances of shortcut connections that demonstrated good results when training very

deep convolutional neural networks. As demonstrated by He et al. (2016), residual

layers relieves the saturation of the feature maps and thus decreasing the over-fitting

and increasing the accuracy of the network. Formally, consider the underlying mapping

as H(I), we let the stacked nonlinear layers fit another mapping of F(I) = H(I)−I, so the

original mapping is recast to F(I) + I. As can be seen in Figure - 2.10, the formulation

of F(I) + I is be implemented as shortcut connection that that skip one or more layers to

transfer the residual parameters by adding an input identity with the output of the main

stages.

Figure 2.10: Residual layer building block. Source: He et al. (2016)

In general terms, convolutional neural networks can be viewed as standard fully

connected neural nets, but with an strong prior over the weights. This prior states that

the weights of one hidden unit must be identical to the weights of its neighbor but shifted

in space. The prior also states that the weights must be zero for all except an small and

spatially contiguous receptive fields assigned to the hidden unit.
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As any other neural network, CNNs can be reused into different tasks after its training.

This process, called transfer learning, usually involves saving the core parameters, often

called backbone, and apply it with repurposed inputs and outputs. This leverages the

sharing of the network, contributing to its longevity and decreasing the training time in

the new task.

2.3 Final considerations

In this chapter, we described the theoretical fundamental concepts to comprehend this

ongoing work. In the first section, we wrote about the research field of general object

detection in the computer vision’s area. We reported its types and categories along

with evaluation metrics. Then, in the next section, we detailed and formalized the

elements of the convolutional neural networks, describing its properties and advantages

when compared with standard neural networks.

Coming up, in Chapter 3, we will summarize the related works proposed by the

scientific research community to approach the object detection and its application in

the detection and classification of vehicles presented in digital images.
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3

Related works

In this chapter, we review works of the research community approaching the object

detection problem. In Section 3.1, we describe an historic overview of recent methods

approaching the object detection problem using convolutional neural networks, highlight-

ing the YOLO method due its focus on the development of this work. Next, in Section 3.2,

we introduce related works approaching the vehicle detection and classification in digital

images, highlighting the methodology, the dataset and results achieved by the models.

Lastly, with Section 3.3, we have some final considerations about the chapter.

3.1 Object detection with convolutional neural networks

Traditional object recognition algorithms usually perform detection by using a classifier.

In these systems, the classifier is evaluated with image descriptors in various regions of

the image with different scales (Felzenszwalb et al., 2010; Viola and Jones, 2001). Still,

in the last years, the computer vision research community developed other approaches

employing convolutional neural networks with state-of-art results.

Girshick et al. (2014) introduced the Region-based Convolutional Neural Net-

workFast (R-CNN) as a method to perform object detection consisting of three steps: (i)

the method scans the input image for possible objects with a selective search (Felzenszwalb

and Huttenlocher, 2004), generating near 2000 regions of interest (RoI); (ii) each RoI is

transformed by a pre-trained convolutional neural network that outputs a feature map;

(iii) each RoI’s feature map is inputted into: (a) an SVM to classify the RoI and; (b)

a linear regressor that tights the bouding box of the RoI, if such RoI is classifiable. In
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simple words, the method search for RoIs, extract features via a CNN and classify those

regions based on the extracted features. In essence, the object detection is turned into

a object classification. The R-CNN method achieved good results – 53.3% mAP on the

Pascal VOC 2010 when is equipped with the AlexNet backbone (Krizhevsky et al., 2012)

– although the training is expensive and slow and also presents a high inference latency

(40-50 seconds).

To improve the results of the R-CNN method, Girshick (2015) proposed a unification

of three different models into a one trained network, increasing the shared computation.

This method was called Fast R-CNN. Instead of extracting a feature map with a CNN

from each RoI, the proposed model extracts a feature map of the entire image with a

CNN and then performs the selective search on the feature map. In addition, the Fast

R-CNN method also replaces the SVM classifier with a standard neural network, thus

extending the neural network capabilities direct into the predictions. The Fast R-CNN

model achieved significant accuracy results by simplifying its architecture – 65.7% mAP

on the Pascal VOC 2012 when equipped with the VGGNet-16 backbone (Simonyan and

Zisserman, 2015) – while also improved significantly the training and inference latency

(cutting to 2-3 seconds).

In the following years, Ren et al. (2017) proposed the Faster R-CNN method with

an intuitive speedup solution: use a Region Proposal Network (RPN) instead the slow

selective search algorithm with the principal CNN of the method. The RPN is a dedicated

neural network that shares some of its convolutional layers with the primary CNN. The

last layer of the primary CNN is forked in the process, and then a small sliding window

generates multiple possible regions based on a k ∈ Z fixed-ratio anchor boxes – default

bounding boxes previously defined – that are scored with a probability of having a object

within and the coordinates of the boundaries. If an anchor box has an probability of

having an object greater than a threshold, the region is outputted. Although the RPN

outputs the boundaries coordinates, it does not try do classify any potential objects: it is

only responsible for proposing the object regions. The final step of the method is identical

to the Fast R-CNN method: classify each region using the a standard neural network.

The Faster R-CNN achieved better results than the previous methods — 73.2% mAP

on the Pascal VOC 2012 when equipped with the VGGNet-16 backbone (Simonyan and

Zisserman, 2015) – and limiting the inference latency to near 200 milliseconds.

The R-CNN, Fast R-CNN and Faster R-CNN are object detection methods based

on the same principle: hypothesize object regions and then classify them. Alongside

with these methods, the research community also introduced another approaches not
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fundamented in region proposal, like the Single Shot Detector and the You Only Look

Once.

The Single Shot Detector (SSD), proposed by Liu et al. (2016), is a method that

uses only a single deep CNN to perform the detection and classification of the objects

in the image. Instead of proposing regions and classifying them, this method produces

both the coordinates and classes with a single convolutional neural network, following:

(i) pass the input image through a series of convolutional layers, yielding multiple feature

maps in different scales. (ii) For each feature map, like the Faster R-CNN, uses an

anchor boxe to evaluate the boundaries and; (iii) For each anchor box, simultaneously

predicts (a) the bounding box offset and (b) the class probabilities. The SSD is more

straightforward but its training requires additional efforts to remove the multiple negative

detections considered by the model. To mitigate this behavior, the SSD first remove

multiple overlapping detections using a non-maximum suppression and maintain an 1:3

ratio between positive and negative detections. The SSD has a good performance in terms

of accuracy – 72.4% mAP on the Pascal VOC 2012 when equipped with the VGGNet-16

backbone (Simonyan and Zisserman, 2015) – and inference latency under 20 milliseconds

per image.

The You Only Look Once (YOLO) method was the first attempt to develop an

real-time object detector using convolutional neural networks. It was firstly proposed by

Redmon et al. (2016), with following updates in Redmon and Farhadi (2017) and Redmon

and Farhadi (2018). The method does not employ a region proposal and only detects a

limited number of objects per image, straight yielding the coordinates of the boundaries

and the categories of each object.

To understand the YOLO method, we need firstly understand how it encodes the

detections. Firstly, the input image pass through a series of convolutional layers and

outputs a feature map. Typically, in a object detector, the feature map outputted by the

convolutional stage serves as input to a classifier/regressor which infers the coordinates of

the detected object’s boundary and its category. In YOLO, this step is also made by an

convolutional layer which only employs 1× 1 convolutions. The complete feature map is

a tensor t ∈ Rg2×a×(5+q) , where g2 is the number of grid cells, a is the number of anchor

boxes and q is the number of categories that can be inferred by the model.

The YOLO method partitions the input image into g2 grid cells to reduce the

search space. Each one of the g2 grid cells has a boundaries that represents log-spaced

offsets relative to a predefined boxes, called anchors. Therefore, for each boundary j of

each grid cell i, the feature map tij = 〈tx, ty, tw, th, to, tp1, . . . , tpq〉 encodes four spatial

coordinates, one confidence score and q probabilities for each category.
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Suppose the input image with dimensions l × l, partitioned into nine grid cells (g =

3) and with one anchor box prior with dimensions (aw, ah), Figure - 3.1 presents an

example to decode the feature map t in the fifth grid cell (i = 5). The euclidean centroid

coordinates of the detection (bx, by) are encoded as normalized values relative to the

grid size (l/g) padded by the grid coordinates (cix, ciy). The euclidian dimensions of the

detection (bw, bh) are encoded as coordinates in a natural logarithm space relative to the

corresponding anchor box. The confidence bo and the probabilities pn for each category

are all decoded by a sigmoid mapping. The usage of coordinates in a log-space along

sigmoid applications ensures all units of the feature map t falls between zero and one,

increasing the gradient stability during training.

Figure 3.1: The mapping of the output of the YOLO to euclidian coordinates.

Since the YOLO method infers multiple detections per grid cell, the methods define

the presence of an object in the cell as Oi, which evaluates to one if an object is present

in the i-th cell or zero otherwise. The method also assign only one anchor box to be

responsible for detect some object contained in the cell using the IoU. Thus, the detection

related to the anchor with maximum value of IoU with an object in the cell is responsible

for detect that object. This strategy leads to specialization among the inferred detections

as the model gets better at predicting certain sizes and aspect ratios. This responsibility

is formally defined as Oij, which evaluates as one if the j-th detection of the i-th grid cell

is responsible for detection the object or zero otherwise.
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The detection’s confidence (bo) is used to indicate the probability of the boundary

containing an object. The confidence conditions the final probabilities of the detection,

thus the final probability for each n ∈ 1..q categories is given by P (pn | bo). In practice,

this conditional probability means that if no object is present on the grid cell, the error

function will not penalize the model for an wrong class prediction.

To output the final results, detections with confidence below a threshold are removed.

The actual classification of the detection is given by the maximum P (pn | bo). Then, over-

lapping detections with same category are addressed with an non-maximum suppression.

Figure - 3.2 presents an simplified schema of the YOLO method as used by Redmon et

al. (2016) when evaluated on the Pascal VOC 2012 dataset.

Figure 3.2: A simplified schema of the YOLO method. It divides an input image into an
g2 grid cells and for each grid it infers a boundaries with confidences along
c categories probabilities. The output is given by the filtered detections
multiplied by the categories. Adapted from Redmon et al. (2016)

The number of anchors and grid cells used by the model are hyperparameters. In

Redmon and Farhadi (2017) and Redmon and Farhadi (2018), the authors recommended

using 5 anchors and splitting the input image into 7 × 7 grid cells. The number of

convolutional layers in the backbone of the model is very adaptable and, as a rule of

thumb, it can be decreased to achieve a faster training and inference latency or increased
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to achieve a better inference accuracy. In its first version, Redmon et al. (2016) used

a backbone influenced on the AlexNet (Krizhevsky et al., 2012) with 24 convolutional

layers followed by 2 fully-connected layers. In its second version, Redmon and Farhadi

(2017) used a backbone motivated by the VGG-16 (Simonyan and Zisserman, 2015) with

19 convolutional layers with heavy usage of a cross-filter pooling. In the last version,

Redmon and Farhadi (2018) used novel architecture with 53 convolutional layers that

makes use of cross-filter pooling and shortcut connections.

3.2 Vehicle detection and classification

In the last years, the task of recognition of vehicles in digital images has received noticeable

attention by computer vision research community. Although, because of the absence of

a standard framework for the evaluation of the proposed models, there are significant

differences in the works and makes it difficult to perform a fair comparison of the obtained

results.

Han et al. (2009) presents a vehicle detection approach using Haar-like features of

vehicle edges. The method is effective to detect vehicles in the image scene, removing

environmental noise and detecting the boundary of the vehicle in the image. As there is

only one vehicle class, the model does not performs classification. The model achieved an

inference for detection of 66 milliseconds in the testing embedded system.

Dong et al. (2015) propose a vehicle type classification method using a semi-supervised

convolutional network from vehicle frontal-view image of the BIT-Vehicle Dataset. The

architecture of the model consists of two convolutional stages, and each stage contains

a convolution, a non-linearity absolute rectification, a local contrast normalization, and

average pooling. The input of the first stage is the image, and the output of the first stage

is the input of the second stage. The fully connected stage takes as input the fusion of the

outputs of the first and the second stages. In the end, the model outputs the probability

of each of the six vehicle types: Bus, Microbus, Sedan, SUV, and Truck. To achieve an

accuracy of 88.11%, Dong et al. (2015) also employ a Laplacian Filter to obtain the initial

value for the kernels of the network with large amounts of unlabeled data.

Wang et al. (2017) employed a CNN influenced by the Faster R-CNN architecture (Ren

et al., 2017) to perform vehicle detection and classification into four categories: Car, Bus,

Minivan, and Trucks. The dataset employed to train and test the model was acquired by

the authors with traffic surveillance cameras fixed at crossroads. The authors provided a

new Region Proposal Network that aims to reduce the inference time of the model, and
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they achieved 81.06% mAP. When using an NVIDIA Jetson TK1 with 192 CUDA cores,

the authors reported that the model inference latency is approximately 354 milliseconds.

Selbes and Sert (2017) address the vehicle type classification using a multimodal

method from videos of traffic scenarios, extracting both image’s features and audio’s

features and fusing the features as input to a Support Vector Machine (SVM) multiclas-

sifier. To extract the image-based features, the authors use the trained versions of the

renowned convolutional network’s architectures AlexNet (Krizhevsky et al., 2012) and

GoogleNet (Szegedy et al., 2015). Mel-frequency Cepstral Coefficients (MFCCs) are used

to extract audio-based features from the video. The SVM then classify each video snippet

as an armored vehicle, a construction vehicle, a crane vehicle, an emergency vehicle, a

military vehicle, a motorcycle, and a rescue vehicle. This multimodal method achieves

72.1% accuracy.

Kim and Lim (2017) propose a new scheme of vehicle type classification for multi-view

images of surveillance cameras using convolutional networks with data augmentation,

bootstrap aggregating (bagging) and, a post-processing voting between the models of

the bagging method. The model consisted of seven independently trained convolutional

networks with the same characteristics that output a prediction by voting. Inspired by

the works of Simonyan and Zisserman (2015), the authors modeled all the convolutional

networks with fifteen convolutional layers. The model was evaluated in a subset of the

ImageNet Dataset with eleven classes: articulated truck, background (negative examples),

bicycle, bus, car, motorcycle, non-motorized vehicle, pedestrian, pickup truck, single-unit

truck and work van; achieving an accuracy of 97.84%.

Şentaş et al. (2018) describe a performance evaluation for the recognition of vehicles

in images between two distinct models: HOG+SVM and TinyYOLO. The HOG+SVM

model is composed of an Histogram of Gradients (HOG) feature descriptor as the detector

and a Support Vector Machine (SVM) as the classifier. The TinyYOLO is a model

composed of a CNN constructed as a shallow version of the YOLO architecture (Redmon

and Farhadi, 2017) that acts both as detector and classifier. For the task of object

detection, the authors evaluated both models on a dataset created by the authors called

TPSdataset. In the TPSdataset, each vehicle can be classified on one of the five following

categories: Bus, Minivan, Minibus, Truck, and Auto. For the HOG+SVM model, Şentaş

et al. (2018) reported the the HOG+SVM model achieved 97.14% of average precision

and 87.81% of recall on the TPSdataset. For the TinyYOLO model, the authors reported

achieving 62.83% of precision, 86.22% of recall and 69.74% of IoU.

In Table Table - 3.1 we summarize the related works reported by the research

community in a historic order. The tables features, in column “Task”, the task that
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the proposed work aimed to approach; in column “Method”, the technique employed by

the authors and; in column “Performance” the reported result. It’s important to observe

that the listed works does not uses the same metrics and are not tested using the same

conditions and datasets. Therefore, this table does not aim to direct compare the works,

but offer a concise view about the contemporary state of the research field of vehicle’s

detection in digital images.

Table 3.1: Summary of the main results on the vehicle detection and classification task
reported in the literature.

Work Task Method Performance1

Dong et al. (2015) Classification CNN 88.11%

Wang et al. (2017) Detection/Classification Faster CNN 81.06%

Selbes and Sert (2017) Detection/Classification CNN + MFCC + SVM 72.10%

Kim and Lim (2017) Classification CNN + AdaBoost 97.84%

Şentaş et al. (2018) Detection/Classification HOG + SVM 97.14%

Şentaş et al. (2018) Detection/Classification TinyYOLO 62.83%

3.3 Final considerations

In Chapter, we reviewed related works in the research field of object detection. In Section

3.1 is summarized the recent approaches to detection objects in digital images using

convolutional neural networks, highlighting the accuracy scores in standard evaluation

datasets. We also highlighted the YOLO method, detailing its characteristics, encoding

and properties. Next, in Section 3.2, we reviewed a historic summary the approaches to

detect and classify vehicles present in digital images, highlighting the methodology of the

work and the reported results regarding accuracy and inference time.

Coming up, in Chapter 4, we will detail the proposed model describing its architecture,

the dataset used in training and evaluation and, lastly, the metodology of the research.

1Results not necessarily obtained with the same metrics and not even on the same dataset
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4

Proposed Model

In this chapter we’ll present the proposed model. Firstly, in Section 4.1, we describe the

architecture of the model. In the Section 4.2, we present the dataset and the preprocessing

employed in the work. Next, in the Section 4.3, we will detail the training process and

methodology used in the model. At Section 4.4 we present some final considerations about

the chapter.

4.1 Model’s architecture

Aiming to get a good trade-off between accuracy and inference latency when addressing

the vehicle detection, we chose to build our own model inspired by the YOLO architecture.

To evaluate the accuracy of the model in different conditions, we propose two convolutional

backbones for the model: α and ω. The backbone α is a heavy and deep convolutional

neural network, it has 53 convolutional layers and its usage is designed to be implanted in

a resource plentiful environment. The backbone ω, otherwise, is relatively shallow – with

10 convolutional layers – and can be used in an environment with resource restrictions.

The structure of the backbones α and ω for each image channel is summarized in Table

- 4.1 and Table - 4.2, respectively. The column “Input units” displays the number of units

that the layer receives and the “Parameters units” presents the number of parameters

(weights) in the layer. Both columns are in the “width × height × depth” format. The

“Stride” column shows the stride of the convolution and pooling operations in the (x, y)

axis. As there are multiple layers with equivalent configurations, the “×” column indicates

how many times the layers are sequentially repeated.
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Table 4.1: Architecture of Backbone α.

× Layer type Input units Parameters units Stride

1

Convolutional 512 × 512 × 1 32 × 3 × 3 (1,1)

Convolutional 512 × 512 × 32 64 × 3 × 3 (2,2)

Convolutional 256 × 256 × 64 32 × 1 × 1 (1,1)

Convolutional 256 × 256 × 32 64 × 3 × 3 (1,1)

Residual 256 × 256 × 64 256 × 256 × 64 –

Convolutional 256 × 256 × 64 128 × 3 × 3 (2,2)

2

Convolutional 128 × 128 × 128 64 × 1 × 1 (1,1)

Convolutional 128 × 128 × 64 128 × 3 × 3 (1,1)

Residual 128 × 128 × 128 128 × 128 × 128 –

1 Convolutional 128 × 128 × 128 256 × 3 × 3 (2,2)

8

Convolutional 64 × 64 × 256 128 × 1 × 1 (1,1)

Convolutional 64 × 64 × 128 256 × 3 × 3 (1,1)

Residual 64 × 64 × 256 64 × 64 × 256 –

1 Convolutional 64 × 64 × 256 512 × 3 × 3 (2,2)

8

Convolutional 32 × 32 × 512 256 × 1 × 1 (1,1)

Convolutional 32 × 32 × 256 512 × 3 × 3 (1,1)

Residual 32 × 32 × 512 32 × 32 × 512 –

1 Convolutional 32 × 32 × 512 1024 × 3 × 3 (2,2)

4

Convolutional 16 × 16 × 1024 512 × 1 × 1 (1,1)

Convolutional 16 × 16 × 512 1024 × 3 × 3 (1,1)

Residual 16 × 16 × 1024 16 × 16 × 1024 –

1 Global Average Pooling

Table 4.2: Architecture of Backbone ω.

× Layer type Input units Parameters units Stride

1

Convolutional 512 × 512 × 1 16 × 3 × 3 (2,2)

Convolutional 256 × 256 × 16 32 × 1 × 1 (2,2)

Convolutional 128 × 128 × 32 64 × 3 × 3 (2,2)

Convolutional 64 × 64 × 64 128 × 3 × 3 (2,2)

Convolutional 32 × 32 × 128 256 × 3 × 3 (2,2)

Convolutional 16 × 16 × 256 512 × 3 × 3 (2,2)

1

Convolutional 8 × 8 × 512 1024 × 3 × 3 (1,1)

Convolutional 8 × 8 × 1024 256 × 1 × 1 (1,1)

Convolutional 8 × 8 × 256 512 × 3 × 3 (1,1)

Convolutional 8 × 8 × 256 512 × 3 × 3 (1,1)

1 Global Average Pooling
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Motivated by the works of Cireşan et al. (Cireşan et al., 2011), Krizhevsky et al.

(Krizhevsky et al., 2012) and Simonyan and Zisserman (Simonyan and Zisserman, 2015),

we designed all the stages of the model with the same principles to simplify the model and

minimize setup of hyperparameters. Both backbones receives as input a 512 pixel wide and

high RGB image. The input pass through a stack of convolutional layers with an increasing

number of filters with size 3 × 3. We fixed the convolution stride at one point and

preserved the spatial padding. The output of each convolutional layer is equipped with the

leaky rectifier activation function (LReLU). Both detectors do not employ spatial pooling.

Although, they employ a cross feature map pooling by using 1 × 1 sized convolutions in

some layers. α employs residual layers but ω don’t use the same technique.

Before the fully-connected stage, the model performs a Global Average Pooling

(GAP) (Lin et al., 2014a) to minimize the overfitting of the fully-connected stage.

In conventional convolutional neural networks, the bridge between the convolutional

stage and the fully-connected stage is made by vectorizing the last feature map of the

convolutional stage and fed it into the fully-connected stage. The GAP proposes a

different approach. First, it calculates the average of each of the last feature maps of

the convolutional stage and then the resulting vector is fed into the fully-connected stage.

As an example, last feature maps in the the backbone α have 16 × 16 × 1024 units, thus

there are 1024 feature maps with a size of 16 × 16 from which the average is calculated.

Therefore, the resulting GAP vector has 1024 units.

4.2 Dataset and preprocessing

The BIT-Vehicle Dataset (Dong et al., 2015) is a dataset comprised of 9,850 vehicle

images with high resolution (1600 × 1200 px and 1920 × 1080 px). The images are in

a wide range of changes in illumination, scale, surface color and position of the vehicles.

Each image may contain more than one vehicle, and so the dataset also contains the

annotation of each bounding box of each vehicle in the image. All the vehicles in the

dataset are labeled as one of the following categories: Bus, Microbus, Minivan, Sedan,

SUV, and Truck.

To improve the generalization of the model, we also included in the dataset some

negative samples, i.e., samples that do not have a vehicle on it. The negative examples

were selected from the ImageNet Dataset (Russakovsky et al., 2015) and contain images

with roads, highways, passages and some landscapes. Each image was resized to fit into

512 × 512 canvas. To provide more generalization to the model, each canvas is generated

by a random uniform distribution and the image is randomly positioned on the canvas.
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The resizing was performed using bilinear interpolation. Figure - 4.1 displays the positive

and negative samples after the preprocessing step.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.1: Some of the samples after the resizing and position into a canvas. There
are positive (a–f) and negative (g–i) samples. The canvas is filled with an
uniform distribution before the sample is positioned into it.
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The BIT-Vehicle Dataset has an probability distribution of the categories far from

uniform, with a coefficient of variation almost equal to 1.27. We have opted for using the

partition of the dataset with 70% for training and 30% for testing. Since the samples of

the dataset are not uniformly distributed into the categories, different amounts of samples

were randomly selected for the training and testing partitions. Table - 4.3 summarizes

the distribution of each category into the partitions.

Table 4.3: Category distribution over the dataset partitions.

Category Training Testing % Total
Bus 390 168 ≈ 5.6 % 558
Microbus 618 265 ≈ 8.8 % 883
Minivan 333 143 ≈ 4.7 % 476
Sedan 4,144 1,777 ≈ 58.9 % 5,921
SUV 974 418 ≈ 13.8 % 1,392
Truck 576 247 ≈ 8.2 % 823
Total 7,035 3,018 100% 10,053

Instead of choosing anchor boxes by hand, we employed the k-means clustering on the

training set bounding boxes to find good priors. The k-means clustering algorithm can be

adapted to find anchor boxes as we choose k ∈ Z random boxes as our initial means bi.

Then, we assign each ground truth bounding box bl to a cluster Ci defined as in Equation

4.1, where i ∈ 1 . . . k.

Ci = {bl | d(bl,bi) ≤ d(bl,bj), ∀j ∈ I, i 6= j} (4.1)

The mean is calculated for all boxes belonging to Ci and this yields a new bi and

the process is repeated until it converges. If we define d as the Euclidian distance, larger

boxes generate more error than smaller boxes (Redmon and Farhadi, 2017). Thus, to make

the method independent of the size of the box, we defined d as the Jaccard distance, so

d(bl,bi) = 1 − IoU(bl,bi). In the development of this work, we choose k = 5 and thus

both models have five anchors.

4.3 Model’s training

The general method for training both models follows Redmon and Farhadi (2018).

The error function, written as ε, is composed as the sum of four terms: εc, εd, εo

and εq representing the error for detection’s coordinates, dimensions, confidence and
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classification, respectively. Let b be the an detected bounding box and b̂ the ground-truth

bounding box. The complete definition of ε is denoted in Equation 4.2.

ε(b, b̂) = εc(b, b̂) + εd(b, b̂) + εo(b, b̂) + εq(b, b̂) (4.2)

The error of coordinates εc is defined as the mean-squared error of the detection’s

centroid coordinates, written in Equation 4.3.

εc(b, b̂) =
λc
ag2

g2∑
i=1

a∑
j=1

Oij

[(
bijx − b̂ijx

)2
+
(
bijy − b̂ijy

)2]
(4.3)

The error of dimensions εd is defined as the mean-squared error of squared root of

the detection’s width and height as written in Equation 4.4. The dimension error uses

the squared root to reflect that small deviations in large boundaries is less than in small

boundaries.

εd(b, b̂) =
λc
ag2

g2∑
i=1

a∑
j=1

Oij

[(√
bijw −

√
b̂ijw

)2

+

(√
bijh −

√
b̂ijh

)2
]

(4.4)

The error of the confidence score εo is a mean-squared error of the inferred confidence

with the IoU of the detection with the ground truth and is written in Equation 4.5, where

Oij is the complementary of Oij.

εo(b, b̂) =
1

ag2

g2∑
i=1

a∑
j=1

[
Oij

(
bijo − IoU(b, b̂)

)2
+ λo Oij

(
bijo − IoU(b, b̂)

)2]
(4.5)

Lastly, the error for classification εq is given by the mean-squared error of the the

probabilities of c classes inferred by the model and the ground truth also conditioned by

the presence of an object Oi. The error is formally is written in Equation 4.6, where pi

and p̂i contains, respectively, the probabilities of the predicted and ground truth objects

centered in the i-th grid cell.

εq(b, b̂) =
1

cg2

g2∑
i=1

Oi

[
c∑

j=1

(pij − p̂ij)
2

]
(4.6)

The constants λc = 5 and λo = 0.5 are used to stabilize the gradients during training

and penalize more the localization error than the classification error. For both models,
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the parameter initialization follows the pre-trained parameters based on the ImageNet

1000-class dataset (Russakovsky et al., 2015). We trained both models for 6,500 epochs

with a starting learning rate of 10−3. We use a weight decay of 5 · 10−4 and momentum of

9 ·10−1. We also use data augmentation during training with random crops, color shifting,

angle rotations, and etc.

4.4 Final considerations

In this chapter we presented the proposed model. Firstly, in Section 4.1, we described the

architecture of the model and its structure, discussing the choices made. In the Section

4.2, we present the dataset used in the work, highlighting the challenges found and the

preprocessing employed. Lastly, in the Section 4.3, we detailed the training process and

methodology used in the model.

Next, in Chapter 5, we will present the accuracy and inference time results of the

proposed backbones in the distinct environments.
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5

Results and discussion

In this charpter, we present the results of the development and tests of the work. In Section

5.1 we present the accuracy results of the models equipped with the backbones α and ω

previously proposed. Next, in Section 5.2 we summarize the inference latency results. In

Section 5.3 we compare the proposed YOLO method with alternative models using the

SSD method. In the last section, Section 5.4, will describe the final considerations abou

the chapter.

5.1 Accuracy results

The average precision of the models equipped with Backbone α and Backbone ω are

detailed on Table - 5.1. Backbone α’s model achieves an mean average precision of

93.20% for a threshold value t = 0.50. The Precision×Recall Curves for each category are

plotted in Figure - 5.1. With an increase in t = 0.75, the model with Backbone α achieves

an 91.64% mAP and the Precision×Recall Curves are plotted on Figure - 5.2. Next, the

model with Backbone ω achieves an mean average precision of 93.20% for a threshold

value t = 0.50. The Precision×Recall Curves for each category are plotted in Figure -

5.3. With an increase in t = 0.75, the model with Backbone ω achieves an 91.64% mAP

and the Precision×Recall Curves are plotted on Figure - 5.4.

In the results, we can see that, for both models, the Minivan and Microbus categories

are the least accurate. These vehicle categories also have a notable fall of precision in low

values of recall; firstly falling before a recall reaches 0.2. This behavior does not happen

in the other vehicle categories and suggests that the model struggles to generalize the
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Table 5.1: Average Precision of the YOLO models equipped with α and ω

× t Bus Microbus Minivan SUV Sedan Truck Mean

α
0.50 99.31% 90.08% 85.46% 92.21% 97.77% 94.36% 93.20%

0.75 96.94% 90.08% 83.96% 91.81% 97.77% 89.29% 91.64%

ω
0.50 95.44% 81.19% 86.82% 93.64% 95.72% 94.64% 91.24%

0.75 95.44% 80.65% 83.77% 93.61% 95.72% 91.39% 90.10%

parameters to learn distinctive features for the Minivan and Microbus categories. We

conjecture this particular poor precision is the association between an inherent difficulty

and the lack of samples for the Minivan and Microbus categories – represented in only

4.73% and 8.78% of the samples of the dataset, respectively – and can be improved with

the supply of new samples.

Otherwise, the Sedan and Bus vehicle categories have good precision. They all have

high AP values (>95%) and PR-Curves that remains high even when t increases. This

nature suggests that the model can generalize well the parameters to learn distinctive

features. The Sedan is the most common category in the dataset, counting with 58.89%

of the samples. This abundance of samples can justify the particular good results. The

Bus category does not have plenty of samples like the Sedan, but its features are very

particular and we conjecture this helps the model’s learning.

In addition, the Truck and SUV vehicle categories have a regular performance, with

good AP (>90%) values but with quickly falling PR-Curves. This behavior indicates that

the model does not excel when generalizing its parameters to learn the features from these

categories. We conjecture that these categories share multiple features with others, like

the Sedan and Bus, and can induce the model into confusion. Similar demeanour is noted

in the works of Dong et al. (2015) and Roecker et al. (2018).

As expected, the model equipped with backbone α performs better than ω, but

interesting characteristics come up when compared. Both models struggles to detect

the Minivan and Microbus categories and have the best accuracy results for the Bus and

Sedan categories. But, for the Truck and SUV categories, the shallow model with ω

actually performs slightly better than the deep model α. We speculate that the deeper

model cannot adjust its parameters to learn distinctly features like the shallow model,

and the larger number of layers actually hurts the training by increasing the instability

of the gradient.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Precision×Recall Curves of the model equipped with the backbone α and
with t = 0.5 for each vehicle category: Bus (a), Microbus (b), Minivan (c),
SUV (d), Sedan (e) and Truck (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Precision×Recall Curves of the model equipped with the backbone α and
with t = 0.75 for each vehicle category: Bus (a), Microbus (b), Minivan (c),
SUV (d), Sedan (e) and Truck (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Precision×Recall Curves of the model equipped with the backbone ω and
with t = 0.5 for each vehicle category: Bus (a), Microbus (b), Minivan (c),
SUV (d), Sedan (e) and Truck (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Precision×Recall Curves of the model equipped with the backbone ω and
with t = 0.75 for each vehicle category: Bus (a), Microbus (b), Minivan (c),
SUV (d), Sedan (e) and Truck (f).
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5.2 Inference latency results

To evaluates the inference time, we performed the tests in three distinct environments

to analyze the behavior of the models. The Test Environment I is desktop computer

equipped with an Intel CPU with 3.50GHz, 8 GB of RAM and a integrated GPU Intel

HD Graphics 630. The Test Environment II is also a desktop computer equipped with

the same CPU and RAM as Environment I but has an dedicated GPU NVIDIA GeForce

GTX 1050-Ti with 4GB RAM and 768 CUDA cores. The Test Environment III is a single

board computer ODROID-XU4 equipped with ARM-based processor Exynos with 2 GHz,

2 GB of RAM and an integrated GPU Mali-T628. The features of each environment is

summarized on Table - 5.2

Table 5.2: Test Environments for Inference Latency.

Environment CPU RAM GPU

I Core i5-7600 3.50GHz 8 GB Intel HD Graphics 630

II Core i5-7600 3.50GHz 8 GB NVIDIA GeForce GTX 1050-Ti

III ARM Exynos 2GHz 2 GB Mali-T628 MP6

The tests where made with no other application except the core functionality of the

operating system of the environment. Eight test rounds where performed for each model

in each environment. The results of inference latency for the models equipped with

backbones α and ω are presented on Table - 5.3.

Table 5.3: Inference latency of the YOLO models equipped with α and ω

Backbone Environment Average (ms) Std. Deviation (ms) Median (ms)

α

I 315.152 18.672 310.100

II 69.426 5.866 69.198

III 874.365 51.874 845.125

ω

I 72.846 6.874 71.478

II 22.972 1.984 22.877

III 121.365 23.458 114.189

As expected, the model equipped with ω performs significantly better than the model

equipped with α regarding the inference latency. This difference increases the less

computational resources are available to the model. The difference between both models

on Environment III is far greater than the difference between both models in Environment
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II. When comparing the accuracy with the inference latency, it can be seen that the models

have a fair trade-off between the two metrics. There is no prohibitively drop of precision

in the shallow model and the inference latency does not explodes in the deeper model.

Although the average precision drops significantly in the shallow model for some

categories – like the Microbus and Minivan – the same metric stays high even with the

threshold value is elevated for other categories – like the Bus and Car. This reinforce our

assumption that major cause for the poor results of some categories is the lack of samples

in the dataset.

In general terms, the YOLO method proved very efficient and notably adaptable

for task of vehicle detection in digital images. These technical features of the method

are desired and can be employed in a wide range of intelligent traffic systems; from

embedded and reliable deployed in constrained and economical environments to dedicated

and rigorous deployed in powerful and rich environments.

5.3 Comparison against alternative methods

To better compare the backbones proposed, we trained two more models with the same

characteristics: an 512×512 input trained in the same dataset. We have opted to use

the Single-Shot Detector (SSD) method Liu et al. (2016) in both models because it is in

the same object detection method category as YOLO: methods that does not employ a

region-proposal algorithm. Both models were equipped with the same backbones α and

ω. The results for accuracy are summarized on Table - 5.4.

Table 5.4: Average Precision of the SSD models equipped with α and ω

× t Bus Microbus Minivan SUV Sedan Truck Mean

α
0.50 99.55% 91.47% 86.074% 93.23% 97.87% 93.69% 93.65%

0.75 95.37% 89.35% 83.69% 93.96% 97.97% 90.69% 91.84%

ω
0.50 97.86% 82.72% 87.50% 94.39% 94.57% 94.91% 91.99%

0.75 96.65% 81.35% 84.84% 93.07% 96.50% 91.29% 90.62%

As can be seen, the SSD methods performs slightly better than the model YOLO

regarding the accuracy. The same behaviors present in the YOLO method are present in

the SSD methods regardless the backbone employed: the more accurate vehicle category

is Sedan followed by Bus, and the least accurate are the Microbus and Minivan.

We also measured the inference time for the models using SSD using the same

methodology described in Section 5.2. The results are summarized on Table - 5.5.
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Table 5.5: Inference latency of the SSD models equipped with α and ω

Backbone Environment Average (ms) Std. Deviation (ms) Median (ms)

α

I 408.394 22.974 395.540

II 77.662 8.426 74.150

III 1028.619 74.223 1000.003

ω

I 86.236 8.440 84.741

II 28.471 3.005 27.023

III 152.563 33.741 150.100

As can be seen, the SSD models performs considerably worse than the YOLO models.

The SSD models have a high number of floating-points operations than the YOLO

methods and this assist the inference time to increase. The same behavior regarding

the inference time of the YOLO and SSD methods are reported by Redmon and Farhadi

(2018).

To compare the models in a cohesive measure, we defined the ratio between the mAP

accuracy and the inference time latency as the yielding of the model. This metric offers a

notion of the relation the “value” (accuracy) by the “cost” (inference time). Higher values

are desired, as the accuracy is increased when compared to the inference time. Table -

5.6 and Table - 5.7 summarizes the yielding of each method using and both t defined for

each environment for the models equipped with backbones α and ω.

Table 5.6: The yielding of SSD and YOLO models equipped with α

t Method I II III

0.50
YOLO 0.296 1.342 0.107

SSD 0.244 1.282 0.097

0.75
YOLO 0.291 1.320 0.105

SSD 0.234 1.228 0.093

Table 5.7: The yielding of SSD and YOLO models equipped with ω

Method t I II III

YOLO
0.50 0.290 1.314 0.104

0.75 0.286 1.298 0.103

SSD
0.50 0.225 1.184 0.089

0.75 0.222 1.167 0.088
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As seen, the YOLO methods has a better yielding than the SSD methods for all the

cases described in this work. The experimental results endorses our conjecture that the

YOLO is descriptive and adaptable enough to be employed to detect vehicles present in

digital images on the in a wide range of environments.

5.4 Final considerations

In this charpter, we presented the results of the development and tests of the work. In

Section 5.1 we presented the accuracy results of the models equipped with the backbones α

and ω previously proposed in Chapter 4. Next, in Section 5.2 we summarize the inference

latency results. In Section 5.3 we performed a comparison between the proposed YOLO

method and an alternative using the SDD method.

In Chapter 6, we will present the final considerations of the work, outlining its

contributions and limitations. We also will describe future works and expectations about

the impact of the work in the research community.
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6

Final considerations and future works

This work presented a Master’s Degree dissertation that proposes two models to detect,

bound and classify vehicles presented in digital images into categories employing con-

volutional networks. It also presented theoretical foundations for the object detection

research field and convolutional networks, some related works, the proposal of the models

including the structure, the dataset and the training and test methodology; and lastly,

the test results with some discussion.

As future works, we intend to improve the model and compare it with other well-know

models using transfer learning, considering the results of accuracy and inference running

time. The main limitations of the research concentrate in the lack of hardware resources

for the implementation and evaluation of the model since deep convolutional networks

need a powerful hardware resources such as GPUs or TPUs to perform training in

a non-prohibitively time. Another limitation is the lack of standard datasets in the

image-based problem of vehicle type classification which difficult the comparison between

models of another works.

As demonstrated by the experimental results, we conjecture that a convolutional

network can optimize its parameters to learn discriminative and reliable features for

the vehicle type classification even images with challenging conditions like the samples

presented in the dataset used to evaluate this work. In addition, the heavy usage of

data-augmentation, the negative samples and other regularization techniques prevent the

model to overfit. As a conjecture, we demonstrated that the accuracy of the models can be

impacted by the quality of the dataset and a uniform distribution between the categories

is desired to perform an fair comparison between them.
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The object detection method YOLO is not the state-of-the-art regarding the accuracy,

but proved to have a good trade-off with the inference latency and to be reasonably

adaptable. Shallow models have lower average precision and shorter inference latency. In

opposition, deeper models can have more accurate results accompanied by longer inference

latency. This characteristic allows its usability to reinforce embedded intelligent traffic

system, where the latency is usually a bottleneck and demand near real-time decisions; but

also can be used to enhance expensive and precise analysis systems, where top accuracy

is required to improve critical decisions.

6.1 Publications

The publications related to this work are chronologically listed bellow. The items marked

with [?] are publications directly resulted of the work in the present document. Although

some publications are not directly related to the present work, similar theoretical and

analysis concepts were employed that contributed to the development of this work.

• [?] ROECKER, MAX N.; COSTA, YANDRE M.G.; ALMEIDA, JOAO L.R.; MAT-

SUSHITA, GUSTAVO H. G.. Automatic Vehicle type Classification with Convo-

lutional Neural Networks. In: 2018 25th International Conference on Systems, Signals

and Image Processing (IWSSIP), 2018, Maribor. 2018 25th International Conference on

Systems, Signals and Image Processing (IWSSIP), 2018. p. 1-5.

• [?] ROECKER, MAX N.; COSTA, YANDRE M. G.; BRITTO, ALCEU S.; OLIVEIRA,

LUIZ E. S.; BERTOLINI, DIEGO. Vehicle Detection and Classification in Traffic

Images Using ConvNets With Constrained Resources. In: 2019 International

Conference on Systems, Signals and Image Processing (IWSSIP), 2019, Osijek. 2019

International Conference on Systems, Signals and Image Processing (IWSSIP), 2019. p.

83-88.

• ALMEIDA, JOÃO; FLORES, FRANKLIN; ROECKER, MAX; BRAGA, MARCO; COSTA,

YANDRE. An Indoor Sign Dataset (ISD): An Overview and Baseline Evalua-

tion. In: 14th International Conference on Computer Vision Theory and Applications,

2019, Prague. Proceedings of the 14th International Joint Conference on Computer Vision,

Imaging and Computer Graphics Theory and Applications, 2019. v. 4. p. 505-512.
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