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Avaliação da atividade antifúngica de produtos naturais contra células 

planctônicas e biofilme de Candida spp. 
 

RESUMO 

As infecções por Candida têm aumentado nos últimos anos, sendo uma importante causa de 

morbidade e mortalidade em pacientes hospitalizados. O gênero Candida apresenta 

susceptibilidade reduzida aos medicamentos antifúngicos comumente utilizados. Portanto, há 

necessidade de novas estratégias para combater infecções fúngicas e os produtos naturais 

estão encorajando o desenvolvimento de tratamentos alternativos. O objetivo deste estudo foi 

avaliar o efeito do extrato de própolis, Hypericum androsaemum e Stevia reubaudiana contra 

células planctônicas e biofilmes de espécies de Candida. Os valores de MIC, as curvas de 

morte, a lesão da membrana celular e a inibição da forma de filamentação foram 

determinados em células planctônicas de Candida. O efeito deste extrato sobre os biofilmes 

de Candida foi avaliado através da quantificação do número de células cultiváveis. Para 

extratos de própolis, os valores de CIM, variando de 220 a 880 µg/mL, demonstraram maior 

eficiência em C. albicans e C. parapsilosis do que nas células de C. tropicalis. Além disso, a 

própolis foi capaz de prevenir a formação de biofilmes das espécies de Candida e erradicar 

seus biofilmes maduros, juntamente com uma redução significativa na filamentação de C. 

tropicalis e C. albicans. Para o extracto de H.  androsaemum, os efeitos anti-Candida 

variaram entre diferentes cepas da mesma espécie, as espécies C. glabrata e C. tropicalis 

apresentaram maior sensibilidade com efeito diretamente relacionado com as concentrações 

de extrato testadas. Também foi observado um potencial significativo de formação de 

biofilmes, nomeadamente para C. glabrata e C. tropicalis (redução de biofilme > 90%). Para 

o extracto de Stevia reubaudiana os valores de MIC obtidos para cepas de Candida, variando 

de 3,12 a 25 mg/mL, as cepas de C. albicans apresentaram o maior valor de MIC. Além disso, 

a capacidade de formar biofilmes de C. tropicalis e C. glabrata foram atenuados na presença 

de extrato de Stevia, com uma redução de 3 logs para C. glabrata ATCC 2001. Este estudo 

mostrou que esses extratos são potentes agentes antifúngicos com efeito sobre células e 

biofilmes de Candida spp. É importante ressaltar que esses efeitos não foram apenas 

observados contra C. albicans, mas em outras espécies NCAC. Este é um dado muito 

promissor, considerando que as espécies NCAC mostraram ser altamente resistentes aos 

agentes antifúngicos convencionais. Tais propriedades desses extratos como inibidor dos 

fatores de virulência de Candida representam caminhos alternativos e inovadores de terapia 



 

	

para agentes patogênicos que são resistentes a agentes antimicrobianos clássicos. 

Palavras-Chave: Candidíase. Candida spp. Propolis. Stevia reubaudiana. Hypericum 

androsaemum. 

  



 

	

Evaluation of antifungal activity of natural products against Candida species 

planktonic cells and biofilm 
ABSTRACT 

Candida infections have been increasing in recent years, being even an important cause of 

morbidity and mortality in hospitalized patients. The genus Candida has been demonstrating a 

reduced susceptibility to the commonly used antifungal drugs. Therefore, there is a need for 

new strategies to combat fungal infections and natural products are encouraging the 

development of alternative treatments. The aim of this study was evaluate the effect of 

propolis, Hypericum androsaemum and Stevia reubaudiana extract against Candida species 

planktonic cells and its counterpart’s biofilms. The MIC values, time-kill curves, cell 

membrane lesion and filamentation form inhibition were determined in Candida planktonic 

cells. The effect of these extract on Candida biofilms was assessed through quantification of 

number of cultivable cells. For propolis extract the MIC values, ranging from 220 to 880 

µg/ml, demonstrated higher efficiency on C. albicans and C. parapsilosis than on C. 

tropicalis cells. In addition, propolis was able to prevent Candida species biofilm’s formation 

and eradicate their mature biofilms, coupled with a significant reduction on C. tropicalis and 

C. albicans filamentation. For Hypericum androsaemum extract the anti-Candida effects 

varied among different strains of the same species, C. glabrata and C. tropicalis being the 

most sensible species with an effect directly related with the extract concentrations tested. A 

significant anti-biofilm formation potential was also observed, namely for C. glabrata and C. 

tropicalis (biofilm reduction >90%). For Stevia reubaudiana extract MIC values obtained for 

Candida strains, ranging from 3.12 to ³ 25 mg/mL, with Candida albicans strains presented 

the highest MIC value. Moreover, Candida tropicalis and Candida glabrata ability to form 

biofilms was attenuate in the presence of Stevia extract, with a reduction of 3 orders of 

magnitude in the case of C. glabrata ATCC 2001 strain. This study showed that these extracts 

are potent antifungal agents with effect on Candida planktonic cells and biofilms. It is 

important to highlight, that these effects were not only observed against C. albicans but on 

other NCAC species. This is a very promising data, considering that NCAC species has 

shown to be highly resistant to the conventional antifungal agents. Such properties of this 

extracts as inhibitor of Candida virulence factors represent an alternative and innovative 

pathways of therapy for pathogens that are resistant to classical antimicrobial agents. 

Keywords: Candidiasis. Candida spp. Propolis. Stevia reubaudiana. Hypericum 

androsaemum. 
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CHAPTER I 
 

1. CANDIDIASIS 

Fungal infections are common and affect the majority of the population at some stages 

in life. Yeasts of the genus Candida are the most frequent agents and more important due to 

the high frequency of colonization and infection in humans. The incidence of Candida 

infections has been increasing in recent years due to the widespread use of broad- spectrum 

antifungal agents and the growing numbers of immunocompromised individuals [1–3] 

Candida species are opportunistic human pathogen, and are common colonizers the 

epithelial and mucosal surfaces, as oral cavity, gastrointestinal and genitourinary tract. 

Candida albicans colonizes 30–70% of healthy individuals [4]. However, under certain 

circunstances, Candida can show a wide spectrum of clinical presentations. This scenario 

covers a wide range of diseases from more superficial and milder clinical manifestations such 

as, oropharyngeal candidiasis or vulvovaginal candidiasis to serious infections including 

bloodstream infections and disseminated candidiasis, whereas the description of invasive 

candidiasis encompasses severe diseases such as candidemia, endocarditis, disseminated 

infections, central nervous system infections, endophthalmitis and osteomyelitis [5,6]. 

Any factor that weakens either the host or the competing microbial flora enables the 

fungus to overgrow and cause disease. A key variable that seems to transform a host 

colonized with Candida into a sick host is an alteration in one or more aspects of the host 

defense apparatus, including the normal bacterial flora, anatomical barriers, and immune 

system [7]. 

Mucosal candidiasis is extremely common and vastly more common than invasive, 

systemic candidiasis, although the latter receives far more attention due to the accompanying 

mortality. Nevertheless, mucosal candidiasis is responsible for considerable morbidity in 

hospitalized patients, often immunocompromised hosts but also in ambulatory, otherwise 

entirely healthy subjects [8]. It is a significant infectious disease problem and are often 

difficult to eradicate because of the high frequency of acquired resistance to conventional 

antifungal agents [9]. 

Oral candidiasis is a clinical fungal infection that is the most common opportunistic 

infection affecting the human oral cavity. The occurrence of oral candidiasis has been related 
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to several predisposing factors related to the host, including age and female gender, the use of 

dental prostheses, reduced salivary function, smoking habits, immunosuppressive diseases, 

and metabolic disorders, such as diabetes mellitus [10–13]. C albicans, the most prevalent 

yeast within the oral cavity, is a fundamental etiologic factor linked to the occurrence of oral 

candidiasis [14]. Nevertheless, the epidemiology of Candida infections has changed with the 

emergence of non-albicans Candida species, which have been increasingly described both in 

compromised and non-compromised hosts [14–17]. 

Vulvovaginal candidiasis is a common fungal infection experienced by up to 75% of 

women in their lifetime [18–20]. It is more likely to occur in an oestrogenised environment 

and therefore often affects pregnant women [20]. Recurrent vulvovaginal candidiasis 

affecting between 5–8% of women of reproductive age [19,20] but can greatly affect the 

quality of life of women, causing symptoms such as itching and soreness of the vulva, 

dyspareunia, dysuria and the classic ‘cottage cheese-like’ discharge. It is most commonly 

caused by C. albicans, but other species such as Candida glabrata, Candida tropicalis and 

Candida parapsilosis although less frequent are often cause recurrent vulvovaginal 

candidiasis [21]. 

Candidemia and invasive candidiasis, which is reported to be between the fourth and 

seventh most frequent causes of bloodstream infections in USA and Europe, and it is 

associated with high crude mortality rate, prolonged hospital stays, and high healthcare costs 

[22]. Five species of Candida (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis and 

Candida krusei) account for more than 90% of all diagnosed cases, but their relative 

frequency varies depending on the population involved, geographical region, previous anti-

fungal exposure and patient age [22]. 

For disseminated candidal infections, the most common clinical risk factors involve 

disruption of normal ecological and anatomical barriers which separate external 

compartments colonized by Candida from internal, normally sterile blood and tissue [23,24]. 

Such risk factors include the presence of central venous catheters; receipt of broad-spectrum 

antibacterials which facilitate fungal over-growth; gastrointestinal surgery which disrupts 

gastrointestinal anatomical barriers; and parenteral nutrition. Hence, the primary opportunity 

for Candida to systemically invade a mammalian host involves the elimination of bacterial 

competitors, allowing fungal overgrowth, and breakdown of anatomical barriers at surfaces 

normally colonized by Candida, which results in fungal penetration to deeper tissues. It is 
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also possible that subtle immune defects that reduce phagocyte antifungal activity may enable 

Candida to invade and proliferate in the host [25]. 

2.  EPIDEMIOLOGY OF Candida SPECIES 

Current data show that there are more than 150 species of Candida. However only 15 

of these species are isolated from patients as infectious agents. These are C. albicans, C. 

glabrata, C. tropicalis, C. parapsilosis, C. krusei, C. guilliermondii, C. lusitaniae, C. 

dubliniensis, C. pelliculosa, C. kefyr, C. lipolytica, C. famata, C. inconspicua, C. rugosa, and 

C. norvegensis. The epidemiology of Candida infections is not constant, and the incidence 

rates, species distribution changes according to the site of infection and the geographic region. 

In the last 20–30 years, it has been determined that in 95% of infections, the pathogens 

involved are C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei [26–28]. 

Among the Candida species, C. albicans has been designated as the most widespread 

involved opportunistic pathogenic yeast [29]. However, other non-C. albicans Candida 

(NCAC) species, such as C. glabrata, C. tropicalis and C. parapsilosis, have been already 

and increasingly isolated mainly due to the indiscriminate prescription of antifungal agents 

[30–32]. This emergence is often associated to the advent of new medical procedures to treat 

cancer, the increase in invasive medical procedures, the incidence of HIV, and the widespread 

use of broad spectrum antibiotics [33–35]. 

The isolation rates of species other than C. albicans vary according to the features 

(age, underlying diseases, hospitalization ward, etc) of patient population. To illustrate, C. 

parapsilosis causes 30% of the candidemia cases among newborns whereas the rate is 10%–

15% among adults. Since C. parapsilosis colonizes the skin, it is a common pathogen in 

catheter-related infections and may cause outbreaks [29,36,37]. C. glabrata is a more 

common infectious agent among older and neoplastic patients, previously exposed to azole 

and echinocandin. The infection with this species is associated with a high mortality rate [38]. 

C. tropicalis, is more commonly seen among leukemia and neutropenic patients and is often 

associated with nosocomial urinary tract infections [39–41]. C. krusei, on the other hand, is 

more common among hematopoietic stem cell recipients or neutropenic leukemia patients 

receiving fluconazole prophylaxis and this specie has been recognized as a potentially 

multidrug-resistant fungal pathogen [28,42,43]. 

 

3.  PATHOGENESIS OF Candida SPECIES 

Until a few decades ago, it was believed that Candida microorganisms passively 
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participated in the establishment of an opportunistic fungal infection, caused only by an 

organic weakness or an immunocompromised host. Today, there is consensus that these 

yeasts actively participate in the pathogenesis of the disease process, using mechanisms of 

aggression called virulence factors [44]. Thus, the pathogenicity of Candida species is 

mediated by a number of virulence factors that include morphological transition between 

yeast and hyphal forms, the expression of adhesins and invasins on the cell surface, 

thigmotropism, the formation of biofilms, phenotypic switching and the secretion of 

hydrolytic enzymes. Additionally, fitness attributes include rapid adaptation to fluctuation in 

environmental pH, metabolic flexibility, powerful nutrient acquisition systems and robust 

stress response machineries [3,5,45]. 

 

3.1  DIMORPHISM 

Candida species can grow in three cellular morphologies, depending on environmental 

conditions, nutrients, and temperature: yeast, pseudohyphae and hyphae. Many Candida spp. 

are capable of forming yeast and pseudohyphae, but only C. albicans and the genetically 

closely related C. tropicalis and C. dubliniensis can form hyphae as well, whereby hyphae 

differ from pseudohyphae because hyphae form long tube-like filaments, with parallel sides 

and no obvious constrictions between cells. In C. albicans, hyphal formation is known to 

promote several virulence mechanisms [46]. However, both yeast and filamentous forms of C. 

albicans can be observed in infected tissues during infection [47,48]. 

In general, yeast to hyphal morphogenesis is a key mechanism for C. albicans to 

evade killing by host phagocytic cells [49–51]. After ingestion of the C. albicans yeast form 

by macrophages, some C. albicans are killed; however, most of them survive and form 

hyphae in response to the phagosome environment. Phagocytosis thus induces a switch in 

morphology from yeast to hyphae, which elongates and eventually punctures the macrophage 

membrane. C. albicans in its hyphal form produces a number of factors that result in lysis and 

killing of macrophages, thereby allowing C. albicans to escape [52].  

 

3.2.  ADHESINS, INVASION AND BIOFILMS 

  

Candida species are able to produce and secrete several hydrolytic enzymes, including 

proteases, phospholipases and haemolysins. The activity of these enzymes has been 

associated with candidal adhesion, cell damage and invasion of host tissue. Fungi such as C. 

albicans produce secreted aspartyl proteinases (SAPs), which play a role in supplying 
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nutrients for the Candida cells through protein degradation, facilitating penetration and 

invasion into host tissues in addition to evading immune responses [56,57]. 

The adherence of the organism to host and/or medical-device surfaces, often leading 

to the formation of biofilms [53]. Thus, adhesion is an extremely important step in the 

infection process, and the extent of adhesion is dependent on microbial, host and abiotic 

surface properties, such as cell-surface hydrophobicity and cell-wall composition [54,55]. An 

important factor that has correlated with the adhesion ability of Candida species is the 

presence of specific cell-wall proteins, often referred to as adhesins. 

A further important virulence factor of Candida is its capacity to form biofilms on 

abiotic or biotic surfaces. Catheters, dentures (abiotic) and mucosal cell surfaces (biotic) are 

the most common substrates [58]. Biofilms form in a sequential process including adherence 

of yeast cells to the substrate, proliferation of these yeast cells, accumulation of extracellular 

matrix material and, finally, dispersion of yeast cells from the biofilm complex [59]. 

Preformed Candida biofilms have a mixture of morphological forms and consist of a 

dense network of yeasts, hyphae, and pseudohyphae in a matrix of polysaccharides, 

carbohydrate, protein, and unknown components. The formation and structure of Candida 

biofilms is influenced by the nature of the contact surface, environmental factors, Candida 

morphogenesis, and the Candida species involved [53]. 

Biofilms are difficult to eradicate with conventional therapy and thus represent a 

permanent focus of infection. Removal of the infected device is almost always necessary 

because of the drug resistance of Candida biofilms [60,61]. Candida in biofilms form was 

found to be 1000-fold less susceptible to diverse antifungals than planktonic ones [38,62] and 

are highly resistant to host immune factors. Factors such as upregulation of efflux pumps, 

upregulation of oxidative stress, changes in membrane sterol composition, and increased cell 

density might contribute to the resistance of biofilm to antifungal drug treatment [58]. 

Suggested mechanisms of biofilm resistance include restricted penetration of drugs through 

the matrix, slow growth of organisms in biofilms accompanied by changes in cell surface 

composition affecting their susceptibility to drugs, and unique biofilm-associated patterns of 

gene expression [63,64]. 

Furthermore, direct application of antifungal drugs is not yet acceptable in clinic. Side 

effects due to toxicity of the drugs and emergence of drug resistant strains have put 

limitations on the effective use of these drugs. This problem has led to the search for 

alternative antibiofilm agents to be used in the treatment of Candida infections [56]. 
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4.  THERAPEUTICS OPTIONS 

Only few classes of antifungal agents are currently available to treat mucosal or 

systemic infections with Candida. The limited arsenal of antifungal drugs includes mainly 

polyenes, azoles and echinocandins [65–67]. 

Azoles (e.g., fluconazole, voriconazole and posaconazole) possess a fungistatic effect, 

blocking ergosterol synthesis, targeting the enzyme lanosterol 14α-demethylase (related to the 

ERG11 gene) and leading to an accumulation of toxic sterol pathway intermediates. Polyenes 

(e.g., amphotericin B and nystatin) are fungicidal, intercalating into membranes containing 

ergosterol, creating pores that destroy the proton gradient, which result in the outflow of the 

cytoplasm and other cell contents. Echinocandins (e.g., caspofungin, micafungin and 

anidulafungin) are also a fungicidal, targeting the synthesis of 1,3-β-glucan, a component of 

the Candida species cell wall [68,69]. 

The antifungal agents are the drug of choice depending on the infecting species and 

the clinical setting. The azole fluconazole is currently considered the first-line of drugs that is 

effective against most Candida species [70,71]. However, certain Candida species, such as C. 

glabrata, C.  albicans, C. tropicalis, and C. parapsilosis were found to have different degrees 

of susceptibility and were reported to have fluconazole resistance [34]. 

C. albicans isolates are the most susceptible to all of the antifungal agents. C. 

parapsilosis tends to have higher MICs for all of the echinocandin agents. C. krusei isolates 

have the highest fluconazole and flucytosine MICs of any of the species. Among the non- 

albicans Candida species, C. tropicalis and C. parapsilosis are both generally susceptible to 

azoles; however, C. tropicalis is less susceptible to fluconazole than is C. albicans. C. 

glabrata is intrinsically more resistant to antifungal agents, particularly to fluconazole. C. 

krusei is intrinsically resistant to fluconazole, and infections caused by this species are 

strongly associated with prior fluconazole prophylaxis and neutropenia. Candida lusitaniae, 

which accounts for 1–2% of all candidemias, is susceptible to azoles but has a higher intrinsic 

resistance to amphotericin B [72]. 

The current therapy with antifungals has serious drawbacks, in particular due to toxic 

effects to human cells and adverse effects [73,74]. As the drugs used to treat candidiasis are 

not always specific and properly prescribed (targeting the causative agent of infection), there 

has been a significant increase in resistance of Candida spp. to traditional antifungal drugs. 

The increasing microbial resistance rates may also be a result of long-term drug exposure or 

selection of strains with intrinsic resistance mechanisms [75–79]. Therefore, the development 

of novel strategies to minimize the toxic effects of current antifungals and improve their 
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effectiveness, has been strongly encouraged. The substantial attention has focused on natural 

products with antifungal properties, which has stimulated the search for therapeutic 

alternatives [66,80]. Therapies commonly called alternative, complementary and homemade 

have been used for centuries, and studies have intensively investigated plant species with 

medicinal properties to assess the feasibility, sustainability and affordability of the use of 

natural drugs [81,82].  

 

5.  ALTERNATIVE ANTIFUNGAL THERAPY 

Opportunistic infections caused by Candida spp. have still been considered a recurrent 

health issue with high burden worldwide [83,84]. Novel antifungals are in high demand due to 

the challenges associated with resistant, persistent and systemic fungal infections. Thus, novel 

therapeutic approaches are much needed to treat Candida infections, including the use of 

naturally-occurring agents. 

Natural products have continued to be a rich source of new drugs with clinically 

significant biological targets. Over the past 34 years, 49% of FDA-approved 

chemotherapeutic drugs were either natural products or directly derived therefrom [85]. There 

is a great interest of the pharmaceutical industry in the discovery of new molecules of natural 

origin or even their combination with existing drugs, in order to improve efficacy, potency, 

safety, tolerability, and decrease production costs, side effects and selection of resistant 

strains [86]. A number of studies in the literature have established the value of combined 

antifungal therapy against resistant strains, in particular standard drugs with naturally-

occurring agents [87,88]. 

Natural products are promising therapeutic alternatives because they tend to display 

much smaller and lower intensity adverse reactions compared to allopathic drugs [89]. 

Natural compounds as sources for anti-Candida therapeutics from botanical sources have 

gained attention in the past decade (2004-2015) mainly because they display structural 

diversity and uniqueness in functional modes of action, which renders them as attractive 

candidates to counteract the emergence of Candida drug resistances [90,91]. 

 

5.1  PROPOLIS  

Propolis (bee glue), is the resinous material that can be seen in different colors, is 

mostly collected by honey bees (Apis mellifera L.) from bud and exudates of the plants, 

mixed with bee enzymes, pollen and wax. Bees carry propolis to the bee hive where they use 

this dark adhesive substance to seal the walls of their hive to fortify the skeletons and 
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structures of combs, and also to mummify successful intruders’ cadavers which bees have 

killed inside but cannot convey out of their hive to prevent their decomposition [92,93]. 

Propolis enables bees to protect their colony against hive invaders by minimizing the hive 

entrance size. Additionally, bees can preserve their society against several diseases, such as 

molds and bacterial infections, through the antimicrobial and antifungal properties of propolis 

[92]. 

The chemical groups of compounds identified in the propolis sample include 

flavonoids, aliphatic acids and esters, aromatic acids and esters, chalcones, terpenes, lignans, 

stilbenes, prenylated stilbenes, prenylated benzophenones, benzofuran, and sugarsm [94–96]. 

Propolis composition is completely variable, creating a problem for medical use and 

standardization [94,97]. Bankova (2005b) [98] has reported that the distinct chemistry of 

propolis from different origins could lead to different biological activities; however, different 

samples may display the same type of activity. A universal standardization of propolis would 

be difficult and complex, so that a detailed investigation of propolis composition and its 

botanical origin is imperative, because the composition of the plant source determines 

propolis composition [93]. As research progressed, more than 300 components have been 

identified in propolis [97].  

Despite differences in propolis composition, studies at different times and in different 

regions have demonstrated that propolis has appreciable antibacterial [99,100], antifungal, 

and antiviral actions [101–103], as well as anti-inflammatory [104], anti-tumoral [105], 

antiulcerogenic [106,107], antidepressant, anxiolytic, and antioxidant properties [108–110], 

ascribed to propolis’ flavonoid content. 

Researches have demonstrated the antifungal activity of propolis against fungi such as 

Candida spp. [111–114]. Propolis also showed antifungal activity against dermatophytes 

[113,115], C. neoformans [116] and onychomycosis [115] and exhibited a synergistic effect 

with macrophages against Paracoccidioides brasiliensis [117]. Further, propolis has 

advantages such as a low cost and lack of toxicity [115]. 

 

5. 2 Hypericum androsaemum 

Hypericum species (Hypericaceae family; nearly about 450 species) are plants with 

bioactive properties, being Hypericum perforatum L. the most widely known and with 

attributed anti-depressive, anti-inflammatory, antitumor, antimicrobial, antioxidant and 

antiviral benefits [118–120]. However, based on recent findings, other Hypericum species 

have also revealed very interesting functional properties. 
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The Hypericum androsaemum L. (Guttiferae) is a medicinal plant growing in West 

Europe, in damp or shady places namely, in the northern region of Portugal, where it is 

widely used as a medicinal herb. Infusion of H. androsaemum leaves has been used in 

traditional medicine as a cholagogue, hepatoprotector, diuretic and in kidney failure 

[121,122]. Hypericins, the photosensitizing naphthodianthrones characteristic of many of the 

species of the genus Hypericum, are known to be absent from H. androsaemum [123].  

Phenolic compounds, such as flavonoids – mainly quercetin based – and two 

caffeoylquinic acids, [124] and phenolic acids, are known to be present in this species 

[125,126] and may contribute to its pharmacological effects. Xanthones can be present, but 

usually they occur in minor amounts in material grown in nature [124,126]. Recently, the 

antimicrobial, antitumor potential and the antioxidant activity of Hypericum androsaemum 

infusion was reported [118,119,127–130].  

          

5.3  Stevia rebaudiana 

Stevia rebaudiana Bertoni, a sweet plant native to South America [131], belonging to 

the Compositae (Asteraceae) family with significant economic value due to steviol glycoside 

sweeteners in its leaves. It is one of the 154 members of the Stevia genus and one of the only 

two species that produce sweet glycosides [132]. This plant is also cultivated in China and 

Southeast Asia [133]. The commercial exploitation of S. rebaudiana has become stronger 

since the 1970's, after the development in Japan of processes for the extraction and refinement 

of its leaf sweetener [134]. The sweet taste of Stevia leaves depends on the high content of 

stevioside and rebaudioside A which are about 250–300 times as sweet as sucrose [135] and 

with the advantages of not being caloric and avoiding high levels of blood sugar [136]. The 

high content of natural sweeteners, makes Stevia rebaudiana of a significant economic value 

in food industry in many applications as a “zero calorie sweetener”.  

In addition, S. rebaudiana contains other metabolites with bioactive potential, such as 

flavonoids, alkaloids, water-soluble chlorophylls, xanthophylls, hydroxycynnamoyl 

derivatives (caffeoyl and chlorogenic acid derivatives), neutral water-soluble 

oligosaccharides, free sugars, amino acids, lipids, essential oils and trace elements [137].  

Likewise, S. rebaudiana sweetener extractives are suggested to exert beneficial effects 

on human health, including anti-hypertensive, anti-hyperglycemic and anti-human rotavirus 

activities [138–140]. It also has been shown to possess antimicrobial, antiinflammatory and 

antioxidant activities [141–143]. It has been reported that antibacterial activity of the extracts 

is due to the flavonoids, aromatic acids, terpenoids, and its esters contents [144]. 
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JUSTIFICATIVE 

 

Candida infections account for a high burden of morbidity and mortality. Prolonged 

usage of antifungal agents to treat infections caused by Candida species has led to the 

emergence of resistance to conventional drugs. Considering this, new therapeutic approaches 

are urgently needed to improve the outcome of the patients, as the currently available 

treatment options have not reduced the mortality and morbidity associated with Candida 

infections over the recent years. Moreover, it has crucial to explore alternative strategies to 

overcome the limitations of current therapies, especially against resilient biofilm-associated 

fungal infections and others virulence factors.  

Possible solutions to improve the efficacy of the treatment would be the use of 

combined antifungal drugs and the exploration of alternatives compounds as antifungal agents 

(extracts of plants and isolated essential oils). One of the most promissory sources for the 

research of new agents is actually found in plants, which have compounds with antimicrobial 

properties that are only now beginning to be studied. The investigation of these active 

principles may be a potential area that must be explored. 
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OBJECTIVES 

 

GENERAL 

Investigate the effect of propolis, Hypericum androsaemum and Stevia rebaudiana extracts on 

clinical isolates of Candida spp. planktonic cells. In addition to evaluate of morphologic 

alteration and inhibition of virulence factors caused by these extracts on clinical isolates of 

Candida spp. 

 

SPECIFICS 

Article 1: 

● Characterization of propolis extract; 

● To evaluate the antifungal activity of propolis extract, against 14 C. albicans (12 

isolates from blood and two from urine), 14 C. parapsilosis (13 from blood and one 

from urine) and 14 C. tropicalis (four from blood and ten from urine) and the 

respective reference strains;  

● Determinate the time kill curves for propolis extract against three Candida reference 

strains; 

● To evaluate the effect of propolis extract on filamentation form transition against four 

C. albicans, four C. parapsilosis and four C. tropicalis clinical isolates, and their 

respective references strains; 

● To evaluate the influence of propolis extract on biofilm formation and preformed 

biofilms of Candida spp. clinical isolates, and their respective references strains; 

● To evaluate the cytotoxicity of propolis extract on fibroblasts 3T3; 

Article 2: 

● To characterize of H. androsaemum extract; 

● To evaluate of the antioxidant activity of H. androsaemum extract; 

● To evaluate of the cytotoxic activity of H. androsaemum extract; 

● To evaluate of the anti-inflammatory activity of H. androsaemum extract; 

● To evaluate the antifungal activity of H. androsaemum extract, against 8 Candida 

strains belonging to the species C. albicans, C. glabrata, C. parapsilosis and C. 

tropicalis clinical isolates and the respective reference strains;  

● To determinate the time kill curves for H. androsaemum extract against four Candida 

reference strains; 

● To determinate the cell membrane lesion caused by H. androsaemum extract on four 
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Candida reference strains;  

● To evaluate the influence of H. androsaemum extract on biofilm formation of Candida 

spp. clinical isolates, and their respective references strains; 

● To characterize of S. rebaudiana extract; 

● To evaluate the antifungal activity of S. rebaudiana extract, against 8 Candida strains 

belonging to the species C. albicans, C. glabrata, C. parapsilosis and C. tropicalis 

clinical isolates and the respective reference strains;  

● To determinate the time kill curves for S. rebaudiana extract against four Candida 

reference strains; 

● To evaluate the influence of S. rebaudiana extract on biofilm formation of Candida 

spp. clinical isolates, and their respective references strains; 
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Executive summary 

a. Propolis presents potential antifungal activity 

b. Propolis is a stronger inhibitor of filamentous forms formation 

c. Propolis is able to reduce and destroy Candida species biofilms  

d. Propolis is a promising alternative to antifungal traditional therapy 
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Introduction 
Candida species are human commensal microbes that commonly reside on skin, 

gastrointestinal tract, genitourinary system, oropharynx and upper respiratory tract without 

causing harm to healthy individuals [1]. However, when the host immune and defense system 

are debilitated or under certain favorable conditions, these species, which are opportunistic, 

can cause infections [2].  These infections can range from superficial, such as vulvovaginal, 

esophageal or oropharyngeal candidiasis, to life-threatening invasive disorders, including 

candidemia, which is associated with high mortality among immunocompromised populations 

[1]. 

 For many years, Candida albicans has been reported as the predominant species 

responsible for the majority (60 - 80%) of infections caused by the genus Candida [3]. 

However, other non-C. albicans Candida (NCAC) species, such as Candida glabrata, 

Candida tropicalis and Candida parapsilosis, have been frequently isolated mainly due to the 

indiscriminate prescription of antifungal agents [4–6]. Moreover, the pathogenesis of 

candidiasis is common to all Candida species and is facilitated by a number of virulent 

factors, including the ability to adhere to medical devices or host cells, biofilm development 

and filamentous form transition [7].  From a clinical point of view, Candida biofilms are 

associated with treatment failure due to a high level of antifungal resistance [8,9]. This fact 

triggers serious clinical concerns, not only regarding the treatment of patient infection but also 

for public health [10–12]. 

The increasing incidence of drug-resistant pathogens, limited number of therapeutic 

options and the toxicity of compounds have drawn attention towards the antimicrobial activity 

of natural products encouraging the development of alternative treatments [13–15]. 

Propolis is a resinous substance that honeybees, especially Apis mellifera, collect from 

branches and flowers. It has a complex chemical composition and is known to be rich in 

polyphenols (mainly flavonoids), waxes, resins, balsams, amino acids and other oils, thus 

propolis composition varies according to the plant source [16–18]. Propolis is reported to 

have a wide range of therapeutic properties such as antimicrobial, antioxidant, anticancer, 

antiviral, immunomodulatory, wound healing, and antiseptic effect [19–28]. 

Thus, knowing the problems associated with Candida infections, the development of 

alternative therapies, able to attenuate microbial virulence, is of utmost importance [29]. A 

little knowledge is already available regarding inhibition of virulence factors of C. albicans 

by propolis [24,30,31]; nevertheless the knowledge concerning NCAC species is still scarce. 

Therefore, the main goal of this study was to investigate the effect of propolis on clinical 
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isolates of C. albicans, C. parapsilosis and C. tropicalis planktonic cells and their 

counterpart’s biofilms.  
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Materials and Methods 

 

• Origin of propolis, preparation and characterization of extract 

Green Brazilian propolis was purchased from the company Mel Apinor (Wal-Luz apiary, 

Maringá, Paraná State, Brazil). This material was cooled at -18 °C for at least 24 h. Then in 

natura propolis was crushed in an industrial blender, packaged in plastic bags and stored in a 

freezer (-18 °C). 

The propolis extract (PE) was prepared from the previously reduced propolis, 30% (w/w) 

in ethanol by turbo-extraction technique [32]. Briefly, in a glass of turbo-extractor, 30 g of 

propolis were mixed with 70 g of ethanol (96%, v/v) and this system was kept in the 

refrigerator for 24 h. After this period, the evaporated alcohol weight was completed and the 

mixture was subjected to turbo-extraction. Subsequently it was vacuum filtered through filter 

paper and stored in amber glass bottle. 

For the evaluation of the quality control of the PE, the techniques used were approved by 

official codes and were described by many authors, namely relative density, pH, dryness 

residue (DR), and total phenol content (TPC) [18]. To determine the DR, an amount of 3.0 g 

of PE was evaporated in water bath, with slow shaking. Afterwards, the concentrated material 

was dried on the Ohaus-MB 200 infrared analytical balance (Pine Brook, NJ, USA), at 110°C 

until constant weight. The DR represents the average of, at least, three determinations. The 

TPC was measured by the Folin-Ciocalteau method with some modifications [33]. For that, in 

a 25-ml flask an aliquot of PE (2.0 µl) was mixed with 10 ml of purified water and 1 ml of 

phosphomolybdotungstic reagent R (Folin-Ciocalteau). Then the volume was completed with 

an aqueous solution of sodium carbonate 14.06% (w/v). As compensatory solution, purified 

water was employed. The solutions were allowed to stand, protected from light for 15 min 

under room temperature and then the absorbance was read in a Shimadzu double beam UV-

VIS spectrophotometer (Model 1650, Tokyo, Japan) at wavelength of 760 nm. A calibration 

curve with different dilutions of gallic acid was used as reference. Thus, the TPC was 

expressed as a percentage of total phenolic substances in PE. The tests accounted for an 

average of six evaluations.  

 

• Candida strains  

Fourteen C. albicans (12 isolates from blood and two from urine), 14 C. parapsilosis 

(13 from blood and one from urine) and 14 C. tropicalis (four from blood and 10 from urine), 

were used. Three Candida reference strains from the American Type Culture Collection - 
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ATCC, namely C. albicans ATCC 90028, C. parapsilosis ATCC 22019 and C. tropicalis 

ATCC 40042 were included in this work. The clinical isolates from urine and blood were 

selected due to the high level of resistance to commercial antifungals [34] and were obtained 

to archive collection of the Laboratory of Medical Mycology, Universidade Estadual de 

Maringá, Brazil.  

In each experiment, the isolates were subcultured on Sabouraud Dextrose Agar (SDA; 

Merck, Munich, Germany) or on Sabouraud Dextrose Broth (SDB; Merck, Munich, 

Germany) overnight at 37 °C. The cellular density was adjusted using a Neubauer chamber 

before each assay. 

 

• Effect of propolis on planktonic cells  

Antifungal susceptibility testing 

The antifungal activity of PE was determined by the broth microdilution method 

according to CLSI standard M27-A3 [35] with some modifications for natural products [36]. 

For this test, the serial dilution was performed at a ratio of 2, from 1:2 to 1:1024. In this way, 

PE’s concentrations ranged from 13.9 to 7100 µg/ml of total phenol content expressed in 

gallic acid. The test was carried out in RPMI 1640 (Roswell Park Memorial Institute, Gibco) 

with L-glutamine (with sodium bicarbonate) and 0.165 M 3-(N-Morpholino)propanesulfonic 

acid (pH 7.2) as buffer (Sigma), and 2% glucose, in 96-well flat-bottomed microtitration 

plates (Orange Scientific, Braine-l’ Alleud, Belgium). After incubation at 37°C for 72 h, 

minimum inhibitory concentrations (MIC) were determined by direct observation. The results 

of the MIC were considered relative to the TPC and were defined as the concentration of TPC 

that reduced 100% of the growth compared to the organisms grown in the absence of the 

drug. The minimum fungicidal concentration (MFC) was determined by seeding, on SDA 

plates, the suspensions exposed to different PE concentrations. Plates were then incubated at 

37° C for 24 h. The MFC was defined as the lowest concentration of the test compound in 

which no recovery of microorganisms was observed. Fluconazole was used as a control 

(Pfizer, Brazil), and the tests were also determined according to the M27-A3 guidelines of the 

CLSI. The MIC of fluconazole was defined, as the lowest concentration of this antifungal that 

was able to inhibit 50% of growth relative to the positive control without drug. As defined by 

the CLSI, negative controls (medium only), positive controls (medium and yeast), and the 

reference strain C. albicans ATCC 90028 were used in each test. The cut-off levels of 

susceptibility to fluconazole were used according to CLSI supplement M27-S3 [37] to 



 

	

38 

identify strains as susceptible (S), dose-dependent susceptible (DDS), and resistant (R): 

fluconazole (S ≤ 8 µg/ml, DDS = 16–32 µg/ml, R ≥ 64 µg/ml). 

 

Time-kill curve procedures 

Time kill curves were determined for the three Candida reference strains, C. albicans 

ATCC 90028, C. parapsilosis ATCC 22019 and C. tropicalis ATCC 40042 with slight 

modifications to that previously described [38]. Prior to testing, fungi were subcultured on 

SDA and the inoculum adjusted to 1- 5×105 yeasts/ml, in RPMI 1640 medium, using a 

Neubauer chamber. Then, each Candida strain suspension was grown in the presence of PE at 

concentrations equivalent to 450 and 900 µg/ml of TPC. The RPMI 1640 medium without 

propolis was used as a positive control. Test suspensions were placed on a shaker and 

incubated at 37°C. At predetermined time points (0, 1, 2, 3, 4, 6, 8, 12, 24, 28 and 36 h), serial 

dilutions were performed on SDA for colony-forming units (CFU) determination. Following 

incubation at 37°C for 24 h, the number of CFU was determined. 

 

Effect of propolis on filamentation form transition  

To evaluate the effect of propolis against Candida species filamentation 4 C. albicans, 

4 C. parapsilosis and 4 C. tropicalis clinical isolates, and their respective references strains 

were tested. The clinical isolates were chosen randomly. Candida cells were grown overnight 

in YPD (1% yeast extract, 2% peptone, 2% dextrose) medium. And then, 1×106 yeasts/ml 

were incubated in RPMI 1640 medium with 10% fetal bovine serum (FBS), in the presence or 

absence of PE (450 µg/ml of TPC, selected in order to use a concordant concentration to all 

species in accordance with its MICs values), at 37°C for 4 h. Blastospore and filamentous 

forms were counted by observation under a phase contrast microscope, according to the 

criteria described by Toenjes et al. (2005) [39]. More than 100 cells were counted, in 

duplicate, for each strain. Additionally, images of cell morphologies were obtained, after 

staining the microorganisms with calcofluor white (Sigma-Aldrich, St. Louis, Missouri, 

EUA). The cells were visualized with BX51 Olympus epifluorescence microscope coupled 

with a DP72 digital camera (Olympus Portugal SA, Porto, Portugal). All images were 

acquired using the Olympus Cell-B software. 

 

• Anti-biofilm effect of propolis  

As known, biofilms are microorganism’s community described as 10 a 100x more 

resistance than its counterpart’s planktonic cells [7]. Thus, the PE concentrations used in this 
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part of the study were based on this concept and on our previous findings of antimicrobial 

susceptibility. 

 

Influence of propolis on biofilm formation 

 In order to evaluate the effect of PE on Candida species’ biofilm formation, PE was 

added after adhesion phase (2 h). For that, Candida cells were grown on SDA for 24 h at 

37°C, then inoculated in SDB and incubated for 18 h at 37°C under agitation at 120 rpm. 

After incubation, cells were harvested by centrifugation at 3000 × g for 10 min, at 4 °C, and 

washed twice with 15 ml of phosphate-buffered saline (PBS; pH 7; 0.1 M). Cell suspensions 

of 1 × 105 yeasts/ml were prepared in RPMI 1640 medium, 200 µl of suspensions were 

inoculated into 96-well polystyrene plates, and incubated at 37 °C on a shaker at 120 rpm/min 

for 2 h, to allow attachment of cells to the abiotic surface. Non-adhered cells were removed 

by wash with sterile PBS. And then 200 µl of PE (concentrations of 500, 700 and 1400 µg/ml 

of TPC in RPMI 1640 medium) were added to each well. The plates were incubated at 37 °C 

for 24 h to allow biofilm formation. Negative controls (200 µl of only RPMI 1640 medium) 

were also included. 

Biofilms were analyzed by CFU determination. For that, the total medium was 

removed and the biofilms washed once with 200 µl of PBS. Then, the biofilms were scraped 

from the respective wells and the suspensions vigorously vortexed for approximately 2 min to 

disaggregate cells from the matrix [13]. Serial dilutions were made in PBS, plated onto SDA 

and incubated for 24 h at 37 °C. The results were presented in terms of log of CFUs. 

 

Influence of propolis on pre-formed biofilms 

 The effect of PE was evaluated on 24 h pre-formed biofilms. For that, biofilms were 

formed during 24 h, as described above, the medium was aspirated and the non-adherent cells 

were removed by washing the biofilms once with 200 µl of PBS. Then, 200 µl of PE (500, 

700 and 1400 µg/ml of TPC in RPMI 1640 medium) were added to each well. The biofilms 

were incubated for further 24 h, at 37 °C on a shaker at 120 rpm/min. The effect of PE on 

Candida biofilms was assessed through quantification of the number of CFU as described 

above. The results were presented in terms of log of CFU. 

 

Effect of propolis on biofilm structure 

Candida biofilm’s structure and cell morphology, after growth in the presence and 

absence of PE (1400 µg/ml of TPC) was characterized by scanning electron microscopy 
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(SEM). Biofilms were prepared as described above, but 24-well microtiter plates (orange 

Scientific, Braine-l’Alleud, Belgium) were used. The biofilms were dehydrated with 

increasing concentrations of ethanol (using 70% ethanol for 10 min, 95% ethanol for 10 min 

and 100% ethanol for 20 min) and then air dried for 20 min. Samples were kept in a 

desiccator until analysis. Prior to observation, the bottom of the wells was removed and 

mounted on aluminium stubs, sputter coated with gold and imaged using an S-360 scanning 

electron microscope (Leo, Cambridge, USA). 

 

• Cytotoxicity assay  

Fibroblasts 3T3 (CCL-163) were grown in Dulbecco Modified Eagle Medium 

(DMEM - Gibco) containing 10% of calf bovine serum (Gibco) and 1% penicillin 

streptomicin (Gibco). After detachment, a suspension with 105 cells/ml was added to a 96 

well plate and cells were allowed to grow until attaining 80% of confluence. Prior to the 

cytotoxicity assays, the wells were washed twice with phosphate-buffered saline (PBS). PE 

(concentrations from 220 to 1400 µg/ml of TPC) was added to the cells and incubated for 24h 

at 37 °C under 5% CO2. Cells treated with the same concentration of ethanol were used as 

control. Afterwards, cytotoxicity was assessed using the Promega CellTiter 96® AQueous 

Non-Radioactive Cell Proliferation Assay, based on the reduction of MTS (3-[4,5-

dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium) in 

DMEM without phenol red. After 4 h, the absorbance of the resulting solution was read at 490 

nm. The cytotoxicity of the compound is presented as the average of three independent 

experiments with three replicates [40]. The percentage of cell viability (%CV) was calculated 

by the following equation: %CV =(Abs sample/ Abs blank) × 100, where blank is the medium 

with cells and MTS. 

 

• Statistical analysis 

Data are expressed as the mean ± standard deviation (SD) of at least three independent 

experiments. Results were compared using two-way ANOVA followed by Bonferroni 

multiple comparisons, using GraphPad Prism version 6 (GraphPad Software, CA, USA). The 

significance level was set at p < 0.05. 

  



 

	

41 

Results 

• Preparation and characterization of the propolis extract 
The green propolis sample used in this study was collected from hives located in the 

North of Paraná state (Brazil). The apiary is surrounded by native forest with a predominance 

of Baccaris drancunculifolia and eucalyptus reserve. Green Brazilian propolis of this region 

is classified as “type BRP” and, as well as their ethanolic extracts, is well chemically 

characterized [18,41].  

The physicochemical evaluation of PE showed that pH was 5.12 ± 0.05 and relative 

density was 0.8722 ± 0.0009 g.ml-1.  The DR value of the PE was determined as 19.33% ± 

0.01 (w/w) and the TPC value obtained was 1.42% ± 0.07 (w/w). These values are in 

accordance to the literature, showing the good physicochemical characteristics of it, and 

indicating, then, that PE can be used in the present study [18,36,41]. 

 

• Effect of propolis on Candida planktonic cells 

Minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations  

The results of PE’s MICs 50% (i.e., the concentration that was able to inhibit 50% of 

the isolates tested) and 90% (i.e., the concentration that was able to inhibit 90% of the isolates 

tested) for the different pathogenic yeasts are shown in Table 1. PE showed similar and potent 

inhibitory activity against all clinical isolates of Candida species with MICs values ranging 

from 220 - 880 µg/ml of TPC.  In all cases the MIC value was equivalent to its correspondent 

MFC value. 

Based in these results, PE concentrations among 450 - 1400 µg/ml of TPC were 

selected to be used in the following experiments.  

Moreover, the percentage of fibroblasts viability, after direct contact with the PE (in 

these concentrations) was determined in order to allow cytotoxicity evaluation. Results shown 

that cytotoxicity was below 35% (15% - 35%), for all the PE’s concentrations tested (data not 

shown).   

 

Time-kill curves determination  

The killing activity of PE, plotted from log10 CFU/ml versus time (36h), is represented 

in Figure 1. Two distinct effects were observed on the growth of the Candida species. At 450 

µg/ml of TPC, for all species tested, slight inhibitory effect was observed until 12 h, however, 

after this time the resultant curves were nearly identical to those for the control. At 

concentration 900 µg/ml of TPC, a substantial time-dependent reduction in the number of 
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viable cells was observed compared with the control group. Additionally, results revealed that 

the PE effect was more pronounced in C. albicans and C. parapsilosis species, with a 

decreased of ≥99.9% (4 and 3 log) at 36 h, comparatively to control group (without PE). In 

fact even at 36 h the reduction observed by C. tropicalis did not exceed ~90% (1.5 log) of the 

reduction. This species had also higher MIC to PE, when compared to C. albicans and C. 

parapsilosis. 

 

Propolis effect on Candida species filamentous forms formation  

The effect of propolis on the transition of yeast to filamentous forms was evaluated 

(Figure 2). Four clinical isolates of C. albicans, C. tropicalis and C. parapsilosis species and 

the respective reference strains were analyzed. The results revealed that C. parapsilosis was 

unable to form filamentous forms (data not shown) and that C. albicans presented higher 

number of filamentous forms than C. tropicalis. It was also observed that PE (at concentration 

of 450 µg/ml of TPC), after 4 h of exposition, reduced approximately from 80% to 5% the 

formation of filamentous forms on all C. albicans and C. tropicalis strains (Figure 2).  

 

• Propolis anti-biofilm activity  
The second aim of this work was to evaluate the activity of propolis on Candida 

biofilms formation (Figure 3) and against Candida pre-formed biofilms (Figure 4). The 

results revealed that PE was able to reduced Candida biofilms, however in a species and 

strain dependent manner. Concerning the effect of the PE on biofilm formation the results 

revealed a significant reduction in the number of cultivable cells for the four clinical isolates 

of the each species and its respective reference strains (Figure 3A). No significant differences 

were observed between the three PE concentrations tested. Candida albicans strains presented 

the highest biofilm reduction (~3.5 log), followed by C. parapsilosis and C. tropicalis, with a 

reduction around 2.8 and 2 log, respectively, for all PE concentrations tested (Figure 3A). 

The propolis effect against pre-formed Candida biofilms (Figure 4A) was lower 

comparatively to the effect on biofilm formation. In fact, at the biofilm maturation stage, no 

biofilm reduction was observed for 500 µg/ml of TPC for all Candida strains under study. 

Moreover, with PE concentrations ≥700 µg/ml of TPC the pre-formed biofilm reduction was 

similar to those observed for the biofilm formation, when compared with the control group. 

Concerning C. tropicalis, PE at 500 and 700 µg/ml of TPC was able to reduce ~1.5 and 2.4 

log, respectively. This reduction was higher than the observed in the biofilm formation studies 
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(Figure 3A), even to for PE concentrations of the 1400 µg/ml of TPC where it was observed a 

reduction of ~3.5 log in the number of CFUs. 

 

• Effect of propolis on biofilm structure 

SEM analysis was performed to examine the effect of the PE on Candida species 

biofilm formation (Figure 3B) and against pre-formed biofilms (Figure 4B). For that, biofilms 

of one clinical isolate and its respective reference strain were treated with PE at 1400 µg/ml of 

TPC and compared with untreated biofilms. 

Examination of untreated biofilms showed the presence of different cellular 

morphologies in the Candida biofilms. Candida albicans and C. parapsilosis biofilms 

exhibited a blastoconidia aggregate layer with irregular clusters, while C. tropicalis biofilms 

developed a more compact and continuous structure with yeast cells more interlinked (Figures 

3B and 4B - Controls). Interestingly, it was observed that Candida species’ biofilms when 

treated with PE (1400 µg/ml of TPC) presented a significant reduction on the number of cells 

and a consistent biofilm disruption (Figures 3B and 4B - Treated). In addition, yeasts cells on 

biofilms treated with PE underwent morphological alterations and loss of integrity on their 

cell wall. Moreover, in the presence of PE, C. albicans biofilms presented a reduction in the 

number of filamentous forms. 
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Discussion 
The incidence of candidiasis in the last two decades had a significant increment and 

C. albicans is still the most prevalent species, however, the frequency of the NCAC species 

has also been increasing [42–44]. This fact can be due to the lower sensibility of the yeasts to 

the antifungal agents most commonly used in clinical practice [45]. Moreover, the expression 

of the virulence factors such as morphological transition and biofilm formation has been 

associated to difficulties on their treatment [2,46]. The increasing incidence of drug-resistant 

pathogens, the limited number of therapeutic options and the toxicity of traditional 

compounds have drawn attention towards the antimicrobial activity of natural products 

encouraging the development of alternative treatments [47].  

Propolis has been demonstrated important antimicrobial activity and this bioactivity 

has been investigated in the last years [24,48]. The antimicrobial activity of propolis is 

complex and has been attributed to the synergistic activity between its various potent 

biological ingredients, mainly phenolic and flavonoid compounds [49]. The flavonoids 

constitute a very important class of polyphenols, widely present in propolis [50]. The great 

part of propolis biological activity is attributed to polyphenols [51]. Green Brazilian propolis 

type BRP is rich source of phenolic substances; most of them are prenylated 

phenylpropanoids, and cinnamic acids, chiefly compounds bearing prenyl groups [18,36,41]. 

Therefore, the physicochemical analysis is fundamental for the evaluation of PE quality. The 

results showed the good characteristics of PE and the spectrophotometric determination of 

TPC was useful to characterize the amount of polyphenols. The value obtained was 1.42% ± 

0.07 (w/w) of TPC, and this amount is in accordance with other researches [36,41]. 

Despite some work developed about the effect of propolis against virulence factors of 

C. albicans [24,30,31] scarce are the studies involving NCAC species. Thus, the main goal of 

this study was to investigate the effect of propolis on the three most important Candida 

species, C. albicans, C. tropicalis and C. parapsilosis. It was a goal to evaluate the effect on 

both planktonic cells and biofilms.  

Firstly, the planktonic susceptibility of C. albicans, C. tropicalis and C. parapsilosis 

strains to PE was determined (Table 1). Our data demonstrated that, all Candida species were 

susceptible to PE with a MIC range of 220 to 880 µg/ml of TPC. Moreover, these work 

showed that PE was effective even against strains with sensitivity dose dependence to 

fluconazole (MIC 16 µg/ml), namely in the case of C. tropicalis. Therefore these results are in 

agreement with Dalben-Dota et al. (2010) [36] that showed Candida species’ sensitivity to 

PE. These authors observed that the MIC of PE ranged from 6.14 to 3145.50 mg/ml of 
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flavonoids content (which are included in polyphenol content), evidencing an efficacy of this 

extract. A time-kill assay was performed to determine the kinetic effect of PE on C. albicans, 

C. parapsilosis and C. tropicalis growth (Figure 1). Results revealed approximately 90% of 

reduction on its growth for all species, with an effective reduction on Candida cells 

cultivability. In fact PE was able to reduce around 3 logs (99.9%) of C. albicans and C. 

parapsilosis and an approximately 1.5 log of C. tropicalis. These results are in accordance 

with the susceptibility results where, C. tropicalis was the species with the highest MIC value.  

As previous works only showed an effective activity of PE against planktonic 

Candida species cells [36,52] this work intends to extend this knowledge, by evaluating the 

PE’s effect on Candida species virulence traits, such as yeast-filamentous transition and 

biofilm formation ability. It is known that the formation of hyphae helps C. albicans to 

penetrate the host tissues with subsequent invasiveness that leads to the establishment of 

infection [53]. Thus, the ability of PE to inhibit the formation of filamentous forms was 

evaluated and the results revealed that PE was able to block 90% of the yeast-filamentous 

forms in C. albicans and C. tropicalis (Figure 2). This inhibition of yeast-filamentous’ forms 

transition by PE, presents a very attractive option to control Candida infections. It was 

previously reported that the morphological switch from yeast to hyphae cells is important in 

many processes, such as biofilm formation [54]. Thus, the high capacity of PE to efficiently 

inhibit yeast-hyphae transition may be associated with its ability to prevent biofilm formation. 

Furthermore, this product has received the attention of clinicians and researchers due to its 

diverse pharmacological activities and low toxicity [20,55]. 

Biofilm formation by microorganisms is a mechanism that allows them to become 

persistent colonizers, to resist clearance by the host immune system and antibiotic’s effect 

[56]. Interesting it was observed that PE was able to inhibit biofilm formation (Figures 3) and 

to destroy mature biofilms (Figure 4) of C. albicans, C. parapsilosis and C. tropicalis strains. 

It is important to highlight that PE at 450 and 700 µg/ml of TPC was able to inhibit 

approximately 90% of biofilm formation (Figure 3A) and 1400 µg/ml of TPC was able to 

reduce pre-formed biofilms in 99.9% (Figure 4A). Previous studies have shown that different 

concentrations of propolis (0.25 - 1.25%) were able to reduce 40–45% of the in vitro C. 

albicans biofilm formation [57]. Moreover, Capoci et al. (2014) also revealed a small 

reduction on C. albicans biofilm formation (< 0.5 log) at concentration of PE lower than MIC 

[24]. However, the promising results obtained for C. tropicalis and C. parapsilosis were never 

stated before. The SEM images corroborate the biofilm disruption (Fig 3B and 4B), also 
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demonstrated by cultivable cells determination (Figure 3A and 4A), reinforcing the PE’s 

capability to inhibit filamentation (Figure 2). 

 

Conclusion 

In conclusion, this study showed that PE is a potent antifungal agent with effect on 

Candida planktonic cells and biofilms. It is important to highlight, that these effects were not 

only observed against C. albicans but on other NCAC species, namely C. tropicalis and C. 

parapsilosis. This is a very promising data, considering that NCAC species has shown to be 

highly resistant to the conventional antifungal agents. 

Such properties of PE as inhibitor of Candida virulence represent an alternative and 

innovative pathways of chemotherapy for pathogens that are resistant to classical 

antimicrobial agents. 
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Figure 1. Killing kinetics of propolis extract against Candida species. a: C. albicans ATCC 90028; b: C. parapsilosis ATCC 22019; c: C. 
tropicalis ATCC 40042. Standardized yeast cells suspensions were exposed to 450 and 900 µg/mL of total phenol contents. At determined time 
intervals, samples were serially diluted and plated for colony counts. Each data point represents mean result ± standard deviation (error bars) 
from three experiments. 
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Figure 2. Inhibition of C. albicans and C. tropicalis filamentation by propolis extract in FBS RPMI 1640 medium at 37°C for 4 h. A) Percentage 
of the filamentous forms observed after exposing Candida planktonic cells to propolis (Treated). B) The images are representative of C. albicans 
and C. tropicalis cells obtained using a fluorescent microscope stained with calcofluor white. PE was added at a concentration of 450 µg/ml. The 
structures besides of the yeasts pointed out by arrows are propolis residues. 



 

	

55 

 
 

Figure 3- Logarithm of number of Candida cells biofilms and scanning electron microscopy images of PE effect during biofilm formation by 
Candida species. Candida cells, were allowed to adhere for 2 h, then propolis was added and incubated further for 24 h at 37°C. Error bars 
represented in graphics indicate the standard deviation. *, ** and **** correspond to p < 0.05, p < 0.01 and p < 0.0001, respectively. 
In the images (a1, a2) represent isolate clinical C. albicans (a3, a4) ATCC C. albicans 90028 (b1, b2) isolate clinical C. parapsilosis (b3, b4) 
ATCC C. parapsilosis 22019 (c1, c2) isolate clinical C. tropicalis (c3, c4) ATCC C. tropicalis 40042.  
Controls: biofilms grown in RPMI medium in the absence of propolis extract. Treated: biofilms grown in RPMI medium in the presence of 
1400µg/ml of total phenol content. The bar in the images corresponds to 20 µm. Magnification x 1000. 
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Figure 4- Logarithm of number of Candida cells biofilms and scanning electron microscopy images of PE effect on pre-formed Candida species 
biofilms. Candida cells, were allowed to form biofilm for 24 h, then propolis was added and incubated further for 24 h at 37°C. Error bars 
represented in graphics indicate the standard deviation. *, ** and **** correspond to p < 0.05, p < 0.01 and p < 0.0001, respectively. 
In the images (a1, a2) represent isolate clinical C. albicans (a3, a4) ATCC C. albicans 90028 (b1, b2) isolate clinical C. parapsilosis (b3, b4) 
ATCC C. parapsilosis 22019 (c1, c2) isolate clinical C. tropicalis (c3, c4) ATCC C. tropicalis 40042.  
Controls: biofilms grown in RPMI medium in the absence of propolis extract.  
Treated: biofilms grown in RPMI medium in the presence of 1400µg/ml of total phenol content. The bar in the images corresponds to 20 µm. 
Magnification x 1000. 
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Table 1. In vitro Candida species antifungal susceptibility to propolis extract (PE) and 
fluconazole (FLU)	

    MIC (µg/mL) 

 Antifungal agent Range MIC 50 MIC 90 

C
. a

lb
ic

an
s PE 440 440 440 

FLU ≤0.125 – 0.25 (S) 0.125 0.25 

C
. p

ar
ap

si
lo

si
s PE 220 – 880 220 440 

FLU 0.25 – 4.0 (S) 0.5 2.0 

C
. t

ro
pi

ca
lis

 

PE 440 – 880 880 880 

FLU 0.25 – 16 
(S – DDS) 

0.5 8.0 

MIC: minimal inhibitory concentration 
MIC50 and MIC90: MIC that could inhibit 50% and 90% of the growth of the isolates, 
respectively. 
S: susceptible; DDS:	dose-dependent susceptible	
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Abstract 

Candida infections have been increasing in recent years, being even an important cause of 

morbidity and mortality in hospitalized patients. The genus Candida has been demonstrating a 

reduced susceptibility to the commonly used antifungal drugs. Therefore, there is a need for 

new strategies to combat fungal infections and natural products are encouraging the 

development of alternative treatments. The main objective of this work was to determine the 

phenolic composition of Stevia rebaudiana extract and to evaluate its effect against Candida 

planktonic cells and its biofilm counterparts. Minimum inhibitory concentrations (MIC) and 

time-kill curves were determined for Candida planktonic cells, while the effect on Candida 

biofilms was assessed through quantification of the number of cultivable cells.  

3,5-O-dicaffeoylquinic and 5-O-caffeoylquinic acids, the most abundant phenolic compounds 

identified in the extract, might act as contributors for the observed biological effects. MIC 

values obtained for Candida strains, ranging from 3.12 to ³ 25 mg/mL, with Candida 

albicans strains presented the highest MIC value. Moreover, Candida tropicalis and Candida 

glabrata ability to form biofilms was attenuate in the presence of Stevia extract, with a 

reduction of 3 orders of magnitude in the case of C. glabrata ATCC 2001 strain. 

Nevertheless, further studies should be carried out to determine the feasibility of using Stevia 

rebaudiana as a potential candidate for the development of new strategies to treat Candida 

infections. 

 

Keywords: Stevia rebaudiana Bertoni; Candida species; Antifungal resistance; Phenolic 

compounds 
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1. Introduction 

Fungal infections have been increasing in the last years, being an important cause of 

morbidity and mortality among hospitalized patients. Candidiasis is an opportunistic fungal 

infection caused by genus Candida, being currently responsible for up to 78% of nosocomial 

fungal infections (Bhatt et al., 2015; Marol & Yücesoy, 2007). Despite Candida albicans is 

the main species isolated in patients with invasive fungal infections, other non-Candida 

albicans Candida (NCAC) species have becoming increasingly common, such as Candida 

tropicalis, Candida parapsilosis and Candida glabrata species (Arendrup, 2013; Deorukhkar, 

Saini, & Mathew, 2014). Moreover, NCAC species have demonstrated a reduced 

susceptibility to the antifungal drugs, mainly due to some virulence characteristics that 

triggers their pathogenicity, including the ability to adhere to the epithelia host, yeast-to-

hypha transition, production of hydrolytic enzymes and ability to form biofilms (Lyon & de 

Resende, 2006; Mayer, Wilson, & Hube, 2013; Nikawa et al., 2006). Some susceptibility 

studies have revealed that biofilms formed by C. albicans may be up to 10 to 100 times more 

resistant to conventional antifungal drugs than planktonic cells (Baillie & Douglas, 2000; 

Chandra, Mukherjee, & Ghannoum, 2012; Gordon Ramage, Saville, Thomas, & López-Ribot, 

2005). Therefore, there is an urgent need for upcoming strategies to combat fungal infections, 

namely those associated with biofilm formation.  

Natural products have gained an increasing attention regarding their antimicrobial effects, 

including the activity of plant matrices against Candida species (Martins, Barros, Henriques, 

Silva, & Ferreira, 2015). Stevia rebaudiana Bertoni is a sweet plant traditionally used as a 

natural sweetener, with other reported biological effects, namely as antihypertensive (Chan et 

al., 2000; Lee et al., 2001), anti-hyperglycemic (Jeppesen, Gregersen, Alstrup, & Hermansen, 

2002; Jeppesen, Gregersen, Poulsen, & Hermansen, 2000) and anti-human rotavirus (Das et 

al., 1992). Alkaloids, water-soluble chlorophylls, xanthophylls, hydroxycynnamoyl 
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derivatives, phenolic compounds, neutral water-soluble oligosaccharides, free sugars, amino 

acids, lipids, essential oils and trace elements are amongst to the most commonly studied 

bioactive molecules to which the above described effects are attributed (Komissarenko, 

Derkach, Kovalyov, & Bublik, 1994; Tadhani, Patel, & Subhash, 2007). Nevertheless, there 

are few reports determining the antifungal activity of Stevia extracts (Garcia, Garcia-Cela, 

Ramos, Sanchis, & Marín, 2011; Garcia, Ramos, Sanchis, & Marín, 2012; Muanda, 

Soulimani, Diop, & Dicko, 2011; Sedghi & Gholi-Toluie, 2013), and to the authors’ best 

knowledge there are no reports available assessing the antifungal properties of ethanol:water 

extracts against Candida species.  

Based on the knowing about the problems associated with Candida infections, this work 

aimed to investigate the phenolic composition of Stevia rebaudiana ethanol:water extract and 

to access the antifungal potential against clinical isolates of C. albicans, C. glabrata, C. 

parapsilosis and C. tropicalis planktonic cells, including their biofilms counterparts. 



 

	

74 

2. Material and methods 

2.1. Plant material and preparation of the ethanol: water extracts 

Leaves of Stevia rebaudiana (Bertoni) Bertoni were kindly provided by “Cantinho das 

Aromáticas”, an organic and certified farm from Vila Nova de Gaia, Portugal and the 

botanical identification was confirmed by the botanist, Dr. Carlos Aguiar from School of 

Agriculture of the Polytechnic Institute of Bragança, Portugal.  

The dried samples were reduced to powder and submitted to an extraction procedure, carried 

out at room temperature (25 °C ±1), in three independent experiments: 4 g of powder were 

stirred with 30 mL of ethanol: water (80:20, v/v) for 1 h, filtered and re-extracted in the same 

conditions. Then, ethanol was removed using a rotary evaporator (Büchi R-210, Flawil, 

Switzerland), and water by lyophilisation (−48 °C and 0.100 mbar, during 2–3 days, FreeZone 

4.5, Labconco, Kansas City, MO, USA). Finally, stock solutions (50 mg/mL) were prepared 

by dissolving the obtained extract in water, from which further studies to assess the anti-

Candida activity were performed. For phenolic compounds analysis, the extract (2.5 mg/mL) 

was filtered through a 0.45 µm Whatman (GE Healthcare Life Sciences) syringe filter and 

transferred to an amber HPLC vial for chromatographic analysis. 

 

2.2. Standards and reagents 

HPLC grade acetonitrile 99.9% and analytical grade purity ethanol were from Fisher 

Scientific (Lisbon, Portugal). RPMI 1640 medium were purchased from Sigma Chemical Co. 

(St. Louis, MO, USA). Sabouraud Dextrose Broth (SDB) and Sabouraud Dextrose Agar 

(SDA) were from Merck (Darmstadt, Germany). Phenolic compounds were purchased from 

Extrasynthese (Genay, France). Water was treated in a Milli-Q water purification system (TGI 

Pure Water Systems, Greenville, SC, USA). 
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2.3. Analysis of phenolic compounds  

Phenolic composition of S. rebaudiana extract was determined using HPLC-DAD-ESI/MS 

(Dionex Ultimate 3000 UPLC, Thermo Scientific, San Jose, CA, USA), under conditions 

previously described (Barros et al., 2012). Double online detection was carried out in a diode 

array detector (DAD), using 280 nm and 370 nm as preferred wavelengths and with a MS 

detector, performing in negative mode, using a Linear Ion Trap LTQ XL mass spectrometer 

(ThermoFinnigan, San Jose, CA, USA) equipped with an ESI source. The identification of 

phenolic compounds was determined by comparing their retention time, UV–vis and mass 

spectra with those obtained with standard compounds, when available. Otherwise, peaks were 

tentatively identified comparing the obtained information with the available data reported in 

the literature. For quantitative analysis, a calibration curve (1-100 µg/mL) for each available 

phenolic standard was constructed based on the area of the peak at the detection wavelength 

used in the HPLC-DAD analysis. To the identified phenolic compounds in which no 

commercial standard was available, individual quantification was performed using the 

calibration curves of another similar compound belonging to the same phenolic group. 

Analyses were carried out in triplicate and the results expressed in mg per g of dried extract. 

 

2.4. Evaluation of the anti-Candida activity 

2.4.1. Yeast strains  

In this study, eight Candida strains were used, four of them were reference strains, namely C. 

albicans ATCC 90028, C. glabrata ATCC 2001, C. parapsilosis ATCC 22019 and C. 

tropicalis ATCC 750; and the other four were clinical isolates of C. albicans (from blood), C. 

glabrata (from urine), C. parapsilosis (from urine) and C. tropicalis (from vaginal secretion). 

The clinical isolates were obtained from the archive collection of the Laboratory of Medical 

Mycology, Universidade Estadual de Maringá, Brazil. In each experiment, Candida strains 
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were sub-cultured overnight in SDA or SDB, at 37 °C, and the cellular density was adjusted 

at 1×105 using a Neubauer chamber. 

 

2.4.2. Effect on Candida planktonic cells 

A) Minimal inhibitory concentration (MIC) determination 

The antifungal activity of S. rebaudiana extract was determined by using the broth 

microdilution method according to the CLSI standard M27-A3 (Clinical and Laboratory 

Standards Institute., 2008), with some modifications as described for natural products 

(Dalben-Dota et al., 2010). For that, serial dilutions of the stevia extract stock solution (50 

mg/mL) were performed at a ratio of 2, from 1:2 to 1:1024. In this way, the concentrations 

tested of the extract ranged from 0.05 to 25 mg/mL. The test was carried out in RPMI 1640 

with L-glutamine (with sodium bicarbonate) and 0.165 M 3-(N-morpholino)-propanesulfonic 

acid (pH 7.2) as buffer, supplemented with 2% glucose, in 96-well flat-bottomed microtiter 

plates (Orange Scientific, Braine-l’ Alleud, Belgium).  

After incubation at 37 °C for 24 h, MIC values were determined by direct observation, as the 

antifungal concentration where there was reduction of at least 50% growth by comparison 

with the control (cells grown without extract). Candida species cultivability was measured by 

using the drop test assay and determination of colony forming units (CFUs). Drop tests were 

performed dropping 10 µL of each concentration tested on SDA, while CFUs determination 

was performed after plating serial dilutions on SDA, and then incubated at 37 ºC during 24 h. 

Then, drop tests were observed and the number of colonies counted. The results were 

presented as total CFUs (log CFUs) and the experiments repeated in triplicate on three 

independent occasions.  

 

B) Time-kill curves determination 
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Time kill curves were performed for the reference strains of Candida species selected, namely 

C. albicans ATCC 90028, C. glabrata ATCC 2001, C. parapsilosis ATCC 22019 and C. 

tropicalis ATCC 750, with slight modifications (Klepser, Wolfe, Jones, & Nightingale, 1997). 

Prior to testing, Candida cells were sub-cultured on SDA and the inoculum adjusted to 1 – 

5×105 yeasts/mL, in RPMI 1640 medium, using a Neubauer chamber. Then, each Candida 

strain suspension was grown in the presence of the stevia extract at a concentration of 12.5 

mg/mL (selected in accordance to the obtained MICs values). The RPMI 1640 medium 

without plant extract was used as a positive control. Test suspensions were placed on a shaker 

and incubated at 37 °C. At predetermined time points (0, 2, 4, 6, 8, 10, 12, 24 and 36 h), serial 

dilutions were performed on SDA for CFUs determination. Following incubation at 37 °C for 

24 h, the number of CFUs was counted, and the results were presented as the log CFUs/mL. 

All the experiments were performed in triplicate and repeated on three independent occasions.  

 

2.4.3. Effect on Candida biofilms determination 

A) Biofilm formation 

To evaluate the effect of S. rebaudiana extract on Candida biofilm formation, the extract was 

added at the beginning of their formation. For that, Candida cells were grown on SDA for 24 

h at 37 °C, then inoculated in SDB and incubated for 18 h at 37 °C under agitation at 120 

rpm. After incubation, cells were harvested by centrifugation at 3000 g for 10 min, at 4 °C, 

and washed twice with 15 mL of phosphate-buffered saline (PBS; pH 7; 0.1 M). Volumes of 

100 µL of extract (2 × final concentration) in RPMI 1640 medium were added to each well of 

microtiter plates. Subsequently, 100 µL of standardized yeast cell suspension (2 × 105 

yeasts/mL) was added and plates were incubated at 37 °C on a shaker at 120 rpm/min for 24 h 

to allow biofilm formation. The extract concentrations used in this study (12.5 mg/mL and 25 

mg/mL) were based on the previous findings of antimicrobial susceptibility (section 2.4.2.: 
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MIC and time-kill curves determination in Candida planktonic cells). Negative controls (200 

µL of only RPMI 1640 medium) were also included.  

Biofilms were analyzed by CFUs determination. For that, after 24 h the medium was removed 

and the biofilms were washed once with 200 µL of PBS to remove non-adhered cells. Then, 

the biofilms were scraped from the respective wells and the suspensions vigorously vortexed 

for approximately 2 min to disaggregate cells from the matrix (Martins, Ferreira, Henriques, 

& Silva, 2016). Serial dilutions were made in PBS, plated onto SDA and incubated for 24 h at 

37 °C. The results were presented in terms of log CFUs and the experiments repeated in 

triplicate on three independent occasions.  

 

2.5. Statistical analysis  

Data are expressed as the mean ± standard deviation (SD) of at least three independent 

experiments. Results were compared using one-way ANOVA followed by Bonferroni 

multiple comparisons, using GraphPad Prism version 6 (GraphPad Software, CA, USA). The 

significance level was set at p < 0.05. 
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3. Results and Discussion 

3.1. Phenolic compounds determination  

The phenolic profile of S. rebaudiana extract obtained after ethanol: water extraction is 

shown in Table 1.  

Sixteen compounds were detected, six of which were phenolic acid derivatives (mainly 

caffeoylquinic acid derivatives) and ten flavonoids (mainly quercetin and kaempferol 

derivatives). All these compounds were also previously identified in a study performed by 

Barroso et al. (2016) using S. rebaudiana Bertoni cultivated in the north-eastern of Portugal, 

aiming to access the differences in the phenolic composition when exposed to different 

conservation conditions. Nonetheless, in this study the plant was obtained commercially and 

different extraction solvents were used. However, the presence of most of the identified 

compounds in S. rebaudiana has already been described by other authors (Barroso et al., 

2016; Gaweł-Bȩben et al., 2015; Karaköse, Jaiswal, & Kuhnert, 2011; Karaköse, Müller, & 

Kuhnert, 2015; Muanda et al., 2011). Phenolic acids were present in S. rebaudiana ethanol: 

water extract with an abundance nearly to 3 times higher than flavonoids. Among the 

identified phenolic acids, caffeoylquinic acid derivatives represented the major compounds 

present in this sample, being 3,5-O-dicaffeoylquinic acid the most abundant, followed by 5-

O-caffeoylquinic acid. In relation to flavonoids, quercetin derivatives were the most abundant, 

namely quercetin-3-O-rhamnoside, followed by quercetin-3-O-xyloside and quercetin-3-O-

rutinoside. 

 

3.2. Anti-Candida activity  

3.2.1 Effect on planktonic cells 

The high prevalence of candidiasis in recent years (Antinori, Milazzo, Sollima, Galli, & 

Corbellino, 2016; Lagunes & Rello, 2016) has been partly attributed to the emergence of 
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Candida species with acquired drug-resistance. This problem, associated with the limited 

number of chemotherapeutic agents and the toxicity of traditional compounds, have drawn 

attention towards to isolate new antifungal agents, mainly from plant extracts, with the goal of 

discovering new chemical structures with antimicrobial activity (Martins, Ferreira, Barros, 

Silva, & Henriques, 2014). In this sense, the effect of the S. rebaudiana extract on Candida 

planktonic cells was determined (Figure 1). 

Figure 1 (I and II) shows the obtained MIC values to S. rebaudiana extract against eight 

Candida strains from different species and origins, with MIC values ranging from 3.12 to 25 

mg/mL. Figure 1 III shows the logarithm of the colony forming units (CFUs) for Candida 

strains treated with S. rebaudiana extract, being the quantitative results in total concordance 

with observed in the qualitative data (Figure 1I and II). In fact, the most pronounced 

fungistatic effect of S. rebaudiana was observed against C. glabrata and C. parapsilosis 

strains, for which the two assayed strains, were inhibited in a dose-dependent manner.  

A time-kill assay was performed to determine the kinetic effect of S. rebaudiana extract on 

the growth of Candida species (Figure 2). It was observed a substantial time-dependent 

reduction in the number of cultivable cells when compared to the control group, after 

exposure at 12.5 mg/mL during 24 h. The most pronounced effect was observed in the case of 

C. tropicalis, with a decrease of ≤99% cells (~1.98 logs) until 12 h, comparatively to the 

control group. In the case of C. glabrata and C. parapsilosis species the reduction was around 

90% (1.0 log) up to 24 h, with a slight re-growth after that time, while no effects were 

observed on the growth pattern of C. albicans. These results corroborate the obtained MIC 

values (Figure 1), where C. albicans presented the highest MIC value, when compared with 

C. tropicalis, C. glabrata and C. parapsilosis species. 

 

3.2.2. Effect on Candida biofilms 
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Biofilms are structured communities that can cause serious medical problems, such as 

indwelling device-related infections. Recent data show that over 65% of all hospital infections 

derived from biofilms (Azevedo et al., 2014). Biofilm-associated Candida cells are resistant 

to a wide spectrum of available antifungal drugs (G. Ramage, Mowat, Jones, Williams, & 

Lopez-Ribot, 2009). This epidemic scenario point out the urgent need for safer and more 

effective antifungal therapies, that target fundamental biological processes and/or pathogenic 

determinants (Khan, Ahmad, Cameotra, & Botha, 2014). Therefore, one of the aims of this 

work was to evaluate the effect of S. rebaudiana extract on Candida biofilm formation. In the 

Figure 3, the ability of C. tropicalis and C. glabrata species to form biofilms was attenuated 

in the presence of S. rebaudiana extract with a reduction of approximately 90% in the number 

of cultivable cells in pre-formed biofilms at a concentration of 12.5 and 25 mg/mL extract, 

respectively. In fact, C. glabrata strains evidenced the highest reduction on biofilm formation 

(~1.0 to 3.2 log units) (Figure 3B), followed by C. tropicalis with a reduction around ~1.2 to 

2.8 log units (Figure 3D) when compared with control group (p <0.01). No significant 

differences were observed for C. albicans and C. parapsilosis biofilms in relation to the 

untreated biofilms (Figure 3A and C). These results confirmed data obtained in MIC 

determination and kinetic studies, were C. glabrata were amongst to the most susceptible 

species, while C. albicans followed by C. parapsilosis were the most resistant. The 

differences observed may be in part attributed to the observed in the cell wall being more 

complex on these species than in C. glabrata species (Groot et al., 2008). In fact, considering 

the marked ability of Candida cells to adapt to a wide variety of different habitats with the 

consequent formation of surface-attached microbial communities, biofilms become 10 to 100 

times more resistant than planktonic cells (Rautemaa & Ramage, 2011; Sardi et al., 2014).  

4. Conclusion  

The obtained results through this in vitro experiment indicate that Stevia might be a potential 
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candidate for the development of new strategies to manage fungal infections. Phenolic extract 

obtained from Stevia leaves seems to provide very interesting benefits on Candida infections 

management. It is important to highlight that Stevia acted in a non-selective manner, once 

positive effects were observed both against planktonic cells of NCAC species, namely C. 

tropicalis and C. glabrata strains. This is a very promising data, considering that NCAC 

species have shown to be highly resistant to conventional antifungal agents, namely in face to 

biofilm formation. 

Considering their chemical composition in terms of bioactive compounds, Stevia extract may 

be also used for different cosmetic, food and pharmacological purposes, as an added-value 

ingredient for these industries. In that respect, it represents an economic alternative of great 

interest. Nevertheless, further studies are needed to deepen knowledge on this field as also to 

elucidate the effective mechanism of action of this plant extract.  
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Table 1. Phenolic compounds identification and quantification in Stevia rebaudiana Bertoni leaves. 

Compounds Rt lmax 
Pseudomolecular 
ion  MS2 Tentative identification Quantification 

(mg/g)  (min) (nm) [M-H]- (m/z) (m/z) 

1 5.1 328 353 191(100),179(45),161(6),135(66) 3-O-Caffeoylquinic 
acid 

5.08 ± 0.04 

2 7.4 328 353 191(72),179(80),173(100),161(9),135(77) 4-O-Caffeoylquinic 
acid 

3.6 ± 0.2 

3 8.1 328 353 191(100),179(3),161(6),135(4) 5-O-Caffeoylquinic 
acid 

43.6 ± 0.1 

4 19.4 354 609 301(100) Quercetin-3-O-
rutinoside 

6.74 ± 0.01 

5 20.7 354 463 301(100) Quercetin-3-O-
glucoside 

1.13 ± 0.01 

6 21.1 328 515 353(87),335(45),191(41),179(76),173(91),161(17),135(25) 3,4-O-Dicaffeoylquinic 
acid 

2.9 ± 0.3 

7 21.3 358 579 301(100) Quercetin-O-pentosyl-
deoxyhexoside 

1.11 ± 0.01 

8 21.7 348 447 285(100) Kaempferol-3-O-
glucoside 

1.96 ± 0.01 

9 22.9 328 515 353(90),335(8),191(100),179(89),173(14),161(8),135(46) 3,5-O-Dicaffeoylquinic 
acid 

50.0 ± 0.1 

10 23.7 358 433 301(100) Quercetin-3-O-
xyloside  

9.19 ± 0.01 

11 24.8 350 447 301(100) Quercetin-3-O-
rhamnoside 

15.3 ± 0.2 

12 25.5 328 515 353(81),335(3),191(21),179(73),173(100),135(21) 4,5-O-Dicaffeoylquinic 
acid 

17.3 ± 0.2 

13 26.8 350 417 285(100) Kaempferol-O-
pentoside 

0.99 ± 0.01 

14 27.5 350 417 285(100) Kaempferol-O-
pentoside 

0.23 ± 0.01 
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15 28.9 336 771 609(85),301(27) Quercetin-O-caffeoyl-
O-rutinoside 

0.39 ± 0.01 

16 29.3 346 431 285(100) Kaempferol-O-
deoxyhexoside 

1.21 ± 0.01 

     Total phenolic acid 
derivatives 

122 ± 1  

     Total flavonoids 38.2 ± 0.2 

         Total phenolic 
compounds 

161 ± 1 
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Strains Source MIC (mg/mL)

C. albicans

Ca555 Blood 6.25

ATCC 90028 Reference ≥ 25

C. parapsilosis

Cp574 Urine 3.12

ATCC 22019 Reference 3.12

C. tropicalis

Ct514423 Vaginal secretion 12.5

ATCC 750 Reference 3.12

C. glabrata

Cg552 Urine ≥ 25

ATCC 2001 Reference 3.12

I II

III

 
Figure 1. In vitro effects of the S. rebaudiana extract on Candida strains planktonic cells. I) Minimal inhibitory concentrations (MICs values), 
II) serial drop tests III) and Logarithm of number Candida species cells grown in the presence of increased concentrations of S. rebaudiana 
extract during 24 h. Error bars represent standard deviation. Statistical p value (represented by *) indicates concentrations that are significantly 
different from control. *p < 0.05. 
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Figure 2. Killing kinetics of the S. rebaudiana extract against Candida species. A: Candida 
albicans ATCC 90028; B: Candida glabrata ATCC 2001; C: Candida parapsilosis ATCC 
22019; D: Candida tropicalis ATCC 750. Standardized yeast cells suspensions were exposed 
to 12.5 mg/mL of S. rebaudiana extract. At determined time intervals, samples were serially 
diluted and plated for colony counts. Each data point represents mean result ± standard 
deviation (error bars) from three experiments. Statistical p value (represented by *) indicates 
concentrations that are significantly different from control. *p < 0.05. 
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Figure 3. Effect of the S. rebaudiana extract on Candida strains (n=8) biofilms. Logarithm of 
number of colony forming units (CFUs) of different Candida albicans (n=2) (A), Candida 
glabrata (n=2) (B), Candida parapsilois (n=2) (C) and Candida tropicalis (n=2) (D) biofilms 
strain, treated with different concentrations of the S. rebaudiana extract. Candida cells were 
allowed to form biofilm for 24 h with extract at 37°C. Controls: biofilms grown in RPMI 
medium in the absence of extract. Error bars represented in graphics indicate the standard 
deviation; ** correspond to p < 0.01. 
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CHAPTER III 

GENERAL CONCLUSIONS 
 

This study showed that propolis, H. androsaemum and S. rebaudiana extracts are 

potent antifungal agents with effect on Candida planktonic cells and biofilms. It is important 

to highlight, that these effects were not only observed against C. albicans but on other NCAC 

species, namely C. tropicalis, C. glabrata and C. parapsilosis. This is a very promising data, 

considering that NCAC species has shown to be highly resistant to the conventional 

antifungal agents. Such properties of this extracts as inhibitor of Candida virulence factors 

represent an alternative and innovative pathways of therapy for pathogens that are resistant to 

classical antimicrobial agents. 

Total phenolic content, present in the propolis extract, was shown to be responsible for 

the anti-Candida effects observed. Furthermore, for H. androsaemum and S. rebaudiana 

extract, 5-o-caffeoylquinic acid followed by 3-o-caffeoylquinic acid were the most abundant 

phenolic compound, and the observed anti-Candida effect may be directly related by its 

abundance at the concentrations tested.  

Considering the chemical composition in terms of bioactive compounds, this extracts 

may be also used for different cosmetics, medicinal and pharmacological purposes, as also an 

added-value ingredient for food industries. In that respect, it represents an economic 

alternative of great interest. 
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FUTURE PERSPECTIVES  

 

The work described in this thesis provided a useful insight into several aspects of antifungal 

potential of natural products, leading to interesting new questions for further research. Some 

of the suggestions that should be taken into consideration for future investigations are:  

      

● To increase our understanding of antifungal properties these compounds. The 

investigations may help to understand the mechanism of action, specially in what 

concerns its role in biofilm activity, which are particularly problematic in clinical 

settings; 

● The potential cytotoxicity of the compounds should be assessed, in order to facilitate 

use as antifungals in human therapy; 

● To study the effect of the combination of the conventional antifungal agents and plants 

extracts; 

● To evaluate antifungal activity against a panel of opportunistic fungi. 

 


