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ABSTRACT 

The built environment has potential determinants for supporting more active lifestyles. 

However, regarding the large number of environmental variables that may influence physical 

activity (PA) and walking, composite walkability indices have been created. Notwithstanding, 

as social reality and PA are directly related (BAUMAN et al., 2012), walkability indices 

developed in larger cities and high-income countries may not be suited for Brazilian 

towns.  Therefore, the main objective of this research was to evaluate the efficacy of objective 

walkability measures of the built environment in a Brazilian average-sized town. From the 

systematizing of spatial data and a subjective database from the Urban Mobility Plan (n=756) 

of a case study (Rolândia-PR), six different walkability indices and their variables were tested 

for six spatial units (200m, 400, 600m, 800m, 1000m buffers and census tracts). Walkability 

indices and variables were analyzed with self-reported walking (meter walked per area unit) 

through a machine learning approach, considering the Random Forest Algorithm. Perceptions 

of satisfaction with the built environment were tested with walking and walkability. Results 

indicated that the 1000m network-buffer scale best modeled the relationship. The most relevant 

walkability features were Entropy Z-score (FI= 0.609) and The Walkability Index considering 

Residential Density and Space Syntax at a Global Integration radius (FI= 0.408). No relation 

between objective walkability measures, walking and perceptions of satisfaction with the built 

environment were identified. These findings are of great implication to the operationalization 

of walkability in Brazilian towns, indicating that more traditional walkability indices might not 

be suited for our social, cultural and urban reality. Practical contributions of this work include 

the possibility to subsidize municipal regulations for the creation of evidence-centered, 

contextually-tailored urban policies. 
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RESUMO 

O ambiente construído possui determinantes de estilos de vida mais ativos. Dado o grande 

número de variáveis ambientais que podem influenciar a atividade física e a caminhada, fatores 

compostos para mensurar a caminhabilidade do bairro foram criados. No entanto, como a 

realidade social e a atividade física são diretamente relacionadas (BAUMAN et al., 2012), 

índices de caminhabilidade desenvolvidos para cidades maiores e em países de alta renda 

podem não ser adequados para cidades medias brasileiras. Portanto, o principal objetivo desta 

pesquisa foi avaliar a eficácia de medidas objetivas da caminhabilidade do ambiente construído 

em uma cidade média brasileira. A partir da sistematização de dados espaciais e de um banco 

de dados subjetivos do Plano de Mobilidade (n=756) de um estudo de caso (Rolândia-PR), 

foram testados seis índices de caminhabilidade e suas variáveis em seis escalas de vizinhança 

(buffers de rede de 200m, 400, 600m, 800m, 1000m buffers e setores censitário). Índices e suas 

variáveis foram analisados e cotejados com níveis de caminhada (metros caminhados por 

unidade de área) por meio de uma abordagem de aprendizado de máquina através do algoritmo 

Random Forest. Percepções de satisfação com o ambiente construído do bairro foram testadas 

em relação ao caminhar e a caminhabilidade. Os resultados indicam que a escala de buffer de 

rede de 1000 metros melhor modelou a relação. As variáveis da caminhabilidade mais 

relevantes foram o Escore-Z da medida de Entropia (FI= 0.609) e o Índice de Caminhabilidade 

considerando a Densidade Residencial e Sintaxe Espacial em um raio de Integração Global  

(FI= 0.408). Tais resultados são de grande implicação para a operacionalização da 

caminhabilidade em cidades brasileiras, indicando que índices mais tradicionais podem não ser 

adequados para nossa realidade social, cultural e urbana. Contribuições práticas deste trabalho 

incluem a possibilidade de subsidiar legislações municipais para a criação de políticas urbanas 

contextualizadas e baseadas em evidências. 
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1 INTRODUCTION 

1.1 Background and Research Problem  

 

According to the World Health Organization (WHO) non-communicable 

diseases (NCDs) such as cardiovascular diseases, hypertension and type 2 diabetes represent a 

threat to human development and the susceptibility to them increases due to physical inactivity 

(WORLD HEALTH ORGANIZATION, 2015). Therefore, regular physical activity (PA) is 

widely acknowledged for its capacity to prevent and treat an array of psychological and physical 

conditions (SALLIS et al., 2006; FITZSIMONS et al., 2008).  Facing the prevalence of physical 

inactivity worldwide and its negative effects on health  (DUMITH et al., 2011), understanding 

aspects that influence active behaviors is paramount.  

Notwithstanding, PA is influenced by different factors, hence ecological 

models have been utilized in their analysis. These models are comprehensive approaches that 

propose many different scaled correlates of PA (Figure 1). According to this model, different 

levels of determinants and their interaction are responsible for the shaping of an individual’s 

active behaviors (BAUMAN et al., 2012). Individual variables are widely studied (SALLIS et 

al., 2006) whereas environmental factors are less researched, despite their recognized effects 

on behavior (BAUMAN et al., 2012). Experimental evidence has identified direct 

environmental influence as a stronger determinant of walking behaviors than cognitively 

mediated behavioral choices (OWEN et al., 2004). Therefore, these findings indicate that the 

built environment (BE) may promote or hinder active behaviors. 

The built environment (BE) is defined differently by many authors but is 

generally accepted as part of the environment, which is composed of social, natural, and built 

elements. “Social” refers to organizational practices, crime, traffic and seeing others active 

behaviors (BAUMAN et al., 2012) ; “Built” refers to what is constructed by human action 

(SALLIS et al., 2006) and “natural” to topography, vegetation, and climate (HINO, 2014). 

Hence, the following elements constitute the BE: organization and appearance of built elements, 

use patterns, distribution of activities through space, buildings, transportation system, the 

physical structure of streets, sidewalks, cycle paths, etc. (SAELENS; HANDY, 2008). 

Researchers that correlate BE aspects with health aim to understand the impact of contextual-

physical factors on human behavior (PLIAKAS et al., 2017). The characteristics of the BE 

possibly correlated to PA may be grouped into seven categories: 1) Population Density; 2) Land 
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use mix; 3) Places to practice physical activities; 4) Street pattern; 5) Sidewalks/cycle paths 

structures; 6) Public transport 7) Aesthetics and safety (HINO; REIS; FLORINDO, 2010). 

 

Figure 1 – Adapted ecological model of the determinants of physical activity.  

 

 

Source: Adapted from Bauman et al. (2012); Modified by the author, 2018.  

 

Characteristics of the built environment can be quantified through objective 

and/or subjective measuring (HINO; REIS; FLORINDO, 2010). Most studies conducted on this 

topic (HANDY et al., 2002; MOUDON; LEE, 2003; SAELENS et al., 2003) show that several 

BE attributes, measured both objectively and subjectively, are related to levels of PA (LIN; 

MOUDON, 2010). Subjective measures have been commonly assessed via surveys asking 

about residents’ perceptions. On the other hand, objective assessments of the BE have relied on 

field audits and geographic information system (GIS) (LEE et al., 2017). Many researchers 

recommend a combination of measurement approaches (TROPED et al., 2001; OWEN et al., 

2004; HOEHNER et al., 2005; MCGINN et al., 2007; JANSUWAN; CHRISTENSEN; CHEN, 

2014) to unveil the relationship of objective and perceptive data for a more accurate 

understanding of the influence of space in human behavior (SAELENS; SALLIS, 2002). 

Consideration of residents' perceptions can be used for planning and 

designing healthy communities  (LEE et al., 2017).  Providing environmental features that 

support positive perceptions, and increase neighborhood satisfaction is desirable (LESLIE; 

CERIN, 2008). Neighborhood satisfaction is understood as influenced by two sets of variables: 

individual and neighborhood quality characteristics (BASOLO; STRONG, 2002). However, a 
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possible low level of concordance confirms that perceptions should not be considered as proxies 

for objective measures (JAUREGUI et al., 2016a). According to Marans (2012) the urban 

quality of an environmental setting such as the neighborhood cannot be captured through a 

single measure; rather, it requires measures of multiple attributes of the environmental setting 

in question.  

The advantages of objective measuring include (1) reduction in measurement 

errors, (2) easy standardization (3) facilitated translation into political actions (MOUDON; 

LEE, 2003) (4) and avoiding of bias associated with self-reports (KRAMER et al., 2013). Many 

reviews conducted on this theme (BROWNSON et al., 2009; FRANK et al., 2010; BAUMAN 

et al., 2012; SUGIYAMA et al., 2012) show a newfound emphasis for the understanding of the 

BE as an influence on active mobility (HOEHNER et al., 2005) pointing out that our cities play 

an important role to support healthier lifestyles (SALLIS; BAUMAN; PRATT, 1998; 

HUMPEL, 2002; DING; GEBEL, 2012).  

With the growing burdens of motorized transportation (MURRAY; LOPEZ; 

CAMBRIDGE, 1996) urban qualities have lead researchers to gain understanding on the urban 

form’s influence on travel behavior (CAMPOLI, 2012). It has been centered as an important 

emerging topic in the growing dialogue concerning neighborhood sustainability and as the core 

of city planning strategies of developed countries (GILDERBLOOM; RIGGS; MEARES, 

2015). One of the strategies to evaluate the BE for supporting more active daily lives is 

walkability analysis, defined as the extent to which the BE supports and encourages walking 

(SOUTHWORTH, 2005, p. 258).  

Walking is the most frequent type of PA (LIN; MOUDON, 2010). It is 

accessible, inexpensive and associated with a series of health benefits (DOESCHER et al., 

2014). Walking can be categorized as commuting/functional and optional/recreational  

(CARMONA et al., 2010).  Utilitarian walking – commuting to routine destinations – has been 

identified as a central element underpinning sustainable lifestyles (SAELENS; SALLIS; 

FRANK, 2003) and has proven effective in reaching recommended PA levels when 

incorporated into daily life (FRANK; ANDRESEN; SCHMID, 2004).  Besides contributing to 

health, walking is at the core of sustainable mobility, it reduces motorized transportation 

minimizing environmental impacts. Walking demands fewer resources than other means of 

transportation, it is cheap, silent, and non-polluting (GEHL, 2013). Therefore, in low-income 

and middle-income countries, studies on environmental correlates of walking are urgently 

needed (BAUMAN et al., 2012) to attenuate the rapidly changing determinants of inactivity 

occurring due to urbanization, passive entertainment, and motorized transport.  
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In Brazil, According to Malta et al. (2014), 72.6% of NCDs cases are related 

to causes of death, mainly in the lower socioeconomic status population group. VIGITEL data 

(System of Surveillance of Risk Factors and Protection for Chronic Diseases by Telephone 

Inquiry) indicates that 45,4% of inhabitants living in capitals do not reach sufficient PA levels 

(BRASIL. MINISTÉRIO DA SAÚDE. SECRETARIA DE VIGILANCIA EM SAÚDE, 2011). 

These issues provide opportunities for urban planning to mitigate sedentary behaviors (REIS; 

HINO, 2013).  Considering the Brazilian context, the economic burden of physical inactivity 

(WANG et al., 2004) and the recognized benefits of PA, studies on environmental factors that 

may positively influence active behaviors gain importance. 

The existing literature on BE correlates of physical activity on Latin 

American countries points out that socioeconomic inequality within urban areas, highlights that 

different socioeconomic status (SES) groups live in very different epidemiological contexts, 

even within the same city (RYDIN et al., 2012).  The social stratification that composes 

Brazilian cities usually possesses scale and complexity to generate alternative centers, 

reorienting centralities and further fragmenting the urban environment (KRAFTA, 2014). As a 

consequence of this scattered urban growth, infrastructure and public services become absent. 

The occupation of unsuitable areas through territorial sprawl results in peripheralization, 

environmental impacts, marginalized population and the occupation of fragile environments 

(FRACASSI; DE LOLLO, 2013).  

This Brazilian scenario presents itself very differently from high-income 

countries, as there is a clear relationship between the spatial and physical characteristics of a 

city, and its functional, socio-economical and environmental qualities (CARMONA et al., 

2010). Such differences emphasize the need for context-specific studies in designing and 

implementing environmental strategies to increase physical activity levels (SALVO et al., 

2014).   

There is ample evidence on the phenomenon of the BE as a support for 

walking in developed countries, even though existing data on active behavior determinants are 

eventually inconclusive (BAUMAN et al., 2012). However, even if this correlation is being 

addressed effectively through numerous studies, fewer aim to understand the dimensions of this 

relationship in low and middle-income countries (GOMES et al., 2011; PARRA et al., 2011). 

Such deficit of studies using objective walkability measures can be partly attributed to the 

difficulty to obtain Geographic Information System data  (HINO et al., 2012) and to evaluate  

large areas through systematic observation (HINO; REIS; FLORINDO, 2010).  

https://www.macmillandictionary.com/dictionary/british/evidence_1
https://www.macmillandictionary.com/dictionary/british/evidence_1
https://www.macmillandictionary.com/dictionary/british/evidence_1
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Such research interest is made even more relevant in towns where 

nonmotorized transportation is largely present and public transport is less used (Associação 

Nacional de Transportes Públicos, 2012). Brazil has most of its cities represented by an average 

of 5 to 100 thousand inhabitants (IBGE, 2015). According to ANTP (Associação Nacional de 

Transportes Públicos, 2012) active travel (by foot) is inversely proportional to the dimension 

of the city - the smaller the city, the higher the rates of active travel. Notwithstanding, there is 

a lack of studies on walkability in medium and small-sized towns. Considering these topics, the 

need for greater understanding of active travel patterns in Brazilian towns are evident for 

tailored mobility policies. Therefore, this study aims to fill the research gap, specifically for 

averaged sized towns, regarding built environment walkability measures and constructs in the 

unexploded context of the middle-income country of Brazil. 

 

1.2 Research Objectives 

 

In view of the above presented conceptual and methodological needs, this 

study analyzed the phenomenon of the BE as a support for walking on Brazilian Towns. To that 

end, objective walkability measures were verified through a comparison with self-reported 

travel behaviors. Such measures were also analyzed regarding their relationship to perceptions 

of neighborhood satisfaction.  

A case study was conducted in the average sized Brazilian town of Rolândia-

PR in reason of the real-life contemporary contextually of the BE as support for walking (YIN, 

2001). We conjectured that the environmental variables related to walking behaviors were not 

the same in averaged-sized towns as the ones in larger Brazilian cities and high income 

developed countries. It was expected that some variables would exert a higher influence on 

behavior than others, demanding a specific approach to measuring the objective walkability-

built environment effectively. This work had the theoretical assumption that when comparing 

objective walkability measures to travel behaviors on averaged-sized Brazilian towns it would 

be possible to uncover the specific variables that influence walking in Brazilian towns.   

According to Bauman (2012), social reality and PA are directly related. In 

low- and middle-income countries active transportation can be intense, on the other hand, in 

high income countries leisure activity is dominant (BAUMAN et al., 2012). Therefore, we 

surmised that levels urban development, spatial patterns of urban sprawl, the urban form of the 

city as well as the socioeconomic and cultural reality would uncover unconventional 

correlations between the BE, behaviors, and perceptions. 
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Therefore, the main aim of this research was to: 

 

• Evaluate the efficacy of walkability objective measures of the built 

environment in a Brazilian average-sized town.  

 

 

The specific aims of the research were to: 

 

• Analyze the urban form of Rolândia-PR/Brazil and how it relates to 

walkability;  

 

• Identify the adequate spatial unit for capturing BE features on 

walkability assessment of average-sized Brazilian towns; 

 

• Analyze the relationship between walking, walkability variables and 

walkability indices with perceptions of satisfaction with the built 

environment. 

 

 

1.3 Research Outline    

 

In order to achieve the research objectives, this study specifies the following 

structure:  

• First, an introduction with contextualizing the research paradigm 

under investigation, and a general outline of the research; 

 

• A second chapter containing a bibliographic and conceptual review 

that details walkability, walking and perceptions, as well as discusses 

aggregation strategies for such data;  

 

• A third chapter regarding data and methods, that contains an 

integrative review for uncovering appropriate methodologies for 

quantifying walkability, walking levels and perceptions; the 
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introduction of the case study; the units of analysis that were 

developed; the detailing of all correlational variables and objective 

walkability measures and lastly the delineation of the analytical 

strategy that was employed;  

 

• A fourth chapter presenting the results and analysis of the 

relationships found between walking, walkability variables and 

walkability indices; and modeling of perception’s relationship with 

the built environment, walking and time living in the neighborhood;  

 

• A fifth chapter discussing data results and their implications; and 

analyzing walkability and the urban form of the case study;  

 

• Finally, a sixth chapter concluding this work; indicating its strengths, 

contributions, limitations and future research possibilities.  

 

The Correlational Research method was adopted (GROAT; WANG, 2002) 

due to the necessity to clarify patterns of relationship between two or more variables. The 

methodological strategy suited to our research problem is the Case Study, ideal to tackle 

contextual issues in a real-life contemporary phenomenon (YIN, 2001). 

The methodological strategy of this research involves assessing the efficacy 

of objective walkability measures in the context of a Brazilian town. Methodologies for 

quantifying walkability, walking levels and perceptions were selected through the analysis of 

the scientific literature that utilizes combined subjective-perceived neighborhood-built 

environment and objectively measured neighborhood-built environment data to analyze 

walking behaviors. Objective walkability measures considered were a Walkability Index 

proposed by  (FRANK et al., 2010), the Space syntax Walkability measure proposed by 

(KOOHSARI et al., 2016a) and some variations hypothesized to possibly be more adequate in 

the context of a Brazilian town. Those indices involve the following built environment 

constructs: (1) net residential density; (2) retail floor area ratio; (3) intersection density (4) land 

use mix and (5) space syntax metrics. Individual variables understood as related to walking 

levels and that possibly contribute to walkability measurement were also included: land parcel 

value and real estate value. 
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On account of database availability and populational representation of an 

average-sized Brazilian town the selected case study is Rolândia-PR. This town is currently in 

the processes of developing its mobility plan, therefore an extensive subjective database was 

provided by ITEDES.  The available data includes self-reported travel behaviors and perceived 

neighborhood satisfaction. Perceived safety while walking, pleasure while walking, ease to 

walk and access to public transportation are some examples of the subjective aspects assessed 

(ATTACH A).  

Objective data was collected in the field and geocoded by the researchers of 

the Environmental Design Research Group from the State University of Londrina. Data 

aggregation was undertaken in six different neighborhood representation scales: census tracts, 

200-meter network buffers, 400-meter network buffers, 600-meter network buffers, 800-meter 

network buffers and 1000-meter network buffers around participants geocoded residential 

address. 

Perceptions of satisfaction were dichotomized into two categories and 

walking levels were quantified in meters per unit area. The relationship between these variables, 

objective walkability measures and walkability constructs was analyzed through a Machine 

Learning approach. The Random Forest (RF) ensemble learning method for classification and 

regression proposed by Breiman (2001) was applied. RF is considered robust to errors and 

outliers as well as efficient in big data sets (BREIMAN, 2001), presenting itself as an ideal 

approach for this analysis.  

First the analysis of the relationship between BE factors and self-reported 

walking data was conducted through a RF regression in three separate steps: Firstly, individual 

walkability related variables were tested and secondly walkability indices were evaluated. In 

sequence, the relationship between BE factors and self-reported perceptions of satisfaction was 

verified through a RF classification, aiming to investigate their concordance. Throughout these 

analyses the sensitivity of all results was explored by spatial scale, estimating separate models 

using BE factors aggregated at five buffer-based scales (200 m, 400 m, 600 m, 800 m, 1000 m) 

and census tract level. And lastly, urban form was discussed as to its relationship with 

walkability results. A research outline graphically explaining the development of the research 

is available in Figure 2 
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Figure 2 – Research Outline. 

 
Source: Organized by the author, 2017 
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2 CONCEPTUAL AND BIBLIOGRAPHIC REVIEW 

 

2.1 Urban form and walkability  

 

The benefits of walking are widely recognized as it can be more than a 

utilitarian mean of transportation. It holds social, recreational and cultural values 

(SOUTHWORTH, 2005).  Walking is the most equitable, accessible and available mean of 

transportation (ORELLANA; HERMIDA; OSORIO, 2016).  It can promote mental and 

physical health, as well as enrich the community environment through social capital (LEYDEN, 

2003).  Given such benefits, several recent studies have dissected the domains involved in 

walking behaviors. Those researches aim to uncover evidence that can subsidize opportunities 

for cities to create health and wellbeing, making them people-centered (KLEINERT; 

HORTON, 2016). 

The BE is an influence able to facilitate or constrain walking behaviors  

(SAELENS; HANDY, 2008). The character and qualities of streets and public open spaces 

impact the degree to which they are safe, comfortable, and attractive for walking (LEE; 

MOUDON, 2004). Such places that encourage walking possess the specific characteristics that 

make them walkable (SAELENS; HANDY, 2008). According to  Southworth (2005), 

walkability is an urban quality widely referred to and operationalize but poorly defined.  In this 

research the adopted concept of walkability follows the definition  that proposed by Leslie and 

Cerin (2008): “the extent to which characteristics of the built environment and land use  may 

or may not be conducive to   walking for either leisure, exercise or recreation, to access services, 

or to travel to work”.  

In terms of the scale of measurement, there are two types of walkability: 

micro- and meso-level walkability (PARK; CHOI; LEE, 2015). Micro-level walkability 

consists of the walking environment that is directly perceived by pedestrians. Specific street 

level characteristics comprise such walkability scale, such as the presence of trees, the shape of 

buildings, their arrangement, the width of sidewalks, the quality of streets, and, fundamentally, 

sidewalk quality. These features are thought to have a more instantaneous influence on 

pedestrian perception and can be improved in a short and medium time perspective (SAELENS 

et al., 2003). Testing micro-level walkability, as one of the determinants influencing walking 

travel behavior, could be very important for policy makers as improving micro-level walkability 

has great potential to be a cost-beneficial intervention tool to promote walking.  
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The quality of the “micro-scale” walking environment has long been of 

interest to urban designers and planners. Though the decades urban designers and theorist have 

introduced a variety of arguments that relate street-level walkability. Some examples are 

Jacob’s “eyes upon the street” (JACOBS, 1961), Alexander’s degree of “enclosure” 

(ALEXANDER et al., 1977), Appleyard’s “livable streets” (APPLEYARD; GERSON; 

LINTELL, 1981), and Jan Gehl’s “soft edges” concept (GEHL, 1986, 1987). Currently, there 

is an effort to objectively measure and quantify such qualitative design attributes in a 

comprehensive way, micro-scale walkability measurement tools have been developed 

(PIKORA, 2000; SAELENS; SALLIS, 2002; EWING et al., 2006; SALLIS, 2016). 

On the other hand, there are “meso-level” aspects of general urban form that 

may be relevant to walking and subsequent positive health outcomes. This walkability scale has 

been evaluated by measuring urban form attributes such as density, land use mix, and street 

patterns. Cervero and Kockelman (1997) propose in their seminal work the concept of the 3Ds: 

Density, Diversity, and Design.  According to these authors, neighborhoods with high 

population density, diverse land uses, and pedestrian-oriented design are more likely to 

facilitate active travel choices, which can contribute significantly to overall physical activity. 

The concept of the 3Ds encompasses following walkability components, often calculated as 

their sum: residential density (density), land-use mix (diversity), intersection density (design) 

and retail floor area ratio (design).  

The ‘hierarchy hypothesis of walking needs' proposed by Alfonzo (2005) 

makes a case for meso-scale walkability. It suggests that micro-scale built environment features 

influence decisions to walk only after more basic needs are met, such as an individual’s ability, 

environmental accessibility and existence of destinations (ALFONZO, 2005).  This argument 

is supported by empirical evidence, where micro-scale characteristics tend to minorly influence 

travel behavior when compared to meso-scale characteristics (e.g. destination proximity, 

density and connectivity) (CERVERO; KOCKELMAN, 1997; SAELENS; HANDY, 2008; 

ADKINS et al., 2015).  

Meso-scale walkability has its measurement more effectively operationalized 

trough GIS applications, whereas developing objective and reliable measures of the micro-scale 

built environment is elusive and costly, leading to a heavy reliance on larger numbers of 

researchers dedicating more effort and time to collect sufficient data (KIM; PARK; LEE, 2014). 

Therefore, even though micro-level walkability has potential for  cost-beneficial interventions 

and is relatively easy to "modify", many travel behavior studies on walking rely on meso-level 

urban form (PARK; CHOI; LEE, 2015).  
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There is a growing body of research that aims to create meso-scale composite 

walkability measures considering relevant urban form components that influence walking 

behaviors  (CERVERO; KOCKELMAN, 1997; OWEN et al., 2007; LOVASI et al., 2008; 

FRANK et al., 2010; LOTFI; KOOHSARI, 2011; REIS et al., 2013; 2018; VAN 

CAUWENBERG et al., 2016). These objective environmental measures are usually 

operationalized using georeferenced data trough geographic information systems (GIS), 

optimizing the measuring of environmental attributes in large areas (HINO; REIS; 

FLORINDO, 2010).  

The so-called Walkability indices, referred to as reduction tools (FRANK et al., 2010), 

have successfully described the walking environment in many cities, (MANAUGH; EL-

GENEIDY, 2011).  Walkability indices have been constructed considering a combination of 

different variables (Figure 3) and have, overall, found positive associations with walking  

(CHRISTIAN et al., 2011a). 

 

Figure 3 – Walkability Index examples. 

 

 

Source: Motomura (2017). Modified by the author (2018). 

 

When it comes to the elements of a walkable urban form, one of the most 

prominent urban qualities is residential density. Density reveals the intensity of occurrence of 

an element or activity (CAMPOLI, 2012) and as a concept applies to any type of variable of 

the urban environment (people, parking, bus stops, jobs etc.) distributed over an unit of area. 

However, it is household density that is considered paramount for walking trips to be shorter 
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and more convenient. Neighborhood residential density has been important as it is understood 

to have positive effects on utilitarian walking, land use balance and street connectivity 

(SAELENS; SALLIS; FRANK, 2003). The development of higher population densities is one 

of the factors that can reduce the number of motorized trips and increase the number of walking 

trips (CERVERO; KOCKELMAN, 1997). It has often been the basis of neighborhoods 

designed for sustainability with the purpose of housing enough people to be able to support 

urban services such as local shops, schools and public transport (CARMONA et al., 2010). 

Even though compact-high density development is encouraged in contemporary urban 

planning, it often conflicts with sociocultural contexts (CARMONA et al., 2010), especially in 

middle income countries. Seeking optimal densities for development thus remains one of the 

most challenging of the sustainable urban design principles. 

Land-use mix can be seen as a complement to residential density (GRASSER, 

2014. apud FRUMKIN et al., 2004;).  This diversity measure of the built environment aims to 

quantify the heterogeneity of land uses (DUNCAN et al., 2010). Such built environment 

attribute has been shown to be associated with walking (FRANK, 2000) and other physical 

activity behaviors (FRANK et al., 2005). In an area where diverse land uses there are more non-

residential destinations, being favorable to the increase of walking trips  (CERIN et al., 2007). 

Neighborhoods with a greater mix of uses, utilitarian destinations are within a shorter reach 

from residences, increasing the convenience for walking (SAELENS; SALLIS; FRANK, 

2003). The relevance of land use mix is so latent that evidences highlight the possibility that 

perceptions of land use mix may be relatively accurate, even if residents rely on motorized trips 

for daily activities (KOOHSARI et al., 2014).  

Currently, land use mix is a walkability variable most often assessed  

(FRANK; ANDRESEN; SCHMID, 2004; GEBEL; BAUMAN; OWEN, 2009; LEE, 2010; 

GRASSER; TITZE; STRONEGGER, 2016)  through a variation of the Shannon entropy 

equations  which represent the extent of variation in the distribution of land uses (HAJNA et 

al., 2014). However, in some studies, land use mix has not been found to be associated to 

physical activity behaviors (FORSYTH et al., 2008; MCCORMACK; SHIELL, 2011; 

GRASSER et al., 2013). Such inconsistent findings may be partly due to lack of specificity in 

the land use categories considered  (DUNCAN et al., 2010). 

A walkability measure naturally connected to land use mix is retail floor area 

ratio (FAR) which is the ratio or the sum of commercial building floor area to the total 

commercially used land area (FRANK et al., 2010). It was created as a reflection of more 

options for destinations where goods and services may be purchased (LESLIE et al., 2007), but 
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more importantly as a measure of pedestrian-oriented community design. Retail parcels with a 

high retail floor area ratio may be less likely to have the ‘pedestrian-unfriendly’ design 

(CERVERO; KOCKELMAN, 1997) with hostile large parking lots  (LESLIE et al., 2007).  

This measure is greatly linked to large retail chains and shopping malls from 

North American cities. It has even been considered only for large retail activities with three or 

more shops or a single shop of 250 square meters or larger (LESLIE et al., 2007). It can be 

interpreted as a derivation of the early metrics of parking ratios, that indicated the relationship 

between the space allotted for parking and the space occupied by retail buildings (GIBBS, 

2012).  

In this sense, zoning may seem as the greatest barrier to the development of 

neighborhoods that are denser, with a greater mixture of uses, more options for local 

destinations and local employment. Municipal Zoning may segregate residential and other land 

uses, restricting the possibility for developments capable of maintaining local retail and services  

(FRANK et al., 2006). However, land use mix, accessibility to goods and services are complex 

notions (HANSEN, 1959) intrinsically attached to the property market dynamics that operate 

across urban space at different spatial scales (CHIARADIA et al., 2012). Walkability has an 

important connection to the function of urban economies (HAMILTON, 2007). More walkable 

areas tend to be more developed and by consequence closer to more amenities.  Such amenities 

only come to be in areas where their price is sufficiently valued  (BOYLE; BARRILLEAUX; 

SCHELLER, 2014). Apart from the potential environmental, social benefits and individual 

improvements walkable neighborhoods have been linked to, there is a naturally occurring 

increase in residential and commercial property values (GUO; PEETA; SOMENAHALLI, 

2017).  

Therefore, an important aspect to be considered is the ample evidence that 

land values increase with walkability (MATTHEWS; TURNBULL, 2007; RAUTERKUS; 

MILLER, 2011; GUO; PEETA; SOMENAHALLI, 2017). Neighborhoods closer to centralities 

and established in older settlements have been found to be more walkable and more 

economically valued  (RAUTERKUS; MILLER, 2011).  When examining the degree to which 

property values are driven by land values, evidences also support the influence of walkability  

(RAUTERKUS; MILLER, 2011). According to Pivo and Fisher (2006) property types 

established in walkable communities generate higher income and,  therefore, have the potential 

to generate returns as good as or better than properties less walkable. Taking such evidence into 

account, it is safe to conclude that land and property price are environmental/social variables 
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intrinsically related to walkability and walkable characteristics, such as mix of uses 

(CHIARADIA et al., 2012).  

Other characteristics, such as street connectivity can also be considered to 

have monetized value in the reduction in travel time, which is enabled by the grid geometry that 

increases the potential speed of the transport through the spatial network (CHIARADIA et al., 

2012). As one fundamental walkability measure, street connectivity quantifies the linkage 

between destinations. It is argued that connectivity is an urban design measure that underpins a 

walkable neighborhood (KOOHSARI et al., 2016a). Urban travel occurs on streets, directly 

influencing travel patterns (GRASSER, 2014). Connected street networks provide more direct 

routes to destinations (FRANK et al., 2010), being a prerequisite for increasing pedestrian 

activity (ELLIS et al., 2015).  Such importance is supported by several empirical findings that 

indicate consistent positive associations between walking, especially for transport,  and street 

connectivity (OAKES; FORSYTH; SCHMITZ, 2007; BERRIGAN; PICKLE; DILL, 2010; 

SUGIYAMA et al., 2012).  

Street connectivity is commonly operationalized as the quantification of 

urban features such as the number of intersections by unit area in the form of a density measure. 

It is often represented by the mean block size per area, indicating the average distance between 

intersection (ELLIS et al., 2015).  Route directness or measures of accessibility based on the 

configuration of street elements, drawing from the space syntax theories, are also resorted to 

when representing street connectivity  (KOOHSARI et al., 2016b).  

The space syntax theory, developed primarily in the fields of Urban Design 

and Architecture, focuses on the spatial relationships between streets within a network. It aims 

to comprehend the morphological structure of urban environments (HILLIER; HANSON, 

1984). Street connectivity, despite being a spatial construct, exerts influences on functional 

aspects of the urban form. The relationship between the movement of pedestrians and the urban 

configuration is described in several scientific works of space syntax theorists Hillier and 

Hanson (1984). Pedestrian movement is thought to be, to a large extent, dependent on the spatial 

arrangements produced by society. Space syntax analyzes the correspondence between the 

spatial structure and the social logic of space seeking to understand the logic that emerges from 

the urban configuration itself. Uncovering the correlation between these two elements may be, 

in a way, fundamental for understanding the social dynamics of cities themselves. 

Hillier (1993) introduces the theory of Natural Movement, presenting 

evidences that the street network’s configuration and connectivity generates central areas with 

the potential for development of commercial activities and greater pedestrian movement. Hillier 
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states in this seminal work that the configuration of streets is considered the "primary generator 

of pedestrian movement" (HILLIER et al., 1993). Where relationship between space syntax 

measures, i.e. integration, and pedestrian flow demonstrated high correlations. According to 

several empirical studies, even in Brazil, space syntax measures are positively correlated with 

pedestrian movement (ZAMPIERI; RIGATTI, 2006).  

Researches involving space syntax measures have the potential to contribute 

with new insights on the relationship between urban form and walking behavior (KOOHSARI 

et al., 2014). These measurements have shown to be related to several urban spatial 

characteristics such as the price of land (SCHROEDER; SABOYA, 2015), the location of 

residential activities (CARVALHO; SABOYA, 2017) and commercial activities (LIMA, 

2015). Although several studies have examined associations between street connectivity and 

walking levels (BARAN; RODRÍED;GUEZ; KHATTAK, 2008), only some international 

studies and no Brazilian researchers have investigated the role of space syntax as a walkability 

measure that influences walking behaviors.    

 

2.2 Active travel behavior and perceived built environment  

 

According to the ecological perspective proposed by Sallis and colleagues 

(2006), physical activity, walking behaviors and the adoption of a healthy lifestyle are complex 

actions. According to the authors, many domains influence PA, from personal, cultural, and 

socio-economic to environmental, that have been identified as important correlates of walking. 

However, these environmental attributes can be assessed in either an objective or  subjective 

manner (DEWULF et al., 2012). It is not yet clear whether objective or perceived measures of 

walkability constructs are more or less related to actual physical activity behavior (DEWULF 

et al., 2012; LESLIE et al., 2005), but it is understood that both types of data don’t necessarily 

coincide as there are in different domains.  

It is argued that human processing of information about environmental 

attributes is construed as cognitive maps; however, these may not precisely represent actual 

environment and could reflect cognitive distortions (GEBEL et al., 2011).  On the other hand, 

according to Lin and Moudon (2010), most of the studies conducted in this approach showed 

that a number of built environment attributes, measured both objectively and subjectively are 

related to walking levels. Further Duncan, Spende and Mummery (2005) conducted a review 

that indicated that rates of walking are significantly supported by perceived environmental 

characteristics, as well as by objective characteristic. Incorporating both objective measures and 
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perceptions of residents in research is important, as the impact of the objective environment on 

health depends on human perceptions, motivations, and deliberations (DEWULF et al., 2012). 

In response to this potential disparity between the objective and perceived 

walkability environment, several studies have investigated their concurrence (MCGINN et al., 

2007; SUGIYAMA et al., 2015a). Analyzing the scientific evidences on the literature that 

utilizes combined subjective-perceived and objective measures of the built environment to 

analyze walking behaviors is paramount, for a broad understanding of this inconclusive 

research paradigm.  

Within this context, some studies aim to solely analyze the agreement 

between the objective and perceived built environment (HOEHNER et al., 2005; LESLIE et al., 

2005; DING; GEBEL, 2012; JAUREGUI et al., 2016b). However, some focus to determine if 

there is an association between perceived and objective neighborhood environment variables 

considering neighborhood satisfaction (VAN DYCK et al., 2011; GRASSER; TITZE; 

STRONEGGER, 2016; LEE et al., 2017). Furthermore, others attempt to examine to what 

extent socioeconomic variations interfere (GILES-CORTI; DONOVAN, 2002; SUGIYAMA 

et al., 2015a; MACKENBACH et al., 2016) or even considerations of attitude toward walking 

(YANG; DIEZ-ROUX, 2017).  

Earlier evidence indicates that those who walk more have more positive perceptions of 

their surrounding environments (CARNEGIE et al., 2002). Walking behavior is most 

commonly measured by self-reports, even though there are indications that there is possible 

bias and subjectivity in this type of assessment (CAPUTO et al., 2016). Several perceived 

environment characteristics have been found associated with walking  (HUMPEL et al., 2004).  

To measure such perceptions instruments used vary greatly, however, the Neighborhood 

Environment Walkability Scale (NEWS), which is a self-report survey (SAELENS et al., 2003), 

is widely applied   (LESLIE et al., 2005; MCCORMACK et al., 2008; DEWULF et al., 2012; 

SAELENS et al., 2012; JACK; MCCORMACK, 2014). Subscales of the survey are often used, 

such as safety from traffic (LESLIE et al., 2005; GEBEL et al., 2011; SAELENS et al., 2012; 

LEE et al., 2017); street connectivity (SALLIS et al., 2010; LEE et al., 2017); among others. 

Neighborhood Built environment Satisfaction (NS) has been defined as an 

individual’s evaluation of the neighborhood environment (HUR; NASAR; CHUN, 2010) that 

portrays evidence of the absence of complaints about the residential settings (LU, 1999). From 

a psychological aspect, it has been conceptualized as a ‘‘positive affective’’ state that one can 

have toward the residential environment (AMÉRIGO; ARAGONÉS, 1997). It has been widely 

studied as an indicator of resident’s evaluations of the neighborhood environment (LESLIE; 
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CERIN, 2008; DYCK et al., 2011; GRASSER; TITZE; STRONEGGER, 2016; LEE et al., 

2017).  

NS concerns many different domains. An array of neighborhood features has 

received empirical support in relation to neighborhood satisfaction, such as physical features 

(traffic noise, access to services and destinations etc.), social features (poor social cohesion, 

safety etc.)  and economic features (real estate values, neighborhood social economic status 

etc.) (SIRGY, M JOSEPH; CORNWELL, 2002). Evidences link dimensions of neighborhood 

satisfaction to mental health (LESLIE; CERIN, 2008), physical health (LEE et al., 2017) and 

better self-reported quality of life (ABASS; TUCKER, 2017).  Policy, planning and the design 

of healthy communities should concern the provision of development patterns that induce 

higher NS (LESLIE; CERIN, 2008), which is understood as an important factor when analyzing 

residential mobility patterns and neighborhood stability. In light of these considerations, better 

understanding the built environment attributes linked to satisfaction is relevant 

(PERMENTIER; BOLT; VAN HAM, 2011). 

Even though the influence of objective BE characteristics over NS  is partly 

mediated by perceptions of neighborhood attributes, there is evidence of direct effects of 

objective neighborhood conditions on neighborhood satisfaction. (PERMENTIER; BOLT; 

VAN HAM, 2011). Objective walkability indicators have been found positively associated to 

active transportation and neighborhood satisfaction with infrastructure. (GRASSER; TITZE; 

STRONEGGER, 2016). Further, traffic load and congestion have been shown to be negatively 

correlated with neighborhood satisfaction (LESLIE; CERIN, 2008). In contexts of developing 

economies, results point out that many characteristics such as residential density, land use mix 

and access to public transportation are significant to positive NS outcomes (KIM; PARK; LEE, 

2014). 

 Neighborhoods that include a mixture of retail/commercial and residential 

properties potentially promote the general well-being of the residents (RAUTERKUS; 

MILLER, 2011). However, evidences indicate that neighborhood socioeconomic level status 

confounds the association between walkability and neighborhood satisfaction (GRASSER; 

TITZE; STRONEGGER, 2016). Therefore it is important to emphasize that the relationship 

between walkability and neighborhood satisfaction is highly dependent on crime, esthetic-

related problems, pollution and overall unsafety. (VAN DYCK et al., 2011) 

Neighborhood satisfaction has been quantified using composite measures of 

various questions or individual questions regarding the physical and social neighborhood 

environment. Most surveys rely on 5-point Likert scales as indicators of a range of answers, 
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from dissatisfied to satisfied. Five Likert-type formats have been questioned, however,  current 

research indicates that the minimum number of response categories should be four, and the use 

of between four and seven is ideal. (LEE, 2010). Few studies regarding NS have been conducted 

in Brazil, however many neighborhood features that affect residents' quality of life through 

neighborhood satisfaction are noteworthy (SIRGY, M JOSEPH; CORNWELL, 2002). As a 

research variable NS is readily collected in social surveys but underused in the analysis 

(PARKES; KEARNS; ATKINSON, 2002).  

 

                                                                   ********* 

 

It is clear that individual factors of psychological, physical, social and cultural 

order determine different interpretations of the quality of space, influencing the cognitive 

processes that lead to travel decisions (VARGAS, 2015). Notwithstanding, perceived 

neighborhood characteristics, for the most part, are considered higher (more positive) in 

objectively-determined high walkable neighborhoods than in less walkable neighborhoods. 

However, this low level of concordance confirms that perceptions should not be considered as 

proxies for objective measures (JAUREGUI et al., 2016a). 

Therefore, the existing body of research conducted in lower and middle-

income countries  is still modest if compared to the extent of the evidence from high income. 

Some studies have found weak correlations between perceptions and the environment, 

highlighting the relevance of contextual factors. A different socio-economic gradient of 

behavior might be less apparent in high-income countries, where leisure-time activity 

predominates as social class and physical activity are directly related. Therefore, incorporating 

perceptions to walkability analysis in low-income and middle-income countries is urgently 

needed to guide the creation of contextually tailored interventions (BAUMAN et al., 2012).  

 

2.3 Units of analysis  

 

BE attribute studies have relied heavily on areas that only reflect homogeneity 

of socioeconomic attributes as guides for data aggregation (ROUX, 2002). These spatial units 

are considered of “convenience” for their availability (RIVA et al., 2008) and are represented 

mainly by census tracts or census wards (HOEHNER et al., 2005; GAUVIN et al., 2008; 

BORTONI et al., 2009; FRANK et al., 2010; FLORINDO; SALVADOR; REIS, 2013; 

GLAZIER; WEYMAN; CREATORE, 2013; etc.).It is argued that their boundaries may not 



 

 

34 

match the BE areas that effectively influence behavior (FLOWERDEW; MANLEY; SABEL, 

2008).  

Census tracts have been defined by Hino (2014) as primary sampling units 

representing the smallest territorial unit possible, integrally contained in an urban or rural area, 

with a size and number of households that allow the survey by a census agent  (IBGE, 2015). 

Census tracts lack spatial homogeneity; this might lead to artificial spatial patterns. In such 

case, environmental characteristics can be measured with error, internally invalidating the study 

(RIVA et al., 2008). Establishing units that better represent the variations of behavior 

influencing factors related to health and walking is paramount (DIEZ ROUX, 2001). 

Alternative approaches for redefining census tracts are essential in light of the 

modifiable areal unit problem (MAUP). This concept exists in many studies where data is 

spatially aggregated and refers to the fact that analytical results are sensitive to the definition 

of spatial units in which data is aggregated (OPENSHAW, 1984).  Results are directly 

influenced by the number of areas considered and the boundaries that define them. The MAUP 

is presented only when the units chosen are arbitrary regarding the specific BE characteristics 

considered in the research. Despite the relevance and implications of the MAUP for the 

comprehension of environmental influences on health, it has received little to no empirical 

attention in the literature (STAFFORD; DUKE-WILLIAMS; SHELTON, 2008). 

It is clear that studies that disregard the specific definitions of an individual's 

exposure to the built environment may introduce measurement error, compromise statistical 

power of contextual analyses and come to spurious conclusions (SPIELMAN; YOO; 

LINKLETTER, 2013). Recent spatial analysis techniques and software capabilities have 

advanced on possible approaches for modeling individual walking neighborhoods, reducing the 

impact of the MAUP (FRANK et al., 2017). Alternative approaches to census tracts include 

automated zone design  (SABEL et al., 2013), clustering (RIVA et al., 2008) and the most 

prominent technique of defining an individual’s neighborhood: buffers (LESLIE; CERIN; 

KREMER, 2010; SAELENS et al., 2012; SALLIS et al., 2016b; FLORINDO et al., 2017; 

GUNN et al., 2017). The buffering approach defines that an individual's environment is a 

personal territory represented as an area around their residence and not a discrete location 

(SPIELMAN; YOO; LINKLETTER, 2013).  

Initially, many studies resorted to circular buffers (crow-fly buffers), that 

establish a circular area around an individual’s home at a given radius. However, it is probable 

that circular buffers don’t represent accurately relations between the built environment and 

walking (OLIVER; SCHUURMAN; HALL, 2007). Evidence from public health and built 
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environment literature, starting with the work proposed by Oliver and colleagues (2007), show 

better associations in network buffers when analyzing built environment’s relationships with 

walking (FRANK et al., 2017). This approach consists of creating a ‘network buffer’ polygon 

at a given distance from the participant’s location based on the street network, better 

representing the area accessible to an individual. 

When it comes to the area considered by the buffer, most studies indicate a 

radius metric. It must be considered that patterns observed using larger aggregation areas may 

mask meaningful differences observed at smaller geographic scales (MITRA; BULIUNG, 

2012). Evidence suggests that restricting BE exposure classifications to within 1000 m may be 

appropriate given most walks are shorter than 600m and few exceed 1200 m (HOUSTON, 

2014). Gehl (2013) indicated that considering people’s perceptions 500-meter walk is an ideal 

size.  According to Campoli (2012), a general transit planning rule is 450-800 meters, which 

generated roughly 50 hectares around one’s residence. It can be concluded that those 400-meter 

buffers represent a median length of daily walking trips (CLARK; SCOTT, 2014 apud  BOER 

et al., 2007), possibly being the ideal size for a buffer measure. Notably, there has been a call 

for more robust measures of the built environment at appropriate scales (CHRISTIAN et al., 

2011b). Therefore, considering the presented methodological challenges and the lack of 

experimental evidence on most adequate units of analysis for the Brazilian town context, an 

exploration of the sensitivity of built environment measures to different neighborhood 

representations is needed. 
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3 DATA AND METHODOLOGY 

 

The main objective of this research was to evaluate the efficacy of objective 

walkability measures on Brazilian averaged-sized towns. Considering the phenomenon under 

investigation as real-life and contemporary, dynamic and complex therefore indissociable from 

its contextuality, the most adequate research strategy is the case study (YIN, 2001). Rolândia-

PR was chosen due to data availability and representation of an averaged-sized Brazilian town. 

For the development of this strategy, a Correlational methodology was adopted to identify 

spatial and behavioral patterns with many variables, using statistics (GROAT; WANG, 2002).  

For the confirmation of research tendency and the appropriate methods to be 

applied, an integrative review, a method for gathering and synthesizing search results on a 

limited theme a systematic fashion was conducted (FERENHOF; FERNANDES, 2016). It had 

the objective of shedding light on methodologies for quantifying walkability, walking levels 

and perceptions through the analysis of the scientific literature that utilizes combined 

subjective-perceived neighborhood-built environment and objectively measured neighborhood-

built environment data to analyze any category of walking behaviors in able-bodied, randomly 

selected adults. The specific literature review method utilized for this literature review is the 

SystemSearchFlow method (SSF) (FERENHOF; FERNANDES, 2016).  

Initially, a research protocol was defined, with the objective of guiding the 

inclusion of quantitative studies on the associations of objective and perceived walkability-built 

environment. For such the following English language descriptors were used to compose a 

search strategy: ("built environment", "physical attributes", neighborhood); (walk*, “physical 

activity”); (measur*, perce*, objectiv*) were used to characterize the study’s dependent 

variable. The term (adult) and the excluded terms (older, elder, senior, disabled, patients, youth, 

children, adolescent*) delimitated the age group of interest and the physical condition of those 

included in the studies. The Boolean operators "OR” and "AND" were employed to combine 

words within and between the terms groups respectively and “NOT” to exclude the desired 

words from the search. Only article-type documents (of periodicals or conferences) were 

considered. The selection of articles was carried out without temporal restriction or research 

area. 

The organization of the bibliographic portfolio, that allows for the 

consolidation and comparing of data, was conducted through a software that organizes 

bibliographies and references (Mendeley©), automating and streamlining the processes of 
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searching, filtering, counting and storing. The standardization of the article selection was firstly 

based on the exclusion by duplicity. After the reading of all titles and abstracts, those that didn’t 

adhere to the theme were excluded.  The remaining papers were read in full and those that did 

fit the inclusion criteria were excluded. 

A query in the scientific databases was conducted, applying the established 

protocol, through the Scopus, Web of Science®, PubMed® e and the TRID® database. The 

main inclusion criteria were: Studies that (a) objectively and subjectively (necessarily including 

neighborhood-built environment perceptions) examined the association of any of neighborhood 

environmental attribute and walking behaviors, and (b) had conducted analyses in a sample of 

adults. The exclusion criteria were (a) studies without quantitative  analysis; (b) review studies; 

(c) studies that aim to elaborate or validate an objective or  subjective analysis tool/audit; (d) 

studies that focus on minorities, elderly, adolescents and any type of health issue or disability; 

(e) studies conducted on or related to rural environments; (f) studies considering perceived 

safety from crime as the only environmental perception attribute. 

 The results were synthesized from 2269 papers that were identified in the 

standardized database query. From these 661 were excluded by duplicity and 1608 remained.  

Through the revision process, 1574 were excluded in the reading of titles and abstracts and 7 in 

the reading of the full texts. By the end of the selection process, 26 articles met the previously 

established criteria and were included in the review for the extraction of data in the application 

of the second phase of the SSF Method. To uphold reliability and reproducibility it is informed 

that the searches were conducted on 22 of September of the year 2017. 

The results pointed out that among objective measuring of the neighborhood 

BE, walkability indices prevailed as the most present tool (n=12/46%) (Board 1). They are 

means to systematically measure urban form walkability variables and generate composite 

factors that combine multiple aspects of community design (FRANK et al., 2010). 

When it comes to physical activity the researches relied heavily on self-

reports (n=18). However, some studies did resort to accelerometers (n=3), pedometers (n=1) 

and even a combination of self-report with accelerometer use (n=1) to measure physical activity 

of the sample. Within those studies that assessed PA through self-report the instrument that was 

most applied were the International Physical Activity Questionnaire (IPAQ) and its variations, 

present in ten (n=10) studies. 
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Board 1 – Studies that applied Walkability indices and variables utilized.  

Source: Organized by the author, 2017 

AUTHOR OBJ. TOOL MEASURES 

(LEE et al., 2017) 
Walkability 

index  

Net residential density; Retail FAR; Land use mix; Intersection 

density; Network distance to nearest park  

(GRASSER; TITZE; 

STRONEGGER, 2016) 

Walkability 

index  

Gross population density, household unit density, entropy index, 

proportion of mixed land use, three-way intersection density, four-

way intersection density,  

(HANIBUCHI et al., 

2015) 

Walkability 

index  

Population density, road density, access to parks, and access to 

retail areas 

(SUGIYAMA et al., 

2016) 

Walkability 

index  

Residential density, intersection density, land use mix, and retail 

FAR 

(DEWULF et al., 2012) 
Walkability 

index  
Street connectivity, residential density, and land use mix 

(GEBEL et al., 2011) 
Walkability 

index  
Dwelling density, street connectivity, land use mix, and retail FAR 

(VAN DYCK et al., 2011) 
Walkability 

index  
Residential density, street connectivity and land use mix  

(KERR et al., 2010) 
Walkability 

index  

Residential density, street connectivity, land use mix, and retail 

FAR 

(GEBEL; BAUMAN; 

OWEN, 2009) 

Walkability 

index  
Dwelling density, street connectivity, land use mix, and retail FAR 

(MCCORMACK et al., 

2008) 

Walkability 

index  

Intersection density; dwelling density; and land-use mix +   

shortest road network distance in meters between the participant’s 

home and previously mentioned destinations. 

(OWEN et al., 2007) 
Walkability 

index  

Dwelling density, street connectivity, land-use mix, and, retail 

FAR 

(LESLIE et al., 2005) 
Walkability 

index  
Intersection density, dwelling density, land-use mix 

 

To measure perceptions of the neighborhood BE, the instruments used varied 

greatly. However, the Neighborhood Environment Walkability Scale (NEWS), which is a self-
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report survey previously found to be reliable and valid (SAELENS et al., 2003), was applied 

on 41% (n=11) of the studies analyzed (Board 2). 

 

Board 2 – Studies that applied the NEWS survey and specific measures used. 

AUTHOR SUB. TOOL MEASURES 

(LEE  

et al., 2017) 
(NEWS) 

residential density, land use mix–diversity, land use mix–access, 

street connectivity, walking/cycling facilities, aesthetics, 

pedestrian/traffic safety, and safety from crime 

(JAUREGUI 

 et al., 2016) 

(ANEWS) 

adapted for 

Latin America 

land-use mix, intersection density, residential density, proximity to 

transit stops, proximity to parks, perceived neighborhood safety, 

and perceived park safety 

(SUGIYAMA 

 et al., 2015) 
(NEWS) 

access to destinations, neighborhood aesthetics, walking 

infrastructure, traffic/barriers not a problem, and crime safety 

(JACK; 

MCCORMACK, 

2014) 

(NEWS-A) 

safety from crime; neighborhood aesthetics; access to services; 

street connectivity; pedestrian infrastructure; motor vehicle traffic 

safety, and; physical barriers; recreation destination mix 15-

minutes of home; utilitarian destination mix within 15-minutes of 

home 

(KOOHSARI  

et al., 2014) 

modified 

(NEWS) 
street connectivity; land use mix 

(DEWULF 

 et al., 2012) 
(NEWS) estimates of walking times to various closest destinations 

(SAELENS 

 et al., 2012) 
(NEWS) 

neighborhood walking/cycling facilities, aesthetics, 

pedestrian/traffic safety, and safety from crime; reported on the 

proximity of 18 recreation facilities  

(KERR  

et al., 2010) 
(NEWS) 

aesthetics, trees, hills, traffic speed, traffic safety, visibility of other 

people, crime safety, pedestrian facilities and number of 

destinations within a 20-min walk. 

(GEBEL; 

BAUMAN; OWEN, 

2009) 

(NEWS) 
perceived dwelling density, street connectivity, land use mix, net 

retail area 

(MCCORMACK et 

al., 2008) 
(NEWS) estimates of perceived distances (EPD) 

(LESLIE  

et al., 2005) 
modified 

(NEWS) 

residential density; land-use mix diversity; land-use mix access; 

street connectivity; walking facilities; aesthetics; traffic safety; 

safety from crime. 

Source: Organized by the author, 2017 
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Considering the above-presented evidence, the use of walkability indices as 

large-scale reduction tools is justified for this research. It is clear that the environmental 

components of residential density; connectivity; and land use mix and Retail FAR are 

significant and should be taken into consideration when analyzing objective walkability. In 

attempting to replicate walkability indices in other contexts, modifications are often required 

due to differences in both contextual urban structure and availability of data for the study area 

(CHRISTIAN et al., 2011a). The greater amount of research conducted on this topic has been 

held in North America, further investigation of these relationships are required in varying urban, 

cultural and demographic environments (SALLIS et al., 2009). 

The most adequate subjective measure of the perceived neighborhood 

environment is the Neighborhood Environment Walkability Scale (NEWS) (SAELENS; 

SALLIS, 2002). This easy to apply, valid, and peer approved tool measures the individual’s 

perceptions, having subjectivity as a characteristic. Perceptions of satisfaction have been widely 

studied as an indicator of resident’s evaluations of the neighborhood environment and can be 

considered a good proxy for peopled general perceptions of the neighborhood environment. 

Self-reported walking behavior is pointed out as a possibly biased dataset, however, alternatives 

remain unviable, especially in low-income contexts.  

Therefore, walkability indices, the NEWS survey, and self-reported walking 

are measuring approaches relevant in the literature and were effectively adopted in this research.  

Objective urban form data was collected in the field by the researcher.  Walkability indices 

were constructed using relevant walkability constructs in their most common combinations and 

proposed arrangements that could possibly better reflect the specific urban context at hand.  

On account of database availability and populational representation of an 

average-sized Brazilian town, the selected case study is Rolândia-PR. This town is currently in 

the processes of developing its mobility plan, therefore an extensive subjective database was 

provided by ITEDES- Institute of Technology, Economic, and Social Development. The 

available data includes self-reported travel behaviors and perceived neighborhood satisfaction 

measured through the satisfaction subscale of NEWS survey. Perceived satisfaction of safety 

while walking, pleasure while walking, ease to walk and access to public transportation are 

some examples of the subjective aspects assessed (ATTACH A).  
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3.1 Case study: Rolândia, Paraná State, Brazil 

 

Rolândia was chosen as a case study due to its representation of an average-

sized Brazilian town and availability of subjective data. The municipality of Rolândia in the 

state of Paraná-Brazil has an extension of 454,174 km² and an estimated population in 2017 of 

64,726 inhabitants (IBGE, 2018) (Figure 4).  

Rolândia is included in the metropolitan region of Londrina. Its economy is 

based on the agriculture of corn, wheat, sugar cane and orange, and more predominantly 

soybean.  The municipality has most of its area categorized as rural (410,144 km²), and a modest 

urban perimeter area (44,03 km²). The local economy also contains an industrial complex 

(IPARDES, 2018). 

The Human Development Index (HDI) is 0.739, considered medium to high 

(IBGE, 2018).  However, due to the lack of administrative infrastructure, georeferenced spatial 

data is almost never available. Therefore, the Georeferencing of data of the city of Rolândia-

PR was conducted by the researchers. 

 

Figure 4 – Rolândia’s municipal perimeter. 

 

Source: ESRI  (2018a). Organized by the author, 2018. 
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Rolândia is historically a German colony established through the Companhia 

de Terras Norte do Paraná (CTNP), that in the mid-twentieth century executed the 

commercialization of land in northern Paraná. Most of the cities colonized by CTNP followed 

the railway line, having their origin at the stops along the extension of the train line and took a 

euclidian orthogonal street network design (REGO e MENEGUETTI, 2006). Rolândia 

followed such characteristics and was the sixth colony to be established. The first immigrants 

to arrive at the site were of Jewish-German origin in the years of 1932-1933 (DUARTE et al, 

2004). In 1934 the first house inside this perimeter was built giving rise to local urban growth 

was expansive and fast.  

 

3.2 Units of analysis  

 

This study has conducted all analysis in six different spatial unit 

operationalizations: census tracts and five buffer scales. The ‘sliding scale’ units of analysis 

(GEHRKE; CLIFTON, 2014)  were based on three network buffers of 200, 400,  600, 800 and 

1000 meters extending along the street network of around the households of respondents 

(Figure 6). These radii follow literature tendencies that consider BE exposure classifications to 

within 1000 meters, as most walks are shorter than 600m and few exceed 1200 m (HOUSTON, 

2014).  Further, the available data regarding self-reported travel behaviors, as represented in 

the histogram (Figure 5), shows a majority of walking trips restricted within the 1000-meter 

distance range. The 6 selected radii metrics reflect walking patterns present in the case study 

considered here. 

 

Figure 5 – Rolândia’s walking trips versus walking distance histogram. 

 

Source: Organized by the author, 2018. 
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All compared buffers sizes were generated using the ESRI ArcGIS 10.4.1 

software and the Service Area Solver within the Network Analyst extension. The ‘detailed’ 

polygon generation option was enabled. Figure 6 depicts a size comparison between the five 

different buffer sizes and census tract.  

The fixed scale units of analysis (GEHRKE; CLIFTON, 2014) were based on 

Rolândia’s administrative division, obtained from IBGE available data. Rolândia is currently 

divided in 74 urban census tracts, however, four of these are characterized as rural areas. On 

the other hand, sector #47 is classified as rural although it is included in the urban perimeter 

and has a large inhabitant settlement.  Sectors #48 and #57 were disregarded in the walkability 

calculations and statistical correlations as they represent a new unoccupied allotment area with 

only limiting streets and no internal network, making the calculations unfeasible. Therefore, the 

final sample considered were 69 census tracts included in the urban perimeter of the 

municipality of Rolândia (Figure 7). 

Figure 6 – Scales of units of analysis considered. 

 

Source: Organized by the author, 2018. 
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Figure 7 – Considered census tracts. 

 

Source: IBGE (2016). Organized by the author, 2017 

3.3 Correlational variables  

 

This research’s correlational variables were based on secondary data from the 

Rolândia Urban Mobility Plan (PlanMob). This document was prepared in 2017 and 2018 under 

the responsibility of ITEDES. An Urban Mobility Plan consists of understanding people and 

cargo movements in an urban environment, analyzing and directing planning measures to 

guarantee more efficient transit systems. They are currently necessary to comply with the 

national guidelines of the Federal Law n. 12,587 / 2012 related to the National Policy on Urban 

Mobility.  

The Origin-Destination (OD) survey is one of the main researches used in 

Traffic Engineering and was the basis for Rolândia’s Mobility Plan. The OD research conducted 

in Rolândia-PR was household-based, with a sample related to the total of permanent private 

households. The questionnaire (ATTACH A) was organized into different and specific sections 

(Figure 8), relating to household data, family data and individual data from members of the 
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families which includes the trips made by them the day before. From each section of the survey, 

it was possible to select the correlational variables for the current study, which are: walking 

levels, perceptions of satisfaction with the neighborhood environment and individual variables.  

Initially, publicity work was conducted to inform the population of the field 

work that would be done by the researchers. Personnel was trained for standardization and 

correct application of the research (ITEDES, 2018). Next, a pilot trial was carried out, in order 

to detect possible problems in data tabulation. The person in charge of the selected domicile 

was interviewed on household characteristics, family member characteristics and each trip 

made the previous day by each household resident. The surveyed days were set from Tuesday 

to Friday. Thus, there were no trips made on atypical days, such as the weekends. Holidays 

were also disregarded (ITEDES, 2018). 

 

Figure 8 – Origin-Destination questionnaire structure. 

 

Source: ITEDES (2018). Organized by the author, 2018. 

 

The households considered in the OD survey were selected according to an income 

criterion. For this, the list of residencies from SANEPAR (Sanitation Company of Paraná) was 

used, where the tax paying units were classified. Sample was conducted in a probabilistic 

manner, in this case, trough Stratified Random Sampling. A total of 756 valid questionnaires 
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was applied, representing 3.76% of the of 20.065 Permanent Private homes (IPARDES, 2018). 

Considering 10% margin of error and 95% level of confidence the sample is well over the 

necessary sample size (approximately 380 households). 

The population (N) of tax paying units was first divided into subpopulations/strata 

according to income. These subpopulations were nonover-lapping, and together comprise the 

whole of the population. After strata had been determined, a random sample was drawn from 

each stratum. Such strategy ensures each subgroup within the population receives proper 

representation within the sample providing better coverage of the population (COCHRAN; 

WILEY, 1977). The households were distributed through census tracts and municipal sectors, 

guaranteeing uniform stratification across the territory (ITEDES, 2018).  

For the visual representation of the sampled population considered and its coverage of 

the territory a Kernel Density map was constructed. This mapping method represents a study 

area through the point density of a variable. The points, in the case, are the geographical location 

of the residences that comprise the selected sample weighted in a specific method of 

interpolation (the Kernel Function) (HART; ZANDBERGEN, 2014). The patterns of 

distribution of the sample can be observed in Figure 9, next to the study case’s residential 

density kernel density map.  It can be noticed that all permanent private residence areas of the 

territory are contemplated by the selected sample. Areas of the urban grid such as the extreme 

north (an un-occupied residential area) and the extreme east (an industrial site) are not included 

in the extent of the sample for the inexistence of residents.  

 

Figure 9 – Household sample Kernel density map and geographic location. 

 

Source: ITEDES (2018). Organized by the author, 2018. 
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3.3.1 Active travel in Rolândia Paraná: Walking for any purpose 

 

The OD survey collects detailed travel behavior data by asking participants 

to describe all trips made the day before. The precise addresses of each trip’s origin and 

destination were collected, along with purpose, mode, time of day and duration. A trip was 

established as any time you went from one address to another in a vehicle, by walking or biking 

(BOER et al., 2007).  Each trip made was accounted for, providing data on pedestrian, bicycle 

and traffic movement. Two thousand seven hundred thirty-one (2731) trips were registered in 

the OD survey conducted in Rolândia. Due to inconsistencies in the research’s output, such as 

the misspelling of street names and missing information, a total of 2097 trips were geocoded.  

The survey question “What modal of transport did you use to arrive at your 

destination?” was used to indicate the mode of transportation. The possible answers were (1) 

bus (2) private bus (3) school bus (4) van (5) motorcycle (6) driving automobile (7) passenger 

automobile (8) taxi (9) bicycle (10) by foot (11) others. Table 1 shows the number of trips 

related to each possible transport mode.  

 

Table 1 – Number of trips collected from each modal 

Type of Trip Number of trips Definition 

Automotive 1311 62.5% Automotive car, Motorcycle, Taxi, Bus, Van 

Walk 394 18.8% Walk  

Bike 392 18.7% Bike 

Total  2097 100% - 
 

Source: ITEDES (2018). Modified by the author, 2018. 

The walking trips considered in this research were the ones which the 

participant replied with the answer “by foot” (10), 394 trips were computed. Table 2 shows the 

average length of walking trips and the sum of the kilometrage of walking trips. A prevalence 

home and study walking trips can be observed, as well as the fact that most are mainly under 1 

km long. 
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Table 2 – Number, the sum and average length of walking trips by purpose. 

 

Type of walking trip Number of trips Sum walking route lengths (km) 
Average length 

(km) 

Work-industry 3 9,93 3,31 

Work-retail 5 7,36 1,47 

Work- services 15 14,26 0,95 

Study 81 109,67 1,35 

Shopping 18 16,43 0,91 

Health Care 13 12,33 0,95 

Leisure 20 21,00 1,05 

Return home 196 211,96 1,08 

Other 42 35,77 0,85 

Total 394 438,71 11,94 

Source ITEDES (2018). Modified by the author, 2018. 

Respondents were also asked the following questions “If you did walk, why?” 

and “If you did not walk, why?”. The possible answers for reasons for walking were: (1) 

Inefficient public transportation; (2) Small distance; (3) Other motives (Table 3). As for not 

walking the possibilities were: (1) Excessive distance; (2) Unsafety; (3) Fear of being run over 

by car (4); Climate (5); Topography (6); Other reasons. Most respondents reported choosing 

walking because of “small distances” and most reported not walking for “excessive distances” 

(Table 3). 

 

Table 3 – Reasons for walking and reasons for not walking. 

Reason for 

walking 

Number of 

trips 
Percentage 

Reasons for 

not walking 

Number of 

trips 
Percentage 

Inefficient Public 

Transport 

57 14.47% Excessive 

distance 
999 76.20% 

Unsafety 23 1.75% 

Small distance 314 79.9% Fear of being 

run over 
2 0.155% 

Climate 0 0% 

Other motives 21 5.33% Topography 6 0.45% 

Other reasons 171 13.04% 

Total 394 100% Total 1311 100% 
 

 

Source: ITEDES (2018). Modified by the author, 2018. 

 

 

To more precisely correlate urban form measures to walking behavior, trips 

registered through the OD research were spatialized in geoprocessing procedures that connect 

geocoded origins and destination trough georeferenced routes. Geoprocessing is the connection 
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of data through spatial operations, connecting objects in their actual location  (DRUCK et al., 

2005). 

It is important to emphasize that in the present study the constructed routes 

considered only the preliminary choice of route, coarsely depicting the minimization travel cost  

(e.g. the effort or difficulty associated with a particular route) of a walked trip (BORST et al., 

2009). Here the shortest distance between origin and destination of the route is accounted for 

in the software’s automatic route generating procedure. Also, terrain slope is a controlled 

variable as the case study presents minimum slope overall. The urban grid of Rolândia has 

developed on a high plane, or plateau, a flat terrain raised significantly above the surrounding 

area (Figure 10 – Rolândia’s municipal boundary and urban perimeter heightmap.).   

Many studies investigate the particular criteria that influence pedestrian choice of a 

specific route.  Even though such field of study is dense and complex, general evidences 

indicate that pedestrians often seem to choose the shortest route, however other factors 

considered as important encompass domains of the street network itself (e.g straightness) 

(BRUNYÉ et al., 2015); street characteristics (e.g. sidewalk width) (CZOGALLA; 

HERRMANN, 2017); urban form (e.g. land use/retail; open spaces) (GUO, 2009; GUO; LOO, 

2013); terrain slope (e.g. hilly topology) (GUO, 2009); among others.  

 

Figure 10 – Rolândia’s municipal boundary and urban perimeter heightmap. 

 

Source: IBGE (2016). Organized by the author, 2017 
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The 756 Respondent’s and the 2097 origin and destination address from all 

transport modes were spatialized using the Geocoding Tools toolbox and Geocode Addresses 

feature from ArcGIS 10.4.1 (ESRI, Inc). Through the ArcGIS On line’s Spatial Analyst 

toolbox and Connect Origins to Destinations tool (ESRI, 2018b), routes were geocoded. This 

tool measures the distance between pairs of points using travel modes. It follows paths and 

roads from the street network that allow pedestrian transit, optimizing travel time by 

considering the shortest possible path. A geodesic method is set to account for the actual 

shape of the earth (ESRI, 2018b).  From the geocoded routes it was possible to model street 

loads for all modes of transportation. Figure 11 indicates the locations and intensity of the 

394 walking trips as a street load map (Figure 11).  

 

Figure 11 – Walking street load. 

 
Source: ITEDES (2018); Organized by the author, 2018. 
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Such routes were quantified per unit area, census tracts and buffers. Route 

information was overlapped with unit areas through the intersect ArcGIS tool which computes 

a geometric intersection of the input features, in this case routes and unit areas (Figure 12“A”). 

Features or portions of features which overlap are written to an output feature class (Figure 

12“B”). In sequence, after the routes had been attributed to each individual unit area, the 

summarize feature from the table of attributes, which calculates summary statistics for fields in 

a feature class, was used for obtaining the sum of walking meters per unit area. The output of 

the summarize procedure is a table which in sequence is joined through the join tables tool to a 

shapefile containing all information on urban form walkability and respondent’s characteristics. 

The final composed data is a measure of meters walked per unit area (Figure 12“C”). This is 

the base for the final correlational data that was used to verify the efficacy of objective 

walkability measures and their constructs in Rolândia-Pr. 

 

Figure 12 – A: input features, in this case routes and unit areas; B: the routes attributed to 

each individual unit area; C: final composed data is a measure of meters walked per unit area. 

 

Source: ITEDES (2018); Organized by the author, 2018. 
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3.3.2 Quantifying neighborhood perception of satisfaction  

 

Self-reported neighborhood satisfaction was employed as a proxy for 

walkability in this present study. The OD survey (ATTACH A) included questions based on 

the Neighborhood satisfaction subscale from the Neighborhood Environment Walkability Scale 

(NEWS) (SAELENS et al., 2003). Originally, the OD survey applied considered 9 question 

derived from the NEWS satisfaction subscales, however two of these were related to bikeablity 

therefore were excluded from the present analysis.  

Walking and cycling are functionally different in that they fulfill different 

daily purposes for individuals and pose different problems for facility planning and community 

design (KRIZEK; HANDY; FORSYTH, 2009). In the same sense, dimensions of the built 

environment influencing each mode may differ (MOUDON; LEE, 2003), therefore there are 

differences between a measure for walkability and one for bikeability. (WINTERS et al., 2013). 

Therefore, neighborhood satisfaction was defined by the answers of seven relevant question on 

aspects of Travel Network; Safety and Walkability; and Traffic and Noise (Table 4). 

 

Table 4 – Survey questions for neighborhood satisfaction assessment. 

Satisfaction Factor  Survey Instrument Items 

Travel Network • The access to public transportation in your 

neighborhood 

Safety and Walkability • How easy and pleasant it is to walk in your 

neighborhood 

• Safety in walking 

• Your neighborhood as a good place to live. 

• Access 

Traffic and Noise • The amount and intensity of traffic in your 

neighborhood.  

• The speed of traffic in your neighborhood.  

• The noise from traffic in your 

neighborhood. 
 

Source: ITEDES (2018); Organized by the author, 2018. 

 

It must be emphasized that the construction and application of questionnaires 

is a complex methodological task, from planning, structuring, writing and asking survey 

questions, including avoiding ambiguity and how the actual questionnaire should look 



 

 

53 

(BRACE, 2005). Specific methods and procedures make questionnaire design a scientific 

activity (SARIS; GALLHOFER, IRMTRAUD, 2014). In the case study under investigation, 

questions from the perception of satisfaction subscale from NEWS were aggregated to the 

traditional OD survey.  This adjustment could possibly have compromised the quality of the 

data. The original selection of questions initially broke the sequence and linguistic of the source 

NEWS questionnaire.  

The data considered in the quantification of neighborhood satisfaction are 

those sourced from the households that reported walking trips.  The 394 walking trips were 

surveyed from 142 households.  Only the person in charge of the household was interviewed, 

therefore, perceptions trace back only to one person. Due to such misconnection of data, it is 

unfortunately impossible to connect perception to walking trips, neither is it possible to connect 

the perception data to individual characteristics as the person in charge of the household is not 

indicated in the member section of the survey. Coarse generalizations from each household can 

be made, such as mean age, mean income and mean degree of education.  

Likert scales have been ubiquitously employed to measure levels of 

neighborhood satisfaction among respondents (LEE, 2010). Each of the questions surveyed was 

rated by the respondents using a 5-point Likert scale from 'very dissatisfied' (1) to 'very satisfied' 

(5). Such categories of answers were dichotomized into positive and negative: null, 1 (very 

dissatisfied) 2 (dissatisfied) and 3 (neither satisfied nor dissatisfied) were classified and 

negatives and 4 (satisfied) and 5 (very satisfied) as positives.  

The distribution of data can be observed in Figure 13 to Figure 19. It is very 

clear that some of the responses are not well distributed, such as in “Being a Good Place to 

Live”. The possible reason for such unevenness is the  psychological perspective of NS  where 

there is a ‘‘positive affective’’ state toward the environment (AMÉRIGO; ARAGONÉS, 1997), 

possibly inciting an unwillingness to rate it as a bad place to live. Similarly, in “Access to public 

transport” there is an evident response unevenness, probably due to actual lack of such urban 

infrastructure and services. 
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Figure 13 – Categorization distributions: Satisfaction with Access to public transport. 

 

Figure 14 – Categorization distributions: Satisfaction with Ease and pleasure in walking  

 

Figure 15 – Categorization distributions: Satisfaction with  Safety in walking  

 

Figure 16 – Categorization distributions: Satisfaction with Traffic amount/ intensity  
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Figure 17 – Categorization distributions: Satisfaction with Traffic Speed 

 

Figure 18 – Categorization distributions: Satisfaction with Traffic Noise 

 

Figure 19 – Categorization distributions: Satisfaction with Being a good place to live  

 

Source: ITEDES (2018). Organized by the author, 2018. 

 

The dichotomized perceptions were quantified per unit area, census tracts or 

buffers. The product of this juxtaposition of data was a measure of positive and negative 

perceptions. This was the final data utilized in the analysis of the relationship between 

perceptions of satisfaction, objective walkability measures and walking. 

 

3.4 Objective measurement 

 

Considering the evidence presented in the previous chapter, the use of 

walkability indices as large-scale reduction tools is justified and in line with the type of analysis, 

this research proposes. Also following literature tendencies, the individual walkability 
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constructs to be considered are residential density, street connectivity, retail floor area ratio, 

land use mix, space syntax, and parcel/real estate price. 

Regarding residential density, it is clear that this environmental component is 

consistently related to physical activity and walking (REIS et al., 2013 apud PANTER et al., 

2011)  and, in the present work, is taken into consideration when analyzing walkability.  

According to Sugiyama and colleagues (2012), street connectivity has been 

substantially associated with walking, indicating that there is solid evidence for considering this 

feature.  Street connectivity is most usually represented by intersection density. Within common 

walkability indices, such as on the prominent walkability study proposed by Frank (2010), this 

metric is often weighted by a factor of two. This study is one of the pioneering walkability index 

propositions. It was conducted with data from American cities, Baltimore and Seattle, where 

there are large distances between intersections justifying the double weight given attributed to 

the measure. This methodological choice was based on prior simulations of alternative 

weighting schemes (FRANK et al., 2010). However, this environmental feature is, in general, 

very different in Brazil (REIS et al., 2013), applied walkability analysis to some census tracts 

in Curitiba reducing the weight given to intersection density.  Motomura (2017) also pointed 

out that a higher intersection density was found in Brazilian outskirts, locus of social housing 

as these areas are mostly characterized by small lots and long-narrow blocks.    

It can be inferred that such spaces are most likely not walkable, and their 

residents possibly have more negative perceptions of the built environment (Figure 20). It must 

be considered that intersection density might propose a setback when it comes to Brazilian 

town. New simulations of alternative weighting schemes on intersection density for Brazilian 

towns should be considered. Initially, the reduction of the weight given to the calculation of 

intersection density was made in an attempt to lessen its representation for our specific context.  

The greater amount of research conducted on this topic has been held in North 

America, further investigation of these relationships are required in varying urban, cultural and 

demographic environments (SALLIS et al., 2009). In attempting to replicate walkability indices 

in diverse settings, modifications are often required due to differences in both contextual urban 

structure and availability of data for the study area (CHRISTIAN et al., 2011a). Retail FAR is 

linked to larger retail and shopping malls, a type of development that is rare in medium and 

small Brazilian towns. It can be considered a context-specific characteristic that might require 

simulations and validations to be tested.  
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Figure 20 – Social housing development San Tiago in Rolândia PR - example 

of the impact of street connectivity. 

 

Source: ESRI  (2018a). 

Several studies have concluded that increased land use mix is associated with 

reduced levels of automobile-based travel (FRANK, 2000).  Further, mixed-land use 

communities are thought of as more livable and presenting higher levels of satisfaction with 

physical character (KWEON et al., 2010). Land use mix is a critical element for the 

development of more compact, sustainable (STEVENSON et al., 2016) and walkable cities, 

therefore was taken into consideration in this research. However, land use mix involves the 

ability to properly describe land use diversity at the neighborhood level (GEHRKE; CLIFTON, 

2014). There is evidence that the most common land use mix measure,  based on the Shannon 

(1948) entropy formula, may be leading many studies to spurious results (HAJNA et al., 2014).  

Current research has associated to measures of Space Syntax (KOOHSARI et 

al., 2016a) to walkability analysis, relying on the premises that space syntax substitutes 

calculations related to land use mix, retail FAR and intersection density (Figure 21). This 

strategy is based on the fundamentals of the space syntax theory where Hillier and Hanson 

(1984) argue that street layout is the “primary generator of pedestrian movement”. According 

to Hillier (1996), the urban grid's structure is the 'most powerful single determinant' of urban 

movement”. Movement is a key aspect of spatial behavior and space is more than a static 

background in which people move, but an active element of movement behavior   

(ORELLANA; HERMIDA; OSORIO, 2016). 
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Following this approach, space syntax is understood to explain destinations. 

How a street segment is “integrated” within a larger street network may explain its accessibility 

to other areas possibly increasing pedestrian activities (KOOHSARI et al., 2014). 

Consequently, movement is drawn to more integrated streets that in turn attract more 

commercial destinations (HILLIER, 1999). Such assumptions have been addressed in several 

studies that indicate that more integrated areas have a higher land-use mix (KIM; SOHN, 2002)  

and that space syntax has the potential to explain retail spatial patterns in a city (TSOU; 

CHENG, 2013). In essence, the basic assumption is that the street network, could influence 

pedestrian movement through the differential distribution of commercial land uses  

(KOOHSARI et al., 2016a). While street connectivity itself is a spatial construct, it may have 

implications on functional aspects of urban form. Considering such possibility, space syntax 

measures might be an appropriate substitute for both street connectivity and land use measures, 

for instance, land use mix and retail FAR. Taking into account such evidence, space syntax was 

an objective measurement considered in this analysis. 

 

Figure 21 – Conceptual diagram of Space Syntax walkability. 

 

Source: LEÃO; OLAK; KANASHIRO (2018). Modified by the author, 2017 

Land price and real estate property price are aggregate elements of 

environmental features, as consequences of urban form attributes. They have never been 

included in walkability indices per se, however, they are proven to be related to walkability 

characteristics. In this study, a first approach to such data was conducted through individual 

simulations, not included in indices but considered as walkability constructs. Land price and 

real estate price are represented as mean scores of the properties included in each unit of 

analysis.  
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In light of the evidence on the relevance and possible mischiefs of walkability 

constructs on Brazilian town settings presented above, six simulations were conducted of 

objective walkability indices considering: residential density; land use mix, intersection 

density, retail FAR, space syntax measures and parcel/real estate price. The implied relationship 

to walking for each of the measures considered are summarized in Table 5. 

 

Table 5 – Environmental characteristics and relationships to walking behavior. 

Environmental 

component 

Implied Relationship with Walkability GIS Databases 

component 

Residential 

density  

• Density Improves accessibility to complementary uses  

• Associated with increases in retail and service variety,  

• Results in shorter distances between destinations 

Residential location 

data 

Connectivity • Higher intersection densities provide people with a greater 

variety of potential routes 

• Higher connectivity provides easier access to major roads 

where public transport is available 

• Shorter times to get to destinations 

Road center line and 

intersections data 

Land Use • People who live near multiple and diverse retail opportunities 

tend to make more frequent, more specialized and shorter 

shopping trips, many by walking 

• People who live farther away from retail are more likely 

motorized transportation for every-day purchases 

• land use mix generates more interesting built- form increasing 

esthetic value making routes more conducive to walking  

Land use data and 

number of 

floors/units per 

parcel 

Net area retail • More options for destinations where goods and services may be 

purchased 

• More local employment opportunities that can be reached by 

walking 

Retail location data 

and Retail building 

projections 

Space Syntax 

Integration 

and Choice 

• More integrated areas have the potential for development of 

commercial activities  

• More integrated areas support of land use mix trough pedestrian 

movement  

Axial lines from 

street centerline data 

Land price and 

Real estate 

price 

• More development and by consequence more amenities 

• Support of mixed uses  

• More quality of the micro-scale urban environment 

Tax valuation and 

cadastral (parcel) 

data 
 

Source: Based on  Leslie et al. (2007a). Modified by the author, 2017 
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The starting point for the index simulations is the index organized by Frank 

et al. (2010a). It is part of the NQLS (Neighborhood Quality of Life Study) and it is associated 

with measurements of active transportation and physical activity. The built environment can 

influence transportation mode choices and studies involving characteristics of community 

design have gained attention (Frank et al., 2010a). The second simulation utilizes the same 

equation but removes the double weight attributed to the intersection density measure, as 

justified previously. Thirdly, the original index is maintained, without the retail FAR measure, 

in order to analyze its relevance in a Brazilian average-sized town.  The same proposition was 

done in the fourth simulation, however also considering the removal of the double weight given 

to the intersection density measure.   

Simulations number five and six are related to the experimentation with space 

syntax measures. First, the index proposed by Koohsari (2016) was tested, where residential 

density was analyzed with syntactic measures weighted twice as much. And lastly, a measure 

of the same index is made with both residential density and space syntax measures being 

weighted only once. All indices proposed can be observed in the diagram presented in Figure 

22. 

Figure 22 – Diagram of objective walkability indices proposed.  

 

Source: Organized by the author, 2018. 

Initially, land use data was collected from the Google Earth and the Street 

View tool and operationalized on ArcGIS 10.4 software. This type of technique is suitable for 

studies conducted in several locations or in a large geographical area, providing fast, 

convenient, cheap and reliable data (TAYLOR et al., 2011). Land use data, number of floors 

and units were collected by researchers between December 2017 and January 2018. A dataset 

was constructed within GIS at the census tract and buffers level. This method allowed mapping 

the location of all existing residences and retail in the city. Other data stem from tax valuation, 
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cadastral (parcel) data, building projections and street centerline data. Such information was 

obtained from Rolândia’s city hall. The following sections describe how each specific measure 

and its constructs were quantified.  

 

3.4.1 Walkability indices construction 

 

For this research, the starting point for the index simulations proposed is the index 

organized by Frank et al. (2010a). This measure, referred to as index #1, can be expressed 

through the following equation:  

 
Walkability index #1=⌈ (2×z-intersection density) + (z-residential density)   

+ (z-retail floor area ratio) +(z-entropy) ⌉ 
 

The second simulation utilizes the same equation but removes the double weight 

attributed to the intersection density measure, as used by Hino et al. (2012b), can be expressed 

through the following equation:  

 
Walkability index #2=⌈ (1×z-intersection density) + (z-residential density)             

+ (z-retail floor area ratio) +(z-entropy) ⌉ 
 

Thirdly the original index is maintained with the removal of the retail FAR measure, to 

analyze its relevance in the Brazilian medium and small-town context. It can be expressed 

through the following equation: 

 
Walkability index #3=⌈ (2×z-intersection density) 

+ (z-residential density) +(z-entropy) ⌉ 
 

The same is done in the fourth iteration, however, it is also proposing the removal of the 

double weight given to the intersection density measure.  It can be expressed through the 

following equation: 

 
Walkability index #4=⌈ (1×z-intersection density) + 

 (z-residential density) +(z-entropy) ⌉ 
 

From the systematization of each variable by census tract and buffers, the 

method proposes normalization by z-score, exemplified in Table 6. For all calculations 

(APPENDIX B) the software used was Excel 2013. The construction of the indices was carried 
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out in a georeferenced environment through the software ArcGIS 10.4. The calculations of these 

four initial walkability index components are further detailed in the next four subchapters.  

 

Table 6 – Walkability index calculation example. 

 

Source: Organized by the author, 2018. 

3.4.1.1 Methodological approach for Intersection Density  

 

Intersection density is a measure related to the connectivity of the street 

network, represented by the ratio between the number of true intersections (between three or 

more roads) and the areal extension of the unit being considered (FRANK et al., 2010).  This 

measure is, therefore obtained by the division of N true intersections contained in a unit and the 

area in squared meters of that same unit. Such calculation can be easily made for buffers; 

however, census tracts have their boundaries delimitated by the street network, therefore many 

intersections are located over boundaries of adjacent census tracts (Figure 23). 

 

Figure 23 – Intersections are located over boundaries of adjacent census tracts.  

 

Source: Elaborated by the author, 2018. 

Tract 

or 

buffer

Crude 

Value

1 0,267 2,779

2 0,360 1,632

3 0,343 0,893

4 0,409 0,706

5 0,323 -0,447

6 0,073 -4,239

Normalized 

Value (z-score)

Final 

Walkability 

scoreNormalized 

Value (z-score)
Crude Value

Normalized 

Value (z-score)
Crude Value

Normalized 

Value (z-score)
Crude Value

0,100

-1,279 0,060 -1,563 0,242 -1,150 0,447 1,032

-0,065 4,508 -0,320 0,516 -0,097 0,288

0,827

0,350 6,856 0,337 0,527 -0,055 0,223 -0,276

0,032 5,214 -0,122 0,573 0,124 0,412

2,700

0,113 5,301 -0,098 0,654 0,435 0,453 1,068

Intersection Density Residential density Retail FAR Land use mix

-0,340 6,569 0,257 0,672 0,502 0,731
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This situation raised a problem in the calculating the intersection density 

measure for census tracts. After an exploratory analysis of the literature on this type of 

calculation a solution from walkability literature was not found. Therefore, a methodology was 

proposed: the k-Nearest Neighbor (kNN) classification approach was used to define to which 

census tract the intersections over boundaries belonged to.  The Nearest Neighbor (NN) rule, 

initially proposed by Fix and Hodges (1951), is one of the oldest and simplest pattern 

classification algorithms. The basic reasoning is intuitive: nearby instances in space probably 

belong to the same class (WANG; NESKOVIC; COOPER, 2007). From the basic principle that 

a point (instance) is often a member of the same class as most of its closest neighbors, where k 

is a fixed number for all points to be classified, the algorithm tries to classify an unknown 

sample based on the known class of its neighbors (KIBANOV et al., 2018). 

Considering intersections located over boundaries of adjacent census tracts, 

the parameter k was set to 3, so that the closest three samples are considered for classification. 

This parameter was set based on a cross-validated grid search (PEDREGOSA et al., 2012). The 

Euclidean rather than the geodesic distance between neighbors was used. Figure 24 provides a 

sketch of the k-NN algorithm application, where three of the closest intersections belong to the 

same class and the unclassified instance is then classified as belonging to their class. 

 

Figure 24 – The kNN rule: with k = 3: the intersection is assigned to the class 1. 

 

Source: Organized by the author, 2017 



 

 

64 

After such procedure, intersection density was calculated dividing the number 

of intersections ( Figure 25) in each census tract and buffers scales (200m,400m,600m, 800m 

and 1000m) by its area using the software Excel 2013 Version.  

 

Figure 25 – True intersections on Rolândia’s street network. 

 

Source: Elaborated by the author, 2018. 

3.4.1.2 Methodological approach for Land Use Mix 

 

Entropy, or land use mix, is a measure of diversity of uses present in an area 

unit. In this research, taking as a starting point the work proposed by Frank et al., (2010), the 

mixture between 5 uses was considered: residential, commercial, entertainment services 

(including restaurants, for example), and institutional (including schools, government 

buildings, etc.) (Table 7). 
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Table 7 – Examples of establishments for each land use category. 

 

Land use What attends to each use? 

RESIDENTIAL Ground floor dwellings and tall residential buildings, considering the total 

number of dwellings 

RETAIL A place where the sale of goods to the public is for consumption and not for 

resale. E.g.: pharmacy, supermarket, bakery, clothes shop, etc. 

SERVICE A place supplying a payable public need. E.g.: medical care center, pet shop, 

office, small factory or industry, etc. 

INSTITUTIONAL Every place that belongs to the government administration or every place 

where people gather usually for the same purpose. E.g.: townhall, court of 

law, public health care center, public and private school, church, 

neighborhood association, etc. 

ENTERTAINMENT Every place for leisure activities. E.g.: bar, restaurant, cafeteria, gym, club, 

country house, etc. 

Source: Motomura (2018). Adapted by the author (2018). 

The resulting values are normalized between 0 and 1, where 0 would indicate 

the existence of only one use in a given area and 1 would indicate a complete and equal 

distribution of the five uses. The entropy was calculated through the following formula based 

on (SHANNON, 1948), where k = categories of land use; p = proportion between the area of 

land use and the area of the census tract; and ln = logarithm (FRANK et al., 2010): 

 

− ∑ 𝑘 = (
𝑝𝑘 × ln 𝑝𝑘

ln 𝑁
) 

 

The entropy calculation originally considered in the walkability index 

proposed by Frank et al. (2010) does not consider the existence of different uses in the same 

urban parcel. The concomitance of different uses in the same land lot is common in Brazil. In 

order to best represent local reality, the total area of mixed-use plots was divided taking into 

consideration the type of land use and the number of floors. 

When residential use was not present the total area was divided by the number 

of uses, regardless of the number of floors (Figure 26a). When residential use was present, but 

the building had only 1 floor the plot area was equally divided among the number of uses 

weighting the result in relation to the number of existing uses (Figure 26b). When residential 

use was present and the building had more than 1 floor, the ground floor had its area weighted 

between non-residential activities  and, residential use was considered as the entire floor area 
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of the second level up (Figure 26c). This division was carried out according to the typologies 

existing in Brazilian average-sized towns. It is understood that in this way it was possible to 

identify a more accurate estimate of how many m² of each type of land use exists in the city of 

Rolândia. The complete land use map is available in Figure 27.  

 

Figure 26 – Weighting of land use category and number of pavements. 

 

Scenario A Scenario B Scenario C 

   

Source: LEÃO; OLAK; KANASHIRO (2018). Modified by the author, 2017 

Figure 27 – Land use map of Rolândia-PR. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 
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3.4.1.3 Methodological approach for Net Residential Density 

 

Residential density is a measure of the number of residential units (Figure 28) 

per unit of area (SAELENS; SALLIS; FRANK, 2003). After counting all the households in the 

municipality of Rolândia, the residential density ratio was calculated for each unit of analysis 

considered. 

Figure 28 – Residential parcels in Rolândia-PR. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 

3.4.1.4 Methodological approach for Retail Floor Area Ratio 

 

Retail floor area ratio measures the area of the retail parcels divided by the 

footprint of the building destined for retail use. A low ratio would indicate that the plot is likely 
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to direct more parking area while a larger value would indicate less surface area to be intended 

for this purpose. Dedicating less urban surface to parking lots is understood as facilitating 

pedestrian access (FRANK et al., 2010). The full retail parcels and retail building footprint map 

is available in Figure 29. 

 

Figure 29 – Retail parcels and building projections in Rolândia-PR. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 

3.4.2 Space Syntax Walkability indices construction  

 

Simulations number five and six of index options are related to the space 

syntax measures. Space syntax considers the proximity of one line to all others in the system or 

to those contained in a predetermined radius, representing street segments with a tendency to 

concentrate pedestrian flow and, therefore, commercial activities (HILLIER et al., 1993). 
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Firstly, residential density is analyzed with syntactic measures weighted by two following what 

is proposed by Koohsari et al. (2016), and lastly a measure of the same index is proposed with 

residential density and space syntax measures being weighted the same. These indices 

considering space syntax can be represented by the following equations, respectively:  

 
𝑊𝑎𝑙𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 #5 = ⌈(2 × 𝑧 − 𝑠𝑖𝑛𝑡𝑎𝑡𝑖𝑐 𝑚𝑒𝑎𝑠𝑢𝑟𝑒) + (𝑧 −  𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)] 

 
𝑊𝑎𝑙𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 #6 = ⌈(1 × 𝑧 − 𝑠𝑖𝑛𝑡𝑎𝑡𝑖𝑐 𝑚𝑒𝑎𝑠𝑢𝑟𝑒) + (𝑧 −  𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)] 

 

From the systematization of each variable by census tract and buffer, the 

method proposes normalization by z score (Table 8). For all calculations, the software used was 

Excel 2013 (APPENDIX B). The construction of the indices was carried out in a georeferenced 

environment through the software ArcGIS 10.4. The residential density calculations remain the 

same as previously described. Calculations of space syntax measures are further detailed in the 

next subchapters.  

 

Table 8 – Walkability index considering space syntax example. 

 

Source: Organized by the author, 2017 

3.4.2.1 Methodological approach for Space Syntax measures 

 

Space Syntax seeks to describe, through quantitative measures, the 

configuration of the urban grid, relationships between public and private space, the urban 

system as the distribution of land use, cohesion and social exclusion, accessibility and security 

(CARVALHO; SABOYA, 2017). In space syntax, the urban space is divided into spatial units 

known as axial lines. These are the largest straight lines capable of covering a whole system of 

1 6,569 0,257 64,313 0,196 0,223

2 5,301 -0,098 75,213 0,771 0,515

3 5,214 -0,122 61,939 0,071 -0,009

4 6,856 0,337 58,383 -0,116 0,022

5 4,508 -0,320 60,074 -0,027 -0,154

6 0,060 -1,563 22,393 -2,013 -2,076

Integration or choice

Normalized 

value

Normalized 

Value                   

(z-score)

Final 

Walkability 

score

Tract or 

buffer

Residential density 

Normalized 

Value                   

(z-score)

Crude value 
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public spaces (HILLIER; HANSON, 1984) The relations between the axial lines of a system 

can be analyzed through the Integration (1) and Choice (2) measures. 

 

Integration Formula (1) 

 

𝑀𝐷𝑖 =

∑ 𝑑𝑖𝑗

𝑘

𝑗=1

(𝑘 − 1)
 

Where: 

MDi= Average depth; 

dij= depth of the j line in relation to the I line; 

k = total number of system components 

Choice Formula (2) 

 

𝐶ℎ𝑜𝑖𝑐𝑒 𝑖 =
𝑛  𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑡𝑟𝑜𝑢𝑔ℎ 𝑖 

𝑛 𝑎𝑙𝑙 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 
 

Source: Hillier and Hanson, 1984. 

The integration of an axial line in a system describes how close it is to all other axial lines. 

This proximity can be measured by the number of axial lines, through three types of metrics: 

angular, topological or metric. However, in axial maps angular and metric measures are more 

efficient. Angular metrics better capture the ease of transportation through the complexity of 

the urban grid, whereas metric analyses, from a determined metric radius, is more useful for 

pedestrian and neighborhood analysis.   

Lines that are more connected and closer to all others in a system are called integrated 

lines, while those farther are called segregated lines. The Choice measure, however, translates 

how much an axial line is located among other possible paths of the system. Thus, a line with 

a high value of choice is not necessarily the one closest to the others, but the one that most 

connects other paths. 

In addition to being able to be calculated from topological (by axial lines) or metric (by 

line segments), the Integration and Choice measure can describe the relation of one axial line 

to all others of a system or only to those contained in a predetermined radius. According to 

Carvalho and Saboya (2017), many researches use a predetermined radius to find the influence 

of certain factors on smaller scales. 

Integration and choice were calculated using street centerline data obtained 

from the base map of the municipality provided by the city hall of Rolândia and adapted for the 

representation of axial lines. Then, axial lines were imported into the QGIS software, a free and 
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open source GIS. Through the Space Syntax toolkit, the syntactic integration and choice 

measures were calculated for each street segment in radii ranging from 100 to 2000 with 100-

meter intervals. All space syntax maps produced, for both choice and integrations are available 

in the APPENDIX A, examples of the maps utilized are Figure 30 and Figure 31.  

 

Figure 30 – Space Syntax global Integration. 

 

Figure 31 – Space Syntax global Choice. 

 

Source: Rolândia City Hall, 2017. Elaborated by Vitoria Sanches, (2018). 
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Firstly, axial lines were converted into centroid points and later accounted for 

each buffer. An average integration and choice score were calculated for each radius and for 

each spatial unit representation scale. Space syntax is based on the street network and in the 

case of the census tracts, similar to intersection density, many axial lines’ centroids were 

allocated over boundaries of adjacent census tracts. In such cases the proposed methodology 

follows the k-Nearest Neighbor (kNN) classification approach introduced in the last chapter. 

 

3.5 Analytical Strategy  

 

This analysis has three objectives: (1) to verify the relationship between BE 

factors and self-reported walking data, aiming to uncover which BE variables, measures and 

constructs most influence walking levels (2), to analyze the relationship between BE factors 

and self-reported perceptions of satisfaction aiming to verify their concordance and (3) to 

explore the sensitivity of all results to spatial scale by estimating separate models using BE 

factors aggregated at three buffer-based scales (200 m, 400 m, 600 m, 800 m, 1000 m) and  

census tract level. 

Regression analysis models, especially logistic regression, have been used in 

a variety of researches concerning  BE and health (TROPED et al., 2003; VAN 

CAUWENBERG et al., 2014; SUGIYAMA et al., 2015b) and can be considered a standard 

analysis approach. However, these models may not give a faithful data description if their 

obligatory requirements and assumptions are not met, or whenever higher-order interactions 

among explanatory/independent variables exist  (EVERITT, 2005). When data is linearly 

separable, such regression approaches, especially logistic, are in fact ideal, however, real life-

contextual data rarely is.  Therefore, taking into account some eventual problems with usual 

regression models, alternative approaches, such as computational methods used to extract 

patterns from data, have been developed (GULLO, 2015).  

These methods encompass artificial intelligence and machine learning.  These 

fields of study aim to give computers the ability to learn without being explicitly programmed, 

therefore being able to recognize hidden patterns in datasets (SAMUEL, 1959). Since artificial 

intelligence first achieved recognition as a discipline in the mid-1950's, machine learning (ML) 

has been a central research area (QUINLAN, 1986). ML has been described as a technical field 

that lies at the intersection of computer science and statistics (JORDAN; MITCHELL, 2015).  

ML can be conceptualized as the research area that looks for algorithms that 

allow the recognition of patterns such as the distinction of numbers or faces and advances on 
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how computers can infer information from data (CARBONEL; MICHALSKI; MITCHELL, 

1997). Such methods have had intensive effects across a range of industries concerned with 

data-intensive issues (JORDAN; MITCHELL, 2015). Notwithstanding, they are rarely used in 

urban planning having the work conducted by Zampieri (2012) being mention-worthy. 

Considering these regards, a ML approach was used to model this researches’ relationships of 

interest. All data in this research was, by nature, labeled, therefore the ML algorithms were 

applied to learn patterns from actual examples from each class, which categorizes the employed 

methodology as supervised learning. Supervised learning is conceptualized as ML processes 

that contain a guided training phase. Unsupervised learning is characterized by processes 

executed when the algorithm itself looks for structure in data and groups it in clusters 

(KOTSIANTIS, 2007). 

From a practical perspective, the purpose of supervised ML is to learn from 

training data to make as good as possible predictions on new, unseen, data. Thus, ML 

algorithms have a training process and its output is used to predict unforeseen data 

(GHAHRAMANI, 2015). The quality of such predictions indicates the quality of the model.  

The general idea is that unforeseen data is similar to known data, so a good model is the one 

that leads to good predictions. This means that ML can solve two main types of tasks: regression 

and classification. Regression tasks stem from a supervised learning problem where the answer 

is a continuous value. Classification tasks stem from a supervised learning problem where the 

answer to be learned is one of the finitely possible values (classes) (GULLO, 2015).  

A diverse array of ML algorithms has been developed to cover the wide 

variety of data and problem types (JORDAN; MITCHELL, 2015). A more recent approach 

from machine learning, that has been proposed for prediction and variable selection in various 

fields, is the nonlinear and nonparametric Random Forest (RF) method. It is a supervised ML 

technique that builds an ensemble of decision trees, for classification or regression. Linear 

regression is a classical parametric method which requires explicit modeling of nonlinearities 

and interactions, if necessary. It is known to be reasonably robust, however Random forests, on 

the other hand, are nonparametric and allow nonlinearities and interactions to be learned from 

the data without any need to explicitly model them (GRÖMPING, 2009). 

RF has its foundation set on decision tree algorithms, sequential models that 

logically combine a sequence of simple tests; each test compares a numeric attribute against a 

threshold value or a nominal attribute against a set of possible values (classification or 

regression). When a data point falls in a partitioned region, a decision tree classifies it as 

belonging to the most frequent class in that region. This type of data structure is formed by 
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connected nodes that starts with a root node, and follows through internal nodes until a terminal 

one, also called leave. For decision and regression trees, each internal node has a test for a 

variable which indicates the flow to reach the appropriate leaf. This procedure is repeated until 

reaching a terminal node, that will contain a predicted class for classification tasks, or a 

predicted value for regressions (LOH, 2011). The error rate is the total number of misclassified 

points divided by the total number of data points, and the accuracy rate is one minus the error 

rate (KOTSIANTIS, 2013). The algorithm attempts to generalize, or find patterns in, the data. 

It does so by determining which tests (questions) best divide the instances into separate classes, 

forming a tree.  

Tree based regressions are used to model problems when the predicted 

variable is continuous by fitting a step function to the data points. The tree is constructed by 

recursively sub-dividing the space into smaller partitions finding regions with more 

homogeneous group to make a prediction. Each split of the space is based on a single variable 

selected based on a splitting criterion where a threshold is selected to make split the space. 

These splits happen on the nodes of a tree, and the terminal nodes - also called leaves - carries 

the response values. After the tree is built, a prediction is achieved by following the path from 

root node down to its appropriate leaf (GRÖMPING, 2009). Different from classification, 

which has a class on the leaf, in regression the leaf carries a continuous value obtained from the 

dependent variable values on the samples inside the partition made by the previous splits. 

RF are an ensemble method that combines several individual trees, forming a 

‘forest’. From the original dataset several bootstrap samples are drawn, and a 

classification/regression tree is fit to each bootstrap sample. This type of sampling is used to 

study the variability of estimated characteristics of the probability distribution of a set of 

observations. It involves sampling with replacement, to produce random samples of size n from 

the original data, each of these is known as a bootstrap sample and each provides an estimate 

of the parameter of interest (EVERITT; SKRONDAL, 2010). From the complete forest the 

status of the response variable is predicted as an average majority vote of predictions of all trees 

(STROBL et al., 2007). 

Linear Regression is a classic global method that uses a single formula to fit 

the whole space. It uses the whole dataset to train a linear predictor, but assembling a single 

global model becomes difficult when there is lots of features that interact in nonlinear ways. 

Therefore, it's easier for regression tress to fit a simpler model on its partitions and generate a 

more accurate model compared to linear regression (DE’ATH; FABRICIUS, 2008). In the case 

of Random Forest regression, also called Regression Forest, the idea is to use an ensemble of 
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trees in order to get a more powerful predictor. The RF algorithm is based on the bagging 

approach, which is a technique where it creates a set of sub-trees that are trained with its own 

random subset of features and samples. This approach makes it robust against overfitting and 

creates accurate classifiers and regressors (BREIMAN, 2001). Also, the nature of RF makes it 

very user-friendly, in the sense it has few parameters to tune (in this work only the number of 

sub-trees as set and the rest was left as the default values) and is usually not very sensitive to 

their values, which makes it a great fit for the problem assessed in this study. 

RF can highly increase prediction accuracy when compared to individual 

classification trees, because the ensemble adjusts for the instability of the individual trees 

induced by small changes in the learning sample. On the other hand, the interpretability of a 

random forest is not as straightforward as that of an individual tree, as it is by nature much more 

complex (STROBL et al., 2007).  Another advantage of using RF models is the feature section 

properties. This process of identifying only the most relevant features makes models simpler to 

interpret, can reduce the variance of the model and the computational cost (and time) of training 

a model. Tree-based strategies such as Random Forests are often used for feature selection as 

they naturally rank features by how well they improve model (KURT; TURE; KURUM, 2008).  

The most relevant output from RF, is a measure of the importance of the 

predictor variables. Variable importance is a difficult concept to define in general, because the 

importance of a variable may be due to its (possibly complex) interaction with other variables 

(LIAW; WIENER, 2002). Ranking predictive importance of features for a given problem can 

serve two different purposes: to identify the variables that are more related to the response 

variable, or to selected a small subset of features to achieve a sufficiently good prediction 

performance (GRÖMPING, 2009). In this work, feature importance was extracted with the 

intention of analyzing the variables that are more related to the response variable, walking 

levels, in order to interpret its causal effect on the problem.  

  RF address the importance of the features using permutating the features of 

the out-of-bag (OOB) samples and calculating the OOB error. The original proposal of RF 

defines OOB samples as the set of samples which are not used for building the current tree, and 

evaluating the model on those samples gives the out-of-bag error that is used to evaluate 

variable importance. In case a feature when replaced by another randomly selected feature 

results in an error increase, this feature is related negatively to the problem. On the other hand, 

if the error decreases when the feature is replaced, this feature is positively related to the 

response variable (GENUER; POGGI; TULEAU-MALOT, 2012). In summary, the random 

forest algorithm estimates the importance of a variable by looking at how much prediction error 
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increases when data for that variable is permuted while all others are left unchanged. The 

necessary calculations are carried out tree by tree as the RF is constructed. 

Within a very short period of time, RFs have become a major data analysis 

tool, that performs well in comparison with many standard methods (DÍAZ-URIARTE; 

ALVAREZ DE ANDRÉS, 2006). What has greatly contributed to the popularity of random 

forests is the fact that they can be applied to a wide range of problems, even if they are nonlinear 

and involve complex high-order interaction effects. If the aimed result is a categorical variable, 

classification can be performed.   If the response is continuous, regression can be performed 

(LIAW; WIENER, 2002). With this technique, no precise information is required about the 

form of the relationship between response and input variables (BREIMAN et al., 1984). Thus, 

RF are considered robust to errors and outliers, efficient in big data sets (BREIMAN, 2001) and 

widely used in real life applications for various study domains (OSHIRO, 2013).  

 

 

********** 

 

RF has excellent performance and although it is not widely used in the urban 

planning field of study it has several characteristics that make it ideal for its data sets. Some 

advantages of RF are: can be used when there are more variables than observations; for two-

class and multi-class problems; performs both classification and regression; has good predictive 

performance even when most predictive variables are noisy; does not require a pre-selection of 

features; is not prone to overfitting; can handle a mixture of categorical and continuous 

predictors; incorporates interactions among predictor variables; there are high quality-free 

implementations and returns measures of variable importance (DÍAZ-URIARTE; ALVAREZ 

DE ANDRÉS, 2006). 

Given these promising features, in this research all possible individual 

constructs and indices proposed were tested for each of the six neighborhood scales using RF. 

A summary of the considered variables for each scale can be observed in Table 9. In the RF 

models all variables presented in this table are input variables and response variables are meter 

walked per area unit and perceptions of satisfaction with the built environment. 
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Table 9 – Objective walkability measures and constructs considered. 

 

Source: Organized by the author, 2017 

3.5.1 Analytical approach: Walking levels and the built environment. 

 

This analysis aims to verify the relationship between BE factors and self-

reported walking levels, uncovering which built environment variables, measures and 

constructs most influence walking levels. As walking levels are a continuous variable Random 

Forest Regressor was used (LIAW; WIENER, 2002). This process was conducted in two steps, 

Z-score Residential Density Walkabily Index

Z-score Intersection density Walkabily Index 1X

Z-score Retail FAR Walkabily Index 1X R

Z-score Land use mix Walkabily Index R

Z-score Mean land  value

Z-score Mean estate value 

Z-score Choice 100 1x Space Syntax Walkability Choice 100 2x Space Syntax Walkability Choice 100m

Z-score Choice 200m 1x Space Syntax Walkability Choice 200m 2x Space Syntax Walkability Choice 200m

Z-score Choice 300m 1x Space Syntax Walkability Choice 300m 2x Space Syntax Walkability Choice 300m

Z-score Choice 400m 1x Space Syntax Walkability Choice 400m 2x Space Syntax Walkability Choice 400m

Z-score Choice 500m 1x Space Syntax Walkability Choice 500m 2x Space Syntax Walkability Choice 500m

Z-score Choice 600m 1x Space Syntax Walkability Choice 600m 2x Space Syntax Walkability Choice 600m

Z-score Choice 700m 1x Space Syntax Walkability Choice 700m 2x Space Syntax Walkability Choice 700m

Z-score Choice 800m 1x Space Syntax Walkability Choice 800m 2x Space Syntax Walkability Choice 800m

Z-score Choice 900m 1x Space Syntax Walkability Choice 900m 2x Space Syntax Walkability Choice 900m

Z-score Choice 1000m 1x Space Syntax Walkability Choice 1000m 2x Space Syntax Walkability Choice 1000m

Z-score Choice 1100m 1x Space Syntax Walkability Choice 1100m 2x Space Syntax Walkability Choice 1100m

Z-score Choice 1200m 1x Space Syntax Walkability Choice 1200m 2x Space Syntax Walkability Choice 1200m

Z-score Choice 1300m 1x Space Syntax Walkability Choice 1300m 2x Space Syntax Walkability Choice 1300m

Z-score Choice 1400m 1x Space Syntax Walkability Choice 1400m 2x Space Syntax Walkability Choice 1400m

Z-score Choice 1500m 1x Space Syntax Walkability Choice 1500m 2x Space Syntax Walkability Choice 1500m

Z-score Choice 1600m 1x Space Syntax Walkability Choice 1600m 2x Space Syntax Walkability Choice 1600m

Z-score Choice 1700m 1x Space Syntax Walkability Choice 1700m 2x Space Syntax Walkability Choice 1700m

Z-score Choice 1800m 1x Space Syntax Walkability Choice 1800m 2x Space Syntax Walkability Choice 1800m

Z-score Choice 1900m 1x Space Syntax Walkability Choice 1900m 2x Space Syntax Walkability Choice 1900m

Z-score Choice 2000m 1x Space Syntax Walkability Choice 2000m 2x Space Syntax Walkability Choice 2000m

Z-score Integration 100m 1x Space Syntax Walkability Integration 100m 2x Space Syntax Walkability Integration 100m

Z-score Integration 200m 1x Space Syntax Walkability Integration 200m 2x Space Syntax Walkability Integration 200m

Z-score Integration 300m 1x Space Syntax Walkability Integration 300m 2x Space Syntax Walkability Integration 300m

Z-score Integration 400m 1x Space Syntax Walkability Integration 400m 2x Space Syntax Walkability Integration 400m

Z-score Integration 500m 1x Space Syntax Walkability Integration 500m 2x Space Syntax Walkability Integration 500m

Z-score Integration 600m 1x Space Syntax Walkability Integration 600m 2x Space Syntax Walkability Integration 600m

Z-score Integration 700m 1x Space Syntax Walkability Integration 700m 2x Space Syntax Walkability Integration 700m

Z-score Integration 800m 1x Space Syntax Walkability Integration 800m 2x Space Syntax Walkability Integration 800m

Z-score Integration 900m 1x Space Syntax Walkability Integration 900m 2x Space Syntax Walkability Integration 900m

Z-score Integration 1000m 1x Space Syntax Walkability Integration 1000m 2x Space Syntax Walkability Integration 1000m

Z-score Integration 1100m 1x Space Syntax Walkability Integration 1100m 2x Space Syntax Walkability Integration 1100m

Z-score Integration 1200m 1x Space Syntax Walkability Integration 1200m 2x Space Syntax Walkability Integration 1200m

Z-score Integration 1300m 1x Space Syntax Walkability Integration 1300m 2x Space Syntax Walkability Integration 1300m

Z-score Integration 1400m 1x Space Syntax Walkability Integration 1400m 2x Space Syntax Walkability Integration 1400m

Z-score Integration 1500m 1x Space Syntax Walkability Integration 1500m 2x Space Syntax Walkability Integration 1500m

Z-score Integration 1600m 1x Space Syntax Walkability Integration 1600m 2x Space Syntax Walkability Integration 1600m

Z-score Integration 1700m 1x Space Syntax Walkability Integration 1700m 2x Space Syntax Walkability Integration 1700m

Z-score Integration 1800m 1x Space Syntax Walkability Integration 1800m 2x Space Syntax Walkability Integration 1800m

Z-score Integration 1900m 1x Space Syntax Walkability Integration 1900m 2x Space Syntax Walkability Integration 1900m

Z-score Integration 2000m 1x Space Syntax Walkability Integration 2000m 2x Space Syntax Walkability Integration 2000m

Z-score Integration rn 1x Space Syntax Walkability Choice rn 2x Space Syntax Walkability Integration rn

Z-score Choice rn 1x Space Syntax Walkability Integration rn 2x Space Syntax Walkability Choice rn

Walkability variables Walkability indices 

Value

Traditional 

walkability 

Space 

Syntax 
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firstly walking levels were analyzed with each individual walkability variables (Subchapter 

3.5.1.1) and secondly with walkability indices (Subchapter 3.5.1.2). 

The quality measure of the models is the output value of the coefficient of 

determination (R²) of the prediction. Such a measure is well established in classical regression 

analysis (RAO, 1965). This coefficient is defined as “the proportion of variance explained by 

the regression model” (NAGELKERKE, 1991). Thus, it can be seen as a measure of the model’s 

success in predicting the dependent variable through the independent ones. The best possible 

score is 1.0 and it can be negative (because the model can be arbitrarily worse) (PEDREGOSA 

et al., 2012).  

The RF Regressor was implemented using the Scikit-learn machine learning 

library for the Python programming language (PEDREGOSA et al., 2012). Graphs were 

generated through the Seaborn Python data visualization library. The choice for this language 

was due to its ample use in geoprocessing (DOBESOVA, 2011; GRASER; OLAYA, 2015). It 

also offers a broad range of packages for ML.  

3.5.1.1 Analytical approach: Walking levels and walkability variables 

This first regression analysis began with a screening of all the individual 

walkability variables’ correlation to walking levels in all six units of analysis. This was done 

through a simple Spearman’s rank correlation analysis.  It is one of the most common methods 

in applied social research (FORSYTH; OAKES; SCHMITZ, 2009; FLORINDO et al., 2013; 

MAYNE et al., 2013; WELIANGE; FERNANDO; GUNATILAKE, 2014), particularly in the 

field of exploratory analysis of a large, real-world dataset. It is a technique of data exploration 

to identify and reveal the degree of association between a dependent variable and another 

(ADHIANTO et al., 2010). Spearman's correlation coefficient is a non-parametric (free 

distribution) statistical procedure, proposed as a measure of the strength of the association 

between two variables. However, it is not a measure of linear relationships between two 

variables and can be described without making assumptions about their frequency and 

distribution (HAUKE; KOSSOWSKI, 2011). For each scale, the individual walkability 

variables showed significantly correlated to walking levels at the p-value ≤ 0.05 and a p-value 

≤ 0.01 levels. This step is conducted as a part of exploratory analysis in order to better 

understand the variables relationship before introducing them to the model. 

In sequence six RF regression models, one for each unit of analysis, were 

created. Even though there is little need to fine-tune parameters to achieve excellent 
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performance, the parameters used were: (1) “n_estimators” ou “ntree” which was set to 500 to 

obtain stable results, the values were tested from 10 to 500 with 10 unit intervals (2) 

“criterion” set to “mse” for the mean squared error, which is equal to variance reduction as 

feature selection criterion  (3) max_depth set to 10 which limits the extent of trees and stabilized 

the model. The mtry (default = 5) parameter was set to its defaut value, as it has been reported 

that the default value is often a good choice (LIAW; WIENER, 2002). All other parameters 

were set to their default tuning/values.   

RF are a truly ‘random’ statistical method in that the model results can vary 

from run to run. Therefore, it is of utmost importance that the stability of the model is verified 

(SHIH, 2011).  To compare the performance of all generated models the quality output measure 

of the coefficient of determination (R²) was cross-validated to obtain a distribution of the R² 

metric of quality. Cross-validation is an essential common practice to avoid overfitting, the 

production of an analysis that corresponds too closely or exactly to a particular set of data, and 

may therefore fail to fit additional data or predict future observations reliably  (EVERITT; 

SKRONDAL, 2010).  In summary, it verified how well the models will generalize to new data. 

A random permutations cross-validation or Shuffle & Split was conducted for the results 

reported.  

The Shuffle & Split cross-validation method will generate a user defined 

number of independent train / test dataset splits, running the models over and over and 

comparing the results. Samples are first shuffled and then split into a pair of train and test sets. 

Shuffle & Split allows for a finer control on the number of iterations and the proportion of 

samples on each side of the train / test split, randomly sampling the entire dataset during each 

iteration (PEDREGOSA et al., 2012).  The number of iterations was set to 50 train/test dataset 

splits and the proportion of the split to 80% train / 20% test. After this process the output is and 

average of R² for all models. From this procedure the measure of the importance of the predictor 

variables was obtained.  

In the same way, to get a stable and reliable measure of feature importance, a 

lot of trees have to be generated and even though this result may vary from run to run (LIAW; 

WIENER, 2002). Therefore, during the cross-validation step in this work, the importances are 

stored through all iterations and the final result is an average of normalized importance values. 
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3.5.1.2 Analytical approach: Walking levels and walkability indices 

The second regression analysis began with a screening of all the walkability 

indices’ correlation to walking levels in all six units of analysis. This was done, alike in the first 

regression analysis, through a simple Spearman’s rank correlation analysis. In the same way 

various walkability indices showed significantly correlated to walking levels at the p-value ≤ 

0.05 and a p-value ≤ 0.01 levels. 

In sequence, six RF regression models, one for each unit of analysis, were 

created using the walkability indices presented in Table 9 as predictor variables and walking 

levels the predicted variable. The parameters used to run the models were the same as those 

presented in the last subchapter. 

  To compare the performance of all generated models the quality output 

measure of the coefficient of determination (R²) was also cross-validated through the Shuffle & 

Split method. In the same manner, the number of iterations was set to 50 train/test dataset splits 

and the proportion of the split to 80% train / 20% test. After this process the output is and 

average of R² for all models. From this procedure the measure of the importance of the predictor 

variables was obtained. As 50 iterations were conducted for cross-validation, the importance 

value results are an average of all 50 models.  

 

3.5.2 Analytical approach Perceptions of satisfaction of the built environment  

 

The last analysis aims to analyze the relationship between BE factors and self-

reported perceptions of satisfaction. The subjective data stems from a survey that obtained 

answers in a 5-point Likert scale. As this analysis concerns categorical variables, a classification 

task was performed (LIAW; WIENER, 2002). 

Concerning this research, the most relevant output from RF Classification is 

a measure of the importance of the predictor variables.  In this case BE measures and constructs 

are our predictor variables. Perceptions of satisfaction with the built environment are our 

predicted variables. The output ranks the variables in terms of the strength of their relationship 

to perceptions of satisfaction with the BE. Given in five possibilities of answers (5-point Likert 

scale) that were dichotomized in two classes, perceptions were analyzed in six different unit 

analysis levels (200m, 400m, 600, 800m, 1000m buffers or census tracts).  

A first exploration of perception of satisfaction data was conducted through 

the execution of a Spearman’s correlation test of perception data among itself. As all perception 
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data lies within the same domains, some strong correlations were uncovered. Secondly, a 

screening of all walkability measures and constructs’ correlation to perceptions of satisfaction 

with the environment was carried out. This was done, alike the previous analysis, through a 

simple Spearman’s rank correlation test. However, this analysis yielded poor results, indicating 

the inexistence of correlations between the great majority of variables. This suggests that a more 

complex pattern of analysis can be underpinning the relationship between variables. As RF 

doesn’t need feature selection or feature preprocessing to create satisfactory models, all 

variables were included in order to analyze more carefully their patterns that remained hidden 

in the exploratory correlation test. 

The first step was to construct six RF classification models. For each of the 

questions considered six different models were constructed, one for each unit of analysis. To 

run the models, it was necessary to optimize two parameters: (1) “n_estimators” which is the 

number of trees in the forest, it was set to 500 to obtain stable results, the values were tested 

from 10 to 500 with 10-unit intervals, this many estimators ensures the asymptotic values 

convergence, that is less variance in the results; (2) “criterion” set to “gini”  which is the 

measure of the quality of a split. All other parameters were set to their default tuning.  

Several quality evaluation measures for the model can be drawn from the 

outputs of a random forest classification task. The first one is accuracy, a widely used 

performance metric, which represents the proportion of instances predicted correctly in relation 

to the total of predicted instances. The second are precision and recall. Precision shows how 

correct and relevant the results are while recall is the fraction of relevant documents that were 

retrieved. And lastly, the F1 score which is the weighted average of precision and recall, 

representing the final metric for model quality (TAVARES; MASTELINI; BARBON JR., 

2017).   

To compare the performance of all generated models the quality outputs 

measures of accuracy and F1 were cross-validated through the Shuffle & Split method. In the 

same manner as in the regression analysis, the number of iterations was set to 50 train/test 

dataset splits and the proportion of the split to 80% train / 20% test. After this process the output 

were averages of both accuracy and F1 value. 

To illustrate de behavior of the classification performance a Dummy 

Classifier was used. This type of classifier makes a prediction using simple rules and gives a 

you a measure of "baseline" performance to compare with other (real) classifiers, i.e. the success 

rate one should expect to achieve even if simply guessing (PEDREGOSA et al., 2012). Because 

many machine learning tasks attempt to increase the success rate of (e.g.) classification tasks, 
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evaluating the baseline success rate can afford a floor value for the minimal value one’s 

classifier should out-perform. The strategy used to generate the Dummy Classifier predictions 

was the “stratified” one, that generates predictions by respecting the training set’s class 

distribution (PEDREGOSA et al., 2012). 

As RF Classification results were meager and the analysis was compromised 

due an overall lack of pattern between the predictor and predicted variables, a distribution 

analysis was conducted. The dataset under study has severe limitations when it comes to such 

individual data, therefore the distribution analysis was conducted with information on average 

time living in the neighborhood and walking levels. Further, the best performing variables from 

the regression analysis previously conducted were also analyzed regarding their relationship 

with perceptions. For such a comparison to be possible, variables were categorized into 

quartiles. For each quartile the percentage of positive and negative dichotomized perceptions 

were calculated. Perception were dichotomized where 1 indicates negative perceptions and 2 

positive ones.  
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4 RESULTS AND ANALYSIS 

 

4.1 Results: Walking levels and individual walkability variables 

 

Six RF regression models were constructed, one for each unit of analysis. The 

dependent variable was walking levels (meters walked per unit area) and predictor variables 

were walkability variables present in Table 9. After cross-validation through the Shuffle & Split 

method final R² values were obtained. Model 5, correspondent to the 1000m network buffer 

scale, yielded the best results with an R² 0.859 (Table 10). The standard deviation, which 

indicates the size of the measurement error (BLAND; ALTMAN, 1996),  for this model seems 

to be minimal (SD = 0,086). Lower standard deviation values indicate that data points have a 

tendency to be closer to the mean (or the expected value) of the dataset.  

 

Table 10 – Mean R² and standard deviation of Random Forest regressions for 

individual walkability variables. 

 Model 1 

Buffer 200 
Model 2 

Buffer 400 
Model 3 

Buffer 600 
Model 4 

Buffer 800 
Model 5 

Buffer 1000 
Model 6 

Census tract 

Mean R² 0.398 0.583 0.691 0.677 0.859 -0.020 

Standard 

Deviation 
(0.222) (0.203) (0.193) (0.164) (0.086) (0.436) 

 

Source: Elaborated by the author, 2018. 

The box-and-whiskers plot available on Figure 32 graphically depicts the 

variation of the coefficient of determination (R²) of the predictions throughout the 50 iterations 

of the cross-validation process. As in Table 10 the inferior results the Census tracts scale yielded 

are distinct. The mean R² resulted in a negative value indicates that the census tract model is 

arbitrarily worse than randomness. When visually compared to other groups in the plot, the 

inefficacy of the results is emphasized by the larger number of outliers and greater data 

variation. The presence of R² outliers, data points that are far away from other values, is 

accentuated on all models except the 600m buffer model. It is clear that the 1000-meter network 

buffer excels in every aspect, the median is central, the thickness of the box is minimal, and the 

quartiles seem to be the most balanced. This result suggests, that the 1000m network buffer 

scale was the most adequate for modeling the relationship between individual walkability 

variables and walking in the case study. Therefore, further analysis was conducted considering 
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this scale. This also indicates that larger radii might be even more suited for modeling such 

relationship.  The possibility of increasing radius sizes until the optimal scale of buffer is found 

is a research possibility for future work. 

 

Figure 32 – Boxplot of the mean R² values of Random Forest regressions for individual 

walkability variables. 

 

Source: Elaborated by the author, 2018. Organized by Hugo Abonizio, 2018. 

 

The measure of the importance of predictor variables indicates the features 

that are more closely related with the dependent variable and contribute more for its variation. 

The 10 most relevant variables for each of the models constructed can be observed in Table 11.  

The most relevant individual variables in the highest quality model, the 1000m buffer model, 

were Entropy Z-Score, (0.609), Integration Z-score r2000 (0.136) and Residential density Z-

score (0.060), however the land use mix variable presented itself as substantially better than the 

others, with an importance value over 4 times larger than the second most important feature. 

The second position on the importance ranking is always occupied by Integration measures, 

either in a global radius or the largest radius considered (2000m). In the same way, as the radii 

increases Residential density Z-score becomes more important, and in the 1000m network 

buffer model, it is the third most important variable.  
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Table 11 – Feature importance for Rf urban form variables regression models. 

 
Model 1 

Buffer 200 

Model 2 

Buffer 400 

Model 3 

Buffer 600 

Model 4 

Buffer 800 

Model 5 

Buffer1000 

Model 6 

Census tract 

F
ea

tu
re

 I
m

p
o
rt

a
n

ce
 

Entropy Z-Score     

(0.195) 

Entropy Z-Score 

(0.254) 

Entropy Z-Score 

(0.389) 

Entropy Z-Score      

(0.540) 

Entropy Z-Score       

(0.609) 

Integ. rn Z-score 

(0.306) 

Integ.rn Z-score 

(0.160) 

Integ.rn Z-score 

(0.146) 

Integ.Z-score r2000 

(0.124) 

Integ.rn Z-score 

(0.065  ) 

Integ.Z-score r2000 

(0.136) 

Mean Parcel Price  

(0.151 ) 

Integ. Z-score r2000         

(0.074) 

Integ. Z-score r2000   

(0.125) 

Choice Z-score r2000     

(0.116) 

Resid. density Z-score         

(0.051) 

Resid. density Z-score         

(0.060) 

Retail FAR Z-score         

(0.087) 

Integ. Z-score r200 

(0.049) 

Integ. Z-score r1800   

(0.065) 

Integ. Z-score r1900    

(0.068) 

Mean Estate Price 

(0.043) 

Integ. rn Z-score 

(0.033) 

Choice Z-score r1100          

(0.062) 

Retail FAR Z-score         

(0.047) 

Integ. Z-score r1600    

(0.050) 

Resid. density Z-score    

(0.037) 

Inter. density Z-score     

(0.035) 

Integ. Z-score r1900      

(0.014) 

Integ. Z-score r2000         

(0.043) 

Integ. Z-score r100       

(0.039) 

Integ. Z-score r1900    

(0.035) 

Integ. rn Z-score       

(0.026) 

Integ. Z-score r2000       

(0.033  ) 

Mean Parcel Price  

(0.013) 

Mean Estate Price 

(0.024) 

Integ. Z-score r1900         

(0.026) 

Choice Z-score r700      

(0.025) 

Choice Z-score r900      

(0.025) 

Retail FAR Z-score         

(0.025) 

Mean Estate Price 

(0.010) 

Resid. density Z-score         

(0.021) 

Mean Parcel Price   

(0.025) 

Choice Z-score r800      

(0.020) 

Integ. Z-score r1000   

(0.021) 

Mean Parcel Price   

(0.013) 

Inter. density  Z-score      

(0.010) 

Entropy Z-Score        

(0.020) 

Inter. density Z-score          

(0.025) 

Inter. density Z-score     

(0.020) 

Choice Z-score r700      

(0.019) 

Choice Z-score r800 

(0.011 ) 

Choice Z-score r1500      

(0.009) 

Integ. Z-score r1900         

(0.018) 

Integ. Z-score r1300         

(0.023) 

Integ. Z-score r1700    

(0.016) 

Choice Z-score r800      

(0.016) 

Choice Z-score r900            

(0.010) 

Integ. Z-score r100         

(0.009) 

Integ. Z-score r1800         

(0.016) 
 

Source: Elaborated by the author, 2018. Organized by Hugo Abonizio, 2018. 
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Graphs were generated to visually verify the distribution of feature 

importance values. The census tract model had a minor performance when compared to other 

models, therefore a graph referring to its variable importance values was not presented. It can 

be observed on Figure 33 that there is a crescent disproportion: the larger the buffer radius, the 

more the Entropy Z-Score variable is found in a position of advantage over other variables.  

 

Figure 33 – Feature importance histogram of Random Forest regressions for individual 

walkability variables.  

  

  

 

Source: Elaborated by the author, 2018. Organized by Hugo Abonizio, 2018. 

 

Results of the Entropy Z-Score (Figure 34) seem to be strongly associated 

with walking, consistent with previous studies on land use patterns. Land use mix is at the base 

of many urban planning and transport studies, in that people move between activities located in 

different places. If activities are close enough to make walking easier, in areas of mixed land 

uses, then more people will probably walk (FORSYTH et al., 2008). Mixed use is also thought 

to provide more visual variety and the generated pedestrian traffic to promote informal policing. 
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To date, many studies have found a number of destinations to be associated with active travel, 

specially walking (GILES-CORTI et al., 2005; LEE; MOUDON, 2006a). Considering such 

outcome, the systematic approach to specific land uses and building typologies in the 

application of the entropy formula demonstrated a close relationship with walking levels. We 

are led to believe that measuring entropy using the Shannon index equation can minimize 

possible bias. One aspect to highlight is that even though  the literature indicates that degree to 

which property values are driven by land values support the influence of walkability  

(MATTHEWS; TURNBULL, 2007; RAUTERKUS; MILLER, 2011; GUO; PEETA; 

SOMENAHALLI, 2017) no relationship was found in this study. 

 

Figure 34 – Entropy Z-score map at the 1000m street network scale. 

Source: Environmental design research group, 2018. Organized by the author, 2018. 

 

The second RF finding indicated the relevance of the Integration Z-score r2000 

variable (Figure 35), supporting Hillier’s theory and indicating that syntactic measures produce 

better outcomes when analyzing pedestrian movement than more traditional walkability 

measures (KOOHSARI et al., 2016a). Hillier and colleagues have argued that street network, 

which is essentially a formal aspect of urban form, could influence pedestrian movement 
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through different distribution of commercial land uses according to the level of integration 

(HILLIER; HANSON, 1984). Considering the scale of the study case under investigation, the 

broader ranges of integration, that reach as much of the system as possible, were better related 

to walking.  Therefore, the calculations that included the global Integration measure and the 

larger 2000 m local radius, which reaches whole sections of the system, had more relevant 

results.  

According to Jiang; Claramunt and Klarqvist (2000), many studies have been 

carried out over the past two decades on the correlations that can be found between pedestrian 

flow and syntactic measures of local integration. The basic conclusion is that local integration 

can be used to study people’s movements within urban systems. Such conclusions are of great 

impact as a tool for urban planners and designers can foresee pedestrian movement by analyzing 

the morphological structure of the design plan using space syntax techniques (JIANG; 

CLARAMUNT; KLARQVIST, 2000). 

 

Figure 35 – Integration r2000m Z-score map at the 1000m street network scale. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 
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Residential density Z-score (Figure 36) also showed significant and 

consistent importance throughout unit analysis scales. This result is supported by the literature, 

such as in the study conducted by  Frank and Colleagues (FRANK et al., 2008) where 

individuals were more likely to walk if they lived in neighborhoods with greater residential 

density. Alike in the study conducted by  Lee and Moudon (2006b), residential density measures 

were found to be significantly associated with walking both at the parcel level and at the 1 km 

buffer area level.  Overall, higher densities have many benefits in terms of efficient use of 

infrastructure, housing affordability and street life (FORSYTH et al., 2007). 

 

Figure 36 – Residential density Z-score map at the 1000m street network scale. 

Source: Environmental design research group, 2018. Organized by the author, 2018. 
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4.2 Results: Walking levels and walkability indices 

In the second regression analysis Six RF regression models were constructed, 

one for each unit of analysis. The dependent variable was walking levels (meters walked per 

unit area) and predictor variables were the walkability indices present in Table 9. After cross-

validation through the Shuffle & Split method, final R² values as a model quality metric were 

obtained. Model 5, correspondent to the 1000m network buffer scale, yielded the best results 

with an R² 0.832 (Table 12 – Mean R² and standard deviation of Random Forest regressions of 

Walkability indices.). The standard deviation, which indicates the size of the measurement error 

(BLAND; ALTMAN, 1996),  for this model seems to be minimal (SD = 0.094). Lower standard 

deviation values indicate that data points have a tendency to be closer to the mean (or the 

expected value) of the dataset.   

 

Table 12 – Mean R² and standard deviation of Random Forest regressions of 

Walkability indices. 

 Model 1 

Buffer 200 
Model 2 

Buffer 400 
Model 3 

Buffer 600 
Model 4 

Buffer 800 
Model 5 

Buffer 1000 
Model 6 

Census tract 

Mean R² 0.288 0.467 0.626 0.542 0.832 -0.226 

Standard 

Deviation 
(0.237) (0.204) (0.131) (0.185) (0.094) (0.767) 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 

The box-and-whiskers plot available on Figure 37 graphically depicts the 

variation of the coefficient of determination (R²) of the predictions throughout the 50 iterations 

of the cross-validation process for this regression. Much like the previous analysis the inferior 

results the Census tracts unit of analysis scale yielded are distinct. The mean R² resulted in an 

even lower negative value, indicating that the model is arbitrarily much worse than randomness. 

When visually compared to other groups in the plot, the inefficacy of the results is mostly 

emphasized by the large number of outliers that deformed the other group boxed and greater 

data variation. It is clear that in the walkability indices verification the 1000-meter network 

buffer excels in every aspect, the median is central, the thickness of the box is minimal, and the 

quartiles seem to be the most balanced. This result suggests, firstly, that the 1000m network 

buffer scale was the most adequate for modeling the relationship between walkability indices 

and walking. Therefore, further analysis was conducted considering this scale.  
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Figure 37 – Boxplot of the mean R² values of Random Forest regressions for walkability 

indices. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 

 

The measure of the importance of predictor variables, in this case walkability 

indices, is indicated in Table 13, that contains the 10 most relevant variables for each of the 

models constructed.  The most relevant walkability indices in the highest quality model, the 

1000m buffer model, were Walkability Index #5 Integration rn (0.408); Walkability Index #4   

(0.246)  and Walkability Index #6 Integration rn (0.162). In this case, the Walkability Index #5 

Integration rn presented an importance twice as relevant as the second runner up index. 
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Table 13 – Feature importance for RF urban form walkability indices regression models. 

 
Model 1 

Buffer 200 

Model 2 

Buffer 400 

Model 3 

Buffer 600 

Model 4 

Buffer 800 

Model 5 

Buffer1000 

Model 6 

Census tract 

F
ea

tu
re

 I
m

p
o
rt

a
n

ce
 

Walkability Index #5 

Integration r1800    

 0.110 

Walkability Index #5 

Integration rn      

 0.093 

Walkability Index #5 

Integration rn     

0.223 

Walkability Index #4 

0.295 

Walkability Index #5 

Integration rn      

0.408 

Walkability Index #5 

Integration rn     

0.222 

Walkability Index #5 

Integration r2000    

 0.071 

Walkability Index #5 

Integration r2000    

0.076 

Walkability Index #5 

Integration r2000    

0.155 

Walkability Index #5 

Integration rn    

 0.279 

Walkability Index #4    

 0.246 

Walkability Index #5 

Choice rn        

0.095 

Walkability Index #5 

Integration rn    

  0.054 

Walkability Index #5 

Integration r1700    

0.074 

Walkability Index #6 

Integration rn   

   0.100 

Walkability Index #2  

 0.037 

Walkability Index #6 

Integration rn    

 0.162 

Walkability Index #2 

  0.043 

Walkability Index #5 

Integration r1700     

0.046 

Walkability Index #5 

Integration r1600    

0.066 

Walkability Index #4    

 0.060 

Walkability Index #5 

Choice rn    

  0.033 

Walkability Index #5 

Choice rn      

0.032 

Walkability Index #6 

Choice 1100     

0.035 

Walkability Index #5 

Integration r1900   

  0.041 

Walkability Index #4    

 0.059 

Walkability Index #5 

Integration r1500    

0.015 

Walkability Index 

#6Integration rn        

0.029 

Walkability Index #5 

Integration r2000    

0.019 

Walkability Index #5 

Choice 1100     

0.029 

Walkability Index #6 

Integration rn       

0.029 

Walkability Index #5 

Integration r1500    

0.056 

Walkability Index #6 

Choice 100    

 0.015 

Walkability Index #5 

Integration r2000    

0.027 

Walkability Index #6 

Choice rn       

0.016 

Walkability Index #6 

Choice 500   

  0.028 

Walkability Index #5 

Choice rn      

 0.028 

Walkability Index #5 

Integration r1900    

0.055 

Walkability Index #5 

Integration r1700    

0.014 

Walkability Index 

#6Choice rn        

0.027 

Walkability Index #5 

Integration r100   

  0.008 

Walkability Index #5 

Choice 100     

0.026 

Walkability Index #4   

  0.028 

Walkability Index 

#6Choice rn     

 0.032 

Walkability Index #5 

Integration 100    

 0.014 

Walkability Index #3 

  0.022 

Walkability Index #6 

Integration r100   

  0.007 

Walkability Index #5 

Choice 400     

0.023 

Walkability Index #6 

Integration r2000    0.027 

Walkability Index #5 

Integration r1800    

0.031 

Walkability Index #3 

0.013 

Walkability Index #5 

Integration 1900    0.018 

Walkability Index #2  

 0.006 

Walkability Index #6 

Choice rn     

   0.022 

Walkability Index #5 

Integration r100   

  0.025 

Walkability Index #6 

Integration rn       

0.029 

Walkability Index #5 

Choice rn      

 0.012 

Walkability Index #5 

Integration 1800     

0.013 

Walkability Index #5 

Choice 2000    

 0.006 

Walkability Index #6 

Choice 200    

 0.021 
 

Source: Environmental design research group, 2018. Organized by the author, 2018. 
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Walkability index #5 had the best performance overall, except on the 800m 

buffer model where it was secondary with a very close importance value to the most important 

feature. It can also be observed, on Figure 38, that as the units of analysis grew in size the 

Walkability index #4, proposed by Frank (2010) in its variation that excluded from the 

equation the Retail FAR measure and the double weight attributed to the intersection density 

variable, gained importance over other variables. The second position on the importance 

ranking of the best model, the 1000m buffer, was mostly occupied by Space Syntax Walkability 

indices in a local 2000m Integration measure or global radii. In the same way, the third 

importance position was mostly occupied by space syntax composed measures.  

 

Figure 38 – Feature importance histogram of Random Forest regressions for 

walkability indices. 

  

  

 

Source: Environmental design research group, 2018. Elaborated by Hugo Abonizio, 2018. 
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Walkability indices using global Integration radius weighted by two (index 

#5), as applied by Koohsari et al. (2016), was more closely related to walking (Figure 39). 

Whereas the same index with both variables weighted the same (index #6) didn’t achieve the 

same performance. Although both indices show collinearity, the best results of the weighted 

version highlight the importance of the Integration measure, that by nature aggregates variables 

such as land use mix and intersection density. It is noteworthy that the most relevant space 

syntax measures were those where larger or global radii were considered (2000m, 1800m and 

1700m Integration radii). This implies that even larger radii might compose better objective 

walkability measures, it would be ideal to test models until the optimal space syntax radius if 

found. Such an assumption is a possibility for future work.   

 

Figure 39 – Walkability index #5 - 2 Space Syntax Walkability Global 

Integration radius map at the 1000m street network scale. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 
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On the other hand, more traditional versions of the walkability indices 

(indices #1, #2, #3) showed minimal contribution. For the case study, only the Walkability 

index #4 (Figure 40), that disregards retail FAR and weights intersection density only once, 

showed relevant importance scores. This finding represents an indication that among the 

measures considered on traditional indices, retail FAR relates weakly to pedestrian movement 

and double weighted intersection density may not be necessary for average sized Brazilian 

towns.  

The implications of these results are considerable. Calculating space syntax 

measures requires only street centerline data which is easily obtained. Developing a walkability 

index that is less data-intensive and easier to produce is of great interest in Brazilian towns, 

where there are very few resources and information on parcel-level data is scarce. 

 

Figure 40 – Walkability index #4 at the 1000m street network scale. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 
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4.3 Results: Perceptions of satisfaction of the built environment 

For the third and last analysis conducted, a Spearman’s correlation test of 

perception data among itself was initially conducted. It can be observed in Figure 41, which 

represents a heat map of correlation results, that not all perceptions correlate with each other, 

even though they belong to the same domain - Travel Network, Safety and Walkability and 

Traffic and Noise. The Travel Network perceptions correlate little with other ones and the 

Traffic and Noise correlate highly within its own domain. The Safety and Walkability 

perceptions have a strong correlation within themselves, with an exception of the “being a good 

place to live”. This question, alike the Travel Network question of “access to public 

transportation, relates poorly to all other perceptions. This result is an indication of possible 

side effects of the previously mentioned unbalanced responses. 

 

Figure 41 – Correlation matrix heat map beteween perception of satisfacion answers. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 
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In sequence, fourty-two (42) RF classification models were constructed, six 

spatial unit representations for each of the seven-survey perception questions. The dependent 

variable for each of the models where the dichotomized answers for each question.  Predictor 

variables were all items present in Table 9. Meters walked per unit area were also included as 

a predictor. The Dummy Classifier was also considered to provide a benchmark for results 

(Table 14).  In order to compare the performance of all generated models the quality outputs of 

accuracy and F1 were cross-validated through the Shuffle & Split method.  

 

Table 14 – Quality metrics for Random Forest classification models. 

    
Access to 

public 

transport 

Ease and 

pleasure 

in walking  

Safety 

in 

walking  

Traffic 

amount/ 

intensity  

Traffic 

Speed 

Traffic 

Noise 

Being a 

good place 

to live  
    

200m 

Buffer 

Accuracy 0.857 0.599 0.564 0.602 0.572 0.599 0.915 

F1 0.923 0.424 0.455 0.700 0.675 0.584 0.413 

           

400m 

Buffer 

Accuracy 0.852 0.646 0.522 0.590 0.599 0.633 0.887 

F1 0.920 0.505 0.398 0.692 0.694 0.645 0.213 
          

600 m 

Buffer 

Accuracy 0.830 0.611 0.519 0.591 0.648 0.564 0.923 

F1 0.906 0.436 0.382 0.694 0.729 0.570 0.480 

           

800m 

Buffer 

Accuracy 0.845 0.591 0.457 0.640 0.619 0.556 0.915 

F1 0.916 0.392 0.334 0.719 0.698 0.545 0.493 

           

 1000m 

Buffer 

Accuracy 0.823 0.632 0.463 0.620 0.640 0.647 0.908 

F1 0.903 0.429 0.345 0.701 0.720 0.632 0.497 

    
       

Census 

Tract 

Accuracy 0.851 0.584 0.513 0.613 0.627 0.549 0.894 

F1 0.917 0.363 0.395 0.692 0.710 0.570 0.294 

           

Dummy  
Accuracy 0.740 0.540 0.465 0.617 0.521 0.557 0.838 

F1 0.840 0.320 0.420 0.620 0.553 0.566 0.066 

Source: Environmental design research group, 2018. Organized by the author, 2018. 

 

When comparing the model results for the quality measures Accuracy and F1 

a clear pattern of high values is presented. This data behavior when compared to the Dummy 

Classifier indicated an inferior success rate, most values were proximal to the dummy results 

which are the minimal benchmark the classifiers should out-perform. Therefore, it is assumed 

that such results are spurious.  It must be noted that a model that just repeats the labels of the 

samples that it has just seen would have a perfect score, but would fail to predict anything useful 
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on yet-unseen data. This situation is called overfitting. The data used in this study is prone to 

overfitting as the classes are heavily unbalanced, as pointed out earlier in this work. Even with 

RF being an algorithm that is robust against overfitting (Breiman, 2001) and with the 

conduction of cross validation, it wasn’t possible to extract distinguishable patterns from this 

data set.  

A distribution analysis was conducted in an attempt to further understand the 

relationship between perceptions and walkability (Figure 42). The first descriptive distribution 

analysis considered information on average time living in the neighborhood, a measure often 

understood to influence travel behavior (BOHTE; MAAT; VAN WEE, 2009; CAO; 

MOKHTARIAN; HANDY, 2009; JACK; MCCORMACK, 2014). Further based on these 

researches, three of the perceptions of satisfaction answers were selected from the Safety and 

Walkability Satisfaction Factor: "Ease and pleasure in walking", “Safety in walking" and 

“Being a good place to live". These are the only questions specifically related to walkability 

and would, in theory, have stronger relationships with the walkability urban form variables 

under analysis.  

The first distribution analysis regarded perceptions according to time living 

in the neighborhood, quantified in years.  Quartiles were divided as follows: first quartile from 

0 to 2 years; second quartile from 2 to 7 years; third quartile from 7 to 20 years and fourth 

quartile more than 20 years (of from 20 to 53 years).  

The second distribution analysis regarded perceptions according to the 

amount of walking from the individual that reported the perception. The selected data for this 

was the aggregation of 1000m network buffers, the best unit found in the regression models.  

Quartiles were divided as follows: first quartile from 0 to 0,36 kilometers; second quartile from 

0,36 to 0,73 kilometers of walking reported; third quartile from 0,73 to 1,24 years; fourth 

quartile from 1,24 to 5,84 kilometers. 

The third distribution analysis regarded perceptions distributions according 

walkability, specifically measured objectively trough the best performing index pointed out by 

the previous regression analysis, the Walkability Index #5 - Space Syntax Walkability Index at 

the Global Integration scale aggregated in 1000m street network buffer. Quartiles were divided 

as follows: a first quartile from -5.674 to -1.559 representing low walkability; a second quartile 

from -1.559 to 0.567 representing medium-low walkability; third quartile from 0.567 to 1.217 

representing medium-high walkability; and the fourth quartile from 1.217 to 4.307 representing 

high walkability. 
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The fourth and final distribution analysis regarded perceptions distributions 

according the Entropy Z-score aggregated in1000m street network buffer scale. Quartiles were 

divided as follows: a first quartile from -2,26 to -0,87 representing low entropy scores; a second 

quartile from -0,87 to -0,02 representing medium-low entropy scores; third quartile from -0,02 

to 0,67 representing medium-high entropy scores; and the fourth quartile from 0,67 to 2,40 

representing high entropy scores. 

It can be observed on Figure 42 that the distribution of perceptions of "Ease 

and pleasure in walking" was constant throughout the variables under analysis, it doesn’t matter 

if the individual has been living in that neighborhood for longer or not, walks more or not, lives 

is a more walkable environment or in a neighborhood with more mix of uses. In this case, the 

difference between positive and negative perceptions were relatively balanced.  

When it comes to “Safety in walking” there were slight variations between 

graphs. The Entropy z-score distributions of such perceptions seemed to be balanced and 

constantly positive regardless of the entropy z-score quartile, less or more land use mix. 

However, regarding perceptions of satisfactions with "Being a good place to live" the 

distributions was constant throughout variables but the classes, positive and negative, are 

heavily unbalanced. The majority of people have positive perceptions regardless of the variable 

under analysis.  

Overall it can be assumed that the RF classification results mirrored, in a way, 

this distribution analysis: there doesn’t seem to be a perception pattern in this dataset that can 

be recognized with the variables considered in this study. There is a possibility that the 

walkability urban form variables used here are not sufficient to understand perceptions of 

satisfaction, or further, that individual variables need to be controlled. These results refuted the 

proposition initially established by this research that there is a correlation between perceptions 

of satisfaction with the BE, walking levels and walkability.  
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Figure 42 – Distribution graphs of perception of satisfaction answers according to individual and urban form variables. 

 Time living in the 

neighbourhood vs Perceptions. Walking  vs Perceptions. 

Walkability Index #5 vs 

Perceptions. 

Entropy Z-score vs 

Perceptions. 

Ease and 

pleasure in 

walking 

 
   

Safety in 

walking 

    

Being a 

good place 

to live 

    

Source: Environmental design research group, 2018. Organized by the author, 2018. 
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5 DISCUSSIONS  

 

This research’s aim was to evaluate the efficacy of objective walkability 

measures of an average sized Brazilian. To that end, walkability indices proposed by the 

literature and some variations hypothesized to be relevant were tested through a comparison 

with self-reported walking. The urban form variables that compose such indices were, in the 

same way, tested for a deeper understanding of the phenomenon. The process of analysis and 

the results of this study indicated that the BE as a support for walking on average-sized Brazilian 

Towns is a particularly contextual phenomenon. The relationship between perceptions of 

satisfaction with the built environment was also analyzed as to investigate perception’s 

contribution and relationship to walkability analysis.  Through this investigation the hypothesis 

that there is a coherence between perceptions of satisfaction and walkability was tested.  

When comparing objective walkability variables to self-reported walking on 

the averaged-sized Brazilian town of Rolândia-PR/BR, it was possible to uncover the specific 

spatial elements that influence walking.  The urban form measures of Entropy, Space Syntax 

integration at the 2000 m radius, and Residential Density were identified as being more 

strongly related to walking. Entropy specifically was found to be the main correlate of walking. 

These findings are consistent with the literature  as they  represent, in a context specific way, 

the traditional 3D’s concept of land-use Diversity, pedestrian-oriented Design and Density 

(CERVERO; KOCKELMAN, 1997).  

Land-use diversity (land-use mix) is represented here by the Entropy 

measure, which has consistently been found associated with walking (SAELENS; HANDY, 

2008). Density is represented by the Residential density variable, regarded as important as it 

directly affects the compactness of an area, influencing walking  (MOUDON et al., 2006). 

Design usually encompasses street connectivity—describing the degree to which destinations 

are connected by streets (LU; XIAO; YE, 2017). The most common method for assessing 

connectivity in walkability studies is intersection density (FRANK et al., 2005; OWEN et al., 

2007) . However, this work’s results indicate that the space syntax measure of local integration 

greatly surpassed the traditional metric for street connectivity in its importance to predict 

walking levels. When compared with intersection density, the space syntax measure of 

integration is less intuitive and thus may be more difficult to grasp for practitioners and decision 

makers. However, the necessary data for space syntax analysis is more easily obtained, it 

captures aspects of the street network that are relevant to pedestrians and identifies connectivity 
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not only for an area but also for a single street segment (KOOHSARI et al., 2016a). It must be 

emphasized that land use mix, residential density and integration have a threshold of positive 

influence on walking. Here, we do not indicate such quantity baseline. We can only infer that 

such variables influence walking behaviors. 

After such considerations, one important aspect of the performance of 

individual walkable urban form variables is the excelling influence of Entropy over other 

variables tested. This means that land use mix exerts a main role in impacting walking levels in 

the context of a medium sized Brazilian town. Measuring entropy using the Shannon index 

equation with a detailed-systematic approach to specific land uses and building typologies has 

effectively contributed to such outcome. Therefore, as hypothesized the environmental 

variables related to walking behavior are not necessarily the same in averaged-sized towns as 

the ones in larger Brazilian cities and high income developed countries. Consequently, there is 

a demand for specific approaches to measuring the objective walkability-built environment 

effectively, possibly considering land use mix as a central walkability measure.  

Furthermore, this researches’ results also indicate that traditional composite 

walkability indexes—combining density, land-use mix, street connectivity and retail floor area 

ratio—widely used to predict walking (FRANK et al., 2010; FRANK et al., 2005; GLAZIER 

et al., 2014; GRASSER et al., 2013; SUNDQUIST et al., 2011), are not completely effective in 

medium sized Brazilian towns. This initial finding is of great implication to the 

operationalization of walkability measurement, indicating that more traditional walkability 

indices might not be suited for our social, cultural and urban reality. However, the variations of 

Frank (2010)’s walkability index that disregards retail FAR and the weighting attributed to the 

intersection density, such as applied by Reis et al. (2013), had a good performance in the models 

(Walkability index #4). Based on this result it can be inferred that retail FAR is an ineffective 

measure for average-sized Brazilian towns. Further, it can be concluded that intersection density 

is a measure that doesn’t influence walking as heavily as in high income countries, such as 

Australia and the United States.  

The best performing walkability index was the Index #5 calculated for 

Integration at a global scale. This indicates the superiority of space syntax measures over 

intersection density, as well as the relevance of residential density in influencing walking.   The 

performance of this index was outstanding, being twice as important as other indices in 

predicting walking. It can be discussed that in studying human action, such as walking, the 

“prime mover” is individual motivation or goal-directed behavior, however, our results indicate  

the possibility of effectively predicting pedestrian walking behavior without explicitly 
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assuming anything about individuals or their cognitive capacity, as clues of such natural 

cognition may be implicit in space syntax theory and analysis (PENN, 2003). 

Entropy was the outstanding walkability variable; however, the optimal 

walkability index didn’t include this land use mix variable. Considering this disparity, further 

possibilities can be raised. It can be apprehended that there might be another composed 

objective walkability measure that hasn’t been initially proposed here. By aggregating entropy 

with the variables of the best performing index it might be possible that an even stronger 

objective walkability measuring tool would be created.  Through an initial testing of Spearman 

correlation of walking levels with one option of index that includes entropy, residential density 

and integration; and a second option considering only entropy and integration (Figure 43). It 

can be observed that further possibilities can be explored for medium sized Brazilian towns. 

This is a conjecturing based in this researches’ results that can be explored in future studies. 

 

Figure 43 – Correlations between possible walkability indices and walking. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 

 

When analyzing the urban form of Rolândia and how it relates to walkability, 

a first specific aim of this research, it was detected that higher indications of entropy z-score, 

residential density, and the space syntax integration measure in the 2000m radii are being 

consistently located in two clusters: 1. central and 2. northwest. While established central areas 
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present higher values, lower values are situated in the outskirts of the urban perimeter (Figure 

44). These spatial characteristics are closely related to urban growth and its historical process. 

According to (KRAFTA, 2014), urban growth adds fragments to existing cities that assume 

identities trough time.  

 

Figure 44 – Walking levels map at the 1000m street network scale. 

 

Source: Environmental design research group, 2018. Organized by the author, 2018. 

 

Rolândia can be considered a new town, planned by CTNP (Companhia de 

Terras Norte do Paraná) in the 1940´s, with its initial core characterized by a parabolic shape 

delimited by a railroad (Figure 45). The railway was a fundamental element for the colonization 

process and implementation of new towns in Northern Paraná (YAMAKI, 2003). This initial 

core, called “Gleba Roland”, was characterized by three radial lines that have guided urban 

developing (REGO AND MENEGUETTI, 2006).  This historical process explains the existence 

of such an intensity of phenomena observed in this area, from higher land use mix and price, to 

high walkability and increased walking in this area.   
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Figure 45 – Rolândia’s initial 1940’s core. 

 

Source: Rego and Meneghetti (2006). Modified by the author, 2017 

The second area, in the northwest, was the first expansion outside the original polygon, 

around the 1950’s (Figure 46). This secondary centrality, with the railway as a barrier to the 

city center, developed its own center with retail and services, with a higher residential density 

and integration characteristics. Currently, it represents another significant core for high values 

of walkability indicators. 

 

Figure 46 – Rolândia’s urban expansion from 1940 to 2010. 

 

Source: ITEDES, 2017. Modified by the author, 2017 
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Subsequent expansions kept advancing until limited by natural boundaries 

and municipality territory. In the 1990’s an industrial sector and social housing developments 

arose on the outskirts, justifying the low indicators of walkability, connectivity, and walking 

levels.  

When it comes to spatial units, a specific aim of this research was identifying 

the adequate spatial unit for capturing BE features on the walkability assessment of average-

sized Brazilian towns. The 1000-meter street network buffer yielded the best models. This 

radius of ‘sliding scale’ unit of analysis relevance (GEHRKE; CLIFTON, 2014)  follows 

literature evidence that considers BE exposure classifications to within 1000 meters as optimal 

(HOUSTON, 2014). This result is also consistent with the walking patterns present in the case 

study, where a majority of walking trips is restricted within the 1000-meter distance range. 

The third and last specific aim of this research was analyzing if a relationship 

between relevant walkability variables and indices perceptions of satisfaction exists and 

contributes to walkability analysis. Therefore, the hypothesis that there is a coherence between 

perceptions of satisfaction and walkability indices was tested. However, the results presented 

here do not confirm this proposition. It could be observed by the RF classification results and 

the distribution analysis, that there is no clear pattern when it comes to the relationship between 

these variables and the urban context under examination. Neither residing in a determined 

neighborhood for longer, walking more, living in a neighborhood that is more walkable or with 

more mix of uses resulted in a change in perception of satisfaction with the neighborhood 

environment.  

The literature on the concordance between perceptions and the walkable BE 

is mixed and this low level of agreement confirms that perceptions should not be considered as 

proxies for objective measures (JAUREGUI et al., 2016a). This research contributes to this 

inconclusive research paradigm with indications that perceptions of satisfaction don’t seem to 

relate to the walkability variables or indices considered in this work. However, the potential 

mediating role of environmental cognitions on the relationships between environmental 

attributes and walking were not considered here and may be moderated by socio-demographic 

factors (GEBEL et al., 2011).   Further, micro-level walkability features are thought to possibly 

have a more instantaneous influence on pedestrian perception (SAELENS et al., 2003) than the 

meso-level walkability employed by this study.  Testing micro-level walkability, as one of the 

determinants influencing walking travel behavior, with perceptions of satisfaction could 

potentially yield better results.  
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The need for policy-relevant interdisciplinary research, that may lead to more 

contextually desirable outcomes, is emphasized in the recent literature (SALLIS et al., 2016a). 

This work goes towards this recommendation, presenting methods that includes a case study, 

with an emphasis on local evidence, that may lead interventions in specific urban environments. 

Considering the relevance of land use mix, residential density and space syntax to walking 

behaviors, guidance for designing urban developments to support walkable communities could 

be subsidized.  

In Brazil, although federal regulations exist, the municipalities hold the 

prerogative of structuring the street network, assigning locations for open space and 

institutional buildings, among other guidelines. Therefore, it would be possible, in theory, to 

conceptualize a more walkable, healthy, sustainable city through municipal initiative. However, 

urban planning in our local context might eventually be biased, tending to favor individuality 

and not the collective or communal.  

The Plano Diretor, a type of Master plan, is the main instrument for guiding 

the development of Brazilian cities. It comprehends seven legal instruments - Plano Diretor 

Law; Urban Subdivision Law; Urban Perimeter and expansion Law; Land use and occupation 

Law (Zoning); Transportation systems law; Building codes and Posture Codes– however, three 

of these regulations may be connected to meso-scaled walkability: transport, land use and urban 

subdivision codes.  

Specific laws for transportation in Brazil define the street network hierarchy. 

Currently, they focus on individual motorized transport, barely considering public transport and 

disregarding active travel. Thus, a shifting of priorities would be paramount. Prioritizing 

pedestrians would positively impact the environment and better quality of life overall by 

assigning the spaces that would be destined to cars to public usage.  This study’s findings do 

have a practical relevance, as they could help to subsidize the transformation of such obsolete 

regulation elements trough pragmatic evidence.  

Brazilian land use regulations, mainly zoning codes, are widely used as an 

instrument to divide the city into large areas for the application of guidelines of land use 

occupation and location of residential densities. However, many flaws can be pointed out in 

this instrument, mainly, that land price defines and segregates socio-economic groups within 

the territory. By unfairly assigning public investment, this excluding character tends to 

homogenize groups within areas of the city, especially extreme low or high social classes. 

Considering Land use mix, there are no clear parameters for the delimitation 

of these areas.  It would be ideal to conceptualize the permission of land uses for all plots in the 
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city, restricting only what is effectively incompatible with residential land use.  This work’s 

results contribute to this discussion in the sense that they indicate the relevance of entropy for 

active travel and could subsidize Planos diretores in the determination of land use, 

understanding urban tendencies of accessibility and distribution. This type of situation could 

act as an effort for the creation of neighborhoods that are denser, more compact and have a 

greater mix of uses.  

The subdivision regulation, that also composes the Plano Diretor, regulates 

the parceling of urban land into plots, guiding new streets, defining percentages of open spaces 

and public facilities, block size and plot design. These guidelines directly influence the density 

and diversity of building typologies, street connectivity and consequently land use distribution. 

This researches’ results could be applied to subsidize such guidelines, that influence the 

provision of infrastructure and linkage of urban activities.  
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6 CONCLUSIONS 

 

This study provided an exploration of the efficacy of several walkability 

constructs and indices at multiple geographic scales of a medium sized Brazilian town. This 

analysis was conducted through the understanding of these measures in relation to walking 

levels. Further, perceptions of satisfaction with the built environment were analyzed as to their 

relationship with walking and walkability.   

When analyzing walkability measures of the built environment in relation to 

walking levels, the 1000m network buffer scale best modeled the relationship. The most 

relevant features were Entropy Z-score and a walkability index (Walkability index #5) 

considering Space Syntax Walkability at a Global Integration radius weighted by two and 

residential density. These findings are of great implication to the operationalization of 

walkability measurement in Brazilian towns, indicating that more traditional walkability indices 

might not be suited for our social, cultural and urban reality. Further, this outcome indicates the 

relevance of meso-scale walkability measures in predicting walking behaviors and representing 

walkability.  

Perceptions’ relationships with walkability and walking were more clouded 

for interpretation. The uneven distribution of answers heavily influenced the outcomes. In the 

context of the case study, a pattern between perceptions and walking levels could not be found. 

Such perception’s relationship to time living in the neighborhood, entropy, individual walking 

level and Space syntax walkability was also inconclusive. Future studies can conduct analysis 

controlling for socio-demographic characteristics, as evidences indicate that neighborhood 

socioeconomic level status confounds the association between walkability and neighborhood 

satisfaction (GRASSER; TITZE; STRONEGGER, 2016).  

Solid evidences to guide urban planning guidelines that consider active 

transportation, go through the need to faithfully systematize objective built environment 

representations. Therefore, this research contributes to this discussion with data aggregation 

alternatives for walkability and general urban planning analysis. Census tracts, the usual unit 

of analysis used for data aggregation in walkability analyses performed poorly in representing 

this researches walkability data, whereas a street network buffer of 1000 meters performed best.  

A change in paradigm would be necessary to encompass deeper evidence-

centered analysis in urban planning and develop more effective regulation instruments. This 

work through the use of geoprocessing and different statistics or computational tools can 

aggregate value for the creation of more effective holistic urban plans. Opening space for 



 

 

110 

community participation, real evaluations of existing proposed policies and the development of 

evidence-centered, contextually-tailored urban planning would be the way for creating more 

sustainable cities: connected, denser, destination-full and walkable. 

This study presents some limitations but also moves forward in the discussion 

of specific walkability measures for average sized Brazilian towns. The main limitation is that 

the OD survey has not been created in the specificity of analyzing walkability, even though the 

database was an important and coherent source of information. It is essential to emphasize that 

the authors acknowledge the limitation in the self-report information approach (RIBEIRO et 

al., 2014), recall bias and inaccuracy are always a possibility.   

Furthermore, as the relationship between people and their environment 

changes over time, using longitudinal study designs is of utter importance. (RIVA; GAUVIN; 

BARNETT, 2007). To investigate how walking behaviors are influenced by the built 

environment it is necessary to outperform cross-sectional associations through prospective and 

intervention study that enlighten the relationships between environment and behavior, 

indicating causality (OWEN et al., 2004). The route geocoding procedure also presents itself as 

a limitation as it did not considered aspects such as street hierarchy, stop signs, pedestrian 

crossings, etc.  Even considering such limitations, results contribute to the current limited 

understanding of the association between walkability and neighborhood satisfaction, especially 

in a Brazilian context. More comparable, longitudinal research would be necessary to determine 

what impact walkability has on neighborhood satisfaction and to identify influencing variables. 

Future studies on walkability measures for averaged-sized Brazilian towns 

should firstly explore larger radii of buffers for data aggregation as well as other types of buffer 

conceptualization. Additional refinements may be needed to improve the reliability 

performance perception analyses, larger samples and the application complete NEWS 

questionnaires should be considered. Socio-demographic characteristics should be incorporated 

into future studies as moderators and mediators of perceptions. Lastly, neural networks might 

be used for providing more interpretability to the phenomenon, subsidizing a more specific 

approach to conceptualizing an optimal walkability index.   
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APPENDIX A – INTEGRATION AND CHOICE MAPS 
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APPENDIX B – EXAMPLE WALKABILITY INDEX CONSTRUCTION 

 

                                                                                                          Source: Organized by the author, 2017
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