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Resumo

No contexto dos grupos de Lie, a Teoria de Controle se ocupa basicamente do

estudo dos sistemas de controle invariantes, lineares, bilineares e afins. Para sistemas in-

variantes - considerando que as funções de controle são constantes por partes - as soluções

do sistema têm uma descrição já bem conhecida (veja [24]). Isto nos leva ao primeiro

objetivo deste trabalho: obter uma descrição explícita das trajetórias para os outros sis-

temas sob a hipótese de que os campos lineares comutam. A descrição destas trajetórias é

obtida como a curva integral de um campo vetorial invariante conveniente em um produto

semidireto de um grupo de Lie por um espaço euclidiano (como em [9]). Em particular,

consideramos o caso em que as derivações associadas aos campos lineares são internas (o

que ocorre, por exemplo, em toda álgebra de Lie semissimples). Neste caso, as soluções

são descritas de uma maneira consideravelmente mais simples e elegante.

Deste ponto em diante, os resultados são aplicados à obtenção de novas proposições.

Os resultados obtidos vão desde condições que relacionam a controlabilidade de sistemas

de controle linear/afim com sistemas invariantes associados até o estudo de semiconju-

gação de sistemas por homomorfismos de grupos e propriedades de conjuntos estáveis.

Palavras-chave: sistema de controle linear, sistema de controle afim, soluções,

controlabilidade, conjugação de sistemas, estabilidade.



Abstract

In the context of Lie groups, Control Theory is primarily concerned with the

study of invariant, linear, bilinear and affine control systems. For invariant systems -

considering that the control functions are piecewise constant - the solutions of the system

has a well known and good description (see [24]). This brings us to the first objective

of this work: to give an explicit description of the solution curve for the other systems

under the assumption that the linear vector fields commute. These solutions are obtained

as the integral curve of a convenient invariant vector field on a semidirect product of a

Lie group with an Euclidean space (just as in [9]). In particular, we consider the case

where the derivations associated to the linear vector fields are inner (which occurs, for

example, in every semi simple Lie algebra), in which case the solutions are described in a

considerably simpler and more elegant way.

Thenceforth, our achievements are applied to obtain new propositions. The re-

sults range from expressions that relate the controllability of linear/affine control systems

with associated invariant ones to the study of system semiconjugation by Lie group ho-

momorphisms and properties of stability sets.

Keywords: linear control system, affine control system, solutions, controllability,

system conjugation, stability.
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Introduction

The main object of study in this thesis are control systems defined on connected

Lie groups. We think it is reasonable to say that this class of systems has in linear control

system one of its main representatives. Indeed, initially the study of control theory focused

on this kind of system and currently a broad theory has been developed for them. A linear

control system on R
n is given by a family of differential equations

dx

dt
= Ax+Bu, (1)

where A ∈ M(n × n;R), B ∈ M(n × m;R) and u ∈ U ⊂ R
m is a control parameter.

One of the issues of interest in this field is to find among all the possible control functions

one function u in such a way that the system has specific properties, such as optimal or

periodic trajectories, stabilization at a fixed point and reachability (controllability) from

a determined initial position.

Over the years, lots of results concerning controllability aspects have been estab-

lished. In the achievement of many of those results, the description of the solutions of

the system played an important role (see for instance [1] and [10]). The solutions of this

system are obtained through the formula of the variation of the constants that provides

for each control function u the solution of the corresponding differential equation (1).

More specifically, given u and an initial condition x0 ∈ R
m, the solution is written as

φ(t, x0, u) = etAx0 +

∫ t

0

e(t−s)ABu(s)ds.

Currently, out of the context of euclidean spaces, linear control systems are stud-

ied in more general environments. They were considered initially by Markus in matrix

Lie groups [19]. Later, Ayala and Tirao [5] extended the system for general Lie groups.

In this broader context, a linear system on a connected Lie group G is a control system

of the form
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dg

dt
= X (g) +

m
∑

i=1

ui(t)Yi(g), (2)

where g ∈ G, X is a linear vector field, Y1, . . . , Ym
2 are invariant vector fields, and u =

(u1, . . . , um) is an admissible control parameter. Since then, this system has become the

subject of study of several authors. Among them, we reference [4], [9], [12], [26] and so

on.

Despite linear control systems (1) have a good description of their solutions, it

is not true in the case of systems on general Lie groups (2). One of the first results in

this way is found in [2]. The purpose of this work is to contribute in this direction. In

principle, we intend to describe the solutions not only for linear control systems but also

for Bilinear and, more generally, for Affine Control Systems. Thereafter, we intend to

use this description of the system trajectories as a tool that allows us to get a clearer

understanding of some important aspects related to control theory such as controllability,

systems conjugation, dynamical behavior, etc.

In order to accomplish the task described above, this work is organized into four

chapters as follows:

Chapter 1 consists of two sections: the first contains a brief exposition of the

notions and background information of control theory in differentiable manifolds. We

intend to be objective at this point so that only some basic concepts will be presented.

For a more detailed exposition of the subject, we suggest the study of [1], [10] and [14].

The same can be said about Section 1.2. But this time, the objective is to introduce the

notations and results concerning linear vector fields on Lie groups, a concept necessary

for the definition of the control systems that will be studied next.

In Chapter 2 we begin to approach the problem of trying to describe the solutions

of control system (2). Our idea for constructing the trajectories is to use a technique3

presented in [9] that considers an invariant system on a semidirect product G×ϕR, where

ϕ is a one-parameter subgroup of automorphisms associated to the linear vector field of

the system. Thenceforth, the solution curve is obtained as the integral curve of a certain

invariant vector field (see Theorem (2.7)).

Reading the third chapter makes it clear that it is motivated by the previous one.

2Right or left invariant, depending on the approach.
3Cardetti and Mittenhuber [9] in this occasion use a semidirect product G ×ϕ R to prove the well

known ad-rank condition for local controllability.
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Having described the solutions of linear systems, we now consider with a similar approach

a more general class of system: the affine control systems, which have the form

dg

dt
= (X + Y )(g) +

m
∑

j=1

uj(Xj + Yj)(g),

where X , X1, . . . , Xm are linear and Y, Y1, . . . , Ym are right invariant vector fields on

G. Following the same methodology of the previous chapter, the first step to describe

the trajectories is to define a representation from the Euclidean space R
m+1 into the

group of automorphisms Aut(G). This is done through the mapping ρ(t0, t1, . . . , tm) =

ϕt0 ◦ϕ
1
t1
◦ · · · ◦ϕm

tm , where ϕ
i
ti
is the linear flow associated to Xi, i = 0, 1, . . . ,m. However,

to ensure that this function is truly a representation, we need to assume that the condition

[Xi,Xj] = 0, for i, j = 0, 1, . . . , m

holds. In this work, Affine Control Systems satisfying the above assumption are called

Commutative Affine Systems. We note that controllability is an extremely rare property

for this kind of system (see for example [3] or [15]). Nevertheless, the controllability

problem is also considered for the inner derivation case. We extend two results from [12]

relating the controllability of the commutative affine system to the controllability of an

associated right invariant one (Theorems (3.10) and (3.12)). The last section ends with

applications on the study of semiconjugations of systems by Lie group homomorphisms.

Unlike dynamical systems, which associate to each point of a differentiable man-

ifold a single trajectory, control systems allow multiple trajectories to depart from the

same point. More than that: the path of a trajectory can be altered over time by a

change in the control function. This makes the behavior of the trajectories of a control

system much more complex to predict - and consequently more chaotic - than that of a

dynamic system. Another remarkable difference occurs in the existence of fixed points.

For the reasons described above, the incidence of fixed points in control systems is con-

siderably lower than in dynamic systems. For this reason, instead of fixed points it is

more convenient for us to consider invariant sets. Chapter 4 is an initial proposal to the

study of geometric and dynamic properties of control systems on Lie groups. We use the

description for the solutions obtained in the previous chapters to show that under certain

reasonable conditions these systems solutions are, in a sense, well predictable.



Chapter 1

Basic Concepts Of Control Theory

This chapter in intended to establish the concepts and notations of control theory

necessary to the development of this work. Section 1.1 presents initial definitions and basic

results concerning control theory on differentiable manifolds. Section 1.2 deals briefly with

the study of linear vector fields, which play an important role in the definition of the most

classic control systems on Lie groups. These and others topics related to these subjects

can be found in [1], [10], [12], [14] and [18].

1.1 Control Systems on Differentiable Manifolds

Let M be a differentiable manifold. A control system on M is defined in terms

of an application X : M × U → TM , where for each u ∈ U ⊂ R
m we have that X(·, u)

is a smooth vector field. If u : R → U is a locally integrable function, called admissible

control function, then we associate the differential equation

dx

dt
= X(x(t), u(t)). (1.1)

A control system on M is a family Σ of differential equations (1.1) parametrized

by the admissible control functions u. We consider that u belongs to a set U of locally

integrable functions closed under concatenation. That is, given u, v ∈ U and T > 0 the

control function defined as (u∧ v)(t) = u(t) for t ≤ T , and (u∧ v)(t) = v(t−T ) for t > T

also belongs to U .

We assume that for each x ∈ X and u : R → U , there is a solution φ(t, x, u) of

equation (1.1) with initial condition φ(0, x, u) = x. This makes possible to define a map

φ : R×M × U →M, (t, x, u) → φ(t, x, u).

4
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For each function u, the map φu : R×M →M is continuous and for t ∈ R, φt,u : M →M

is a homeomorphism.

Example 1.1. Linear systems on R
n are examples of control systems. They are given by

the differential equation
dx

dt
= Ax+Bu, (1.2)

where x ∈ R
n, A is a n× n - matrix, B is a n×m - matrix, and u = (u1, u2, . . . , um) is

an admissible control. In this case, the solutions of the system at a point x0 are (see for

instance ([9], page 356)

φ(t, x0, u) = etAx0 +

∫ t

0

e(t−s)ABu(s)ds.

On U is defined the shift control function θ : R × U → U , where the control

function θ(s, u) = θsu is defined as

(θsu)(t) = u(s+ t).

This function defines a dynamical system on U and the solutions of the system

(1.1) satisfy what is called the cocycle property:

φ(t+ s, x, u) = φ(t, φ(s, x, u), θsu).

We say that a point y ∈ M is reachable from x ∈ M in time T > 0 if there is

a control function u such that ϕ(T, x, u) = y. The reachable set (or attainable set) of

control system (1.1) from the point x ∈M for a time T > 0 is the set AT (x) of all points

y ∈M reachable from x in time T > 0. Lastly, we define a larger set: the orbit of a point

x ∈ M , denoted as O(x) ⊂ M , is the set of all points φ(t, x, u), t ∈ R and u ∈ U . In

an orbit, we are allowed to move along the trajectories of the system both forward and

backward in time, while in the reachable sets only forward motion is permitted.

The reachable set of a control system may change depending on the set of admis-

sible control functions considered. In this work, we assume that U is the set of piecewise

constant control functions u : R → U , with 0 ∈ intU ⊂ R
m, defined up next.

Definition 1.1. Let u1, u2, . . . , un ∈ U ⊂ R, 0 = t0 < t1 < · · · < tn positive real
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constants and T =
∑

ti. A piecewise constant function u : [0, T ] → U is defined by

u(t) = uk, if
k−1
∑

i=0

ti < t ≤
k
∑

i=0

ti.

In other words, a piecewise constant function u : [0, T ] → U is a function whose

domain was split in subintervals in such a way that u is constant in each of these subin-

tervals. The set U ⊂ R
m is called the control range of the system. When it is compact

and convex, we say that the system is bounded. Otherwise, if U = R
m, the system is said

to be unbounded.

Control system (1.1) is said to be controllable from a point x ∈M if A(x) =M .

Generally, the system is said to be controllable if it is controllable from all points.

In the study of topological properties of orbits and reachable sets it is important

to consider the family F composed of the vector fields Xu = X(·, u). This family gives

rise to a distribution on M associating to each x ∈ M the subspace Liex F ⊂ TxM
1. We

say that the system is full-rank 2 or satisfies the accessibility rank condition if

Liex F = TxM,

for all x ∈M . About the study of the topological properties of orbits we present what is

considered one of the most relevant results due to Nagano - Sussmann (see [1, Theorem

5.1] on page 61):

Theorem 1.2 (Orbit Theorem). Let Σ be a control system on a connected smooth

manifold M and x ∈M . Then O(x) is a connected immersed submanifold of M .

Furthermore, for full-rank systems holds the following important statements:

Corollary 1.3 (Rashevsky - Chow). Let Σ be a full-rank system on a connected smooth

manifold M . Then O(x) =M for all x ∈M .

Proof: See Theorem 5.2 of [1], page 65. ✷

1Liex F is the subspace of all vector fields Xu(x) = X(x, u) ∈ TxM , with u ∈ U .
2Other terms also appear in the literature such as completely non-holonomic or bracket-generating

(see Definition 5.2 in [1] on page 65).
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Theorem 1.4 (Krener). If the control system is full-rank, then A(x) ⊂ intA(x), for all

x ∈M . In particular, reachable sets for arbitrary time have nonempty interior.

Proof: See Theorem 8.1 of [1], page 107. ✷

The above result means that in full-rank systems, both reachable sets and orbits

are full-dimensional. Another consequence, as the next corollary shows, is the simplifica-

tion of the study of controllability since it allows us to look more generally the closure of

reachable sets.

Corollary 1.5. Suppose that a control system is full-rank. If for some x ∈ M we have

A(x) =M then A(x) =M . That is, the system is controllable from x.

Proof: See Corollary 8.1 of [1], page 110. ✷

In the next chapters, we will be interested in the study of some classes of control

systems on Lie groups. These systems to be defined are particular cases of Affine Control

System. Therefore, it is convenient to give the following definition:

Definition 1.6. An affine control system on M is a family of differential equations of

the form
dx

dt
= X0(x(t)) +

m
∑

i=1

ui(t)Xi(x(t)). (1.3)

where X0, X1, . . . , Xm are smooth vector fields on M , u = (u1, . . . , um) : R → U is

a piecewise constant control function and U ⊂ R
m is compact, convex and such that

0 ∈ intU .

Among other things, the importance of this system is in the simplicity of its

solutions. As we show next, it is possible to obtain all the solutions of the system just

concatenating the solutions associated to constant control functions.

Proposition 1.7. Let u1, u2, . . . , un be real constants, 0 = t0 < t1 < · · · < tn, T =
∑

ti

and u : [0, T ] → U be a piecewise constant control function defined by

u(t) = uk, if
k−1
∑

i=0

ti < t ≤

k
∑

i=0

ti,
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for k = 1, . . . , n. Then

φ(t, x, u) = φtn(un, . . . (φt2(u2, φt1(u1, x)))).

Proof: A proof can be found in [28, Proposition 1.1.3]. ✷

We end up this section noting that for Affine Control Systems, the accessibility

rank condition can be easier checked simply observing that Lie(F) = Lie(X0, X1, . . . , Xm).

1.2 Linear Vector Fields on Lie Groups

This section is intended to recall some important facts about linear vector fields

on Lie groups and their flows. These concepts are necessary to introduce some of the most

important classes of control systems such as linear, bilinear and affine systems. These sys-

tems will be the main object of study in the chapters to come. For more details about

the following concepts see [13] and [18].

Let G be a connected Lie group with Lie algebra g. Throughout this work, g is

the set of right invariant vector fields. For every g ∈ G, the maps Rg, Lg : G → G are,

respectively, the right and left translations on G.

Definition 1.8. The normalizer of the Lie algebra g is the set of all vector fields F such

that [F , Y ] ∈ g, for all Y ∈ g.

The vector fields F are called affine. The set of all affine vector fields is denoted

by Norm(g). This set is actually a Lie algebra since the Lie bracket [F1,F2] of two affine

system is still an affine vector field. Proposition 3.3 of [13] in page 962 shows that affine

vector fields are complete.

Definition 1.9. A vector field X on G is said to be linear if X ∈ Norm(g) and X (e) = 0.

Denoting by ϕt the flow of a linear vector field, it follows from the definition that

ϕt(e) = e, for all t ∈ R. The set of all linear vector fields is denoted by L(g). A direct

calculation shows that it is a subalgebra of Norm(g).

The word affine used to refer to F is due to the fact that affine vector fields can

be uniquely decomposed as a sum of a linear vector field and a right invariant one. This

is the subject of the two next results.
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Proposition 1.10. The mapping ad: Norm(g) → Der(g) defined by F → ad(F) is a

Lie algebra homomorphism.

Proof: See [18, Proposition 1.18], page 22. ✷

Proposition 1.11. The kernel of the mapping F → ad(F) is the set of left invariant

vector fields. An affine vector field F can be uniquely decomposed into a sum

F = X + Y

where X is linear and Y is right invariant.

Proof: See [13, Proposition 3.1], page 959. ✷

The most important fact about linear vector fields is that its flow is an one-

parameter group of automorphisms. More precisely, in [13, Theorem 3.1] page 959, it is

showed that a linear vector field X can be characterized by any of the following equivalent

conditions:

(i) for all t ∈ R, ϕt is an automorphism of G;

(ii) for all Y ∈ g, [X , Y ] ∈ g and X (e) = 0, where e is identity of G.

(iii) for all g, h ∈ G, X (gh) = d(Rh)gX (g) + d(Lg)hX (h).

Example 1.2. In R
n, linear vector fields are given by real matrices A ∈ M(n × n;R),

since their flows etA are one-parameter groups of automorphisms.

Example 1.3. Consider G = Gl(n;R) the group of all n × n non-singular matrices.

Given A ∈M(n× n;R), the vector field defined as

X (M) = AM −MA, M ∈ Gl(n;R),

is linear. Its flows is given by ϕt(M) = etAMe−tA.

For a linear vector field X , it is possible to associate a derivation D : g → g

defined by D(Y ) = −[X , Y ]. For the derivation D and the linear flow ϕ are valid the
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following properties (See [13, Proposition (3.2)], on page 961)

d(ϕt)e = etD and ϕt(exp(Y )) = exp(etDY ).

A particular case of derivations is the inner derivation. That is, D = −ad(X) for

some X ∈ g. In this case, the linear vector field X can be decomposed as X = X + dIX,

where dIX is the left invariant vector field induced by the Inverse Map I(g) = g−1.

Conversely, for any X ∈ g, the vector field defined by X = X + dIX is linear.

Of course, not all derivations on a Lie group G is associated to a linear vector

field. However, the following result holds:

Proposition 1.12. Let G be a simply connected Lie group and D a derivation of its Lie

algebra. Then there exists only one linear vector field whose associated derivation is D.



Chapter 2

Solution Curve For Linear

Control Systems

Let G be a connected Lie group. In this chapter we intend to give explicitly a

description for the solution curve at the identity of Linear Control Systems on G, denoted

here as ΣL. In order to do that, we use a construction presented in [9] that associates to

ΣL an Invariant Control System defined on a semidirect product G×ϕ R, where ϕ is the

flow of the linear vector field of ΣL. The definition of linear system that we give below

was introduced by Ayala and Tirao in [5]. It represents the natural extension of the same

system defined for Euclidean spaces.

Definition 2.1. Let G be a connected Lie group. A linear control system on G is a family

of differential equations of the form

dg

dt
= X (g) +

m
∑

i=1

ui(t)Yi(g),

where g ∈ G, X is a linear vector field, Y1, . . . , Ym are right invariant vector fields, and

u = (u1, . . . , um) : U → R
m is an admissible control function.

Before we move on to the main purpose of this chapter, we would like to present

some important properties of solutions and reachable sets for linear systems that are used

throughout this work. The results below are based on [12].

Proposition 2.2. Let g ∈ G and u be an admissible control function. Then

φ(t, g, u) = φ(t, e, u) · ϕt(g),

for t ∈ R.

11
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Proposition 2.3. Consider a linear control system defined on a Lie group G. With

respect to reachable sets, the following assertions hold:

1) As(e) ⊂ At(e), for all 0 ≤ s ≤ t.

2) At(g) = At(e)ϕt(g), for all t > 0 and g ∈ G.

3) At+s(e) = At(e)ϕt(As(e)), for all s, t ≥ 0.

Proof. The proof of 1) can be found in [27], while 2) and 3) are direct consequences of

Proposition 2.2.

Moving on to the main purpose of this chapter, we begin recalling that the flow

ϕt of the linear vector field X yields a representation ϕ : R → Aut(G). This fact allows us

to define the semidirect product G×ϕR, that is, the set G×R endowed with the product

(g, t)(h, s) = (gϕt(h), t+ s) (see [22, Section 9.3]).

It is well-known that G×ϕ R is a Lie group. Furthermore, its correspondent Lie

algebra is the semidirect product of Lie algebras g×σ R, where σ : R → Der(g) is defined

as

σ(t)(Y ) = adtX (Y ) = t[X , Y ],

for all Y ∈ g. The relation between ϕ and σ is given by dϕ0 = σ.

For any vector fields (Y, t), (W, s) ∈ g×σR, the Lie bracket is given by the formula

[(Y, t), (W, s)] = ([Y,W ] + σ(t)(W )− σ(s)(Y ), [t, s]) = ([Y + tX ,W + sX ], 0) 1.

Throughout this work, for (g, r) ∈ G×ϕ R, R(g,r) denotes the right translation and, when

not specified, the differential dR(g,r) is evaluated at the group identity.

Now we determine the value of an invariant vector field (W, s) on an arbitrary

point (g, r).

Proposition 2.4. If (W, s) ∈ g×σ R and (g, r) ∈ G×ϕ R, then

(W, s)(g, r) = (W (g) + sX (g), s) .

1It follows directly from Definition 9.9 of [22, Section 9.3], page 194
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Proof: We first write (W, s)(g, r) = dR(g,r)(W, s). Thus, in matrix notation, the differen-

tial dR(g,r) gives

dR(g,r)(W, s) =





dRg X (g)

0 1









W

s



 = (W (g) + sX (g), s) .

✷

This proposition allows us to describe exponential curves of invariant vector fields of

g×σ R.

Lemma 2.5. If (W, 0), (0, s) ∈ g ×σ R, then their exponentials are the smooth curves

(exp(tW ), 0) and (e, st), respectively, with t ∈ R.

Proof: We first compute the exponential for (W, 0). To this purpose, we note that

(W, 0)(g, r) = (W (g), 0) for all (g, r) ∈ G ×ϕ R in view of the Proposition 2.4. By

definition of exponential,

d

dt
(exp(tW ), 0) =

(

d

dt
exp(tW ), 0

)

= (W (exp(tW )), 0) = (W, 0)(exp(tW ), 0).

The result follows by uniqueness of solution. Analogously we can see that the curve (e, st)

is the exponential curve of (0, s). ✷

In the following, the previous lemma will be used to determine the exponential

of an invariant vector field (W, s) ∈ g×σ R.

Proposition 2.6. Let (W, s) be an invariant vector field on G×σ R. It follows that

exp(t(W, s)) =

(

lim
n→∞

n−1
∏

i=0

ϕist/n ◦ exp(t/n ·W ), st

)

. (2.1)

Proof: We first write (W, s) = (W, 0)+ (0, s). Applying the Lie product formula (Propo-

sition (6.11) of [22], page 133) gives

exp(t(W, s)) = lim
n→∞

(exp(t/n(W, 0)) · exp(t/n(0, s)))n .
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Using the above lemma and the semidirect product we see that

exp(t(W, s)) = lim
n→∞

((exp(t/n ·W ), 0)(e, st/n))n

= lim
n→∞

(exp(t/n ·W ), st/n)n

=

(

lim
n→∞

n−1
∏

i=0

ϕist/n ◦ exp(t/n ·W ), st

)

,

and the proof is complete. ✷

Using the relation d(ϕt)e = etD we can rewrite formula (2.1) as

exp(t(W, s)) =

(

lim
n→∞

n−1
∏

i=0

exp
(

t/n · eDtW
)

, st

)

, (2.2)

where, for simplification, we denote Dt =
ist

n
D.

Now consider the vector fields X̄ = (0, 1), Ȳj = (Yj, 0) ∈ g ×σ R, for each

j = 1, . . . ,m. It follows from Proposition 2.4 that, in coordinates, these vector fields can

be expressed as

X̄ (g, r) = (X (g), 1) and Ȳj(g, r) = (Yj(g), 0).

We define the following invariant control system on G×ϕ R:

ΣI :
d(g, r)

dt
= X̄ (g, r) +

m
∑

j=1

ujȲj(g, r).

Equivalently, in coordinates we have





dg/dt

dr/dt



 =









X (g) +
m
∑

j=1

ujYj(g)

1









.

The invariant system above was built in such a way that π(ΣI) = ΣL, where π : G×ϕR →

G is the projection on the first coordinate. We explain the meaning of this notation as fol-

lows: if we denote AI(g, r) the reachable set of ΣI at point (g, r) and AL(g) the reachable



CHAPTER 2. SOLUTION CURVE FOR LINEAR CONTROL SYSTEMS 15

set of ΣL at point g, then π(AI(g, r)) = AL(g). Furthermore, the invariance of the sys-

tem allows us to write AI(g, r) = AI(e, 0)·(g, r). And now, we move on to the main result.

Theorem 2.7. For u = (u1, . . . , um) ∈ R
m the curve

φ(t, e, u) = lim
n→∞

n−1
∏

i=0

ϕit/n ◦ exp

(

t

n

m
∑

j=1

ujYj

)

(2.3)

is the solution, with initial condition φ(0, e, u) = e, of the linear dynamical system

ΣL :
dg

dt
= X (g) +

m
∑

j=1

ujYj(g).

Proof: Let us denote W =
m
∑

j=1

ujYj and exp(t(W, 1)) = (φ(t, e, u), t). From Proposition

2.4 we have that

(W, 1)(φ(t, e, u), t) = (W (φ(t, e, u)+X (φ(t, e, u)), 1) =

(

X (φ(t, e, u)) +
m
∑

j=1

ujYj(φ(t, e, u)), 1

)

.

On the other hand, the curve (φ(t, e, u), t) is the integral curve of W . Therefore

(W, 1) exp(t(W, 1)) = (W, 1)(φ(t, e, u), t) =

(

d

dt
φ(t, e, u), 1

)

.

We thus get





d

dt
φ(t, e, u)

1



 =









X (φ(t, e, u)) +
m
∑

j=1

ujYj(φ(t, e, u))

1









.

Taking the projection on the first coordinate we conclude that the curve φ(t, e, u) satisfies

the differential equation of the dynamical system. As φ(0, e, u) = e, we have that this

is the solution of the system at the identity. Besides that, Proposition 2.6 give us a

description of exp(t(W, 1)). Since exp(t(W, 1)) = (φ(t, e, u), t), we conclude that

φ(t, e, u) = lim
n→∞

n−1
∏

i=0

ϕit/n ◦ exp

(

t

n

m
∑

j=1

ujYj

)

.
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✷

Applying the above theorem it is possible to recall a well-known result about

linear systems:

Corollary 2.8. Let g ∈ G be an arbitrary point and consider the linear dynamical system

as in the previous theorem. The solution φ(t, e, u) of the system starting at an arbitrary

point g is given by the formula

φ(t, g, u) = φ(t, e, u)ϕt(g).

Proof: Consider an arbitrary point (g, r) ∈ G×ϕ R. Denote by φI((g, r), t) the solution

of the control system ΣI at (g, r). We have already seen that φL(g, t) = π(φI((g, r), t)).

Now, using the right invariance property and the product on G×ϕ R, we get

φ(t, g, u) = π (φI((e, 0), t)(g, r)) .

By the proof of the previous theorem, it follows that φI((e, 0), t) = (φt(e, u), t). Therefore

φt(g, u) = π(φt(e, u)ϕt(g), t+ r) = φ(t, e, u)ϕt(g).

✷

Example 2.1 (Linear Control Systems on Heisenberg Group). Let G be the

Heisenberg group, that is, the set of all real matrices of the form











1 x z

0 1 y

0 0 1











.

As usual, we identify this group with R
3 in such a way that the group product is defined

as

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2).
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In this case, the Lie algebra of the Heisenberg group is the vector space R
3 with the Lie

bracket defined as [(x1, y1, z1), (x2, y2, z2)] = (0, 0, x1y2 − x2y1) and the exponential map

exp: R3 → R
3 as

exp(x, y, z) =
(

x, y,
xy

2
+ z
)

.

The right invariant vector fields Y = (m,n, p) in G have the form

Y (x, y, z) = m
∂

∂x
+ n

∂

∂y
+ (my + p)

∂

∂z
,

while the matrix of a derivation D associated to a linear vector field X is written as

D =











a11 a12 0

a21 a22 0

a31 a32 a11 + a22











.

We consider the following linear control system on G

dg

dt
= X (g) + uY (g),

where Y = (0, 0, p) and X is the linear vector field associated to the derivation

D =











1 0 0

0 0 0

0 0 1











.

Applying formula (2.2), we note by a direct calculation that

ut

n
eit/n·DY =

(

0, 0,
upt

n
· eit/n

)

.

Taking the exponential and the limit we obtain

φ(t, e, u) =

(

0, 0, lim
n→∞

n−1
∑

i=0

upt

n
· eit/n

)

=

(

0, 0, upt

∫ t

0

esds

)

=
(

0, 0, et · upt
)

.

From the solution above it is easy to see that the linear control system is not controllable

from the identity.
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Example 2.2 (Linear control system on Gl(n;R)+). Let Gl(n;R)+ be the set of all

n× n real matrices with positive determinant and gl(n;R) its Lie algebra. As mentioned

before, for A ∈ gl(n;R) the vector field XA(g) = Ag − gA is linear, and its linear flow is

given by ϕt(g) = etAge−tA. Consider the right invariant vector fields B1, . . . , Bm ∈ gl(n;R)

defined by Bj(g) = Bjg. Define a linear control system on Gl(n;R)+ by

dg

dt
= Ag − gA+

m
∑

j=1

ujBj(g). (2.4)

Applying formula (2.3) to find the solution of the linear control system above, we obtain

φ(t, e, u) = et(A+
∑

ujBj)e−tA.



Chapter 3

Solution Curve For Affine

Control Systems

Motivated by the results obtained in the previous chapter, our intention now is to

study a more general control system on G: The Affine Control System, which is a system

of the form

ΣA :
dg

dt
= (X + Y )(g) +

m
∑

i=1

ui(Xi + Yi)(g), (3.1)

where X , X1, . . . , Xm are linear vector fields, Y, Y1, . . . , Ym are right invariant vector

fields, and u = (u1, . . . , um) is an admissible control. This system is a natural extension

of Linear Control Systems and have been an object of study of many authors including

Jouan in [13], Jurjdevic and Sallet in [15], Kara and San Martin in [17], Rocio, Santana

and Verdi in [20] and more recently, Ayala, da Silva and Ferreira in [3].

Our first step is to describe the solutions of the system and later apply them on

the study of the inner derivation case and system conjugation. However, following the

same techniques and procedures of the previous chapter, a handicap comes up: for linear

systems, we defined a representation ϕ : R → Aut(G) in terms of the flow of the linear

vector field X . How can we extend this idea considering that m + 1 linear vector fields

appear in the definition of the affine system 3.1?

A natural answer to this question is to consider the application ρ : Rm+1 →

Aut(G) defined as

ρ(t0, t1, . . . , tm) = ϕt0 ◦ ϕ
1
t1
◦ · · · ◦ ϕm

tm

where ϕt0 , ϕ
1
t1
, . . . , ϕm

tm are the linear flows associated to the linear vector fields X =

19
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X0, X1, . . . , Xm, respectively.

In order for ρ to become a representation of the Euclidean space Rm into Aut(G),

we need to assume all along this work that

[Xi,Xj] = 0, for i, j = 0, 1, . . . , m. (3.2)

In this work, Affine Control Systems satisfying the assumption (3.2) are called

Commutative Affine Systems. This assumption, as we will see, can be found naturally in

semi simple Lie groups and in direct products. With this assumption in hands, following

a procedure analogous to that used in the previous chapter, we describe the solution for

the system (3.1).

A second step is to consider the case of inner derivations. This approach has

already been used in [12] in the context of linear systems. We extend the study for affine

control systems and, as expected, the solution curve gets a simpler description. Further-

more, we can prove that an invariant control system ΣI is naturally associated and, under

certain conditions, its controllability is closely related to the controllability of ΣA.

The chapter ends with a study of conjugation between affine systems. Our idea

is based in a conjugation by homomorphism of linear system. We show that a necessary

and sufficient condition for two affine systems to be conjugate is that the flows of linear

vector fields are semi conjugate and the invariant vector fields are related in a sense that

will be established in Theorem (3.14).

3.1 Solution for Commutative Affine Control Systems

In this section, we wish to describe the solution curve of Affine Control System

on Lie groups. In this first moment, the same methodology of the previous chapter is

applied. Let G be a connected Lie group. Consider a Commutative Control System on

G:

ΣA :
dg

dt
= (X + Y )(g) +

m
∑

i=1

ui(Xi + Yi)(g). (3.3)
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Let us denote by ϕt0 , ϕ
1
t1
, . . . , ϕm

tm the linear flows associated to the linear vector fields

X = X0, X1, . . . , Xm
1, respectively. We define the application ρ : Rm+1 → Aut(G),

ρ(t0, t1, . . . , tm) = ϕt0 ◦ ϕ
1
t1
◦ · · · ◦ ϕm

tm .

For convenience, given t = (t0, t1, . . . , tm) ∈ R
m+1, we will write ρt instead of ρ(t0, t1, . . . , tm).

Under the condition

[Xi,Xj] = 0, for i, j = 0, 1, . . . , m, (3.4)

the application ρ is a representation of the Euclidean Space Rm+1 into G. In fact,

ρ(t0 + s0, t1 + s1, . . . , tm + sm) = ϕt0+s0 ◦ ϕ
1
t1+s1

◦ · · · ◦ ϕm
tm+sm

= ϕt0 ◦ ϕs0 ◦ ϕ
1
t1
◦ ϕ1

s1
◦ · · · ◦ ϕm

tm ◦ ϕm
sm

= ϕt0 ◦ ϕ
1
t1
◦ · · · ◦ ϕm

tm ◦ ϕs0 ◦ ϕ
1
s1
◦ · · · ◦ ϕm

sm

= ρ(t0, t1, . . . , tm) ◦ ρ(s0, s1, . . . , sm).

Remark 3.1. The assumption (3.4) can be found, for example, in a direct product G =

G0 ×G1 × . . .×Gm. Taking each Xi ∈ Gi, we can view that it is automatically satisfied.

An especial case of this is when G is a compact Lie group because it is isomorphic to a

direct product of simple, compact, connected and simply connected Lie groups. Or yet,

consider a semi simple Lie group G with Lie algebra

g = g1 ⊕ · · · ⊕ gm,

where gi are its simple components. We can define an affine system on G taking Xi ∈ gi

and setting Xi = Xi + dIXi. It follows that [Xi,Xj] = 0 because [Xi, Xj] = 0.

We define the semidirect product G×ρR
m+1. That is, the cartesian product of G

and R
m+1 endowed with the product (g, t)(h, s) = (gρt(h), t+ s). This set is a Lie group

and the correspondent Lie algebra is the semidirect product of algebras g×σ R
m+1, where

1All over the work, we consider always X0 = X and Y0 = Y .
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σ : Rm+1 → Der(g) is defined as

σt(Y ) = σ(t)(Y ) = ad∑ tiXi
(Y ),

for t = (t0, . . . , tm) and Y ∈ g.

Proposition 3.2. Let (Y, t0, . . . , tm), (W, s0, . . . , sm) be vector fields in g×σ R
m+1. Then

[(Y, t0, . . . , tm), (W, s0, . . . , sm)] =

(

[Y +
m
∑

i=0

tiXi,W +
m
∑

j=0

sjXj], 0, . . . , 0

)

.

Proof: We begin by computing

[(Y, t), (W, s)] = ([Y,W ] + σt(W )− σs(Y ), [t, s])

=
(

[Y,W ] + ad∑ tiXi
(W )− ad∑ sjXj

(Y ), 0
)

.

Adding [
∑

tiXi,
∑

sjXj] = 0 in the first coordinate we get

[(Y, t), (W, s)] =
(

[Y +
∑

tiXi,W +
∑

sjXj], 0, . . . , 0
)

.

✷

Let (W, 0, . . . , 0), (0, s0, s1, . . . , sm) ∈ g×σR
m+1. A direct calculation proves that

their exponentials are (exp(tW ), 0, . . . , 0) and (e, s0t, s1t, . . . , smt), respectively. This fact

allows us to obtain the exponential curve for any invariant vector field on G×ρ R
m+1.

Proposition 3.3. If (W, s0, s1, . . . , sm) is a vector field in g×σ R
m+1, then

exp(t(W, s)) =

(

lim
n→∞

n−1
∏

i=0

ρ(is0t/n, . . . , ismt/n)(exp(t/n ·W )), s0t, . . . , smt)

)

. (3.5)

Proof: We first write (W, s0, . . . , sm) = (W, 0, . . . , 0)+ (0, s0, . . . , sm). Now, applying the



CHAPTER 3. SOLUTION CURVE FOR AFFINE CONTROL SYSTEMS 23

Lie Product Formula we obtain

exp(t(W, s)) = lim
n→∞

(exp(t/n ·W, 0) · exp(0, ts/n))n

= lim
n→∞

((exp(t/n ·W ), 0, . . . , 0)(e, s0t/n, s1t/n, . . . , smt/n))
n

= lim
n→∞

(exp(t/n ·W ), s0t/n, s1t/n, . . . , smt/n)
n

=

(

lim
n→∞

n−1
∏

i=0

ρ(is0t/n, . . . , ismt/n)(exp(t/n ·W )), s0t, . . . , smt)

)

.

✷

Denoting byDX0
, DX1

, . . . , DXm
the derivations of the linear vector fields X0, X1, . . . , Xm,

respectively, we can rewrite the above result as

exp(t(W, s)) =

(

lim
n→∞

n−1
∏

i=0

exp
(

t/n · eDtW
)

, s0t, . . . , smt

)

(3.6)

where Dt =
it

n
DX0

+
iu1t

n
DX1

+ · · ·+
iumt

n
DXm

.

Our next step is to describe the effect of an invariant vector field (W, s0, . . . , sm)

on a point (g, r0, . . . , rm).

Proposition 3.4. If (W, s) ∈ g×σ R
m+1 and if (g, r) ∈ G×ρ R

m+1, then

(W, s)(g, r) =

(

W (g) +
m
∑

i=0

siXi(g), s0, . . . , sm

)

,

where s = (s0, . . . , sm) and r = (r0, . . . , rm).

Proof: We begin by using the right invariance property. In fact,

(W, s)(g, r) = d(R(g,r))(W, s) = d(R(g,r))(W, 0) +
m
∑

i=0

d(R(g,r))(0, . . . , si, . . . , 0).
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It follows from the definition of exponential curve on G×ρ R
m+1 that

(W, s)(g, r) =
d

dt
((exp(tW ), 0)(g, r))

∣

∣

∣

∣

t=0

+
∑ d

dt
(e, 0, . . . , sit, . . . , 0)(g, r))

∣

∣

∣

∣

t=0

=
d

dt
(exp(tW )g, r)

∣

∣

∣

∣

t=0

+
∑ d

dt

(

ϕi
sit
(g), 0, . . . , sit+ ri, . . . , 0

)

∣

∣

∣

∣

t=0

.

Differentiating with respect to t each term of the right side yields

(W, s)(g, r) = (W (g), 0) +
m
∑

i=0

(siXi(g), 0, . . . , si, . . . , 0) =

(

W (g) +
m
∑

i=0

siXi(g), s

)

.

✷

Consider the invariant vector fields X̄j = (0, . . . , 1, . . . , 0) and Ȳj = (Yj, 0, . . . , 0) ∈

g×σ R
m+1, for j = 0, 1, . . . ,m, where the 1 stands in the (j + 2) - th position. From the

previous proposition we see that, in coordinates, these fields can still be expressed as

X̄j(g, r) = (Xj(g), 0, . . . , 1, . . . , 0) and Ȳj(g, r) = (Yj(g), 0, . . . , 0),

for j = 0, . . . ,m. By means of these fields we associate to the affine system (3.1) the

following invariant control system on G×ρ R
m+1:

Σ̄I :
d(g, r)

dt
= (X̄ + Ȳ )(g, r) +

∑

uj(X̄j + Ȳj)(g, r).

In coordinates, we have























dg/dt

dr0/dt

dr1/dt
...

drm/dt























=























(X + Y )(g) +
∑

uj(Xj + Yj)(g)

1

u1
...

um























.

This means that the invariant control system Σ̄I was built to satisfy the condition π(Σ̄) =

Σ, where π : G×ρ R
m+1 → G is the projection on the first coordinate. As a direct conse-

quence, if we denote ĀT (g, r) the reachable set of a point (g, r) in time T > 0 of Σ̄I , then
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π(ĀT (g, r)) = AT (g).

We are now in position to prove our main result.

Theorem 3.5. Consider the curve

φ(t, e, u) = lim
n→∞

n−1
∏

i=0

ρ(it/n, iu1t/n, . . . , iumt/n) exp

(

t

n

m
∑

j=1

ujYj

)

, (3.7)

where u = (1, u1, . . . , um) ∈ R
m+1. Then φ(t, e, u) is the solution of the affine dynamical

system
dg

dt
= (X + Y )(g) +

m
∑

j=1

uj(Xj + Yj)(g) (3.8)

with initial condition φ(0, e, u) = e.

Proof: We begin writingW = Y+
∑

ujYj. From Proposition 3.3, we see that exp(t(W,u)) =

(φ(t, e, u), t, u1t, . . . , umt). Now Proposition 3.4 gives us

(W,u)(φ(t, e, u), t, u1t, . . . , umt) =

= (W (φ(t, e, u)) + X (φ(t, e, u)) +
∑

ujXj(φ(t, e, u)), 1, u1, . . . , um)

=
(

(X + Y )(φ(t, e, u)) +
∑

uj(Xj + Yj)(φ(t, e, u)), 1, u1, . . . , um

)

.

On the other hand,

(W, 1, . . . , um)(φ(t, e, u), t, u1t, . . . , umt) = (dφ(t, e, u)/dt, 1, . . . , um).

So, in coordinates, it follows that























dφ(t, e, u)/dt

1

u1
...

um























=























(X + Y )(φ(t, e, u)) +
∑

uj(Xj + Yj)(φ(t, e, u))

1

u1
...

um























.
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Taking the projection on the first coordinate we see that the curve φ(t, e, u) satisfies the

differential equation (3.8). Since φ(0, e, u) = e, we conclude that φ(t, e, u) is the solution

of the system at the identity. Finally, the description of φ(t, e, u) comes from Proposition

3.3. ✷

The previous theorem shows the solution of an Affine Control System at the

identity. It is still possible to describe the solution at an arbitrary point g ∈ G. For this,

we combine our result with [3, Theorem 4.1]. This theorem states the following: given

the Affine Control System ΣA (3.8), we associate the following Bilinear Control System

ΣB :
dg

dt
= X (g) +

∑

uiXi(g). (3.9)

Denoting by φA(t, ·, u), φB(t, ·, u) the solutions of ΣA and ΣB, respectively, it follows that

φA(t, g, u) = φA(t, e, u)φB(t, g, u)
2,

for all g ∈ G (As mentioned above, the proof can be found in [3, Theorem 4.1], page

8). Supposing the commutative condition [Xi,Xj] = 0, our next result gives an explicit

description for φB(t, g, u).

Corollary 3.6. The solution of the Dynamical System (3.8) at an arbitrary point g ∈ G

is given by

φ(t, g, u) = φ(t, e, u)ρ(t, u1t, . . . , umt)(g)
3.

Proof: Consider a point (g, r) ∈ G ×ρ R
m+1, where r = (r0, . . . , rm) is arbitrary. Let us

denote by ψ(t, (g, r), u) the solution of the system Σ̄. Since Σ̄ is an invariant system, it

follows that ψ(t, (g, r), u) = ψ(t, (e, 0), u) · (g, r).

2The result is valid even for affine systems that do not satisfy the commutative condition (3.4).
3As we have said, this formula is the same of [3, Theorem 4.1]. We are redoing the calculations just

to give an explicit description of φB(t, g, u).
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On the other hand, we have that π(ψ(t, (g, r), u)) = φ(t, g, u). So

φ(t, g, u) = π (ψ(t, (e, 0), u)(g, r))

= π((φ(t, e, u), t, u1t, . . . , umt) (g, r0, . . . , rm))

= π(φ(t, e, u)ρ(t, u1t, . . . , umt)(g), t+ r0, . . . , umt+ rm)

= φ(t, e, u)ρ(t, u1t, . . . , umt)(g).

✷

Example 3.1 (Invariant Control Systems). An invariant control system is given by

dg

dt
= Y (g) +

m
∑

j=1

ujYj(g),

where Y, Y1, . . . , Ym are right invariant vector fields on G and u = (u1, . . . , um) is an

admissible control. It is clear that it is a particular case of an affine system. In this case,

the representation ρ is the identity map. From Theorem 3.5 we compute

φ(t, e, u) = lim
n→∞

n−1
∏

i=0

exp

(

t

n

m
∑

j=1

ujYj

)

= exp

(

t

m
∑

j=1

ujYj

)

.

This result is already well-known in the literature. We present it here just to show the

consistency of our solution.

Example 3.2 (Bilinear Control Systems). A bilinear control system is a control

system defined by

dg

dt
= X (g) +

m
∑

j=1

ujXj(g),

where X , X1, . . . , Xm are linear vector fields on G and u = (u1, . . . , um) is an admissible

control. Since the identity is a singularity point4 for this system, we are going to describe

the solution at an arbitrary point g ∈ G. From Corollary 3.6 it follows immediately that

φ(t, g, u) = ρ(t, u1t, . . . , umt)(g).

4We say that the point g is a singularity of a control system on G if φ(t, g, u) = g, for all t ∈ R and
all control function u.
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In particular, if we consider a bilinear control system on R
n given by

dx

dt
=

(

A+
m
∑

i=1

uiBi

)

x,

where A, Bi ∈M(n× n;R), it follows that the solution at a point x is written as

φ(t, x, u) = etAeu1tB1 · · · eumtBmx.

3.2 The Inner Derivation Case

In this section we study the solution curves and the controllability aspects of

affine systems whose derivations associated to the linear vector fields of the system are

inner. Our study extends a similar approach of the author of [12] for linear control

system. We generalize two results from his work relating the controllability of the com-

mutative affine control system to the controllability of an associated right invariant one

(Theorems (3.10) and (3.12)). Our first step is to improve the description of the solutions.

Let X0 = X , X1, . . . , Xm be linear vector fields on G. Suppose the associated

derivations are all inner. That is, for each i = 0, 1, . . . , m, there is a right invariant

vector field Xi ∈ g such that Di = ad(Xi), where Di is the derivation associated to Xi,

respectively5.

This fact implies that Xi = Xi + dIXi, where dIXi is the left invariant vector

field induced by I : G → G, I(g) = g−1. Also, for each i = 0, 1, . . . , m, we have that

ϕi
t(g) = exp(tXi)g exp(−tXi). Furthermore,

[Xi,Xj] = 0 ⇔ [Xi, Xj] = 0.

Theorem 3.7. Let ΣA (3.1) be an affine control system. Suppose that the derivation Di

associated to the linear vector field Xi is inner, for all i = 0, 1, . . . ,m. Then, the solution

5We recall again that are included in this case all semi simple Lie groups since every derivation defined
on their Lie algebras are inner (see for instance [21]).



CHAPTER 3. SOLUTION CURVE FOR AFFINE CONTROL SYSTEMS 29

curve of ΣA at the identity is

φ(t, e, u) = exp

(

tX + tY +
m
∑

i=1

uit(Xi + Yi)

)

exp

(

−t
m
∑

i=0

uiXi

)

. (3.10)

Proof: We first writeW = Y+
∑

uiYi. Consider u0 = 1. Since ϕi
t(g) = exp(tXi)g exp(−tXi)

for each ϕi, it follows that

φ(t, e, u) = lim
n→∞

n−1
∏

i=0

ρ(it/n, iu1t/n, . . . , iumt/n) exp

(

t

n
W

)

= lim
n→∞

n−1
∏

i=0

(

m
∏

k=0

exp

(

iukt

n
Xk

)

exp

(

t

n
W

) m
∏

k=0

exp

(

−
ium−kt

n
Xm−k

)

)

= lim
n→∞

n−1
∏

i=0

(

exp

(

m
∑

k=0

iukt

n
Xk

)

exp

(

t

n
W

)

exp

(

−

m
∑

k=0

iukt

n
Xk

))

,

where we use the fact that [Xi, Xj] = 0 for i, j = 0, 1, . . . , n. Computing the product we

get

φ(t, e, u) =

lim
n→∞

(

exp

(

t

n
W

)

exp

(

m
∑

k=0

ukt

n
Xk

))n−1

exp

(

t

n
W

)

exp

(

m
∑

k=0

(1− n)ukt

n
Xk

)

.

Inserting

exp

(

t

n
W

)

exp

(

m
∑

k=0

ukt

n
Xk

)

exp

(

−

m
∑

k=0

ukt

n
Xk

)

exp

(

−
t

n
W

)

in right side above yields

φ(t, e, u) = lim
n→∞

(

exp

(

t

n
W

) m
∏

k=0

exp

(

ukt

n
Xk

)

)n

exp

(

−t

m
∑

i=0

uiXi

)

.

Finally, applying the Lie Product Formula we obtain

φ(t, e, u) = exp

(

tX + tY +
m
∑

i=1

uit(Xi + Yi)

)

exp

(

−t
m
∑

i=0

uiXi

)

.

✷
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If we look closely, we realize that the first factor in the above formula is the

solution of an invariant system. Thus, it is natural to associate to ΣA the following

control system on G:

ΣI :
dg

dt
= (X + Y )(g) +

m
∑

i=1

ui(Xi + Yi)(g),

where Xi is such that Xi = Xi + dIXi for i = 0, . . . ,m. Although the last result was

enunciated for constant control functions, it suggests the following global result, which

establishes a relation between the affine control system ΣA and the right invariant control

system ΣI .

Proposition 3.8. Let us denote t→ φA(t) and t→ φI(t) the solutions of the Affine and

of the Invariant Control Systems at the identity, respectively. Then

φA(t) = φI(t) exp (−tΣuiXi) ,

for all control function u.

Proof: We first simplify the notation by writing α(t) = exp (tΣuiXi). We intend to prove

that φA(t) is the solution of ΣA if, and only if, φI(t) = φA(t)α(t) is the solution of ΣI .

Suppose initially that φA is the solution for ΣA. Differentiating φA(t)α(t) yields

d

dt
(φA(t)α(t)) = dRα(t)

d

dt
φA(t) + dLφA(t)

d

dt
α(t)

= dRα(t)

(

(X + Y )φA(t) +
∑

ui(Xi + Y )φA(t)
)

+ dLφA(t)
d

dt
α(t).

Now, writing Xi = Xi + dIXi and using the right invariance property we obtain

d

dt
(φA(t)α(t)) = ΣI(φI(t)) + dRα(t)

(

dIX +
∑

uidIXi

)

φA(t) + dLφA(t)
d

dt
α(t).

The result follows since

dRα(t)

(

dIX +
∑

uidIXi

)

φA(t) + dLφA(t)
d

dt
α(t) = 0.
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The converse is proved similarly. ✷

In the following, we write S and A to denote the reachable sets of the invariant

and affine systems, respectively. In particular, for any t > 0 St is the reachable set at time

t. In the next results we intend to relate the controllability of the affine system and the

associated right invariant one. Before that we need a lemma. We abbreviate the notation

writing ρ(t, u) instead of ρ(t, u1t, . . . , umt), for t > 0 and u = (u1, . . . , um).

Lemma 3.9. For each control function u and t, s > 0 we have φ(t, e, u)ρ(t, u)(As) ⊂ At+s.

Proof: Choose an arbitrary φ(s, e, v) ∈ As. Define u
′ = v ∧s u, the s - concatenation of

the control functions v and u. Then

φ(t, e, u)ρ(t, u)(φ(s, e, v)) = φ(t, e, θsu
′)ρ(t, θsu

′)(φ(s, e, u′))

= φ(t, φ(s, e, u′), u′) = φ(t+ s, e, u′).

✷

At last, observe that for any control function u and t > 0, it is true that

ρ(t, u)
(

exp
(

t
(

X0 +
∑

uiXi

)))

= exp
(

t
(

X0 +
∑

uiXi

))

.

This property follows from the definition of ρ and the fact that φt(g) = exp(tX)g exp(−tX).

Now we state a result relating the controllability of systems ΣA and ΣI . It is a

generalization of [12, Theorem 1], page 13.

Theorem 3.10. Suppose that the right invariant system ΣI is controllable. The following

assertions are equivalent:

(i) For all control function u and all t ∈ R, exp
(

t
(

X0 +
∑

uiXi

))

∈ A;

(ii) ΣA is controllable.
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Proof: The assertion (ii)⇒(i) is immediate. So we prove (i)⇒(ii).

We prove first that ΣA is controllable from the identity e. For simplicity of notation, write

exp(tXu) = exp (t (X0 +
∑

uiXi)). Given g ∈ G, there are a piecewise constant control u

and a time t > 0 such that g = φI(t, e, u) ∈ St. This is equivalent to g exp(−tXu) ∈ At.

By hypothesis, exp(tXu) ∈ As for some s > 0. Thus,

g = g exp(−tXu)ρ(t, u)(exp(tXu)) ∈ Atρ(t, u)(As) = At+s ⊂ A.

Now, we prove that ΣA is controllable to e. Fix g ∈ G. By assumption, there

are t > 0 and a control u such that g−1 = φI(t, e, u) ∈ St. This is equivalent to

g−1 exp(−tXu) ∈ At. On one hand, we have that

exp(−tXu) = g−1 exp(−tXu) exp(tXu)g exp(−tXu) = g−1 exp(−tXu)ρ(t, u)(g)

= φA(t, e, u)ρ(t, u)(g) = φA(t, g, u) ∈ At(g),

where we use Corollary 3.6 at the last equality. On the other hand, we have exp(tXu) ∈ As

for some s > 0. It means that there exists a piecewise constant control u′ such that

exp(tXu) = φA(t, e, u
′). Let Xu′ = X0 +

∑

u′iXi. Since [Xu, Xu′ ] = 0, it follows that

e = exp(tXu) exp(sXu′) exp(−tXu)(exp(−sXu′))

= exp(tXu)ρ(s, u
′)(exp(−tXu))

= φA(s, e, u
′)ρ(s, u′)(φA(t, g, u)) = φA(s, e, u

′′)ρ(s, u′′)(φA(t, g, u
′′)),

where u′′ is the concatenation of u and u′ (just as in the proof of Lemma 3.9). It follows

that

e = φA(t, φA(s, g, u
′′), u′′) = φA(t+ s, g, u′′) ∈ At+s(g) ⊂ A(g).

We thus conclude that e ∈ A(g), and the proof is complete. ✷

Corollary 3.11. Under the hypothesis of the previous theorem, if e ∈ int(AT ) for some

T > 0, then ΣA is controllable.

Proof: Given a control function u, we write Xu = X0 +
∑

uiXi. Let Su = {t ∈

R : exp(tXu) ∈ A}. An analysis similar to that in the proof of the previous theorem

shows that Su is a semigroup. By hypothesis, AT is a neighborhood of e for some T > 0.
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It implies that 0 ∈ Su since exp(0X) = e ∈ A. For each admissible control u the curve

exp(tXu) is continuous. Then exp(sXu) ∈ At for s ∈ (−ǫ, ǫ). In particular, (−ǫ, ǫ) ⊂ Su.

Being Su a semigroup, it follows that Su = R. It means that for all control function u

and all t ∈ R, exp
(

t
(

X0 +
∑

uiXi

))

∈ A. According to the above theorem, ΣA is

controllable. ✷

To finish this section we give a result that generalizes for affine control systems

the Theorem 2 in [12]. First, we need to recall that a semigroup S ⊂ G is said to be left

reversible (resp. right reversible) if SS−1 = G (resp. S−1S = G). It is known that if G

is semi simple with finite center, the unique subsemigroup of G with nonempty interior

which is left or right reversible is G itself (see for instance [23]).

Theorem 3.12. Let G be a semi simple Lie group with finite center. Suppose that ΣI

satisfies the rank condition and ΣA is controllable. The following assertions are equivalent:

(i) For all u ∈ U and all t ∈ R, exp
(

t
(

X0 +
∑

uiXi

))

∈ S;

(ii) ΣI is controllable.

Proof: We first observe that it is direct that (ii) implies (i). Let us prove the converse.

We begin by recalling that the reachable set S of ΣI is a semigroup. Now, the rank

condition assures that the interior of S is non-empty. It is sufficient to prove that S is

left reversible. Fix g ∈ G. There are t > 0 and u ∈ U such that g = φI(t, e, u) exp(−tXu).

By assumption, exp(−tXu) ∈ S−1. Then g ∈ SS−1. Since g ∈ G was chosen arbitrarily,

we conclude G ⊂ SS−1, and the result follows. ✷

3.3 Conjugation of Affine Systems

This last section is intended to study the concept of conjugation of affine systems,

which is the structure-preserving tool or the concept responsible for identifying control

systems that, although may look different, have indistinguishable behaviors with respect

to control theory. Despite there are other notions of conjugation, here we consider conju-

gations of affine systems by group homomorphisms.
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Let G and H be connected Lie groups. Consider the following affine systems

dg

dt
= (X + Z)(g) +

m
∑

i=1

ui(Xi + Zi)(g) (3.11)

dh

dt
= (Y +W )(h) +

m
∑

i=1

ui(Yi +Wi)(h) (3.12)

defined on G and H, respectively. Affine systems are said to be semiconjugate if there

exist a homomorphism of Lie groups F : G→ H such that

F (φ(t, g, u)) = θ(t, F (g), u),

where φ(t, g, u), θ(t, g, u) are the respective solutions of the systems. Moreover, if F is a

Lie group isomorphism, the two systems have exactly the same (control related) proper-

ties. That is, one is (locally) controllable if, and only if, the other is, etc. In such cases,

they are said to be conjugate.

Let us denote by ϕi
t, ψ

i
t the flows and by DXi

, DYi
the derivations associated

to the linear vector fields Xi and Yi, respectively, i = 0, 1, . . . , m6. We give equivalent

conditions for two affine systems to be semiconjugate.

Proposition 3.13. Let F : G → H be a homomorphism of Lie groups. The following

conditions are equivalent:

1) F ◦ ϕi
t = ψi

t ◦ F ;

2) dFϕi
t(g)

Xi(g) = Yi(F (g)) for all g ∈ G;

3) dFe(e
tDXiZ) = etDYidFeZ, for all Z ∈ g.

Proof: To deduce 2) from 1) differentiate formula in 1) with respect to t to obtain

dFϕi
t

dϕi
t

dt
(g) =

d

dt
(ψi

t ◦ F (g)). We thus get

dFϕi
t(g)

Xi(g) = Yi(F (g)).

6Recall that, throughout this work, X0 = X and Y0 = Y .
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Conversely, to deduce 1) from 2), observe that it is a direct consequence of uniqueness of

solution of differential equations.

Suppose now that 1) is true. Then dFe◦(dϕ
i
t)e = d(ψt)e◦dFe. Since (dϕ

i
t)e = etDXi

and (dψi
t)e = etDYi , it follows for all Z ∈ g that

dFe(e
tDXiZ) = dFe ◦ (dϕ

i
t)e(Z) = (dψi

t)e ◦ (dFe)(Z) = etDYidFe(Z).

On the converse, to deduce 1) to 3) observe that it is a direct consequence of d(F ◦ϕi
t)e =

d(ψt ◦ F )e, since G is connected. ✷

Theorem 3.14. Let F : G → H be a homomorphism of Lie groups. The following con-

ditions are equivalent:

1) F (φ(t, g, u)) = θ(t, F (g), u) for all g ∈ G.

2) F ◦ ϕi
t = ψi

t ◦ F and dFeZj(e) = Wj(e), for all i, j = 0, 1, . . . , m.

Proof: We first suppose that F (φ(t, g, u)) = θ(t, F (g), u) for all g ∈ G. In particular,

F (φ(t, e, u)) = θ(t, e, u). For abbreviation, we write φt and θt instead of φ(t, e, u) and

θ(t, e, u), respectively. Differentiating 1) with respect to t yields

dFφt

(

(X + Z)φt +
m
∑

j=1

uj(Xj + Zj)φt

)

= (Y +W )θt +
m
∑

j=1

uj(Yj +Wj)θt.

Taking t = 0 it follows that

dFe

(

Z(e) +
m
∑

j=1

uj(0)Zj(e)

)

= W (e) +
m
∑

j=1

uj(0)Wj(e).

The above equality holds for all control u(t) = (u1(t), . . . , um(t)). If u ≡ 0, then dFeZ(e) =

W (e). If u ≡ (0, . . . , 1, . . . , 0), where the 1 stands in the j - th position, then dFeZj(e) =

Wj(e), for j = 1, . . . ,m. It gives

dFg

(

X (g) +
m
∑

j=1

ujXj(g)

)

= Y(F (g)) +
m
∑

j=1

ujYj(F (g)).

In the same manner we can see that dFφt
Xi(g) = Yi(F (g)). From the above proposition

it follows that F ◦ ϕi
t = ψi

t ◦ F , for i = 0, . . . ,m.



CHAPTER 3. SOLUTION CURVE FOR AFFINE CONTROL SYSTEMS 36

Conversely, let us denote by ρ : Rm+1 → Aut(G) and ̺ : Rm+1 → Aut(H) the

representations associated to the Affine Systems (3.11) and (3.12), respectively. Assuming

that condition 2) is true we compute

F (φ(t, e, u)) = F

(

lim
n→∞

n−1
∏

i=0

ρ(it/n, iu1t/n, . . . , iumt/n) exp

(

t

n

m
∑

j=0

ujZj

))

= lim
n→∞

n−1
∏

i=0

̺(it/n, iu1t/n, . . . , iumt/n) exp

(

t

n

m
∑

j=0

ujdFeZj

)

,

where we use that F ◦ ρ = ̺ ◦F and that F ◦ exp = exp ◦ dFe. This gives F (φ(t, e, u)) =

θ(t, e, u). From this last equality and Corollary 3.6 we see that

F (φ(t, g, u)) = F (φ(t, e, u)ρ(t, u1t, . . . , umt)(g))

= F (φ(t, e, u))F (ρ(t, u1t, . . . , umt)(g))

= θ(t, e, u)̺(t, u1t, . . . , umt)(F (g)) = θ(t, F (g), u).

✷

Corollary 3.15. Two affine systems defined on G and H are semiconjugate if, and only

if, they are semiconjugate at the identity e ∈ G.

Proof: See the end of the proof of the previous theorem. ✷

Lastly, we characterize conjugation of affine system in terms of derivations.

Corollary 3.16. Let F : G → H be a homomorphism of Lie groups. A necessary and

sufficient condition for the Affine Control Systems (3.11) and (3.12) to be semiconjugate

is dFe

(

eDtZj

)

= eD
′
tWj, for all j = 0, 1, . . . , m, t ∈ R, where Dt =

∑ iukt

n
DXk

and

D′t =
∑ iukt

n
DYk .

Proof: It is sufficient to show the necessary condition. Write the solution of the Affine

System (3.11) as

φ(t, e, u) = lim
n→∞

n−1
∏

i=0

exp
(

t/n ·
∑

uje
DtZj

)

.
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Assuming that the systems are semiconjugate and computing F (φ(t, e, u), we have that

the formula

F (φ(t, e, u)) = lim
n→∞

n−1
∏

i=0

exp
(

t/n ·
∑

ujdFe

(

eDtZj

)

)

,

is the solution of the System (3.12). Writing the solution of this last system explicitly,

the result follows by comparison. ✷

Example 3.3. Consider the homomorphism det : Gl(n;R)+ → R and the linear system

(2.4) defined in Example 2.2. Let us construct a control system on R semiconjugate to

it. We first need to find a linear vector field Y and invariant vector fields b1, . . . , bm on R

satisfying conditions

1. det
(

etA · g · e−tA
)

= ψt(det(g)), for all g ∈ Gl(n;R)+, where ψt is the flow of Y ;

2. d(det)I(Bj) = tr(Bj) = bj.

Condition 2) gives the invariant vector fields bj, j = 1, . . . ,m. Also, condition 1) implies

that ψt(det(g)) = det(g) for all g. This clearly forces Y = 0. We thus conclude that the

linear system (2.4) on Gl(n;R)+ is semiconjugate to the following invariant system on R

dx

dt
=

m
∑

j=1

tr(Bj).



Chapter 4

Geometric Properties and Stable

Sets

This chapter is an initial study of some dynamical aspects of control systems on

Lie groups. Our initial approach is to study the metric properties of the most frequent

control systems in control theory of Lie groups: linear, bilinear and affine. For us to refer

to a particular control system on a Lie group G, we establish the following notations,

which are used throughout this chapter:

ΣI : Right Invariant Control System:

dg

dt
= Y (g) +

∑

uiYi(g);

ΣL: Linear Control System:
dg

dt
= X (g) +

∑

uiYi(g);

ΣB: Bilinear Control System:

dg

dt
= X (g) +

∑

uiXi(g);

ΣA: Affine Control System:

dg

dt
= (X + Y )(g) +

∑

ui(Xi + Yi)(g).

In the above notation, as well as throughout the whole work, X , X1, . . . ,Xm are linear

while Y, Y1, . . . , Ym are right invariant vector fields. In discussions involving simultane-

38
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ously more than one of the above systems, we will use the notations

φI(t, x, u), φL(t, x, u), φB(t, x, u) and φA(t, x, u).

These notations stand for the solutions of the Invariant, Linear, Bilinear and

Affine Control Systems, respectively. Otherwise, if in the statement of a result only one

of the systems is involved, we continue to write its solutions simply by φ(t, x, u), without

danger of confusion.

Finally, we write ̺ : G × G → R to denote either a right or left riemannian

distance on G, according to the convenience. Given x ∈ G and ǫ > 0, B(x; ǫ) is the set of

all points y ∈ G such that ̺(x, y) < ǫ.

4.1 Linear Control Systems

In this section, we present some specific results concerning linear control systems.

For the results to come, we consider a left invariant riemannian distance ̺ on G. We

begin showing that, for each fixed control function u, the distance between the points of

two distinct trajectories depends only on the linear flow of the system, not on the control

function associated to the trajectories.

Proposition 4.1. Let ̺ be a left invariant riemannian distance on G. For all g, h ∈ G

it follows that

̺(φ(t, g, u), φ(t, h, u)) = ̺(ϕt(g), ϕt(h)).

Proof: The result follows immediately from the property φ(t, g, u) = φ(t, e, u)ϕt(g) and

the left invariance of the metric. ✷

Note that the above result does not depend on the control function u. Thus, it

is valid for all trajectories of the system.

Corollary 4.2. For all g ∈ G, ̺(φ(t, g, u), φ(t, e, u)) = ̺(ϕt(g), e).

For the next result, we assume that the linear vector field is hyperbolic. That is,

the derivation associated to X has no eigenvalues with zero real part. As pointed in [25,

Remark 3, p. 4], this assumption already implies that G must be a nilpotent Lie group.

The next result characterizes the trajectories of the system that starts at the identity
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as an attractor or a repeller for the other trajectories. In order to state the result, we

present the following notation: given a linear vector field X , we associate the following D

- invariant subalgebras

g+ =
⊕

α; Re(α)>0

gα, g0 =
⊕

α; Re(α)=0

gα, and g− =
⊕

α; Re(α)<0

gα,

where α is an eigenvalue of D. We consider G+, G− and G0 the connected ϕ - invariant

subgroups of G with Lie algebras g+, g− and g0, respectively. For important properties

about these subgroups and subalgebras, see [26].

Theorem 4.3. Let X be an hyperbolic linear vector field. The following assertions hold:

1) g ∈ G− if and only if lim
t→∞

̺(φ(t, g, u), φ(t, e, u)) = 0;

2) g ∈ G+ if and only if lim
t→−∞

̺(φ(t, g, u), φ(t, e, u)) = 0

Proof: According to [25, Theorem 2.5, p. 4], under the above hypothesis, a point g

belongs to G− if and only if lim
t→∞

̺(ϕt(g), e) = 0. Analogously, g ∈ G+ if and only if

lim
t→−∞

̺(ϕt(g), e) = 0. From Corollary 4.2, we have that ̺(φ(t, g, u), φ(t, e, u)) = ̺(φt(g), e).

The result follows. ✷

As Theorem 4.3 shows, it is interesting that trajectories departing from the iden-

tity work as an attractor for the trajectories starting at points g ∈ G− (as long as we

consider trajectories with the same control function). Similarly, for solutions of points

g ∈ G+, the solutions at the identity has a repeller behavior.

Considering the results established so far, in addition to the facts commented

above, we can obtain other interesting conclusions about the dynamical behavior of the

trajectories of a linear system in the context of control sets, which are defined up next.

Definition 4.4. A set C ⊂M is called a control set of a control system if it is:

1) controlled invariant: for all x ∈ C there is a control function u such that φ(t, x, u) ∈

C, for all t ≥ 0.

2) approximate controllable: for all x ∈ C, holds the inclusion C ⊂ A(x).
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3) maximal with properties 1) and 2).

Condition 1) is included only to exclude trivial cases since any one-point set

satisfies condition 2). It is satisfied if C has non-void interior and satisfies condition 2).

In its turn, this last property means that we can get close enough to a point in C from

any other of its points. Finally, condition 3) is for simplicity. It also implies that any two

distinct control sets are disjoint. A control set C is said to be invariant if C = A(x).

Definition 4.5. A set L ⊂M is positively-invariant if A(x) ⊂ L for all x ∈ L.

Proposition 4.6. Let C ⊂ M be an invariant control set and assume that the system

satisfies the accessibility rank condition in the closure of C. Then:

1) int(C) is non-void.

2) int(C) = C and C is connected.

3) int(C) and C are positively-invariant.

4) int(C) ⊂ A(x) for all x ∈ C, satisfying the equality if x ∈ int(C).

5) if the system is full-rank, there are at most countably many invariant control sets in

M .

Proof: See [10, Lemma 3.2.7], page 55. ✷

Note that the statement 4) in the above proposition assures that controllability

occurs in the interior of C.

The next result shows that the control set C can work as an attractor or a repeller

for the trajectories of the system.

Corollary 4.7. Consider a linear control system defined on a connected Lie group G. Sup-

pose that the derivation associated to the linear vector field has only eigenvalues with neg-

ative real part and that the control set C that contains the identity is positively-invariant.

Then for all control function u and all g ∈ G,

lim
t→∞

̺(C, φ(t, x, u)) = 0.
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In other words, all trajectories of the system converge to the control set C.

Proof: It is an immediate consequence of Corollary 4.3 since for all control functions u,

we have φ(t, e, u) ∈ C. ✷

Obviously, we have an analogous result if we suppose that the eigenvalues of the

derivations have only positive real parts. But in this case, the conclusion would be

lim
t→−∞

̺(C, φ(t, x, u)) = 0.

4.2 Bilinear Control Systems

For bilinear control systems, even under the assumption that all linear vector

fields are hyperbolic, it is harder to predict the behavior of all trajectories of the system.

However, for points that belong to a certain subgroup and for control functions that take

values on a convex cone of Rm, we can show that all trajectories converge to the group

identity.

Consider the Bilinear Control System

ΣB :
dg

dt
= X (g) +

∑

uiXi(g)

defined on G. We denote G+
i and G

−
i the unstable and stable subgroups associated to the

linear vector field Xi, i = 0, 1, . . . ,m. We state the following result:

Theorem 4.8. Suppose that each linear vector field Xi is hyperbolic, i = 0, 1, . . . , m.

Let u(t) = (u1(t), . . . , um(t)) be a control function such that ui(t) ≥ 0. It follows that

1) If g ∈ G− = G−0 ∩ · · · ∩G−m, then

lim
t→∞

φ(t, g, u) = e.
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2) If g ∈ G+ = G+
0 ∩ · · · ∩G+

m, then

lim
t→−∞

φ(t, g, u) = e.

Proof: We prove just item 1) since item 2) is analogous.

Let us suppose initially that the control function u = (u1, . . . , um) is constant. For short,

we write simply φt(g) = φ(t, g, u). Before starting the proof, we give an extended version

for bilinear systems of some considerations presented in [3, Remark 3], p. 4.

For a left invariant riemannian distance ̺ on G, we have

̺(φt(g), φt(h)) ≤ ‖d(φt)e‖̺(g, h), for all g, h ∈ G, t ≥ 0.

Now, let

D = D0 +
∑

uiDi,

g+ = g+0 ∩ · · · ∩ g+m,

g− = g−0 ∩ · · · ∩ g−m.

Consider ̺+, ̺− the riemannian distances induced by ̺ on G+ and G−, respectively. Since

d(φ−t )e = etD|g− has only eigenvalues with negative real part, there are constants c, µ > 0

such that

̺−(φ−t (g), φ
−
t (h)) ≤ c−1e−µt̺−(g, h), for all g, h ∈ G−, t ≥ 0. (4.1)

Analogously, we have

̺+(φ+
t (g), φ

+
t (h)) ≥ ceµt̺+(g, h), for all g, h ∈ G+, t ≥ 0. (4.2)

Now suppose 1). Let g ∈ G− = G−0 ∩ · · · ∩ G−m. Since φ(t, g, u) = φ−(t, g, u) ∈ G− it

follows from equation (4.1) that

̺−(φ(t, g, u), e) = ̺−(φ−(t, g, u), φ−(t, e, u)) ≤ c−1e−µt̺−(g, e).
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Taking t→ ∞, we have that ̺−(φ(t, g, u), e) → 0, that is lim
t→∞

φ(g, u, t) = e.

Finally, for an arbitrary piecewise constant control function, the trajectory φ(t, g, u)

is a concatenation of trajectories with constant control functions. The result follows from

the case proved above. ✷

Example 4.1. Define the bilinear system

dg

dt
= X (g) + uY(g)

on the Heisenberg group, identified with R
3 just as in Example 2.1. The linear vector

fields were chosen in such a way that the derivations associated to them are

DX =











−1 0 0

0 2 0

0 0 1











, DY =











−1 0 0

0 3 0

0 0 2











.

A direct calculation gives G− = R× 0 × 0. We use Example 3.2 to write the solution of

the system for an arbitrary control function u ≥ 0 and g = (x, 0, 0) ∈ G−. The result

obtained is

φ(t, g, u) = etDX · eutDY · (x, 0, 0) =
(

e(−1−u)tx, 0, 0
)

.

Clearly, we have φ(t, g, u) → (0, 0, 0) as t→ ∞.

4.3 Affine Control Systems

The last particular kind of control system considered is the affine. Compared to

the previous systems, this is the one whose behavior of the solutions is the most com-

plicated. This is due to the fact that affine systems generalize all the previous ones and

contain a greater amount of information in their definition. However, it is possible to give

analogous results about their solutions in some cases. We begin presenting a version of

Proposition 4.1.
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Proposition 4.9. Let ̺ be a left invariant riemannian distance on G. For all g, h ∈ G

we have

̺(φA(t, g, u), φA(t, h, u)) = ̺(φB(t, g, u), φB(t, h, u)).

Proof: As we mentioned before in Chapter 3, Theorem 4.1 of [3] ensures that

φA(t, x, u) = φA(t, e, u)φB(t, x, u).

Therefore, the left invariance of the metric allows us to write

̺(φA(t, g, u), φA(t, h, u)) = ̺(φA(t, e, u)φB(t, g, u), φA(t, e, u)φB(t, h, u))

= ̺(φB(t, g, u), φB(t, h, u)).

This concludes the proof. ✷

Corollary 4.10. For all g ∈ G, it follows that

̺(φA(t, g, u), φA(t, e, u)) = ̺(φB(t, g, u), e),

where φB is the solution of the associated bilinear system.

Proof: It follows immediately from the above theorem and the fact that the group iden-

tity is a singularity of the associated bilinear system. ✷

For our last result of this section, suppose again that the derivation DXi
associated

to the linear vector fields Xi has only eigenvalues with negative real part, i = 0, 1, . . . ,m.

Under this restrictive hypothesis we can apply the above corollary to show that the trajec-

tories starting at the identity works as an attractor for trajectories associated to certain

control functions.

Corollary 4.11. Suppose that the derivations associated to the linear vector fields of the

system have only eigenvalues with negative real part. Let u(t) = (u1(t), . . . , um(t)) be a

control function such that ui(t) ≥ 0. Then

lim
t→∞

̺(φA(t, g, u), φA(t, e, u)) = 0,
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for all g ∈ G− = G−0 ∩ · · · ∩G−m.

Proof: In fact, the previous corollary gives us

̺(φA(t, g, u), φA(t, e, u)) = ̺(φB(t, g, u), e).

On the other hand, from item 1) of Theorem 4.8 we have that

lim
t→∞

̺(φB(t, g, u), e) = 0.

This concludes the proof. ✷

Remark 4.12. If we consider that the derivation has only eigenvalues with positive real

part, an analogous result is valid for points g ∈ G+ = G+
0 ∩ · · · ∩G+

m.

4.4 Dynamical Properties of Control Systems

In this section, we conclude our study giving the notions of stable sets, which

were introduced in [8] in the context of semigroup actions.

Definition 4.13. Let S ⊂ G be a subset.

1) The set S is said to be Σ - stable if for all ǫ > 0 and x ∈ S, there is δ (depending

on x) such that the following statement is true:

If y ∈ B(x; δ) then φ(t, y, u) ∈ B(S; ǫ), for all control function u and t ∈ R
+.

2) The set S is said to be Σ - uniformly stable if for all ǫ > 0 and x ∈ S, there is δ

(not depending on x) such that the following statement is true:

If y ∈ B(x; δ) then φ(t, y, u) ∈ B(S; ǫ), for all control function u and t ∈ R
+.

3) The set S is said to be Σ - orbitally stable if for all U neighborhood of S there is a

positively Σ - invariant neighborhood V of S such that V ⊂ U .

Evidently, every Σ - uniformly stable set is Σ - stable. The converse is not true in general.

However, the following result is given in [8, Theorem 3.2], page 238:
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Theorem 4.14. Let S be a compact Σ - stable set. Then S is Σ - uniformly stable.

Now we show that the study of stable sets of control system on Lie groups comes

down to the study of stable sets that contains the group identity.

Theorem 4.15. Let Σ be a control system on a lie group G and S be a subset of G. The

following assertions hold:

i) If Σ = ΣI , then S is ΣI - stable if, and only if, for all x ∈ S, the set S · x−1 is ΣI -

stable.

ii) Suppose that Σ = ΣL and that S contains a fixed point x ∈ X . Then S is ΣL -

stable if, and only if, the set S · x−1 is ΣL - stable.

iii) Suppose that Σ = ΣB is a commutative bilinear control system and that S contains

a fixed point x of the system (this occurs, in particular, when x is a fixed point of

every linear vector field X0, X0, . . . , Xm). Then S is ΣB - stable if, and only if, the

set S · x−1 is ΣB - stable.

iv) Suppose that Σ = ΣA and that S contains a fixed point x of the associated bilinear

system ΣB. Then S is ΣA - stable if, and only if, the set S · x−1 is ΣA - stable.

Proof: Let ̺ stand for a right invariant riemannian distance on G. To prove i), suppose

that S ⊂ G is a ΣI - stable set. Let x ∈ S. We show that S · x−1 is also ΣI - stable. Let

yx−1 ∈ S · x−1 and ǫ > 0. By assumption, there is δ > 0 such that

̺(z, y) < δ =⇒ φ(t, z, u) ∈ B(S; ǫ),

for all t ∈ R
+ and all control function u. Now, considering that ̺ is right invariant, we

have that

̺(zx−1, yx−1) < δ =⇒ φ(t, z, u)x−1 ∈ B(S; ǫ)x−1.

The right invariance of the system implies that φ(t, z, u)x−1 = φ(t, zx−1, u) (see [16], p.

316). Thus,

̺(zx−1, yx−1) < δ =⇒ φ(t, zx−1, u) ∈ B(S · x−1; ǫ).
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This is equivalent to saying that S · x−1 is ΣI - stable and concludes the proof for i).

The proof of ii) is similar. We just require this time that x ∈ S is a fixed point for X .

That is, ϕt(x) = x, for all t ∈ R. Suppose that S is a ΣL - stable set. As in the previous

item, let yx−1 ∈ S · x−1 and ǫ > 0. By assumption, there is δ > 0 such that

̺(z, y) < δ =⇒ φ(t, z, u) ∈ B(S; ǫ),

for all t ∈ R
+ and all control function u. Again,

̺(zx−1, yx−1) < δ =⇒ φ(t, z, u)x−1 ∈ B(S; ǫ)x−1.

As x is a fixed point for X , then x−1 also is since ϕt is an automorphism of G, for all

t ∈ R. Then we have that the property φ(t, z, u)x−1 = φ(t, z, u)ϕt(x
−1) = φ(t, zx−1, u) is

valid (see [9, Proposition 2.4], page 356). Thus,

̺(zx−1, yx−1) < δ =⇒ φ(t, zx−1, u) ∈ B(S · x−1; ǫ).

Now, to prove iii), let S be a ΣB - stable set that contains a fixed point x of the system.

Take a point yx−1 ∈ S · x−1. Choose δ > 0 that satisfies

̺(z, y) < δ =⇒ φ(t, z, u) ∈ B(S; ǫ).

It follows that

̺(zx−1, yx−1) < δ =⇒ φ(t, z, u)x−1 ∈ B(S; ǫ)x−1.

By assumption, x−1 is a fixed point of the system. Also, the commutativity of the system

assures that the solutions are group of automorphisms. This way, we have

φ(t, z, u)x−1 = φ(t, z, u)φ(t, x−1, u) = φ(t, zx−1, u).

Therefore,

̺(zx−1, yx−1) < δ =⇒ φ(t, zx−1, u) ∈ B(S · x−1; ǫ).

Finally, the proof of iv) follows the same idea of the previous items. It is necessary to

use again the fact that the solutions of an affine system, with initial condition x, has the
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property

φA(t, x, u) = φA(t, e, u)φB(t, x, u).

Again, consider a point y ∈ S · x−1 and choose δ > 0 such that

̺(z, y) < δ =⇒ φA(t, z, u) ∈ B(S; ǫ).

Using the property described above, it follows that

φA(t, z, u)x
−1 = φA(t, z, u)φB(t, x

−1, u) = φA(t, zx
−1, u).

So

̺(zx−1, yx−1) < δ =⇒ φA(t, zx
−1, u) ∈ B(S · x−1; ǫ),

which implies the stability of S · x−1 and concludes the proof. ✷
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