

UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA DE AMBIENTES AQUÁTICOS CONTINENTAIS

MÁRIO SÉRGIO DAINEZ FILHO

From local monitoring to a global inventory of aquatic macrophyte introductions – insights for monitoring and preventing species invasions

> Maringá 2021

MÁRIO SÉRGIO DAINEZ FILHO

From local monitoring to a global inventory of aquatic macrophyte introductions – insights for monitoring and preventing species invasions

Tese apresentada ao Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais do Departamento de Biologia, Centro de Ciências Biológicas da Universidade Estadual de Maringá, como requisito parcial para obtenção do título de Doutor em Ecologia e Limnologia.

Área de concentração: Ecologia e Limnologia

Orientador: Prof. Dr. Sidinei Magela Thomaz

Maringá 2021

"Dados Internacionais de Catalogação-na-Publicação (CIP)" (Biblioteca Setorial - UEM. Nupélia, Maringá, PR, Brasil)

D133f	 Dainez Filho, Mário Sérgio, 1993- From local monitoring to a global inventory of aquatic macrophyte introductions - insights for monitoring and preventing species invasions / Mário Sérgio Dainez Filho Maringá, 2021. 152 f. : il. (algumas color.).
	Tese (doutorado em Ecologia de Ambientes Aquáticos Continentais)Universidade Estadual de Maringá, Dep. de Biologia, 2021. Orientador: Prof. Dr. Sidinei Magela Thomaz.
	 Macrófitas aquáticas - Comunidades, Ecologia de – Diversidade de espécies - Monitoramento e prevenção. Espécies invasoras - Comunidades, Ecologia de – Impacto ambiental - Monitoramento e prevenção. Universidade Estadual de Maringá. Departamento de Biologia. Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais.
	CDD 23. ed 581.621782

Maria Salete Ribelatto Arita CRB 9/858 João Fábio Hildebrandt CRB 9/1140

MÁRIO SÉRGIO DAINEZ FILHO

From local monitoring to a global inventory of aquatic macrophyte introductions – insights for monitoring and preventing species invasions

Tese apresentada ao Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais do Departamento de Biologia, Centro de Ciências Biológicas da Universidade Estadual de Maringá, como requisito parcial para obtenção do título de Doutor em Ecologia e Limnologia e aprovada pela Comissão Julgadora composta pelos membros:

COMISSÃO JULGADORA

Prof. Dr. Sidinei Magela Thomaz (Presidente) Universidade Estadual de Maringá (UEM)

Prof.^a Dr.^a Danielle Katharine Petsch Universidade Estadual de Maringá (UEM)

Prof.^a Dr.^aThaísa Sala Michelan Universidade Federal do Pará (UFPA)

Prof.^a Dr.^a Natália Carneiro Lacerda dos Santos Universidade do Estado de Santa Catarina (UDESC)

Prof. Dr. Bruno Renaly Souza Figueiredo Universidade Federal de Santa Catarina (UFSC)

> Dr. Eduardo Ribeiro Cunha (Suplente) Texas A&M University (ATM)

Dr. Márcio José da Silveira (Suplente) Universidade Estadual de Maringá (UEM)

Aprovada em: 27 de abril de 2021.

Local de defesa: Realizado em *home office*, via acesso remoto por Vídeo Conferência pelo aplicativo Google Meet, devido a situação do Covid-19.

AGRADECIMENTOS

Esta tese está datada por uma das maiores crises que a humanidade já vivenciou. Primeiramente, agradeço a todos que lutam através da ciência contra as mazelas do COVID-19, muitas delas decorrentes do negacionismo científico.

Meus sinceros agradecimentos a todo o povo paranaense pelos suados impostos pagos que foram refletidos em meu salário ao longo destes quatro anos. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

Sem dúvida as pessoas são o alicerce principal de nosso crescimento. Destaco o meu querido orientador, Prof. Dr. Sidinei Magela Thomaz, por ser um gigante que me apoiou em seus ombros para que pudesse enxergar mais longe. Agradeço a todos os meus colegas de laboratório ("The Macrophyters") pela estimada companhia e ajuda na realização de todos os trabalhos. Também aos colegas do laboratório Wagner Ecology Lab da University of Alberta (UofA) por terem me acolhido e me ensinado. Em especial à minha supervisora Prof^a. Dr^a Viktoria Wagner pela paciência e atenção durante o meu estágio no exterior.

Uma das maiores alegrias durante a minha formação acadêmica foi conviver com toda a equipe do PEA-Nupélia. Sem eles este trabalho não seria possível. Agradeço a equipe da secretaria, em especial a brilhante Elizabete Custódio da Silva e Jocemara Celestino dos Santos, por toda atenção.

Também agradeço à Biblioteca Setorial do Nupélia, em especial à Maria Salete Ribelatto Arita e a João Fábio Hildebrandt.

À minha amada parceira de trabalhos e de vida Mikaela Marques Pulzatto por todo o amor e suporte incondicional. Com você tudo fica lindo!

Aos meus estimados ex-companheiros de casa, Iago Penido, Augusto Frota, e Matheus Frota por todas as incríveis discussões e parcerias!

À turma de doutorado PEA 2017.

À minha família pelo suporte e amor incondicional. Em especial à minha mãe, Maria Eunice Carmona pelo exemplo de garra, profissionalismo e empatia.

Por fim, e mais importante, meus agradecimentos a todos que lutam pela ciência brasileira!

'A ignorância se alimenta de ignorância.

A fobia da ciência é contagiosa.'

Carl Sagan

De monitoramentos locais até um inventário global das introduções de macrófitas aquáticas – *insights* para monitoramento e prevenção de invasões de espécies

RESUMO

Os ecossistemas aquáticos são especialmente vulneráveis à invasão de espécies devido a sua grande extensão, diversidade de habitat e a dinâmica inerente destes habitat. Macrófitas aquáticas invasoras geram muita preocupação devido à sua grande influência nos ecossistemas aquáticos. Buscou-se contribuir para o campo das invasões biológicas de macrófitas aquáticas em nível regional e global com conhecimentos pertinentes ao monitoramento e prevenção de espécies introduzidas. Na primeira abordagem avaliou-se a invasão de uma das espécies de macrófitas invasoras mais preocupantes do mundo, Hydrilla verticillata (L.f.) Royle, em diferentes tipos de ambientes de uma planície subtropical. Investigou-se a relação das ocorrências desta espécie com seus principais preditores abióticos, bem como sua relação com a espécie nativa (morfologicamente semelhante) Egeria najas Planch. nos primeiros anos de sua introdução e 10 anos depois. Tal trabalho destacou as interações bióticas entre a espécie invasora e a nativa bem como mudanças nos preditores ambientais que sugerem impactos antrópicos merecedores de atenção. Uma segunda abordagem foi realizada com o intuito de alavancar o conhecimento sobre macrófitas aquáticas invasoras em um nível global. Foi realizada uma compilação de dados acerca das vias e caminhos de introdução das macrófitas aquáticas a fim de identificar as regiões de origem e destino destas espécies e de seus respectivos grupos funcionais. Tais informações são cruciais para a determinação de políticas públicas e estratégias de manejo para evitar a introdução de espécies indesejadas. Em suma, os resultados das duas abordagens dão suporte a caracterização das invasões de macrófitas aquáticas visando sua prevenção.

Palavras-chave: Invasões biológicas. Monitoramento. Ambientes aquáticos. Vias de introdução. Distribuição de espécies.

From local monitoring to a global inventory of invasive aquatic macrophyte introductions - insights for monitoring and preventing species invasions

ABSTRACT

Aquatic ecosystems are especially vulnerable to species invasion due to their extent, diversity of habitats, and inherent dynamics. Invasive aquatic macrophytes are of great concern because of their great influence on aquatic ecosystems. In this thesis, we sought to contribute to the field of biological invasions of aquatic macrophytes at regional and global levels using knowledge pertinent to monitoring and preventing the introduction of species. Given that, one of the most concerning invasive species in the world, Hydrilla verticillata (L.f.) Royle, was evaluated in different types of environments in a subtropical floodplain. The relationship of occurrences of this species with its main abiotic predictors was investigated, as well as its relationship with the native (equivalent) species Egeria naias Planch. right after its detection and 10 years later. This work contributed with insights regarding the biotic interactions of invaders and natives as well as changes in environmental predictors that highlight anthropogenic impacts that deserve attention. A second work was carried out to leverage knowledge about invasive aquatic macrophytes at a global level. A compilation of data from several available sources was carried regarding the most common pathways of introduction of aquatic macrophytes to identify the regions of origin and destination of these species and their respective functional groups. Such information is crucial for the determination of public policies and management strategies to avoid the introduction of unwanted species. In summary, this thesis helps the characterization of aquatic macrophyte invasions aiming at their prevention.

Keywords: Biological invasions. Monitoring. Aquatic environments. Pathways of introduction. Species distribution.

Tese elaborada e formatada conforme as normas da publicação científica *Hydrobiologia* e *Aquatic Botany* Disponível em: < <u>https://www.springer.com/journal/10750/submission-</u> guidelines> e <<u>https://www.elsevier.com/journals/aquatic-</u> botany/0304-3770/guide-for-authors>

SUMMARY

1	GENERAL INTRODUCTION REFERÊNCES	
2	TEN YEARS OF <i>HYDRILLA VERTICILLATA</i> (L.F.) ROYLE IN TROPICAL FLOODPLAIN – SPATIAL AND PATTERNS.	NVASION IN A TEMPORAL
	ABSTRACT	15
2.1	Introduction	17
2.2	Study area	21
2.3	Methods	23
2.3.1	Macrophyte occurrence sampling	24
2.3.2	Abiotic variables	
2.3.3	Sampling limitation and additions	
2.3.4	Analyses	27
2.3.5	Changes in lentic environments of Paraná Subsystem (PS)	
2.3.6	Exploring the cooccurrence of plants	
2.4	Results	
2.4.1	General results	
2.4.2	Logistic model	
2.4.3	Changes in lentic environments of Paraná Subsystem (PS)	
2.4.4	Exploring the cooccurrence of plants	
2.5	Discussion	
2.5.1	General perspectives	
2.5.2	Environmental features and changes demand surveillance	
2.5.3	Hydrilla verticillata is not a threat to lentic habitats	
2.5.4	Cooccurrence of plants	
2.6	Final remarks	
	REFERENCES	40
	APPENDIX A– Water level in Paraná river during sampling	48

	APPENDIX B – Checking changes in lentic sites in Parana subsystem50
	APPENDIX C – Conductivity and ZDS (water transparency) during the samples51
3	MACROPHYTE INVASIONS – A GLOBAL OVERVIEW OF OCCURRENCE AND PATHWAYS OF INTRODUCTION
	ABSTRACT
3.1	Introduction
3.2	Material And Methods
3.2.1	Species list
3.2.2	Naturalized and Native Range
3.2.3	Pathways of introduction60
3.2.4	Life forms61
3.2.5	Data analysis63
3.3	Results
3.3.1	Distribution and Flow of Naturalized Species
3.3.2	Pathway of introductions71
3.3.3	Life-form
3.4	Discussion75
3.4.1	Distributions75
3.4.2	Introduction Pathways
3 4.3	Life forms
3.5	Conclusion
	REFERENCES
	APPENDIX A - Incongruences with native vs naturalized range
	APPENDIX B – Pathways of introduction
	APPENDIX C – Life-form
	APPENDIX D – Native species per region151
4	GENERAL CONCLUSION

1 GENERAL INTRODUCTION

Humans have been introducing species beyond their native areas for centuries (Simberloff et al., 2013). Some of these species proliferate in such a way that they threaten biodiversity and ecosystem functioning (Gallardo et al., 2016), generating ecological, economic and even social impacts (Pimentel et al., 2005, Simberloff & Rejmanek, 2011).

Freshwater ecosystems are especially vulnerable to the introduction of species due to their large extension, diversity of habitats and the nature of processes related to these environments that increase the connectivity and dispersion of organisms between habitats, such as the flood pulse (García-Berthou & Moyle, 2011 ; Zedler, 2011). In addition, freshwater aquatic environments concentrate the greatest biodiversity per unit area of the planet, despite occupying a small fraction of the earth's surface (Dudgeon et al., 2006), which highlights the relevance of knowledge about biological invasions in these areas. environments.

Among the invasive species in aquatic ecosystems, aquatic macrophytes are noteworthy. Aquatic vegetation plays a crucial role in freshwater ecosystems. They provide biomass (primary production), shelter and food for many species, affect the chemical composition of water and sediments, increase heterogeneity and spatial complexity, and influence the change between alternative stable states (dark or clear water) (eg Engelhardt and Ritchie , 2001; Henninger et al, 2009; Cunha et al, 2012; Bakker et al, 2016; Moi et al, 2020). Consequently, the uncontrolled growth of these plants, when they become invasive, can lead to systemic damage to aquatic ecosystems (Gallardo et al., 2016; Rai and Singh, 2020). In this way, invasive aquatic macrophytes have been investigated in a myriad of different scopes in the field of Invasion Ecology to understand the causes, consequences, and necessary actions against such introductions.

Due to problems related to species invasion, actions taken by managers must follow a hierarchy in terms of management efficiency and cost (Simberloff et al., 2013). "Prevention" has priority (and lowest cost) followed by "Early detection" (interception, monitoring, removal) and, in the latter case containing the highest cost and worst efficiency, "Management" (eradication, containment and control) (Simberloff et al., 2013; Robertson et al., 2020).

Unfortunately, there are many cases of successful invasions of various aquatic ecosystems around the world (Simberloff & Rejmanek, 2011). For cases that do not yet pose a threat, the best remaining strategy is monitoring and surveillance to avoid future impacts (Simberloff et al., 2013). Thus, in the first approach of this thesis, entitled "Ten years of *Hydrilla verticillata* (Lf) Royle invasion in a tropical floodplain – Spatial and temporal patterns", one of the most worrying invasive macrophyte species in the world was evaluated (Langeland, 1996) 10 years after its introduction into the upper Paraná River floodplain. This article contributes to "Early Detection" strategies, specifically within the scope of monitoring and surveillance (Simberloff et al., 2013). Such knowledge is invaluable for decision-makers in the studied area and in other RAMSAR sites to choose better monitoring and management strategies.

In order to provide managers with the possibility of anticipating the introduction of aquatic macrophytes, another study was carried out to support the prevention of such introductions. In the second approach of this thesis, entitled "Macrophyte invasions – A global overview of occurrence and pathways of introduction", a global dataset was built to identify the most common routes of introduction of naturalized macrophytes, which are introduced species that maintain populations self-sustainable in the invaded environment. Concomitantly, it was identified which are the regions of origin and destination of these species of macrophytes and their functional groups. Such knowledge is invaluable for decision makers in the studied area and in other wetland sites of international importance (RAMSAR sites) to choose better monitoring and management strategies.

The combination of investigation of an invasive species and the characteristics of the receiving ecosystem (first approach), as well as knowledge about the introduction routes and functional traits of such organisms (second approach) are essential to characterize the so-called Invasion Syndromes (Novoa et al., 2020) thus increasing the ability to predict and manage biological invasions. Thus, the aim was to provide knowledge that will effectively contribute to defining aquatic macrophyte invasion syndromes.

REFERÊNCES

- Bakker, E.S., Wood, K.A., Pagès, J.F., Veen, G.F. (Ciska., Christianen, M.J.A., Santamaría, L., Nolet, B.A., Hilt, S., 2016. Herbivory on freshwater and marine macrophytes: A review and perspective. Aquat. Bot. 135, 18–36. https://doi.org/10.1016/j.aquabot.2016.04.008
- Cunha, E.R., Thomaz, S.M., Mormul, R.P., Cafofo, E.G., Bonaldo, A.B., 2012. Macrophyte structural complexity influences spider assemblage attributes in wetlands. Wetlands 32, 369–377. https://doi.org/10.1007/s13157-012-0272-1
- Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J., Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–82. https://doi.org/10.1017/S1464793105006950
- Engelhardt, Ritchie, M., K., E., M., Engelhardt, K.A.M., Ritchie, M.E., 2002. The effect of aquatic plant species richness on wetland ecosystem processes. Ecology 83, 2911–2924. https://doi.org/10.1890/0012-9658(2002)083[2911:TEOAPS]2.0.CO;2
- Gallardo, B., Clavero, M., Sánchez, M.I., Vilà, M., 2016. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Chang. Biol. 22, 151–163. <u>https://doi.org/10.1111/gcb.13004</u>
- García-Berthou, E & P. B. Moyle, 2011. Rivers In: Simberloff, D., & M. Rejmanek. Encyclopedia of Biological Invasions. Vol. 3 de Encyclopedias of the Natural World.
- Henninger, T.O., Froneman, P.W., Richoux, N.B., Hodgson, A.N., 2009. The role of macrophytes as a refuge and food source for the estuarine isopod Exosphaeroma hylocoetes (Barnard, 1940). Estuar. Coast. Shelf Sci. 82, 285–293. https://doi.org/10.1016/j.ecss.2009.01.017
- Langeland, K.A., 1996. *Hydrilla verticillata* (L.F) Royle (Hydrocharitaceae), "The Perfect Aquatic Weed." Castanea 61, 293–304.
- Moi, D.A., Alves, D.C., Antiqueira, P.A.P., Thomaz, S.M., Teixeira de Mello, F., Bonecker, C.C., Rodrigues, L.C., García-Ríos, R., Mormul, R.P., 2020. Ecosystem Shift from Submerged to Floating Plants Simplifying the Food Web in a Tropical Shallow Lake. Ecosystems. https://doi.org/10.1007/s10021-020-00539-y
- Novoa, A., Richardson, D.M., Pyšek, P., Meyerson, L.A., Bacher, S., Canavan, S., Catford, J.A., Čuda, J., Essl, F., Foxcroft, L.C., Genovesi, P., Hirsch, H., Hui, C., Jackson, M.C., Kueffer, C., Le Roux, J.J., Measey, J., Mohanty, N.P., Moodley, D., Müller-Schärer, H., Packer, J.G., Pergl, J., Robinson, T.B., Saul, W.C., Shackleton, R.T., Visser, V., Weyl, O.L.F., Yannelli, F.A., Wilson, J.R.U., 2020. Invasion syndromes: a

systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820. https://doi.org/10.1007/s10530-020-02220-w

- Rai, P.K., Singh, J.S., 2020. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 14(4), 1–20.
- Robertson, P.A., Mill, A., Novoa, A., Jeschke, J.M., Essl, F., Gallardo, B., Geist, J., Jarić, I., Lambin, X., Musseau, C., Pergl, J., Pyšek, P., Rabitsch, W., von Schmalensee, M., Shirley, M., Strayer, D.L., Stefansson, R.A., Smith, K., Booy, O., 2020. A proposed unified framework to describe the management of biological invasions. Biol. Invasions 22, 2633–2645. https://doi.org/10.1007/s10530-020-02298-2
- Simberloff, D., Martin, J.L., Genovesi, P., Maris, V., Wardle, D.A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., Vilà, M., 2013. Impacts of biological invasions: What's what and the way forward. Trends Ecol. Evol. 28, 58–66. https://doi.org/10.1016/j.tree.2012.07.013
- Zedler, J. B. 2011 Wetlands in: Simberloff, D., & M. Rejmanek. Encyclopedia of Biological Invasions. Vol. 3 de Encyclopedias of the Natural World.

TEN YEARS OF HYDRILLA VERTICILLATA (L.F.) ROYLE INVASION IN A TROPICAL FLOODPLAIN: SPATIAL AND TEMPORAL PATTERNS

4

5 **ABSTRACT**

Invasive species demand constant surveillance to evaluate their impacts or the 6 effects of management strategies. Here we investigated the invasion of Hydrilla verticillata 7 (L.f.) Royle in a subtropical floodplain, assessing the relationship between the occurrences 8 of this species and its main abiotic predictors, as well as its relationship with the native 9 10 (equivalent) species *Egeria najas* Planch. For that, we used data from monitoring samples that represent two periods of *H. verticillata* invasion: T1 - right after its first detection 11 (2007-2008) and T2 – ca. 10 years later (2015-2017). Hydrilla verticillata still seems to be 12 limited to the area of the floodplain in which it was at the beginning of its invasion (mainly 13 in lotic sites). However, we found more occurrences of *H. verticillata* in lentic habitats in 14 T2 than in T1. Such finding seems to be related to the increase in water transparency (the 15 main predictor of *H. verticillata* occurrences) in these sites over time due to the impacts of 16 dams, however it does not seem to be concerning yet once we found no evidence that H. 17 *verticillata* is replacing the native *E. najas*. We found evidence of facilitation between both 18 species that deserves to be investigated deeply. Our findings suggest that there is no need 19 for management actions to control *H. verticillata* in the study area for now. However, we 20 21 strongly recommend the constant surveillance of *H. verticillata* along with the impacts of upstream reservoirs on the abiotic characteristics of floodplains. 22

- 24 Key words: Biological invasions; Hydrocharitaceae; Invasiviness; *Egeria najas*; Upper
- 25 Paraná River floodplain.

2.1 Introduction

28	Evaluating ecological processes depends on many idiosyncrasies (Sutherland et al.,
29	2013; Simberloff, 2004). In the case of biological invasions, factors related to the
30	invasibility i.e., the properties that determine the inherent vulnerability of a habitat,
31	community or ecosystem to invasion (Richardson et al., 2011) and invasiveness i.e., the
32	features of an alien organism that define their capacity to invade (Richardson et al., 2011)
33	emerge. For example, there may be fluctuations in the resource availability that open
34	windows for the establishment of invaders (Davis et al., 2000) and/or higher invaders
35	performance in the new environment that increases the invader competitiveness compared
36	to the resident species (Blossey & Nötzold, 1995; Callaway & Ridenour, 2004). Thus,
37	depending on the environment-invader relationship, species introductions can result in
38	impacts on the recipient environment (Simberloff et al., 2011).
39	Considering that the stages of invasions (introduction, colonization and
40	naturalization) are context dependent, the time between the introduction of a new species
41	and its impacts is sometimes uncertain (Crooks et al., 2005; Crooks, 2011). There are many
42	examples in the literature related to lag-times between alien species arrival and their
43	impacts on native community (Crooks, 2011). For example, there were reported ca. 40
44	years for quagga mussels to expand their occurrence through the Volgo-Don waterway
45	(Orlova et al., 2005), 100 years for water hyacinth (Eichhornia crassipes (Mart.) Solms)
46	started to become invasive in Italy (Brundu et al., 2013), and, in other cases, up to 200
47	years (see Crooks, 2011, p. 407 for more examples).

The evaluation of the impact of a introduced species depends not only on the
temporal scale but also on the adopted spatial scale (Fridley et al., 2007). Studies that

consider small spatial grains, including experiments and local field surveys, tend to find
negative correlations between native and naturalized exotic species richness, while broadgrained studies suggest positive correlations (Fridley et al., 2007, Pulzatto et al., 2019;
Tomasetto et al., 2019). However, there are exceptions, such as Lolis et al. (2020), who
found negative correlations between the native macrophyte diversity and the *Eichhornia crassipes* (Mart.) Solms abundance, comparing a native and an invaded ecosystem and
using a broad spatial scale.

Because of the difficulties in predicting the results of biological invasions and 57 considering the potential damage of invasive species in all sectors of society (Simberloff et 58 al., 2011; Pimentel et al., 2005; Simberloff et al., 2013), a preventive approach must be 59 60 taken (Simberloff et al., 2013). Management strategies against invasive species follow a hierarchy in efficiency and cost (Simberloff et al., 2013). On a priority scale, "prevention" 61 62 is the first strategy to be taken (lowest cost and more effective), followed by "early detection" (interception, monitoring, surveillance, and removal) and, in the last case, the 63 long term "management" with the highest cost (eradication, containment, control) 64 (Simberloff et al., 2013). Unfortunately, there are many cases of successful invasions that 65 have already taken place in many different regions of the Earth (Simberloff et al., 2011), 66 67 and for those that do not pose a threat yet, the best remaining strategy is monitoring and surveillance to be ahead of future impacts (Simberloff et al., 2013). In this study, we 68 69 present a monitoring study of a common submerged invasive macrophyte, Hydrilla 70 verticillata (L.f.) Royle over ca. 10 years since the beginning of its introduction in a South American floodplain, a key area for biodiversity conservation. 71

72	Wetlands, such as floodplains, play an important role in providing food, water
73	supply, hydropower, carbon sequestration, flood mitigation, and a range of other services
74	that are globally important for life maintenance and, thus, for sustainable development
75	(RAMSAR, 2018). However, wetlands have been exploited and impacted by anthropogenic
76	activities and are currently among the most impacted environments on Earth (Dudgeon et
77	al., 2006; RAMSAR, 2018). In South America, one of the most strategic ecosystems for
78	biodiversity conservation is the upper Paraná river floodplain (UPRF) – see the Study Area
79	section. Within the Brazilian territory, this area contains more than 130 large reservoirs that
80	flooded most of the river-floodplain system (Agostinho et al 2004). However, there is a
81	remaining stretch (ca. 230 km long) without dams, which comprehend a mosaic of habitats
82	hosting thousand of species of different taxa (Agostinho et al., 2004). Although this stretch
83	is considered dam-free, it is not totally free from the influence of reservoirs (Roberto et al.,
84	2009). Upstream reservoirs retain suspended particles and nutrients that, over time, have
85	increased water transparency and decreased nutrient concentration in the Paraná river (i.e.,
86	oligotrophization), the main river in this river-floodplain system (Roberto et al., 2009).
87	Furthermore, the artificial regulation of the water level caused by dams change the aspects
88	of the flood and dry regimes (Roberto et al., 2009), which are the major triggers to the
89	ecological processes in this type of ecosystems (Agostinho et al., 2004).
90	The water oligotrophization and the increase in underwater radiation have been
91	facilitating the establishment of <i>H. verticillata</i> in the UPRF (Sousa, 2011). <i>Hydrilla</i>

92 *verticillata* (Hydrocharitaceae) is a rooted submerged macrophyte, native from Asia which

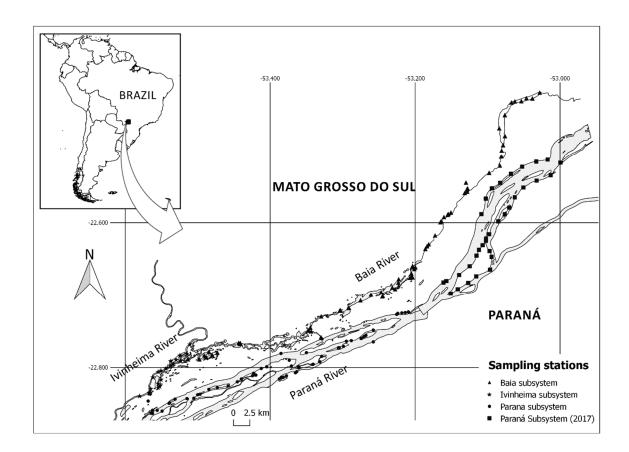
- has spread throughout all continents except the Antarctic (Cook and Lüönd, 1982; Zhu et
- al., 2015). This species has a high growth ratio (Bianchini-Jr et al., 2010) and it is known as

a very successful naturalized species outside its native range, where it can produce high
biomass and interfere with navigation, diving activities, and clog tubulations (Langeland,
1996). The first record of this invasive macrophyte in South America (in the UPRF) was in
2005 at a reservoir located upstream of the stretch free of dams (Sousa, 2011). After a few
years, this macrophyte colonized the UPRF and spread ca. of 300 km downstream through
the Paraná river achieving the Itaipu reservoir (Thomaz et al., 2009; Sousa, 2011).

In 2007-2008, Sousa et al. (2009) sampled many sites across the UPRF to 101 102 understand which habitats are more susceptible to *H. verticillata* colonization and which 103 abiotic factors are the best predictors of its occurrence. The authors found that H. verticillata seems to be confined to the Paraná river channel while the equivalent native 104 105 species Egeria najas Planch. (Hydrocharitaceae) (same life-form and occupy similar 106 habitats) can also colonize floodplain lakes and other rivers (Sousa et al., 2009; 2010). However, with the influence of anthropogenic disturbances such as reservoirs, the UPRF 107 108 has been modified over the years (Roberto et al., 2009), and, consequently, the resident 109 species and the invasive species may respond to those changes. Upstream reservoirs retain 110 suspended particles working as a sediment trap. Over time, the nutrient concentration 111 decreased in the Paraná river channel along with the increase of the water transparency 112 (Roberto et al., 2009) which is the main predictor of *H. verticillata* in this area (Sousa et al., 2009). The UPRF lakes, which H. verticillata has not been able to colonize so far, support a 113 114 high richness of macrophytes (Souza et al., 2017), and thus, these abiotic changes are a 115 cause of concern.

Our aim here is to answer two main questions: i) has *H. verticillata* expanded its
occurrence area over time in the Upper Paraná River floodplain?, and ii) is *H. verticillata*

affecting the probability of occurrence of the native *E. najas*? Tackling these questions
should give an idea of how (and whether) the invasive macrophyte is expanding its
occurrences and threatening the native species. To answer these questions, we compared
the data collected by Sousa et al. (2009) in 2007-2008, right after the first record of *H. verticillata* at the UPRF with the other two samples in 2015-2017, in the same study area
using the same sampling protocol.


124

125 2.2 Study area

The upper Paraná river-floodplain system (UPRF) comprises three rivers: Baía,
Ivinheima, and Paraná, the main river (Fig. 1). Each river has a bunch of associated
waterbodies with intrinsic characteristics, which let us split this floodplain system into three
subsystems: Baía Subsystem (BS), Ivinheima Subsystem (IS), and Paraná Subsystem (PS)
(Fig. 1). As a matter of facility to the reader, we used the same notation as Sousa et al.
(2009) to make the papers easier to compare.

The area we focused on represents ca. 230 km between the two reservoirs (Porto 132 Primavera and Itaipu) of the Paraná river (Fig. 1). The main driver of ecological processes 133 in this area is the flood pulse during the summer season, November to March (Sousa-Filho 134 et al., 2004). Higher intense flood events increase the connectivity and the similarity among 135 the three subsystems including their associated waterbodies (Thomaz et al., 2007), 136 facilitating the spread of invasive species, such as *H. verticillata*, across the landscape. 137 However, flood increases the suspended particles in the rivers, especially in the Paraná 138 139 river, consequently decreasing the water transparency.

140	Comparing the three subsystems, the Paraná River is the major river and receives
141	water from the other two rivers (i.e., Ivinheima and Baía; Fig. 1). It is a lotic ecosystem
142	with the highest transparency and the lowest nutrient concentration, factors that have been
143	associated with the prevalence of <i>H. verticillata</i> in the main channel of this river (Sousa et
144	al., 2009; 2010). The Baía river is considered semilotic and it has the highest concentration
145	of humic compounds. This river is strongly influenced by the Paraná river flood regime.
146	The last river, Ivinheima, is considered lotic and has the lowest water transparency. The
147	hydrology of the last river is more independent from the Paraná river.
148	Sample sites were distributed across the subsystems according to Table 1. The
149	sample sites consisted of main river channels, river channels, lakes, and backwaters. Each
150	waterbody was classified as lotic or lentic (Table 1).

152

153

Fig. 1 – Map of the sampling stations in the UPRF (adapted from Sousa et al.,
2009). Squares refer to additional sites sampled in 2017 at Paraná subsystem.

156

157

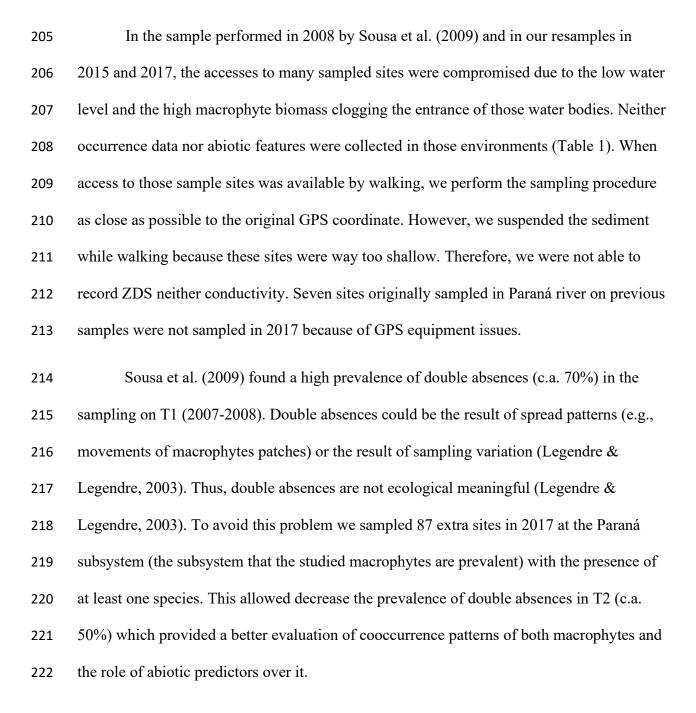
158 **2.3 Methods**

To evaluate *H. verticillata* invasion in space and time, we used data from two periods, right after *H. verticillata* first record in the UPRF and ca. ten years later. For the first period (T1) we used data from Sousa et al. (2009), referent to November 2007 and April 2008. For the second period (T2), we combine data collected in February 2015 and

163	November 2017. We did not use the full data set of Sousa et al. (2009), which also includes
164	one extra sampling in April 2007 (right after a major flood) to facilitate comparisons and to
165	ensure we had coherence when comparing samples with equivalent hydrological periods.
166	Given that, we considered two hydrological stages inside each period. Samples performed
167	in November 2007 and April 2008 refer to low influence (LI) and high influence (HI) of the
168	highwater period, respectively. The samples performed in February 2015 and November
169	2017 refer to high influence (HI) and low influence (LI) of the flood pulse, respectively
170	(Appendix A - Figure A1).
171	
172	2.3.1 Macrophyte occurrence sampling
173	We followed the methods of Sousa et al. (2009) in all the samples, which consisted
174	of sampling 148 sites in the landscape in the three subsystems (Table 1). In each sample
175	site of 2007 and 2008, macrophyte presence was checked in deeps up to 4 meters with a
176	rake. A researcher positioned at a boat dragged the river sediment and reported the absence

or the presence of macrophytes. All the sample sites had their coordinates recorded with a
GPS device (Datum WGS-84) and all subsequent samples were repeated strictly at the

same sites (as close as possible to the original GPS coordinate).


We utilized an anchor attached to a rope instead of the rake to resample the sites in 2015 and 2017. The latter method extends the area sampled in the sites (ca. 5 m of radius), and thus, minimizes false absences. We positioned the boat at the site during the resample, following the GPS coordinates, and we tossed the anchor up to ten times in all directions (N, S, E, and W from the sample point).

185	To reduce the collector's bias, we ensured that one researcher member of the Sousa
186	et al. (2009)'s crew participated in the samples of 2015 and two members of the 2015
187	researchers' crew resampled the sites in 2017.
188	
189	2.3.2 Abiotic variables
190	Following Sousa et al. (2009) guidelines, we sampled electrical conductivity (S/m)
191	and the maximum depth of visibility of the Secchi disk (ZDS (m)) in all sites. These
192	variables are considered the most important predictors of rooted submerged macrophyte
193	occurrence in the study area (Sousa et al., 2009).
194	As water flow is an important driver for submerged macrophyte occurrence
195	(Chambers et al., 1991), we categorized the sampled sites into two categories, "Lotic" or
196	"Lentic", according to the features of each habitat (Table 1).
197	

Table 1 - The number of sample sites (n) for each year of both sampling periods (First
Period (T1); Second Period (T2)) referent to the number of types of waterbodies
assessed, and the classification according to the water flow (Flow) for each subsystem
(Subsystem).

Subsystem	Flow	First period (T1)		Second period (T2)	
Subsystem		2007	2008	2015	2017
Baia	Lentic	43	33	30	35
Dala	Lotic	21	21	18	21
Ivinheima	Lentic	15	15	3	15
Iviimeima	Lotic	7	7	7	7
Damama	Lentic	15	15	12	11
Parana	Lotic	47	47	43	127
Total n		148	138	113	216

204 2.3.3 Sampling limitation and additions

225	We used logistic regression models to interpret better the variables associated with
226	the occurrences of <i>H. verticillata</i> and <i>E. najas</i> . We decided to model the occurrence of both
227	plants specifying which plant is occurring in the sampling site with a categorical variable
228	"Plant" (Table 2). We also specified whether a cooccurring plant is present in a categorical
229	variable "Cooccurrence" (Table 2). Then, we were able to investigate the effect of
230	biological interactions between both plants. All predictors were tested for multicollinearity.
231	We performed a backward model selection (Zuur et al., 2009), starting from a
232	saturated model containing all predictors in Table 2, and removing the non-significant
233	terms in each step. We used the likelihood-ratio test ($\alpha = 0.95$) as a criterion for predictors
234	removal (Table 3). All statistical procedures and data manipulation were performed with R
235	(R Core Team, 2020).

237 Table 2- Variables used in the logistic model

Туре	Variable	Description
Response	Occurrence	Presence (1) or absence (0) of submerged species
	Period	T1 (2007-2008) or T2 (2015-2017)
	Flow	Lotic or Lentic
	Plant	Hydrilla verticillata or Egeria najas
Predictors	Cooccurrence	The presence (1) or absence (0) of the cooccurring plant
	Hydrology	High influence (HI) or low influence (LI) of the flood season
	Conductivity	Electrical Conductivity (µScm ⁻¹)
	ZDS	Depth of disappearance of the Secchi disc (ZDS m)

240	We considered interactions between Flow*Cooccurrence*Period*Plant,
-----	--

- 241 Hydrology*Plant, Plant*Conductivity and Plant*ZDS. The final model and the selected
- 242 predictors are shown in Table 3.
- 243

Table 3- Predictors selected used in the final logistic model fitted. AIC - Akaike

245 Information Criterion; LRT - Likelihood-ratio test statistic and its assossiated p-value.

246

Final model:	Occurrence ~ Cooccu + Plant*Secchi	urrence + Conduct	tivity + Flow*Pe	riod + Flow*Plant
	Predictors	AIC	LRT	p value
	None	578.93		
	Cooccurrence	603.31	6.35	0.011
LRT Final	Conductivity	651.12	54.17	< 0.001
	Flow*Period	602.37	5.41	< 0.001
	Flow*Plant	618.49	21.53	< 0.001
	Plant*Secchi	618.81	21.85	< 0.001

- 247
- 248
- 249

250 2.3.5 Changes in lentic environments of Paraná Subsystem (PS)

251 Water transparency (ZDS) seems to be the major predictor for *H. verticillata*

occurrences (Sousa et al., 2009). As the probability of *H. verticillata* occurrence increased

in lentic sites of PS in T2, we compare ZDS in the lentic environments of this subsystem

between T1 and T2. This would allow us to infer about the invasibility of such habitats to

255 *H. verticillata*. Given that, we performed a two-way Anova for water transparency

256 (Appendix B). We compare ZDS between periods (T1 and T2) and the hydrological periods

257 (HI and LI) (Appendix B).

259 2.3.6 Exploring the cooccurrence of plants

To better understand the relationship between the native and the invasive
macrophyte, we used the *Corrected Proportion of occurrences score* (*CPO_{it}*; Thomaz and
Michelan, 2011).

The CPO_{it} estimates an average for pair associations that considers the frequency of occurrence of each species. This index expresses the difference between the proportion of observed and expected co-occurrences. The CPO_{it} is:

266
$$CPO_{it} = \frac{n_{it}}{n_i \times \frac{n_t}{N}}$$

267 where n_{it} is the number of sites where species i [E. najas] co-occurred with the H.

268 *verticillata*; n_i is the total number of sites where species *i* occurred; n_t is the number of sites

where species t [H. verticillata] occurred; and N is the total number of sites. The CPO_{it}

indicates whether submerged macrophytes co-occurred more $(CPO_{it} > 1)$ or less $(CPO_{it} < 1)$

than expected by chance $(CPO_{it} = 1)$. To evaluate CPO_{it} we used a null model with 999

272 randomizations. We compared how many times the observed *CPO_{it}* was equal or higher

- than the random generated indexes.
- 274
- 275

276 **2.4 Results**

277 2.4.1 General results

- For both periods, PS contained more than 95% of all plant occurrences, and *H*.
- 279 *verticillata* was the most frequent macrophyte (Table 4). We found no submerged plants at
- 280 IS sites during any period sampled. For BS, only a few occurrences were recorded for *E*.
- 281 *najas. Hydrilla verticillata* was found growing in one sampling station at the BS during T2,
- however, this station was connected and very close to the Paraná river (ca. 300 m). See
- 283 Appendix C to check abiotic features for each subsystem

284

Table 4 - Percentage of occurrences for *Hydrilla verticillata* and *Egeria najas* in each
subsystem during both sampled periods. Note the percentages refer to each species
separately. Then the sum of all percentages might overcome 100% because plants can
coocur on sites.

Period	Subsystem	H. verticillata (%)	E. najas (%)	Coocurrences (%)
T1 (2007-2008)	BS (Baía)	0	1.70	0
	IS (Ivinheima)	0	0	0
	PS (Paraná)	48.39	24.19	11.3
T2 (2015-2017)	BS (Baía)	0.96	3.81	0
	IS (Ivinheima)	0	0	0
	PS (Paraná)	69.43	40.93	29.9

289

290 Most sites colonized by the invasive *H. verticillata* in both periods are lotic (c.a.

291 95%). However, the number of lentic sites (lakes and backwaters) in PS which the invasive

macrophyte was found established increased in T2 (30% of the lentic sites of PS) compared

- to T1 (6%). The occurrences of *E. najas* also showed a prevalence in lotic sites (ca. 77%),
- but less prominent than *H. verticillata*. Considering all sampled sites, *Egeria najas* was

found established in 12 lentic sites in T1 (83% of them in PS) and in two more lentic sites in T2 (n = 14; 78% of them in PS).

297

298 2.4.2 Logistic model

299	Considering the estimates from the fitted model (Table 5), there was no difference
300	between the lotic and lentic environments in the first period (T1) for E. najas occurrences
301	(OR = 0.99; p-value = 0.976). However, <i>E. najas</i> was less likely to occur in lotic
302	environments in the second period (T2) compared to the lentic environment (OR = 0.28 , p-
303	value = 0.022). Regarding the invasive <i>H. verticillata</i> , the lotic environment was much
304	more important (OR = 16.56, p-value < 0.001), especially in the first period, when the
305	lentic environments were not very important for the invasive macrophyte (Table 5).

306

Predictor	Estimate	OR	p-value
(Intercept)	-6.39	-	<0.001
FlowLotic	-0.01	0.99	0.976
Cooccurrence	0.69	1.99	0.013
PeriodT2	1.81	6.12	<0.001
PlantHydrilla	-2.84	0.06	<0.001
Conductivity	0.07	1.07	<0.001
ZDS	0.05	1.05	0.733
FlowLotic:PeriodT2	-1.26	0.28	0.022
FlowLotic:PlantHydrilla	2.81	16.56	<0.001
PlantHydrilla:ZDS	0.95	2.59	<0.001

Table 5. Estimative of the parameters for the final fitted model.

308

309 In summary, the significant term PeriodT2 (Table 5) suggests that both plants

310 increased the chance of occurrence in the second period. However, this increase is more

311	expressive in lentic environments, since the interaction FlowLotic:PeriodT2 is significantly
312	negative. Although lotic environments are important to H. verticillata, this species
313	increased the odds of occurrence over time more expressively in lentic habitats
314	(proportionally).
315	Another aspect favoring the occurrence of both species is the presence of a
316	cooccurring plant. The term Cooccurrence was significantly positive (Table 5) suggesting
317	that the presence of the other species favors the presence of the species evaluated on the
318	same path (without distinction between species). That is, the effect of <i>H. verticillata</i> on <i>E.</i>
319	najas is the same as the effect of E. najas on H. verticillata, once the interaction between
320	Plant*Cooccurrence was not selected.
321	Regarding the remaining abiotic predictors, transparency (ZDS) was only important
322	for <i>H. verticillata</i> , but not for <i>E. najas</i> , while conductivity was important for both.
323	
324	
-	
325	2.4.3 Changes in lentic environments of Paraná Subsystem (PS)
326	
327	Looking at the ZDS separately for PS lentic sites (Tables SM02 and SM03), we see that the
328	water transparency for these environments was significantly higher in T2 (F = 5.237; $p =$
329	0.02) than T1 regardless of the month.
330	
331	

333 2.4.4 Exploring the cooccurrence of plants

The CPO_{it} values suggest that *H. verticillata* and *E. najas* cooccur more than expected by chance in the UPRF. We found values of $CPO_{it} = 1.92$, and it was higher than any randomly generated index.

337

338 2.5 Discussion

339 2.5.1 General perspectives

The invasion process and its costs and benefits related to invasive species management are context-dependent (Simberloff et al., 2013). In the case of UPRF, our results suggest that the monitoring and surveillance of the invasive *H. verticillata* seem to be the best strategy.

We found not enough evidence to affirm that *Hydrilla verticillata* is replacing the native *E. najas*. The invasive macrophyte seems to be still confined to the PS after 10 years of invasion. The only sample station we found this macrophyte established out of the PS was in one site in BS. However, this site was connected and very close to the PS shore (ca 300 m). No other site in BS and IS seems to offer suitable conditions for *H. verticillata* growth.

Considering the sites where *H. verticillata* and *E. najas* occur, we found no evidence *H. verticillata* affects the native macrophyte negatively. Indeed, the presence of the cooccurring plant was selected as a predictor of submerged macrophyte occurrence could

353	indicate a facilitation interaction. Therefore, the native E. najas continue to be prolific and,
354	maybe, positively impacted by the presence of <i>H. verticillata</i> occurrence. Not only, but <i>E.</i>
355	najas seems to be affecting the invasive species in the same positive way (see
356	Cooccurrence of plants section for a better discussion).
357	Combining our finding with the fact that the management of <i>H. verticillata</i> is very
358	difficult and that is almost impossible to remove it from large water bodies such as PS, the
359	best approach would be to keep monitoring the invasive macrophyte's behavior considering
360	the potential environmental changes (see the section below). In other words, the
361	invasiveness of <i>H. verticillata</i> in the UFPR has not increased so far since the evaluation
362	made by Sousa et al. (2009), which otherwise would demand a management action.
363	
363 364	2.5.2 Environmental features and changes demand surveillance
	2.5.2 Environmental features and changes demand surveillance The fact of the odds of <i>H. verticillata</i> occurrences increased in lentic environments
364	
364 365	The fact of the odds of <i>H. verticillata</i> occurrences increased in lentic environments
364 365 366	The fact of the odds of <i>H. verticillata</i> occurrences increased in lentic environments raises some questions worth to be investigated. Lentic environments such as lakes of the
364 365 366 367	The fact of the odds of <i>H. verticillata</i> occurrences increased in lentic environments raises some questions worth to be investigated. Lentic environments such as lakes of the PS, are not suitable for <i>H. verticillata</i> colonization because they are usually less transparent
364 365 366 367 368	The fact of the odds of <i>H. verticillata</i> occurrences increased in lentic environments raises some questions worth to be investigated. Lentic environments such as lakes of the PS, are not suitable for <i>H. verticillata</i> colonization because they are usually less transparent and contains more organic matter in the sediment than lotic sites, which are harmful
364 365 366 367 368 369	The fact of the odds of <i>H. verticillata</i> occurrences increased in lentic environments raises some questions worth to be investigated. Lentic environments such as lakes of the PS, are not suitable for <i>H. verticillata</i> colonization because they are usually less transparent and contains more organic matter in the sediment than lotic sites, which are harmful conditions to <i>H. verticillata</i> growth (Barko and Smart, 1983; 1986; Sousa et al. 2009; 2010,
364 365 366 367 368 369 370	The fact of the odds of <i>H. verticillata</i> occurrences increased in lentic environments raises some questions worth to be investigated. Lentic environments such as lakes of the PS, are not suitable for <i>H. verticillata</i> colonization because they are usually less transparent and contains more organic matter in the sediment than lotic sites, which are harmful conditions to <i>H. verticillata</i> growth (Barko and Smart, 1983; 1986; Sousa et al. 2009; 2010, Silveira and Thomaz, 2015). Thus, some changes in these variables might be triggering the

374	Looking at the entire data set (all periods and sites), water transparency (ZDS) was
375	the most important predictor for <i>H. verticillata</i> occurrence (Table 5). Considering only the
376	PS, where <i>H. verticillata</i> occurs, lentic sites of this subsystem showed higher ZDS in T2
377	than in T1 (Appendix B – Figure B2). Of course, we are comparing two snapshots of what
378	is going on in the landscape. However, the history of impacts in the Paraná river by
379	reservoirs indicates that this would be a matter of concern. The chain of reservoirs in this
380	river has been responsible for increasing the ZDS and decrease the nutrient availability in
381	the river channel (Agostinho et al., 2004; Roberto et al., 2009). If this process of
382	"oligotrophization" is affecting lakes of PS in the same way, H. verticillata might become
383	more frequent in the lentic environments of PS.

384 Indeed, the low frequency of *H. verticillata* in lentic environments so far seems to 385 be related to a multivariate combination of water transparency, organic matter content in the sediment and water flow (Silveira, 2015). Silveira (2015) showed that H. verticillata 386 could grow in lake sediment transplanted to lotic sites (more transparent with a high flow). 387 388 Thus, increasing the water transparency could help the submerged plants to overcome the 389 negative effects of other abiotic filters, such as organic matter, especially in areas of the lakes near the river channel (ca. 300 m). These sites contain less organic matter and suffer 390 391 more impact from daily water level fluctuation, which decreases the anoxia of the sediment compared to other portions of the lakes away from the main river channel. 392

As pointed out by Sousa et al. (2009), ZDS alone does not explain why *H*. *verticillata* cannot establish in the PS lakes because these environments are usually shallow (c.a. max 2.5 m deep) with littoral zones large enough to enable sufficient underwater light above the photosynthetic compensation point. However, our results suggest an increase in water transparency may contribute more to *H. verticillata* occurrences than *E. najas* ones.
Therefore, further experimental studies are necessary to understand the importance of the
gradient and the interactions among ZDS and other predictors in the *H. verticillata*colonization success.

401

402 2.5.3 Hydrilla verticillata is not a threat to lentic habitats (yet)

Although the invasion of *H. verticillata* in lentic habitats of PS sounds like a threat
to these highly diverse habitats (Agostinho et al., 2004), it does not seem to be so
concerning. The probability of occurrence of *E. najas* also increased in both lotic and lentic
environments in T2, which shows that the most frequent submerged native macrophyte in
UPRF (Souza et al., 2017) is not being replaced by *H. verticillata* so far.

Considering the impacts from the reservoir in the UPRF, changes in the prevalence 408 of both studied macrophytes should be continuously investigated because aquatic plants 409 410 respond directly to the flood seasonality (Junk et al., 1989; Sousa et al., 2010). The artificial water level regulation caused by reservoirs decreases the frequency and the intensity of 411 412 flood pulses (Agostinho et al., 2004), enabling lentic sites to be shallow and transparent for 413 enough time to allow *H. verticillata* colonization. Indeed, we would expect a low probability of *H. verticillata* occurrence at the end of the flood season because of the 414 415 damage (e.g., uprooting) caused by the flood pulse disturbance (Sousa et al., 2010). 416 However, hydrology was not selected in the variable selection, making sense if no significant flood occurs and macrophytes could continue to grow without any significant 417 418 damage. This seems to have happened during our samples in T1 and T2 (Appendix A -

419	Figure A1). In T1, there was no significant flood pulse in the sample performed in Apr
420	2008. Furthermore, there was a significant drought period in T2 with no flood pulse before
421	our sampling (Appendix A – Figure A1). In summary, despite we found no significant
422	threat from the invasive macrophyte, our findings highlight the need to surveillance the H.
423	verticillata along with the impacts of reservoirs in the abiotic characteristics of UPRF,
424	especially in lentic sites.
425	
426	2.5.4 Cooccurrence of plants
427	The cooccurrence of a neighbor plant seems to increase the odds of occurrence of
428	both plants studied here (Table 5). That is, the occurrence of <i>H. verticillata</i> seems to have a
429	positive effect on the occurrence of <i>E. najas</i> , and the opposite is true. This is reinforced by
430	CPO_{it} values indicating that both plants cooccur more than expected by chance in the
431	UPRF.
432	In theory, a facilitation effect is possible between both plants. Below here we
433	discuss some potential mechanisms that could explain this relationship. However, these
434	hypotheses depend on further evidence from experiments to be supported.
435	Hydrilla verticillata is more resistant to mechanical ruptures than E. najas (Oliveira
436	et al., 2019). The growth of <i>H. verticillata</i> patches in lotic environments, such as PS, could
437	reduce the river flow in the inner portions of the patches creating suitable conditions for E .
438	najas development. On the other way, biomass of submerged macrophytes, such as E. najas
439	stabilizes the sediment contributing to the maintenance of clear water states in lentic sites.

440 This promotes n increased transparency in the water column, which is the main predictor of441 *H. verticillata.*

As highlighted by Sousa (2011), "before investing substantial effort to control 442 Hydrilla, managers should weigh the potential costs and benefits of available techniques 443 and consider the potential benefits of Hydrilla in providing ecosystem services". In terms of 444 impacts in the UPRF, *H. verticillata* is problematic because of its high biomass which 445 impairs fishing, recreational activities, and navigation (Sousa, 2011). However, considering 446 ecological impacts, we found no displacement of the native species *E. najas*, and neutral or 447 even positive impacts have been confirmed to other assemblages. For example, H. 448 verticillata seems to favor small-sized fish assemblages as much as E. najas do at the 449 450 UPRF (Cunha et al., 2011, Carniatto et al., 2014; Figueiredo et al., 2015). However, this 451 invasive species seems to homogenize the Chironomidae species (Gentilin-Avanci et al., 452 2020).

In a "big picture", we show here that there is no reason for panic (yet) in terms of 453 454 biotic interactions (evaluated here for *E. najas*). However, we used presence/absence data to investigate these interactions at a regional scale. Such investigations are scale-dependent 455 and could be influenced by the type of measurement utilized. For example, Pulzatto et al. 456 457 (2019) found the abundance of E. najas is associate with the decrease in H. verticillata biomass at a finer grain (quadrat). Therefore, further studies that consider e.g. in situ 458 459 biomass are needed to evaluate the biotic interactions regarding *H. verticillata* and its impacts over time and in different grains. 460

2.6 Final remarks

463	Considering the anthropogenic impacts in the UFPR and the lags of time of decades
464	to centuries in invasion processes (Crooks, 2011) the monitoring of <i>H. verticillata</i> should
465	be continued. Furthermore, UPRF has a scenario where unexpected interactions among H .
466	verticillata and other invasive species could lead to unexpected outcomes. For example,
467	Michelan et al., (2014) found that <i>H. verticillata</i> facilitates the establishment of the golden
468	mussel (Lymnoperna fortunei), in a reservoir of the UPRF. If H. verticillata biomass
469	increases in UPRF lakes along with the golden mussel, the higher filtration rate of this
470	mussel would increase the water transparency which would increase the colonization of H.
471	verticillata in an invasional meltdown effect (Simberloff and Holle, 1999). Long Term
472	Ecological Researches are crucial to understand this type of processes and the knowledge
473	from the <i>H. verticillata</i> invasion on UPRF would be valuable to other RAMSAR sites
474	invaded by this species.
475	We highlighted the need to further studies to understand the interactions between
476	abiotic factors to elucidate the colonization of <i>H. verticillata</i> in lentic sites, and we also
477	highlight the need for surveillance of potential abiotic changes over time in these sites of
478	PS. We expect that our case study would help decision-makers at the UPRF and in other

479 RAMSAR sites to choose better decisions.

482 **REFERENCES**

- 483 Agostinho, a. a., S. M. Thomaz, & L. C. Gomes, 2004. Threats for biodiversity in the 484 floodplain of the Upper Paraná River: effects of hydrological regulation by dams. 485 Ecohydrology & Hydrobiology 4: 255–256. Barko, A. J. W., & R. M. Smart, 1983. Effects of Organic Matter Additions to Sediment on 486 487 the Growth of Aquatic Plants. Journal of Ecology 71: 161-175. Barko J.W. & Smart R. M. (1986). SEDIMENT-RELATED MECHANISMS OF GROWTH 488 LIMITATION IN SUBMERSED MACROPHYTES. Ecology 67, 1328–1340 489 Barko, J. W., & R. . M. Smart, 1986. SEDIMENT-RELATED MECHANISMS OF 490 491 GROWTH LIMITATION IN SUBMERSED MACROPHYTES. Ecology 67: 1328-1340. 492 Bianchini Jr, I., M. B. Cunha-Santino, J. a M. Milan, C. J. Rodrigues, & J. H. P. Dias, 2010. 493 494 Growth of Hydrilla verticillata (L.f.) Royle under controlled conditions. Hydrobiologia 644: 301-312. 495 Blossey, B., & R. Notzold, 1995. Evolution of Increased Competitive Ability in Invasive 496 497 Nonindigenous Plants : A Hypothesis Author (s): Bernd Blossey and Rolf Notzold Source : Journal of Ecology, Vol. 83, No. 5 (Oct., 1995), pp. 887-889 Published 498 by : British Ecological Society. Journal of Ecology 83: 887-889. 499 500 Brundu, G., M. M. Azzella, C. Blasi, I. Camarda, M. Iberite, & L. Celesti-Grapow, 2013.
- 501 The silent invasion of Eichhornia crassipes (Mart.) Solms. in Italy. Plant Biosystems.
- 502 Taylor & Francis, 1120–1127, http://dx.doi.org/10.1080/11263504.2013.861536.

503	Callaway, R. M., & W. M. Ridenour, 2004. Novel weapons: invasive success and the
504	evolution of increased competitive ability. Frontiers in Ecology.
505	https://doi.org/10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2
506	Carniatto, N., R. Fugi, S. M. Thomaz, & E. R. Cunha, 2014. The invasive submerged
507	macrophyte Hydrilla verticillata as a foraging habitat for small-sized fish. Natureza a
508	Conservação 12: 30–35.
509	Chambers, P. A., E. E. Prepas, H. R. Hamilton, & M. L. Bothwell, 1991. Current velocity
510	and its effects on aquatic macrophytes in flowing waters. Ecological Applications 1:
511	249-257
512	Cook, C. D. K., & R. Lüönd, 1982. A revision of the genus Hydrilla (Hydrocharitaceae).
513	Aquatic Botany 13: 485–504.
514	Crooks J. A. 2011. Lag times in Simberloff, D. & M. Rejmaének (eds), Encyclopedia of
515	Biological Invasions. University of California Press, Berkeley: 404–410
516	Crooks, J. A., 2005. Lag times and exotic species: the ecology and management of
517	biological invasions in slow motion. Ecoscience 12: 316–329.
518	Cunha, E. R., S. M. Thomaz, H. B. Antoniazi Evangelista, J. Carniato, C. F. Souza, & R.
519	Fugi, 2011. Small-sized fish assemblages do not differ between a native and a recently
520	established non-indigenous macrophyte in a neotropical ecosystem. Natureza e
521	Conservação 9: 61-66. https://doi.org/10.4322/natcon.2011.007

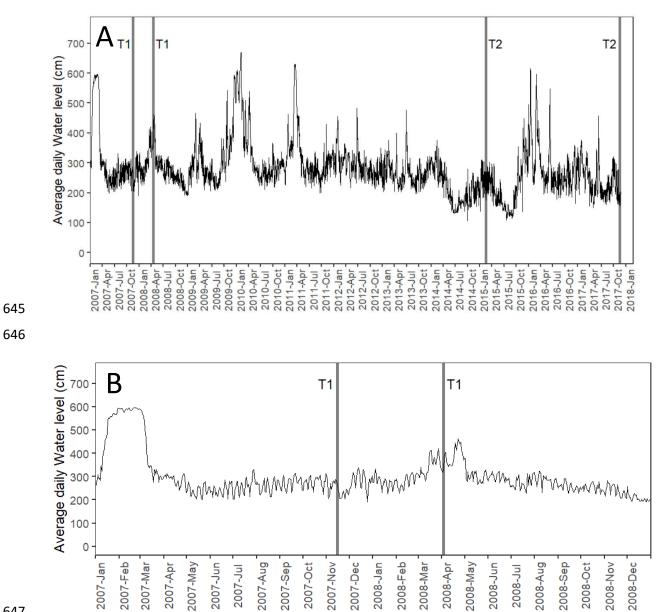
522	Davis, M. a, J. P. Grime, K. Thompson, A. Davis, & J. Philip, 2000. Fluctuating resources
523	in plant communities: a general theory of invasibility. Journal of Ecology 88: 528-
524	534.
525	Dudgeon, D., A. H. Arthington, M. O. Gessner, ZI. Kawabata, D. J. Knowler, C. Lévêque,
526	R. J. Naiman, AH. Prieur-Richard, D. Soto, M. L. J. Stiassny, & C. A. Sullivan,
527	2006. Freshwater biodiversity: importance, threats, status and conservation challenges.
528	Biological Reviews of the Cambridge Philosophical Society 81: 163–182,
529	https://doi.org/10.1017/S1464793105006950
530	Figueiredo, B. R. S., R. P. Mormul, & S. M. Thomaz, 2015. Swimming and hiding
531	regardless of the habitat: prey fish do not choose between a native and a non-native
522	macrophyte species as a refuge. Hydrobiologia 746: 285–290,
532	macrophyte species as a refuge. Hydrobiologia 740. 283–290,
532	http://link.springer.com/10.1007/s10750-014-2096-x.
533	http://link.springer.com/10.1007/s10750-014-2096-x.
533 534	http://link.springer.com/10.1007/s10750-014-2096-x. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J.
533 534 535	 <u>http://link.springer.com/10.1007/s10750-014-2096-x</u>. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman, & B. Von Holle, 2007. The invasion paradox: Reconciling
533 534 535 536	 <u>http://link.springer.com/10.1007/s10750-014-2096-x</u>. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman, & B. Von Holle, 2007. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88: 3–17.
533 534 535 536 537	 <u>http://link.springer.com/10.1007/s10750-014-2096-x</u>. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman, & B. Von Holle, 2007. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88: 3–17. Gentilin-Avanci, C., G. D. Pinha, D. K. Petsch, R. P. Mormul, & S. M. Thomaz, 2020. The
533 534 535 536 537 538	 http://link.springer.com/10.1007/s10750-014-2096-x. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman, & B. Von Holle, 2007. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88: 3–17. Gentilin-Avanci, C., G. D. Pinha, D. K. Petsch, R. P. Mormul, & S. M. Thomaz, 2020. The invasive macrophyte Hydrilla verticillata causes taxonomic and functional
533 534 535 536 537 538 539	 http://link.springer.com/10.1007/s10750-014-2096-x. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman, & B. Von Holle, 2007. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88: 3–17. Gentilin-Avanci, C., G. D. Pinha, D. K. Petsch, R. P. Mormul, & S. M. Thomaz, 2020. The invasive macrophyte Hydrilla verticillata causes taxonomic and functional homogenization of associated Chironomidae community. Limnology Springer Japan,

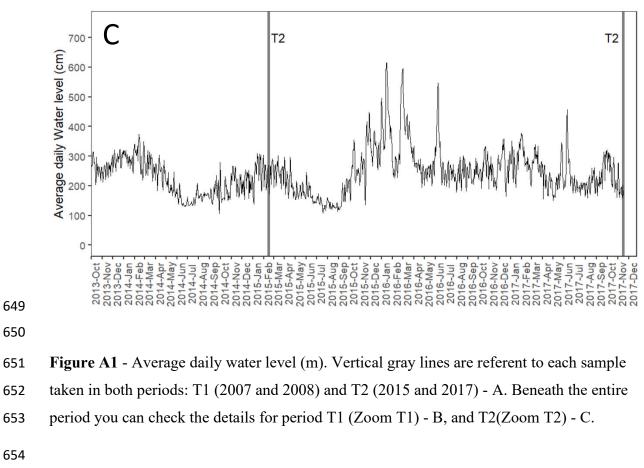
- 544 pp. 110–127. Department of Fisheries and Oceans, Ottowa, Canada.
- Langeland, K. A., 1996. *Hydrilla verticillata* (L.F) Royle (Hydrocharitaceae), "The Perfect
 Aquatic Weed." Castanea 61: 293–304.
- 547 Legendre, P., & L. Legendre, 2003. Numerical Ecology. (Developments in Environmental
 548 Modelling). Elsevier.
- 549 Lolis, L. A., D. C. Alves, S. Fan, T. Lv, L. Yang, Y. Li, C. Liu, D. Yu, & S. M. Thomaz,

2020. Negative correlations between native macrophyte diversity and water hyacinth
abundance are stronger in its introduced than in its native range. Diversity and

- 552 Distributions 26: 242–253.
- Thomaz, S. M., & T. S. Michelan, 2011. Associations between a highly invasive species
 and native macrophytes differ across spatial scales. Biological Invasions 13: 1881–
 1891.
- 556 Michelan, T. S., M. J. Silveira, D. K. Petsch, G. D. Pinha, & S. M. Thomaz, 2014. The

557 invasive aquatic macrophyte Hydrilla verticillata facilitates the establishment of the


- 558 invasive mussel Limnoperna fortunei in Neotropical reservoirs. Journal of Limnology
- 559 73: 598–602, http://www.jlimnol.it/index.php/jlimnol/article/view/jlimnol.2014.909.
- Orlova, M. I., T. W. Therriault, P. I. Antonov, & G. K. Shcherbina, 2005. Invasion ecology
 of quagga mussels (Dreissena rostriformis bugensis): A review of evolutionary and
 phylogenetic impacts. Aquatic Ecology 39: 401–418.


563	Oliveira, M. V., M. Dainez, A. P. Bertoncin, C. Muniz, T. Meurer, B. Figueiredo, S.
564	Thomaz, S. Fávaro, & R. P. Mormul, 2019. Native snails choose an invasive over a
565	native macrophyte as a food resource. Canadian Journal of Zoology 367: 362–367.
566	Pimentel, D., R. Zuniga, & D. Morrison, 2005. Update on the environmental and economic
567	costs associated with alien-invasive species in the United States. Ecological
568	Economics 52: 273–288.
569	Pulzatto, M. M., E. R. Cunha, M. S. Dainez-Filho, & S. M. Thomaz, 2019. Association
570	Between the Success of an Invasive Macrophyte, Environmental Variables and
571	Abundance of a Competing Native Macrophyte. Frontiers in Plant Science 10: 1–11.
572	R Core Team, 2020. R: A language and environment for statistical computing. R
573	Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
574	project.org/.
575	RAMSAR (Ramsar Convention on Wetlands), 2018. Global Wetland Outlook: State of the
576	World's Wetlands and their Services to People. Gland, Switzerland: Ramsar
577	Convention Secretariat.
578	Roberto, M. C., N. N. Santana, & S. M. Thomaz, 2009. Limnology in the Upper Paraná
579	River floodplain: large-scale spatial and temporal patterns, and the influence of
580	reservoirs. Brazilian journal of biology = Revista brasleira de biologia 69: 717–725.
581	https://doi.org/10.1590/S1519-69842009000300025
582	Silveira, M. J., & S. M. Thomaz, 2015. Growth of a native versus an invasive submerged
583	aquatic macrophyte differs in relation to mud and organic matter concentrations in

- sediment. Aquatic Botany Elsevier B.V. 124: 85–91,
- 585 <u>https://doi.org/10.1016/j.aquabot.2015.03.004</u>.
- 586 Silveira, M. J., 2015. The effect of habitat and sediment type on the occurrence of non-
- 587 native and native species of aquatic macrophyte in subtropical regions. Bioscience
- 588 Journal 31: 268–274.
- Simberloff, D., & B. Von Holle, 1999. Positive interactions of nonindigenous species:
 invasional meltdown?. Biological Invasions 21–32.
- Simberloff, D., & M. Rejmanek, 2011. Encyclopedia of Biological Invasions. Vol. 3 de
 Encyclopedias of the Natural World.
- 593 https://books.google.es/books?id=hq5uc8O5pDQC.
- 594 Simberloff, D., 2004. Community Ecology: Is it time to move on?. The American
- 595 Naturalist 185: 1275.
- 596 Simberloff, D., J. L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F.
- 597 Courchamp, B. Galil, E. García-Berthou, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi,
- 598 & M. Vilà, 2013. Impacts of biological invasions: What's what and the way forward.
- 599 Trends in Ecology and Evolution 28: 58–66.
- 600 Sousa, W. T. Z., 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader
- 601 threatening Brazil's freshwater environments: a review of the extent of the problem.
- 602 Hydrobiologia 1–20.

603	Sousa, W. T. Z., S. M. Thomaz, & K. J. Murphy, 2010. Response of native Egeria najas
604	Planch. and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological
605	regime in a subtropical river. Aquatic Botany 92: 40–48.
606	Sousa, W. T. Z., S. M. Thomaz, K. J. Murphy, M. J. Silveira, & R. P. Mormul, 2009.
607	Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle
608	and native Egeria najas Planch. in a sub-tropical river floodplain: The Upper River
609	Paraná, Brazil. Hydrobiologia 632: 65–78.
610	Souza, D. C., E. R. Cunha, R. de A. Murillo, M. J. Silveira, M. M. Pulzatto, M. S. Dainez-
611	Filho, L. A. Lolis, & S. M. Thomaz, 2017. Species inventory of aquatic macrophytes
612	in the last undammed stretch of the Upper Paraná River, Brazil. Acta Limnologica
613	Brasiliensia 29:, http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-
614	975X2017000100416&lng=en&tlng=en.
615	Souza-Filho, E. E., E. Comunello & P. C. Rocha, 2004. Flood extension in the Baia-
616	Curutuba-Ivinheima complex of the Paraná River Floodplain. In Agostinho, A. A., L.
617	Rodrigues, L. C. Gomes, S. M. Thomaz & L. A. Miranda (eds), Structure and
618	functioning of the Paraná River and its floodplain: LTER – Site 6 – (PELD – Sı'tio 6).
619	EDUEM, Maringa': 19–24.
620	Sutherland, W. J., R. P. Freckleton, H. C. J. Godfray, S. R. Beissinger, T. Benton, D. D.
621	Cameron, Y. Carmel, D. A. Coomes, T. Coulson, M. C. Emmerson, R. S. Hails, G. C.
622	Hays, D. J. Hodgson, M. J. Hutchings, D. Johnson, J. P. G. Jones, M. J. Keeling, H.
623	Kokko, W. E. Kunin, X. Lambin, O. T. Lewis, Y. Malhi, N. Mieszkowska, E. J.
624	Milner-Gulland, K. Norris, A. B. Phillimore, D. W. Purves, J. M. Reid, D. C. Reuman,

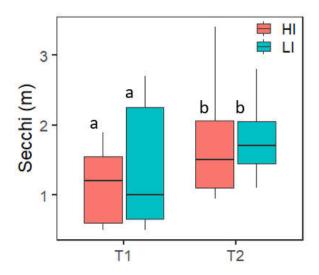
625	K. Thompson, J. M. J. Travis, L. A. Turnbull, D. A. Wardle, & T. Wiegand, 2013.
626	Identification of 100 fundamental ecological questions. Journal of Ecology 101: 58-
627	67.
628	Thomaz, S. M., L. M. Bini, & R. L. Bozelli, 2007. Floods increase similarity among
629	aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.
630	Thomaz, S. M., P. Carvalho, R. P. Mormul, F. A. Ferreira, M. J. Silveira, & T. S. Michelan,
050	Thomaz, S. W., F. Carvanio, K. F. Wolmul, F. A. Ferrena, W. J. Shvena, & T. S. Wichelan,
631	2009. Temporal trends and effects of diversity on occurrence of exotic macrophytes in
632	a large reservoir. Acta Oecologica 35: 614–620.
633	Tomasetto, F., R. P. Duncan, & P. E. Hulme, 2019. Resolving the invasion paradox:
634	pervasive scale and study dependence in the native-alien species richness relationship.
635	Ecology Letters 22: 1038–1046.
636	Zhu, J., D. Yu, & X. Xu, 2015. The phylogeographic structure of Hydrilla verticillata
637	(Hydrocharitaceae) in China and its implications for the biogeographic history of this
638	worldwide-distributed submerged macrophyte. BMC Evolutionary Biology BMC
639	Evolutionary Biology 15: 95, http://www.biomedcentral.com/1471-2148/15/95.
640	Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, G. M. Smith, Z. I. Walker, & S.
641	Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Ecology 32:
642	580, https://books.google.com/books?id=vQUNprFZKHsC&pgis=1.

658 APPENDIX B - Checking changes in lentic sites in Parana subsystem

As *H. verticillata* seems to have increased the odds of occurrence in lentic sites of thissubsystem, we filtered the dataset in order to compare the lentic environments between T1 and T2.

661 We performed a two-way Anova for water transparency (Table C2) values. We set the period (T1

and T2) and the month (mes) as predictors. All assumptions were achieved.


- 663 Secchi increased significantly in T2 (see tables and graphs below).
- 664

665 Table B1 - Source of variation for the Anova analysis of Secchi for lentic environments in PS

	Df	Sum of Square	Mean Square	F	p-value
Period	1	2.51	2.51	5.23	0.02
Hydrology	1	0.29	0.29	0.61	0.43
Period:Hydrology	1	0.10	0.10	0.211	0.64
Residuals	33	15.805	0.47		

666

667

668

Figure B2 – Water transparency for lentic environments in Parana subsystem. Different letters are
 related to Tukey post hoc test. LI (low influence of flood pulse) corresponds to November, and HI

671 (high influence of flood pulse) corresponds to Apr for T1 and Feb for T2.

672

674 APPENDIX C - Conductivity and ZDS (water transparency) during the samples

675

676 Table C2 – Mean and standard deviation (sd) of Conductivity and Water transparency (ZDS) in

677 lentic and lotic sampling stations in each subsystems. Time 1 is referent to samples collected in

678 2007 and 2008, while T2 is related to the years 2015 and 2017. In each (T1 and T2) samples were

taken in LI and HI– represented in different columns for each variable. LI (low influence of flood

pulse) corresponds to November, and HI (high influence of flood pulse) corresponds to Apr for T1

and Feb for T2. NA standard deviation were not able to be calculated because there was only onevalue in this period (see methods).

Subsystem	Flow	Period	Conductivity_HI	Conductivity_LI	ZDS_HI	ZDS_LI
Baia	Lentic	time1	41.99 (15.85)	50.18 (5.9)	0.91 (0.29)	0.62 (0.46)
Baia	Lotic	time1	40.33 (12.71)	50.46 (1.96)	0.95 (0.37)	0.82 (0.24)
Ivinheima	Lentic	time1	62.47 (3.29)	58.85 (1.34)	0.57 (0.08)	0.48 (0.04)
Ivinheima	Lotic	time1	63.43 (1.56)	63.93 (0.42)	0.61 (0.02)	0.53 (0.06)
Parana	Lentic	time1	67.32 (2.86)	66.34 (6.72)	1.15 (0.52)	1.43 (0.94)
Parana	Lotic	time1	66.01 (4.44)	67.99 (6.92)	1.68 (0.42)	2.22 (1.65)
Baia	Lentic	time2	30 (3.61)	17.92 (4.66)	0.83 (0.06)	0.78 (0.34)
Baia	Lotic	time2	23 (2.45)	18.9 (3.51)	1.16 (0.23)	0.75 (0.25)
Ivinheima	Lentic	time2	42 (NA)	28.93 (3.06)	0.8 (NA)	0.48 (0.2)
Ivinheima	Lotic	time2	43 (1)	30.86 (2.19)	0.6 (0)	0.48 (0.06)
Parana	Lentic	time2	58.5 (2.73)	68.29 (3.77)	1.74 (0.83)	1.8 (0.57)
Parana	Lotic	time2	60 (6.29)	64.07 (7.7)	2.23 (1.11)	2.97 (1.13)

683

684

686 3 AQUATIC MACROPHYTE INVASIONS – A GLOBAL 687 OVERVIEW OF OCCURRENCE AND PATHWAYS OF 688 INTRODUCTION

689

690 ABSTRACT

691 Invasive aquatic macrophytes are concerning to freshwater ecosystems worldwide because 692 of their capacity to influence hydrological, geomorphological, physical, and chemical 693 characteristics of the environment and interaction with different organisms. In this study, 694 we contributed to the knowledge about the flow of naturalized macrophyte species from 695 their native range to the recipient ecosystems as well as the main pathways of introductions. 696 Such knowledge is crucial to control and prevent species introductions. Considering a 697 global approach, we compiled data from many databases to identify which regions are sources, which ones are recipients for naturalized macrophytes (and their life-forms), and 698 699 the pathways for such introductions. In general, our finding highlighted a call for attention to the macrophyte invasions. Many regions of the world can provide potential macrophyte 700 701 invaders and these invaders, at first, are more likely to use intentional pathways, which are 702 easier to be managed, in theory. Intentional pathways must be prioritized because we also showed a considerable role of the "Unaided" pathway, which means that once introduced, 703 704 macrophytes could spread easily via natural means. The majority of the naturalized 705 macrophytes are emergent, which deserve further attention because these species could be introduced not targeting the aquatic environment, however, it could become harmful to this 706 system. 707

709 Key words: Biological invasions; Freshwater; Aquatic vegetation; Pathways of
710 introduction; Species distribution.

715 For centuries, humans have been introducing organisms beyond their native range 716 (Simberloff et al., 2013). Some of these introduced species can sustain self-replacing populations for many life cycles (naturalized species; Richardson et al., 2011). Depending 717 on their population growth and spreading ability, some naturalized species can become 718 invasive and pose a serious threat to biodiversity and ecosystem functioning (Blackburn et 719 al., 2011; Richardson et al., 2011). 720 721 Due to the multifaceted impacts of naturalized species and the associated high costs of their eradication and control, avoidance and prevention of introductions are the best 722 723 strategies for managing these organisms (Simberloff et al., 2013). Knowledge about the naturalized and native distribution of organisms allows identifying source and sink regions 724 of naturalized species (Turbelin et al., 2017). In addition, an understanding of introduction 725 726 pathways is crucial to guide political actions that prevent the unwanted movement of 727 species (Hulme et al., 2008; Ells et al. 2015) since pathways describe the process that 728 allows alien species to move from one geographic region to another (Richardson et al. 729 2011). Combining this information is pivotal to prevent future introductions and guide 730 responses to current invasions (Hulme et al., 2008; CBD, 2014; Novoa et al., 2020). Indeed, the identification and prioritization of invasive species and pathways of 731 732 introduction were set as one of the Aichi Biodiversity Targets (target 9) in 2010, at the Convention on Biological Diversity (https://www.cbd.int/sp/targets/). Since then, scientists 733 734 have compiled valuable information on the origins and pathways of introduced species in

735 databases and data repositories (e.g., van Kleunen et al., 2019; CABI ISC, 2019). In 736 addition, many studies have been carried out to gain information on the occurrence, pathways, and trait spectra of introduced species, which helps scientists to understand the 737 general patterns of biological invasions (Pyšek et al., 2011; Essl et al., 2015; Saul et al., 738 2017; Turbelin et al., 2017; Novoa et al., 2020). Given the high diversity of introduced 739 organisms and their impacts, decision-makers depend on the information that allows them 740 741 to work on small scales focusing on specific species and specific problems. However, the work of managers is complicated because the field of invasion biology is highly 742 idiosyncratic (Simberloff, 2010) and different combinations of plant traits, introduction 743 744 pathways, and invaded systems result in different outcomes (Pyšek et al., 2011; Daehler, 2003; Novoa et al., 2020), which demand different management strategies and policies. 745 There is a practical need to focus on specific systems and organisms to better understand 746 invasion peculiarities and increase the power of prediction in invasion biology (Pyšek et al., 747 2011; Elliott-Graves, 2016; Novoa et al., 2020). 748

749 Freshwater ecosystems comprise the highest biodiversity per unit area on our planet 750 (Dudgeon et al., 2006). Still, they are especially vulnerable to introductions because of their large spatial extents, the myriad of impacts imposed to them (e.g. dams, eutrophization, 751 752 urbanization), and the nature of the processes related to these environments (García-Berthou & Moyle, 2011; Zedler, 2011). In addition, aquatic water bodies like rivers and 753 754 rivers-floodplain ecosystems form corridors among habitats that can facilitate the dispersal 755 of invasive species (Howell & Benson, 2000; Čuda et al., 2017). These ecosystems also feature natural disturbances associated with flooding, enhancing invasion success by 756

758

reducing biotic resistance, providing establishment windows, and increasing resource supply (Barden, 1987; Toth, 2010, Davis et al., 2000).

Aquatic macrophytes have important ecological roles in freshwater ecosystems 759 760 because they influence other aquatic communities and the ecosystem functioning (e.g., 761 Bunn et al., 1998; Klančnik et al., 2018; O'Hare et al., 2018). However, several aquatic macrophyte species have traits that enhance invasiveness, such as high fragmentation and 762 clonal gloth (Santamaría, 2002). Invasive aquatic macrophytes are troublesome because 763 764 they reduce native species diversity and, consequently, affect organisms at high-trophic 765 levels that use native macrophytes as food or shelter (Michelan et al., 2010; Simberloff & 766 Rejmanek, 2011; Carniatto et al., 2013). Some invasive aquatic macrophytes can become ecosystem engineers, by transforming the key structure and functioning of an entire 767 768 ecosystem (Yarrow et al., 2009). Such profound changes caused by invasive aquatic 769 macrophytes can also lead to damage of infrastructure and economic losses. For example, 770 invasive aquatic macrophytes can clog irrigation and water collection pipes and decrease 771 energy production by clogging water from entering the turbines and reducing navigation 772 areas. In total, it has been estimated that the spread and management of invasive species cost more than \$100 million annually in the U.S., alone (Pimentel et al., 2005). 773

Aquatic macrophytes have different life-forms (e.g., submerged, emergent and freefloating; Sculthorpe, 1967) and thus, considering invasive species, each life-form causes a different impact on the ecosystem. For example, submerged species depend primarily on underwater radiation (Chambers and Kalff, 1985) and their impacts are related to underwater habitat structure and stability of a clear water state, for example (van Donk and van de Bund, 2002). Free-floating species depend on the nutrient content in the water column (Anderson, 2011). They can reduce the under-water light availability and impact
the primary production and gases exchange with the atmosphere (Scheffer et al., 2003;
Villamagna & Murphy, 2010; Hill et al., 2011). By comparison, the impact of emergent
macrophytes extends from the shoreline towards the limnetic regions, e.g., it can silt up a
river bench (Bunn et al., 1998).

Focusing the invasion process investigation on a single group, such as naturalized macrophytes, can disentangle the peculiarities of the invasion processes and propose better and feasible management actions. Understanding geographic sources, sinks, and pathways for macrophyte invasions could allow managers to scan for and intercept aquatic species that pose a potential risk. Furthermore, knowing what kind of life-forms (or functional groups) are associated with a specific pathway and a specific region could allow managers to predict the potential impacts of introduced aquatic plants in native ecosystems.

In this paper, we assembled and analyzed a global dataset to identify frequent 792 pathways of introduction and geographic sources and sinks for the most common 793 794 naturalized aquatic macrophytes. Efforts similar to ours have been made considering large groups of invasive organisms, e.g., all plants, all vertebrates, or all freshwater species 795 (Pvšek et al., 2011; Essl et al., 2015; Saul et al., 2017; Turbelin et al., 2017). However, at 796 797 our knowledge, we are the first to provide an overview of the prevailing life-forms among invasive aquatic macrophytes, potential species flow from native to naturalized regions and 798 799 introduction pathways across geographical regions considering mainland and island areas.

800

802 **3.2 Materials and Methods**

We built a dataset containing a global species list of aquatic macrophytes,
information on their naturalized range, their native range, pathways of introductions, and
life-form (see appendices for further details or contact the corresponding author).

806

807 3.2.1 Species list

We combined different datasets to compile a global list of naturalized aquatic 808 macrophytes. We started with a list provided by Murphy et al. (2019), which evaluated the 809 810 world's distribution of aquatic macrophytes. To identify naturalized macrophytes, we filtered all species in Murphy et al. (2019) that are listed in the The Global Naturalized 811 Alien Flora (GloNAF) database (van Kleunen et al., 2019) and checked all species in 812 GloNAF that could be considered aquatic. The GloNAF database contains data of the 813 occurrence and identity of alien naturalized vascular plants worldwide (van Kleunen et al., 814 815 2019). After these procedures, the species list included 815 naturalized species that can be considered aquatic, i.e., species that grow permanently or periodically submerged or 816 floating (totally or partially) in water bodies (Chambers et al., 2008). This dataset mainly 817 818 included macrophyte plants from freshwater ecosystems. However, we also included macrophyte species that can colonize both aquatic and non-aquatic environments, since 819 these species can also invade freshwater ecosystems. 820

821

822

826	Species native ranges were extracted from the Global Inventory of Floras and Traits
827	(GIFT) (Weigelt, König and Kreft, 2019). GIFT is a global archive of regional plant
828	checklists, floras and functional traits (Weigelt, König and Kreft, 2019). By considering the
829	taxon-by-region combination provided by GloNAF and GIFT, we could trace geographic
830	patterns in macrophyte introductions from native to naturalized ranges at consistent
831	geographic levels. We considered only the equivalent regions between GIFT and GloNAF
832	datasets. That is, regions that are delimited by the same polygons in both datasets. There are
833	some cases where a species is considered native (GIFT) and naturalized (GloNAF) to the
834	same region (region_id) given the uncertainty of the status of a species in a given area. We
835	removed such entries to avoid biases. In summary, we were able to identify both the
836	naturalized and native range for 641 (78%) out of the 815 species.
837	Both databases (GIFT and GloNAF) provide species distribution according to the
838	World Geographical Scheme for Recording Plant Distribution (TDWG (Taxonomic
839	Databases Working Group) - Brummitt et al., 2001), with some exceptions. For example,
840	some species in GloNAF have an area of occurrence that covers more than one geographic
841	unit according to the TDWG regions (van Kleunen et al., 2019). When multiple regions
842	overlapped with each other, we merged the data into one single region, keeping the most
843	regional level as possible, that is, the smallest polygon as possible to be considered a unit of
844	record of species occurrences (Appendix A). The procedure avoids overcounting the
845	number of species in a single region. For that reason, all New Zealand regions were

846 considered a single region, and data related to Baja California and Baja California Sur in847 Mexico were merged.

Because Turkey is considered in the European and Asian continent, this region is included in GloNAF in continent level called Mixed. The response variables for this level are not shown in the boxplots for aesthetic purposes. Instead, they are reported separately on figure captions.

852

853 3.2.3. Pathways of introduction

We used Saul et al. (2017) as a primary source for classifying pathways of introduction. These authors combined information from different databases and standardized it according to the Convention on Biological Diversity (CBD, 2014).

To complement the data, we retrieved information from other data sources not
considered by Saul et al. (2017). We mined data from the Invasive Species Compendium
(CABI ISC, 2019) using web scraping techniques with the *rvest* package (Wickham, 2019)
in the R environment (R Core Team 2020). We also used data from the European Alien
Species Information Network (EASIN) (Katsanevakis et al., 2015).
By the time we collected the data, neither CABI ISC nor EASIN pathways were

standardized according to CBD (2014) framework. For this reason, we converted the causes
and vectors of introductions present on CABI ISC (2019) to pathway categories and
subcategories (CBD, 2014) using the general descriptions of each cause and vector and, if
information was necessary and available, using the notes for each species recorded in CABI

867	ISC (2019) (Appendix B). Regarding the EASIN database, pathway categories were
868	converted into the CBD framework following Tsiamis et al. (2017) guidelines.
869	The pathways comprised the following categories: Release in nature; Escape from
870	confinement; Transport - Stowaway & Contaminant; Corridor and Unaided (CBD, 2014).
871	All pathways' categories have subcategories to specify the pathway of introduction, except
872	for the "Unaided" category. Hence, we included the "Unaided" category among other
873	subcategories to facilitate comparisons of pathways frequency. In total, we were able to
874	compile information on pathways of invasion (categories and subcategories) for 277
875	species on our species list (33%).
876	
877	
878	3.2.4. Life-forms
879	Aquatic macrophytes life-form is a general trait that describes different ways of
880	plants to explore the environment. We used life-forms categories as defined by previous
881	studies (e.g. Lukács et al., 2017; Schneider et al., 2018) and assigned them to species based
882	on descriptions and images from floras, databases, biodiversity portals, and published
883	articles to provide a life-form classification (Table 1) using the same strategy as Schneider
884	et al. (2018) (Appendix C).
885	
886	
500	
887	

888 Table 1

oots in the sediment and stems d leaves above the water rface. oots in the sediment and stems read over the water surface
oots in the sediment, petioles aching the water surface and pating leaf blades
oots in the water column and aves floating above the water rface
oots in the water column and the tire body freely beneath the ater surface
oots in the sediment with
derwater stems and leaves

Life-form categories assigned to aquatic macrophytes (based on Schneider et al. 2018)

890

891

We assigned some species to more the one category. For example, *Brachiaria arrecta* (T. Durand & Schinz) Stent can develop roots in the shore of aquatic bodies as a typical "emergent" species (Table 1), and it is also able to extend its stems toward limnetic regions behaving like a "rooted floating-stemmed" (Table 1) (Michelan et al., 2010; Boschilia et al., 2012).

897

Tracking the geographic origin and introduction pathways is quite difficult for most species, relying on genetic studies and historical data for each naturalized species. In that sense, we analyzed our final dataset considering the potential regions that donate species (native range) to the region in which these species have been introduced (naturalized range) and the potential pathways related to those introductions. Thus, we considered pathways of introduction as a species trait, i.e., the pathway that a species can be introduced by in somewhere else than its native range.

907 To identify which regions are the sources and sinks of invasive macrophytes, we 908 calculated the Kappa index (as used by Turbelin et al., 2017):

909
$$K = 10 \frac{S' Inv - S' Nat}{S' Inv + S' Nat}$$

910 where "S'Inv" is the total number of naturalized macrophyte species in a given region 911 divided by the total number of naturalized macrophytes species recorded in our dataset (641). S'Nat is the number of species native in a given region but invasive somewhere else, 912 divided by the total number of recorded species in our dataset (614). The result is 913 multiplied by 10 (arbitrary value) to provide a range from -10 to +10 which indicates 914 915 whether the given region is a source or a sink of naturalized species. A negative value of K 916 means that the region contains more native species that are introduced elsewhere than it is suffering introduction, i.e. this region is working as a source of species that are introduced 917 918 elsewhere. In other words, Kappa index shows the balance between the ingress/egress of naturalized macrophyte species in a particular region. 919

920	Data manipulation and visualization procedures were made with the tidyverse
921	package (Wickham et al., 2019). To avoid mismatches in different databases, species names
922	were standardized according to The Plant List using the package Taxonstand (Cayuela et
923	al., 2019). Maps were generated using the shapefile provide by GloNAF (van Kleunen et
924	al., 2019).
925	
926	3.3 Results
927	
928	Here we highlighted the general trends of our findings, however, we strongly
929	recommend the reader (especially decision-makers and managers) to request our full
930	dataset to understand patterns related to specific regions of interest. Some regions at
931	TDWG 4 levels have the same name but represents different polygons (e.g. Seychelles).
932	Readers can check the supplementary material and GloNAF shapefile (van Kleunen et al.,
933	2019) to search for specific regions and polygons.
934	
935	3.3.1. Distribution and Flow of Naturalized Species
936	We report here results for 197 countries (937 regions). New Zealand was the region
937	with the highest number of naturalized macrophytes species followed by Japan, North
938	American and Australasia regions (Fig. 1, Table 2). Considering the area of each region,
939	islands had the highest number of naturalized species per km ² (Table 2) with Seychelles
940	and Australia also achieving high ranks on the list (Table 2).

- 941 In general, the amplitude of the number of naturalized species on islands (136) is
- higher than in mainland regions (94), and the difference increases when we compare the

943 species-area ratio for islands (43.7) and mainland regions (0.344). In all cases, the

944 minimum value was 0.

945

946

Table 2 - Top 10 regions ranked according to the number of naturalized species in each 947 region (upper section) and according to the species-area ratio (bottom section). Regions are 948 named according to the TDWG scheme (Brummitt et al., 2001) level 4. Country names are 949 extracted from GloNAF database. N. of Species is the count of naturalized species in each 950 region; Spec./Area is the ratio between the number of naturalized species and the area (in 951 km²) of each polygon (van Kleunen et al., 2019). Type column identifies island and 952 mainland regions. Region column shows the identity of each area (polygon) in the dataset. 953 All regions in New Zealand were treated as a unique level. 954 955

Regions ranked considering the absolute number of naturalized species						
TDWG4 Region	Country	N. of Species	Туре	Region		
New Zealand	New Zealand	136	Island	All		
Japan	Japan	112	Island	416		
Florida	United States of America	94	Mainland	745		
Victoria	Australia	88	Mainland	107		
California	United States of America	77	Mainland	740		
Hawaiian Is.	United States of America	74	Island	748		
Hawaiian Is.	United States of America	74	Island	762		
Queensland	Australia	70	Mainland	81		
New South Wales	Australia	68	Mainland	55		
New South Wales	Australia	66	Mainland	59		
	Regions ranked conside	ering the species-a	rea ratio			
TDWG4 Region	Country	N. of Species/km ²	Туре	Region		
Seychelles	Seychelles	43.71	Island	707		
Western Australia	Australia	14.71	Island	71		
Samoa	Samoa	11.73	Island	815		
Samoa	Samoa	8.32	Island	814		
Seychelles	Seychelles	8.16	Island	705		
Samoa	Samoa	8.08	Island	816		
Fiji	Fiji	6.07	Island	334		
American Samoa	American Samoa	5.74	Island	29		
Seychelles	Seychelles	4.80	Island	683		
Seychelles	Seychelles	4.61	Island	692		

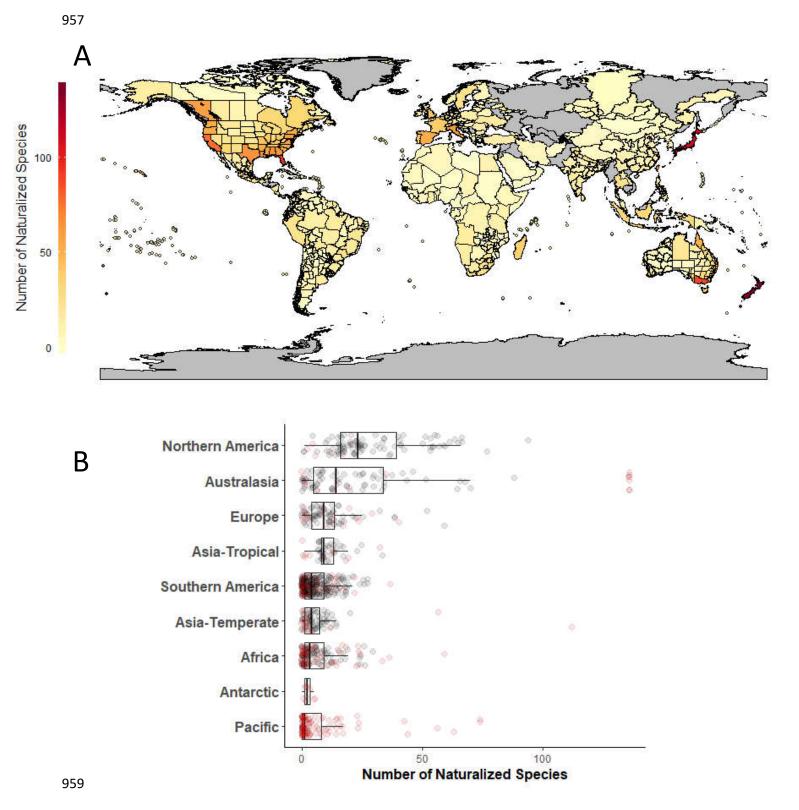
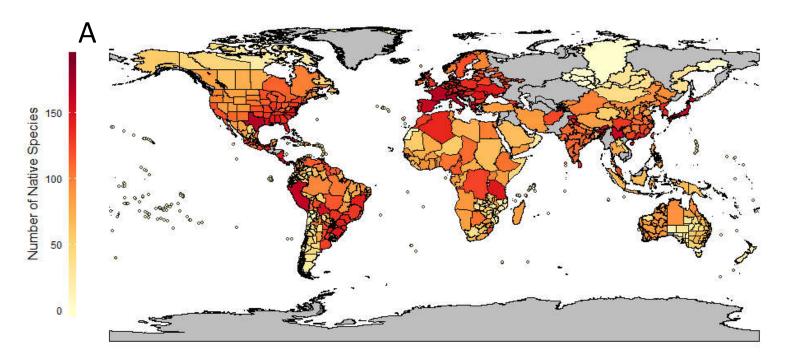



Fig. 1. (A) Global map of the number of naturalized aquatic macrophytes per region. Gray
areas are permanent ice sheets or areas with lack of data; (B) Absolute Number of

Naturalized Species per continent (TDWG level 1). Total species n = 641. Each dot is
referent to a specific region inside the continent (areas with a lack of data are not included).
Grey dots = mainland; Red dots = islands. The Mixed level comprises only Turkey and it
was omitted from the boxplot for aesthetical purposes (Number of Naturalized Species =
13).

968	In general, Europe has the higher numbers of native species of aquatic macrophytes
969	that are naturalized elsewhere (Fig. 2). Along with European regions, South and North
970	America contain the highest number of native species of macrophytes naturalized
971	elsewhere (Appendix D - Table D1). Looking at the species-area ratio, Saychelles (Africa),
972	Samoa islands (Pacific), and Macau (Asia-Temperate) were on the top of the list (Table 2).

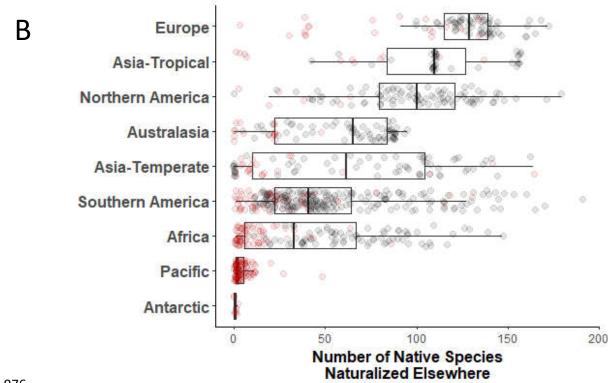
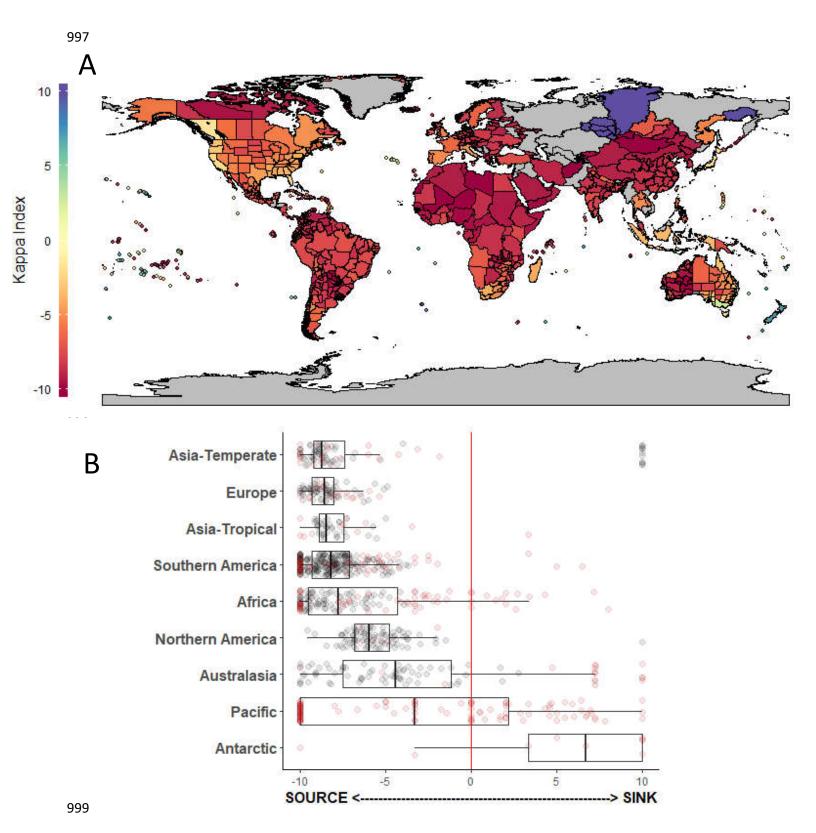
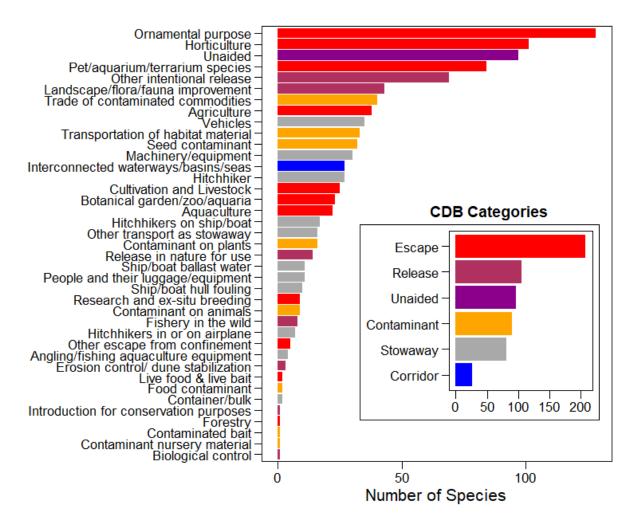


Fig. 2. (A) Global map of the number of native species of aquatic macrophytes per region
that are naturalized elsewhere. Gray areas are permanent ice sheets or areas with a lack of
data; (B) Absolute number of native species that are naturalized elsewhere, per region and

per continent (TDWG level 1). Total species n = 641. Each dot is referent to a specific
region inside the continent (areas lacking data are not included). Grey dots = mainland; Red
dots = islands. The Mixed level comprises only Turkey and it was omitted from the boxplot
for aesthetical purposes (Number of Native Species = 87).

985	Taking the balance between the number of naturalized species in a region and the
986	number of species native to that region that are naturalized elsewhere, we can see the
987	regions that are working as sources or sinks of naturalized species (Fig. 3A). All European
988	regions had negative Kappa values (Fig. 3B), indicating they are exporting more native
989	species that became naturalized elsewhere than receiving introductions (source of
990	naturalized species). All other regions are distributed between negative and positive values
991	of Kappa (Fig. 3B); however, most regions can be considered as potential sources of
992	macrophyte species that became introduced elsewhere. The majority of regions with Kappa
993	> 0 are islands (83.3%), while most regions with negative values are continents (72.6%).
994	Asia-Temperate regions, such as Tajikistan and Russia Federation are exceptions (Fig. 3).
995	




Fig. 3. (A) Kappa index showing the balance between the ingress/egress of macrophyte
species in a particular region. Regions with negative values of Kappa index (yellow to red)
act as a potential source of naturalized species, i.e. contain more native species that are

1003 naturalized elsewhere than suffer introductions from foreign species. Gray areas are 1004 permanent ice sheets or areas without available data. Gray areas are permanent ice sheets or 1005 areas with lack of data; (**B**) Kaapa index per continent (TDWG level 1). Total species n =1006 641. Each dot is referent to a specific region inside the continent (areas with a lack of data 1007 are not included). Grey dots = mainland; Red dots = islands. The Mixed level comprises 1008 only Turkey and it was omitted from the boxplot for aesthetical purposes (Kappa = -7.4).

1009

1010 3.3.2. Pathway of introductions

1011 The main pathway of introduction for most of the 277 species for which we found 1012 information was related to an escape following introductions due to ornamental purposes, 1013 horticulture, or usage as pet/aquarium/terrarium species (Fig. 4). Release in nature was the 1014 second most important pathway followed by the Unaided category, which refers to natural 1015 dispersal across borders. For those species introduced via transportation, most of the 1016 introductions seem to correlate to contaminated commodities, vehicles, and transportation 1017 of habitat material. Corridor was the less numerous pathways of introduction.

1021 Fig. 4. Subcategories (main plot) and categories (sub plot) of the pathway of introductions.

1022 Bar sizes are referent to the number of species (unique entries) fitted in each category. A

single species can be introduced via more than one pathway.

1024

1025

1026 3.3.3. Life-form

1027 The highest number of naturalized macrophyte species belongs to the emergent life-

1028 form, followed by rooted submerged and rooted floating-leaved species (Fig. 5A). We also

1029 found a higher number of subcategories of pathways among species belonging to these life-

1030 forms (Fig. 5B). Also, most of the species with the highest number of introductions in the

1031 world are emergent (Table 3).

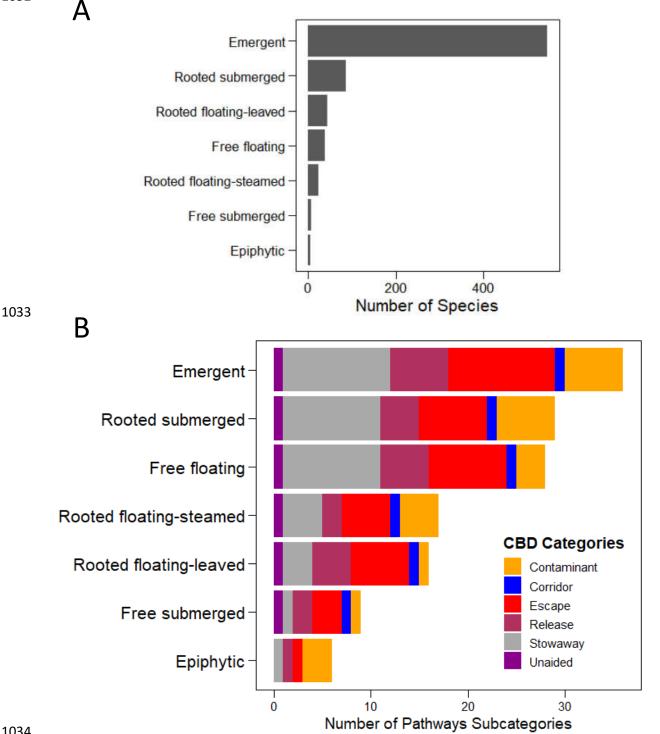


Fig. 5. Number of naturalized species of each macrophyte life-form (A) considered in this study. Number of subcategories of pathways among life-forms (n = 277 species) (**B**). Note that Unaided category does not have subcategories, that is way there is only one

observation per life-form.

TO40 Among the naturalized species present in our dataset, survivit motesta (nee	1040	Among the naturalized species present in our dataset, Salvinia molesta (free
--	------	--

- 1041 floating, synonym of Salvinia adnata), Eichhornia crassipes (free-floating), Aruno donax
- 1042 (emergent) and Lythrum salicaria (emergent) are present in the 100 of the World's Worst
- 1043 Invasive Alien Species list (Global Invasive Species Database, 2020). *Eichhornia crassipes*
- and *A. donax* also appear among the species with the highest number of introductions
- 1045 (Table 3).

1046

1047 Table 3

Top 10 introduced species ranked based on the number of different regions that each
species is considered naturalized. Bold species names are among the IUCN 100 worst
invasive species list.

1051

Species	Introductions	Life-form
Panicum maximum	238	Emergent
Nasturtium officinale	238	Emergent
Eichhornia crassipes	232	Free-floating
Arundo donax	204	Emergent
Echinochloa crus-galli	196	Emergent
Echinochloa colona	185	Emergent
Agrostis stolonifera	163	Emergent
Mentha spicata	145	Emergent
Cyperus rotundus	139	Emergent\ Epiphytic
Brachiaria mutica	137	Emergent

1052

1053

1055 **3.4 Discussion**

1056 3.4.1 Distributions

1057 According to the introduction-naturalization-invasion continuum, most introductions do not succeed because most species or populations that are transiting 1058 between geographic regions are not able to overcome the reproductive and ecological 1059 barriers in the new range and hence do not become naturalized (Richardson et al., 2006; 1060 1061 Blackburn et al., 2011). Therefore, it is reasonable for the overall number of native macrophytes in a given region to be higher than the number of introduced species and 1062 1063 thrived in this region. It is worth highlighting that the high number of naturalized species 1064 found for example in North America, Australia, and Japan represents a general biogeographical bias in the field of invasion biology (Pyšek et al. 2008). It coincides with 1065 1066 the fact that these regions have complete naturalized species inventories compared to other regions, such as some Russian regions (van Kleunen et al., 2019), where we found high 1067 values of Kappa index. Thus, increasing the efforts in cataloging naturalized species in 1068 regions with poor inventories may impact the results found here (see van Kleunen et al., 1069 2019 for an evaluation of naturalized plant inventories). 1070

1071 Despite the possible bias, some patterns found here seem to follow general patterns 1072 that have been reported for the total naturalized alien flora on the globe (van Kleunen et al., 1073 2015). European regions contain the highest number of native species that are naturalized 1074 elsewhere. In addition, no European region had Kappa > 0, which indicates that European 1075 regions are among the main donors of naturalized species. Because of European 1076 colonialism and the activity of acclimatization societies, European plants have been 1077 introduced in many places around the globe and propagated through human settlement and 1078 development (van Kleunen et al., 2015). Indeed, Europe and Temperate Asia have been reported as the main donors of naturalized vascular plants, in general (van Kleunen et al., 1079 2015) and this pattern seems to pertain to naturalized macrophytes, too.

1080

Another interesting pattern is that most of the regions with positive values of Kappa 1081 (i.e., sink regions of invasive macrophyte species) are islands. Islands have been considered 1082 to have higher invasibility than similarly sized mainland regions, which is related to the 1083 available niche spaces not occupied by native species (Denslow, 2003, Kleunen et al. 1084 1085 (2015), Dawson et al. 2017). Van Kleunen et al. (2015) provided the first empirical 1086 evidence of this statement for naturalized plants. Here, we showed this trend is also true when we look at naturalized macrophyte species. Counterintuitively, oceanic islands 1087 1088 contain fewer areas of freshwater environments than mainland regions, limiting the 1089 occurrence of macrophytes that only colonize habitats covered by water or very close to it. However, we considered species that occur across a range of aquatic and non-aquatic 1090 environments, which may have contributed to these findings. 1091

1092 It is essential to highlight that our findings do not reflect the distribution of all macrophytes, only those considered naturalized somewhere, for which we explored the 1093 native and naturalized range. There are controversies regarding the broad (Santamaría, 1094 1095 2002; Chambers et al., 2008) and/or the narrow distribution range of macrophytes (Murphy et al., 2019). However, high plasticity and a wide native range attributed to naturalized 1096 1097 macrophyte species seem to best explanation for our results.

We found that most regions function as potential sources of naturalized macrophyte 1098 1099 species. This might be related to the fact that some species, especially the most frequent invaders have a wide native range. For example, Panicum maximum Jacq., one of the most 1100

1101 common introduced plant worldwide, has a native distribution that encompasses, in part, 1102 most of Africa, the Arabic peninsula, and some localities in Europe. That is, many regions could have functioned as a source region of *P. maximum* to other regions where the species 1103 is not native. In addition, this species can tolerate a wide range of environmental 1104 conditions, once it can occur in African as well as European regions under different climate 1105 conditions. The same is true for *Nasturtium officinale* R.Br., which has a native range in 1106 1107 Africa, Europe, Asia-Temperate, Northern and Southern America. These two species, which are the most frequently introduced species (Table 3), highlight two mains points 1108 about macrophytes invaders: i) high plasticity to tolerate different environments across a 1109 high latitudinal gradient in their native range, and ii) a high number of native regions that 1110 can export these macrophytes elsewhere. 1111

1112 The number of introductions shows which species have become naturalized, and 1113 thus it indicates the potential of species to become invaders regardless of the impact that 1114 they would promote after their introduction. The implications of our findings are based on 1115 the number of species and the number of introductions that a species showed in different 1116 regions, not on the "impact" of these introductions. The notion of impact and the importance of an introduction are context- and species-dependent (Vilà et al., 2011; Novoa 1117 1118 et al., 2020). However, the number of introductions in a given area is one of the main metrics used to build concern lists as is the case of the 100 worst invasive species (Luque et 1119 1120 al., 2014). To illustrate this reasoning, Salvinia molesta and Lythrum salicaria are among 1121 the 100 worst species in the IUCN list and they are among the top 20 species with a high number of introductions in our dataset. 1122

1123	Since we evaluated only naturalized species, there is evidence that these species are
1124	capable of maintaining self-sustainable populations in the introduced area. Therefore, they
1125	are potential candidates to become invasive species in regions where they are not
1126	introduced yet. Our findings suggest that more areas in the world could act as a source of
1127	macrophyte species with the potential to be naturalized elsewhere than sinks of naturalized
1128	species. Given the high number of aquatic macrophyte naturalizations worldwide, it is
1129	important that alien macrophyte species are considered a high-risk group in alien species
1130	regulation and management.

1132 3.4.2 Introduction pathways

1133

Propagule pressure is one of the key factors in determining introduction success (Williamson & Fitter, 1996 e Colautti et al., 2006; Simberloff, 2009; Duncan, 2011). This term encompasses the "quantity, quality, composition and rate of supply of alien organisms resulting from the transport conditions and pathways between source and recipient regions" (Richardson et al., 2011). Because propagules rely on means to move between geographical regions, pathways play a crucial role in propagule pressure (Simberloff, 2009).

We found information about pathways for ca. 34% of all species; however, these species are among the most frequently naturalized species according to our dataset. For example, ca. 80% of the top 100 species with the high numbers of introductions have information about pathways. Thus, although our discussion about pathways represents only a part of all macrophyte naturalizations, it refers to the most concerning species.

Most naturalized species in our dataset have been introduced by pathways of 1145 intentional introductions, via "Escape from confinement" and "Release in nature" (Saul et 1146 al., 2017). In general, "Escape from confinement" plays a major role in plant invasions 1147 (Saul et al., 2017; Turbelin et al., 2017), and this is not different for naturalized 1148 macrophytes. Because of its ornamental characteristics, macrophytes species are 1149 appreciated by enthusiasts of aquaria and gardens and thus, it is not surprising that 1150 "Ornamental", "Horticulture" and "Pet commerce" constitute the majority pathways among 1151 study species that we analyzed (Hamel and Parsons, 2001; Cohen et al., 2001; Champion et 1152 al., 2010; Azan et al, 2015; Peres et al., 2018). Furthermore, when looking at macrophyte 1153 1154 naturalized species, we found higher participation of the "Release in nature" pathway than other studies which evaluated pathways for all plants or all freshwater species (Pyšek et al., 1155 2011; Saul et al., 2017). The release of macrophytes in nature may enhance the 1156 establishment and naturalization of these plants due to the high invasiveness of 1157 macrophytes, associated with the existence of several plant structures that helps spreading, 1158 like seeds, turions, rhizomes and mainly plant fragments (Fleming and Dibble., 2015). 1159 These sexual and asexual propagules typical of macrophytes encounter the favourable 1160 environment for spreading in the water median, through hydrochory, ichthyochory and 1161 other means of dispersion (Anderson, 2011), which enhances establishment success. 1162 In theory, intentional introductions are easier to regulate and prevent than accidental 1163 introductions (Hulme et al., 2008). This means that legislation on macrophyte introductions 1164

needs to be created for administrative regions that lack respective frameworks and

tightened in areas that have existing regulations.

The "Unaided" pathway is considered underestimated (Hulme et al., 2008, Saul et 1167 1168 al., 2017) and is difficult to be interpreted because dispersal barriers are species-specific (Essl et al., 2015). Combining different datasets, we found a higher number of naturalized 1169 macrophyte species related to the "Unaided" pathway. This category does not have 1170 subcategories, and it is related to the secondary dispersal of species that have been 1171 introduced by other pathways (CBD, 2014). Similarly to what we discussed earlier for the 1172 "Release in Nature" pathway, attributes of macrophytes, such as stress-tolerant taxa with 1173 prolific clonal growth and, usually, long-distance dispersal of sexual propagules and high 1174 local dispersion of asexual propagules (Santamaría, 2002; Fleming and Dibble, 2015), 1175 1176 seems to justify the high number of species related with this particular pathway. For example, the submerged macrophyte Hydrilla verticillata (L.f.) Royle invaded a reservoir 1177 in a Brazilian subtropical floodplain in 2005 probably by aquarium trade - "Escape from 1178 confinement" (Sousa, 2011). A few years later, this species could spread more than 300 km 1179 downstream in a reservoir at the border of Brazil and Paraguay (Thomaz et al., 2009, 1180 Sousa, 2011). Thus, our results suggest that once introduced, macrophytes could be easily 1181 passively dispersed and introduced elsewhere. The same reasoning is applied to 1182 "Corridors", but this pathway seems to be the less important, maybe because it does not 1183 1184 involve direct human transportation (Hulme et al., 2008) and it depends on a huge infrastructure that makes it less frequent than other pathways. However, the efficiency of 1185 corridors in carrying aquatic plants is high (Hulme et al., 2008), and then not negligible. 1186 1187 The results we found here that macrophyte species could also be introduced via transportation as a stowaway and/or contaminant, is following previous studies (see 1188

1189 Brundu, 2015 and references therein). For example, invasive macrophyte species can be

1190	easily attached to boats and boat trailers, a major overland dispersal vector for invasive
1191	aquatic plants (Johnstone et al., 1985; Rothlisberger et al., 2010; Bruckerhoff et al., 2015).
1192	Even submerged macrophyte species can tolerate sufficient air exposure to be transported
1193	and introduced into new areas (Bickel, 2015; Bruckerhoff et al., 2015).
1194	
1195	
1196	3.4.3 Life-forms
1197	Most naturalized macrophytes belong to the emergent life-form. Emergent species,
1198	such as the broad-range genera Cyperus L. (Cyperaceae) and Brachiaria (Trin.) Griseb.
1199	(Poaceae) colonize aquatic and non-aquatic (but moist) environments (Murph et al., 2019)
1200	which contributes to their high invasiveness allowing them to be introduced in more
1201	diversified ways than other life-forms, such as free submerged or epiphytic (Fig. 5). This
1202	explains why the most introduced macrophytes species are emergent (Table 3) except for
1203	the water hyacinth (E. crassipes). However, there is a bias related to the fact that the
1204	Emergent life-form naturally contains a higher diversity of species than other life-forms
1205	(e.g., Souza et al., 2017; Schneider et al., 2018; Oliveira and Bove, 2016).
1206	Life-forms can be an approximate predictor for the ecological impacts macrophytes
1207	can have on the recipient ecosystem because they represent different ways these organisms
1208	influence the environment (Sculthorpe, 1967). Since most of the naturalized macrophytes

1209 are emergent, decision-makers must pay attention to problems related to this life-form (e.g.,

1210 silting up). However, as mentioned earlier, the specific impacts of an introduced species are

1211 species- and context-dependent, and thus, potential impacts of other life-forms should be

1212 considered wherever is a source and a sink of naturalized macrophytes and pathways

1213 linking them.

1214

1215 **3.5 Conclusion**

We highlight the call for attention to the macrophyte invasions. We showed that many regions of the world can act as sources for naturalized alien macrophytes and that these species, at first, are more likely to use intentional pathways which are easier to be managed. These pathways must be prioritized because we also showed huge participation of the "Unaided" pathway, which means that once introduced, macrophytes could spread easily via natural means.

As most macrophytes that become naturalized are emergent, this life-form needs further attention because this species could be introduced both via aquatic and non-aquatic pathways. We hope our study helps decision-makers to manage and prevent macrophyte introductions.

1226

1227

1229 **REFERENCES**

- Anderson L. W. J., Freshwater Plants and Seaweeds in: Simberloff D. & Rejmanek M.
 (2011). Encyclopedia of Biological Invasions.
- 1232 Azan, S., Bardecki, M., Laursen, A.E., 2015. Invasive aquatic plants in the aquarium and
- ornamental pond industries: A risk assessment for southern Ontario (Canada). Weed
 Res. 55, 249–259. https://doi.org/10.1111/wre.12135
- 1235 Barden, L.S., 1987. Invasion of Microstegium vimineum (Poaceae) An Exotic, Anual,
- Shade-Tolerant, C4 Grass, into a North Carolina Floodplain. Am. Midl. Nat. 118, 40–45.
- Bickel, T.O., 2015. A boat hitchhiker's guide to survival: Cabomba caroliniana desiccation
 resistance and survival ability. Hydrobiologia 746, 123–134.
- 1240 https://doi.org/10.1007/s10750-014-1979-1
- 1241 Blackburn, T.M., Pysek, P., Bacher, S., Carlton, J.T., Duncan, R.P., Jarosik, V., Wilson,
- 1242 J.R.U., Richardson, D.M., 2011. A proposed unified framework for biological
- 1243 invasions. Trends Ecol. Evol. 26, 333–339. https://doi.org/10.1016/j.tree.2011.03.023
- Boschilia, S.M., De Oliveira, E.F., Schwarzbold, A., 2012. The immediate and long-term
- 1245 effects of water drawdown on macrophyte assemblages in a large subtropical
- 1246 reservoir. Freshw. Biol. 57, 2641–2651. https://doi.org/10.1111/fwb.12035

1247	Bruckerhoff, L., Havel, J., Knight, S., 2015. Survival of invasive aquatic plants after air
1248	exposure and implications for dispersal by recreational boats. Hydrobiologia 746,
1249	113-121. https://doi.org/10.1007/s10750-014-1947-9
1250	Brummitt, R.K., 2001. World Geographical Scheme for Recording Plant Distributions
1251	Edition 2, International Working Group on Taxonomic Databases For Plant Sciences
1252	(TDWG). https://doi.org/10.1043/0363-6445-28.4.807
1253	Brundu, G., 2015. Plant invaders in European and Mediterranean inland waters: profiles,
1254	distribution, and threats. Hydrobiologia 746, 61–79. https://doi.org/10.1007/s10750-
1255	014-1910-9
1256	Bunn, S.E., Davies, P.M., Kellaway, D.M., Prosser, I.P., 1998. Influence of invasive
1257	macrophytes on channel morphology and hydrology in an open tropical lowland
1258	stream, and potential control by riparian shading. Freshw. Biol. 39, 171-178.
1259	https://doi.org/10.1046/j.1365-2427.1998.00264.x
1260	CABI ISC (Centre for Agriculture and Biosciences International Invasive Species Compendium),
1261	2019. Invasive species compendium database. Available at: <u>https://www.cabi.org/isc/</u>
1262	(assessed 11/28/2019)
1263	Carniatto, N., Thomaz, S.M., Cunha, E.R., Fugi, R., Ota, R.R., 2013. Effects of an invasive
1264	alien poaceae on aquatic macrophytes and fish communities in a neotropical reservoir.

1265 Biotropica 45, 747–754. https://doi.org/10.1111/btp.12062

1266	Cayuela, L., Macarro, I., Stein, A., Oksanen, J. 2019. Taxonstand: Taxonomic
1267	Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-
1268	project.org/package=Taxonstand
1269	CBD - Note by the Executive Secretary, 2014. PATHWAYS OF INTRODUCTION OF
1209	CBD - Note by the Executive Secretary, 2014. FATHWATS OF INTRODUCTION OF
1270	INVASIVE SPECIES, THEIR PRIORITIZATION AND MANAGEMENT.
1271	Convention on Biological Diversity, 1–18
1272	Chambers, P.A., Kalff, J., 1985. Depth distribution and biomass of submersed aquatic
1273	macrophyte communities in Relation to Secchi Depth1. Can. J. Fish. Aquat. Sci. 42,
1274	701-709. https://doi.org/10.1139/f85-090
1275	Chambers, P.A., Lacoul, P., Murphy, K.J., Thomaz, S.M., 2008. Global diversity of aquatic
-	
1276	macrophytes in freshwater. Hydrobiologia 595, 9-26. https://doi.org/10.1007/s10750-
1277	007-9154-6
1278	Champion, P.D., Clayton, J.S., Hofstra, D.E., 2010. Nipping aquatic plant invasions in the
1270	
1279	bud: Weed risk assessment and the trade. Hydrobiologia 656, 167-172.
1280	https://doi.org/10.1007/s10750-010-0446-x

- 1281 Cohen, J., Mirotchnick, N., Leung, B., 2007. Thousands introduced annually: The aquarium
- 1282 pathway for non-indigenous plants to the St Lawrence Seaway. Front. Ecol. Environ.
- 1283 5, 528–532. https://doi.org/10.1890/060137
- 1284 Colautti, R.I., Grigorovich, I.A., MacIsaac, H.J., 2006. Propagule pressure: A null model

1285 for biological invasions. Biol. Invasions 8, 1023–1037.

1286 https://doi.org/10.1007/s10530-005-3735-y

Čuda, J., Rumlerová, Z., Brůna, J., Skálová, H., Pyšek, P., 2017. Floods affect the
abundance of invasive Impatiens glandulifera and its spread from river corridors.
Divers. Distrib. 23, 342–354. https://doi.org/10.1111/ddi.12524
Daehler, C.C., 2003. Performance Comparisons of Co-Occurring Native and Alien Invasive
Plants: Implications for Conservation and Restoration. Annu. Rev. Ecol. Evol. Syst.
34, 183–211. https://doi.org/10.1146/annurev.ecolsys.34.011802.132403
Dawson, W., Moser, D., Van Kleunen, M., Kreft, H., Pergl, J., Pyšek, P., Weigelt, P.,
Winter, M., Lenzner, B., Blackburn, T.M., Dyer, E.E., Cassey, P., Scrivens, S.L.,
Economo, E.P., Guénard, B., Capinha, C., Seebens, H., García-Díaz, P., Nentwig, W.,
García-Berthou, E., Casal, C., Mandrak, N.E., Fuller, P., Meyer, C., Essl, F., 2017.
Global hotspots and correlates of alien species richness across taxonomic groups. Nat.
Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-017-0186
Denslow, J.S., 2003. Weeds in Paradise : Thoughts on the Invasibility of Tropical Islands
Author (s): Julie S. Denslow Source : Annals of the Missouri Botanical Garden , Vol
. 90, No. 1 (Winter, 2003), pp. 119-127 Published by : Missouri Botanical Garden
Press Stable. Ann. Missouri Bot. Gard. Winter, 90, 119–127.
Dudgeon, D., A. H. Arthington, M. O. Gessner, ZI. Kawabata, D. J. Knowler, C. Lévêque,
R. J. Naiman, AH. Prieur-Richard, D. Soto, M. L. J. Stiassny, & C. A. Sullivan,
2006. Freshwater biodiversity: importance, threats, status and conservation challenges.
Biological Reviews of the Cambridge Philosophical Society 81: 163–182,
http://www.ncbi.nlm.nih.gov/pubmed/16336747.

2000 Dunioun, 10 1 1, 2011, 110 pugate pressure, in Sinte enten, D. cent. 10 pinanen (eus	(eds),	re. In Simberloff, D. &M. Rejmanek	le pressure.	2011. Propagul	Duncan, R. P	1308
---	--------	------------------------------------	--------------	----------------	--------------	------

- Encyclopedia of Biological Invasions. University of California Press, Berkeley: 561–
 563.
- 1311 Elliott-Graves, A., 2016. The problem of prediction in invasion biology. Biol. Philos. 31,
- 1312 373–393. https://doi.org/10.1007/s10539-015-9504-0
- 1313 Essl, F., Bacher, S., Blackburn, T.I.M.M., Booy, O., Brundu, G., Brunel, S., Cardoso, A.,
- 1314 Eschen, R., Gallardo, B., Galil, B., García-berthou, E., Genovesi, P., Groom, Q.,
- 1315 Harrower, C., Hulme, P.E., Katsanevakis, S., Kenis, M., Kühn, I., Kumschick, S.,
- 1316 Martinou, A.F., Nentwig, W., Flynn, C.O., Pagad, S., Pergl, J.A.N., Pyšek, P.,
- 1317 Rabitsch, W., Richardson, D.M., Roques, A., Roy, H.E., Scalera, R., Schindler, S.,
- 1318 Seebens, H., Vanderhoeven, S., Wilson, J.R.U., Zenetos, A., 2015. Crossing Frontiers
- in Tackling Pathways of Biological Invasions 65, 769–782.
- 1320 https://doi.org/10.1093/biosci/biv082
- 1321 Fleming, J.P., Dibble, E.D., 2015. Ecological mechanisms of invasion success in aquatic
- 1322 macrophytes. Hydrobiologia 746, 23–37. https://doi.org/10.1007/s10750-014-2026-y
- 1323 García-Berthou, E., Moyle, P. B. 2011. Rivers. In Simberloff, D., Rejmánek, M. (eds),
- Encyclopedia of Biological Invasions. University of California Press, Berkeley & LosAngeles: 609–612.
- 1326 GISD Global Invasive Species Database, 2020. Downloaded from
- 1327 http://www.iucngisd.org/gisd/100_worst.php

- Hamel, K.S., Parsons, J.K., 2001. Washington's Aquatic Plant Quarantine. J. Aquat. Plant
 Manag. 39, 72–75.
- 1330 Hill, M., Coetzee, J., Julien, M., Center, T., 2011, Water Hyacinth in: Simberloff, D.,
- 1331 Rejmanek, M. Encyclopedia of Biological Invasions.
- 1332 Howell, J., Benson, D., 2000. Predicting potential impacts of environmental flows on
- 1333 weedy riparian vegetation of the Hawkesbury-Nepean River, south-eastern Australia.
- 1334 Austral Ecol. 25, 463–475. https://doi.org/10.1111/j.1442-9993.2000.tb00052.x
- 1335 Hulme, P.E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D., Nentwig, W., Olenin,
- 1336 S., Panov, V., Pergl, J., Pyšek, P., Roques, A., Sol, D., Solarz, W., Vilà, M., 2008.
- 1337 Grasping at the routes of biological invasions: A framework for integrating pathways
- 1338 into policy. J. Appl. Ecol. 45, 403–414. https://doi.org/10.1111/j.1365-
- 1339 2664.2007.01442.x
- 1340 Johnstone, L. M., Coffey, R. T., Howard-Williams, C. 1985. The role of recreational boat
- traffic in interlake dispersal of macrophytes: a New Zealand case study. J. Environ.
 Manage. 20: 263–279.
- 1343 Katsanevakis, S., Deriu, I., D'Amico, F., Nunes, A.L., Sanchez, S.P., Crocetta, F.,
- 1344 Arianoutsou, M., Bazos, I., Christopoulou, A., Curto, G., Delipetrou, P., Kokkoris, Y.,
- 1345 Panov, V.E., Rabitsch, W., Roques, A., Scalera, R., Shirley, S.M., Tricarico, E.,
- 1346 Vannini, A., Zenetos, A., Zervou, S., Zikos, A., Cardoso, A.C., 2015. European alien
- 1347 species information network (EASIN): Supporting European policies and scientific
- 1348 research. Manag. Biol. Invasions 6, 147–157. https://doi.org/10.3391/mbi.2015.6.2.05

1349	Klančnik, K., Iskra, I., Gradinjan, D., Gaberščik, A., 2018. The quality and quantity of light
1350	in the water column are altered by the optical properties of natant plant species.
1351	Hydrobiologia. https://doi.org/10.1007/s10750-017-3148-9
1352	Lukács, B.A., Vojtkó, A.E., Mesterházy, A., Molnár, A., Süveges, K., Végvári, Z., Brusa,
1353	G., Cerabolini, B.E.L., 2017. Growth-form and spatiality driving the functional
1354	difference of native and alien aquatic plants in Europe. Ecol. Evol. 7, 950–963.
1355	https://doi.org/10.1002/ece3.2703
1356	Luque, G.M., Bellard, C., Bertelsmeier, C., Bonnaud, E., Genovesi, P., Simberloff, D.,
1357	Courchamp, F., 2014. The 100th of the world's worst invasive alien species 981–985.
1358	https://doi.org/10.1007/s10530-013-0561-5
1359	Michelan, T.S., Thomaz, S.M., Mormul, R.P., Carvalho, P., 2010. Effects of an exotic
1360	invasive macrophyte (tropical signalgrass) on native plant community composition,
1361	species richness and functional diversity. Freshw. Biol. 55, 1315–1326.
1362	https://doi.org/10.1111/j.1365-2427.2009.02355.x
1363	Murphy, K., Efremov, A., Davidson, T.A., Molina-Navarro, E., Fidanza, K., Crivelari

1364 Betiol, T.C., Chambers, P., Tapia Grimaldo, J., Varandas Martins, S., Springuel, I.,

1365 Kennedy, M., Mormul, R.P., Dibble, E., Hofstra, D., Lukács, B.A., Gebler, D.,

- 1366 Baastrup-Spohr, L., Urrutia-Estrada, J., 2019. World distribution, diversity and
- endemism of aquatic macrophytes. Aquat. Bot. 158, 103127.
- 1368 https://doi.org/10.1016/j.aquabot.2019.06.006

1369	Novoa, A., Richardson, D.M., Pyšek, P., Meyerson, L.A., Bacher, S., Canavan, S., Catford,
1370	J.A., Čuda, J., Essl, F., Foxcroft, L.C., Genovesi, P., Hirsch, H., Hui, C., Jackson,
1371	M.C., Kueffer, C., Le Roux, J.J., Measey, J., Mohanty, N.P., Moodley, D., Müller-
1372	Schärer, H., Packer, J.G., Pergl, J., Robinson, T.B., Saul, W.C., Shackleton, R.T.,
1373	Visser, V., Weyl, O.L.F., Yannelli, F.A., Wilson, J.R.U., 2020. Invasion syndromes: a
1374	systematic approach for predicting biological invasions and facilitating effective
1375	management. Biol. Invasions 22, 1801–1820. https://doi.org/10.1007/s10530-020-
1376	02220-w
1377	Oliveira, A., Bove, C., 2016. Checklist of aquatic and marshy Monocotyledons from the
1378	Araguaia River basin, Brazilian Cerrado. Biodivers. Data J. 4.
1379	https://doi.org/10.3897/BDJ.4.e7085
1380	Peres, C.K., Lambrecht, R.W., Tavares, D.A., Chiba de Castro, W.A., 2018. Alien Express:
1381	The threat of aquarium e-commerce introducing invasive aquatic plants in Brazil.
1382	Perspect. Ecol. Conserv. 16, 221-227. https://doi.org/10.1016/j.pecon.2018.10.001
1383	Pimentel, D., Zuniga, R., Morrison, D., 2005. Update on the environmental and economic
1384	costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273-
1385	288. https://doi.org/10.1016/j.ecolecon.2004.10.002
1386	Pyšek, P., Jarošík, V., Pergl, J., 2011. Alien plants introduced by different pathways differ
1387	in invasion success: Unintentional introductions as a threat to natural areas. PLoS One
1388	6. https://doi.org/10.1371/journal.pone.0024890

1389	Pyšek, P., Richardson, D.M., Pergl, J., Jarošík, V., Sixtová, Z., Weber, E., 2008.
1390	Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23, 237-
1391	244. https://doi.org/10.1016/j.tree.2008.02.002
1392	Richardson, D. M., & P. Pyšek, 2006. Plant invasions: merging the concepts of species
1393	invasiveness and community invasibility. Progress in Physical Geography 30: 409–
1394	431.
1395	Richardson, D.M., Pyšek, P., Carlton, J.T., 2011. A compendium of essential concepts and
1396	terminology in biological invasions. Fifty years invasion Ecol. Leg. Charles Elt. 409-
1397	420. https://doi.org/10.1002/9781444329988
1398	Richardson, D.M., Pysek, P., Rejmanek, M., Barbour, M.G., Dane, F., West, C.J., 2000.
1399	Naturalization and Invasion of Alien Plants : Concepts and Definitions Published by :
1400	Blackwell Publishing Stable URL : http://www.jstor.org/stable/2673320 6, 93–107.
1401	Rothlisberger, J.D., Chadderton, W.L., McNulty, J., Lodge, D.M., 2010. Aquatic Invasive
1402	Species Transport via Trailered Boats: What is Being Moved, Who is Moving it, and
1403	What Can Be Done. Fisheries 35, 121–132. https://doi.org/10.1577/1548-8446-
1404	35.3.121
1405	Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal
1406	growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23,

- 1407 137–154. https://doi.org/10.1016/S1146-609X(02)01146-3
- 1408 Saul, W., Roy, H.E., Booy, O., Carnevali, L., Chen, H., Genovesi, P., Harrower, C.A.,

1409 Hulme, P.E., Pagad, S., Pergl, J., 2017. Assessing patterns in introduction pathways of

- alien species by linking major invasion data bases. J. Appl. Ecol. 54, 657–669.
- 1411 https://doi.org/10.1111/1365-2664.12819
- 1412 Scheffer, M., Szabó, S., Gragnani, A., Van Nes, E.H., Rinaldi, S., Kautsky, N., Norberg, J.,
- 1413 Roijackers, R.M.M., Franken, R.J.M., 2003. Floating plant dominance as a stable
- 1414 state. Proc. Natl. Acad. Sci. U. S. A. 100, 4040–4045.
- 1415 https://doi.org/10.1073/pnas.0737918100
- 1416 Schneider, B., Cunha, E.R., Marchese, M., Thomaz, S.M., 2018. Associations between
- 1417 Macrophyte Life-forms and Environmental and Morphometric Factors in a Large Sub-
- 1418 tropical Floodplain 9, 1–10. https://doi.org/10.3389/fpls.2018.00195
- 1419 Sculthorpe C.D., 1967. The Biology of Vascular Plants. Edward Arnold, London
- 1420 Simberloff, D., 2009. The Role of Propagule Pressure in Biological Invasions. Annu. Rev. Ecol. Evol.

1421 Syst. 40, 81–102. https://doi.org/10.1146/annurev.ecolsys.110308.120304

- 1422 Simberloff, D., 2010. Invasions of plant communities more of the same, something very
- 1423 different, or both? Am. Midl. Nat. 163, 220–233. https://doi.org/10.1674/0003-0031-
- 1424 163.1.220
- 1425 Simberloff, D., Martin, J.L., Genovesi, P., Maris, V., Wardle, D.A., Aronson, J.,
- 1426 Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R.,
- 1427 Tabacchi, E., Vilà, M., 2013. Impacts of biological invasions: What's what and the
- 1428 way forward. Trends Ecol. Evol. 28, 58–66. https://doi.org/10.1016/j.tree.2012.07.013

1429	Sousa, W.T.Z., 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening
1430	Brazil's freshwater environments: a review of the extent of the problem.
1431	Hydrobiologia 1-20. https://doi.org/10.1007/s10750-011-0696-2
1432	Thomaz, S.M., Carvalho, P., Mormul, R.P., Ferreira, F.A., Silveira, M.J., Michelan, T.S.,
1433	2009. Temporal trends and effects of diversity on occurrence of exotic macrophytes in
1434	a large reservoir. Acta Oecologica 35, 614–620.
1435	https://doi.org/10.1016/j.actao.2009.05.008
1436	Toth, L.A., 2010. Unrealized Expectations for Restoration of a Floodplain Plant
1437	Community. Restor. Ecol. 18, 810-819. https://doi.org/10.1111/j.1526-
1438	100X.2010.00731.x
1420	Teiemie V. Candese A.C. Converini E. 2017. The symptometic and information
1439	Tsiamis, K., Cardoso, A.C., Gervasini, E., 2017. The european alien species information
1440	network on the convention on biological diversity pathways categorization. NeoBiota
1441	32, 21-29. https://doi.org/10.3897/neobiota.32.9429

1442 Turbelin, A.J., Malamud, B.D., Francis, R.A., 2017. Mapping the global state of invasive

alien species : patterns of invasion and policy responses 78–92.

- 1444 https://doi.org/10.1111/geb.12517
- 1445 Van Donk, E., Van de Bund, W.J., 2002. Impact of submerged macrophytes including
- 1446 charophytes on phyto- and zooplankton communities: Allelopathy versus other
- 1447 mechanisms. Aquat. Bot. 72, 261–274. https://doi.org/10.1016/S0304-3770(01)00205-
- 1448

1449	Van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E., Kreft, H.,
1450	Weigelt, P., Kartesz, J., Nishino, M., Antonova, L.A., Barcelona, J.F., Cabezas, F.J.,
1451	Cárdenas, D., Cárdenas-Toro, J., Castaño, N., Chacón, E., Chatelain, C., Ebel, A.L.,
1452	Figueiredo, E., Fuentes, N., Groom, Q.J., Henderson, L., Inderjit, Kupriyanov, A.,
1453	Masciadri, S., Meerman, J., Morozova, O., Moser, D., Nickrent, D.L., Patzelt, A.,
1454	Pelser, P.B., Baptiste, M.P., Poopath, M., Schulze, M., Seebens, H., Shu, W.S.,
1455	Thomas, J., Velayos, M., Wieringa, J.J., Pyšek, P., 2015. Global exchange and
1456	accumulation of non-native plants. Nature 525, 100–103.
1457	https://doi.org/10.1038/nature14910
1458	van Kleunen, M., Pyšek, P., Dawson, W., Essl, F., Kreft, H., Pergl, J., Weigelt, P., Stein,
1459	A., Dullinger, S., König, C., Lenzner, B., Maurel, N., Moser, D., Seebens, H., Kartesz,
1460	J., Nishino, M., Aleksanyan, A., Ansong, M., Antonova, L.A., Barcelona, J.F.,
1461	Breckle, S.W., Brundu, G., Cabezas, F.J., Cárdenas, D., Cárdenas-Toro, J., Castaño,
1462	N., Chacón, E., Chatelain, C., Conn, B., de Sá Dechoum, M., Dufour-Dror, JM.,
1463	Ebel, A.L., Figueiredo, E., Fragman-Sapir, O., Fuentes, N., Groom, Q.J., Henderson,
1464	L., Inderjit, Jogan, N., Krestov, P., Kupriyanov, A., Masciadri, S., Meerman, J.,
1465	Morozova, O., Nickrent, D., Nowak, A., Patzelt, A., Pelser, P.B., Shu, W., Thomas, J.,
1466	Uludag, A., Velayos, M., Verkhosina, A., Villaseñor, J.L., Weber, E., Wieringa, J.J.,
1467	Yazlık, A., Zeddam, A., Zykova, E., Winter, M., 2019. The Global Naturalized Alien
1468	Flora (GloNAF) database. Ecology 100, 1–2. https://doi.org/10.1002/ecy.2542
1469	Vilà, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarok, V., Maron, J.L., Pergl, J., Schaffner,
1470	U., Sun, Y., Pysek, P., 2011. Ecological impacts of invasive alien plants: A meta-

analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702-

- 1472 708. https://doi.org/10.1111/j.1461-0248.2011.01628.x
- 1473 Villamagna, A.M., Murphy, B.R., 2010. Ecological and socio-economic impacts of
- 1474 invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 55, 282–298.
- 1475 https://doi.org/10.1111/j.1365-2427.2009.02294.x
- 1476 Weigelt, P., König, C., Kreft, H., 2019. GIFT A Global Inventory of Floras and Traits for
- 1477 macroecology and biogeography. J. Biogeogr. 1–28. https://doi.org/10.1111/jbi.13623
- 1478 Wickham, H., 2019. rvest: Easily Harvest (Scrape) Web Pages. R package version 0.3.5.
- 1479 https://CRAN.R-project.org/package=rvest
- 1480 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund,
- 1481 G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S.,
- 1482 Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahashi, K., Vaughan, D.,
- 1483 Wilke, C., Woo, K., Yutani, H., 2019. Welcome to the Tidyverse. J. Open Source
- 1484 Softw. 4, 1686. https://doi.org/10.21105/joss.01686
- Williamson, M., Fitter, A., 1996. The Varying Success of Invaders. Ecology 77, 1661–
 1486 1666.
- 1487 Yarrow, M., Marín, V.H., Finlayson, M., Tironi, A., Delgado, L.E., Fischer, F., 2009. The
- 1488 ecology of egeria densa planchon (liliopsida: Alismatales): A wetland ecosystem
- 1489 engineer. Rev. Chil. Hist. Nat. 82, 299–313. https://doi.org/10.4067/S0716-
- 1490 078X2009000200010

- 1491 Zedler, J. B., 2011. Wetlands. In Simberloff, D., Rejmánek, M., (eds), Encyclopedia of
- 1492 Biological Invasions. University of California Press, Berkeley & Los Angeles: 609–
- **1493** 612.

1495 APPENDIX A - Incongruences with native vs naturalized range

Combining GloNAF and GIFT regions, we ended up having some species that was considered native and naturalized to the same TDWG4 level. In these cases, we remove these problematic entries to avoid biases. By doing that, 116 were removed from the dataset.

1500

1501 Glonaf dummy regions overlaps with multiple TDWG regions

For some references in Glonaf dataset there are data at a country level only. Thus, authos created regions that overlap multiple TDWG regions (see van Kleunen et al., 2019 data set descriptors). For that reason, I've checked all potentials overlaps.

1506	We fond 10 regions with potential problems:
1300	we fold to regions with potential problems.

- region_id: 368 370 394 416 446 525 673 818 889 921
- 1508
- 1509 Procedures to check overlaps:
- 1510 1. Filter the countries which have dummy regions;
- 1511 2. Extract dummy regions within each country;
- 1512 3. Visually check plots with and without the dummy region
- 1513 4. Search for the specific intersection using the sf::st_intersection() function;
- 1514 5. The decision to merge regions was made based on the proximity and the polygons that was overlapped by the dummy region.
- 1516
- 1517 India
- 1518 Region 370: Independent from other regions
 1519 Region 394: GloNAF does not have the IND-PO, IND-KL, IND-YA. Instead they have a region 000-09 to cover these regions. Readers interested in these regions
 1521 must be aware of this.
- 1522 Indonesia
- 1523 Ok. The dummy region is unique to the dataset
- 1524 Japan
- 1525 Ok. The dummy region is unique to the dataset

1526 Mexi	co
-----------	----

Region_id: 446. This region overlaps regions 923 and 924. I merged this three regions into one: region_id 446 and then count the number of unique entries (species) for this region. For those who want details about separate regions they can check the region_id column. Remember that those species records for region 446 covers all area of 923 and 924.

- 1532 New Zealand
- The dummy region region_id 525 cover almost all other polygons. I merged all information about New Zealand at a country level.
- 1535 Papua New Guinea
- 1536 Ok. The dummy region is unique to the dataset
- 1537
- 1538 Sao Tome and Principe
- 1539 Ok. The dummy region is unique to the dataset
- 1540
- 1541 Turkey
- 1542 Ok. The dummy region is unique to the dataset
- 1543
- 1544 Yemen
- 1545 Ok. The dummy region is unique to the dataset
- 1546
- 1547

1548 **APPENDIX B** – Pathways of introduction

1549 Note: Readers can request to the corresponding author the full data set and all scripts

1550 regarding data manipulation and analysis.

1551

1552 Table B1 - Each species name (standardized_name) is standardized according to The Plant

1553 List (<u>http://www.theplantlist.org/</u>). Pathways categories (CDB_category) and subcategories

1554 (CDB_subcategory) are standardized according to the Convention on Biological Diversity

1555 (https://www.cbd.int/doc/meetings/sbstta/sbstta-18/official/sbstta-18-09-add1-en.pdf).

standardized_name	CDB_category	CDB_subcategory
Marsilea mutica	Escape from confinement	Ornamental purpose
Marsilea quadrifolia	Escape from confinement	Ornamental purpose
Marsilea quadrifolia	Escape from confinement	Horticulture
Azolla caroliniana	Escape from confinement	Ornamental purpose
Azolla caroliniana	Escape from confinement	Horticulture
Azolla filiculoides	Transport - Contaminant	Transportation of habitat material
Azolla filiculoides	Escape from confinement	Horticulture
Azolla filiculoides	Escape from confinement	Ornamental purpose
Azolla filiculoides	Release in nature	Landscape/flora/fauna improvement
Azolla filiculoides	Escape from confinement	Botanical garden/zoo/aquaria
Azolla filiculoides	Escape from confinement	Pet/aquarium/terrarium species
Azolla mexicana	Escape from confinement	Ornamental purpose
Azolla pinnata	Escape from confinement	Pet/aquarium/terrarium species
Azolla pinnata	Escape from confinement	Agriculture
Azolla pinnata	Transport - Contaminant	Contaminant on animals
Salvinia adnata	Escape from confinement	Pet/aquarium/terrarium species
Salvinia adnata	Escape from confinement	Botanical garden/zoo/aquaria
Salvinia adnata	Transport - Stowaway	Hitchhikers on ship/boat
Salvinia adnata	Escape from	Horticulture

confinement Salvinia auriculata Corridor Interconnected waterways/basins/seas Salvinia auriculata Escape from confinement Salvinia auriculata Escape from confinement Salvinia auriculata Escape from Horticulture confinement Salvinia auriculata Escape from Aquaculture confinement Salvinia auriculata Escape from confinement Salvinia auriculata Release in nature Salvinia auriculata Release in nature Salvinia auriculata Escape from confinement Salvinia auriculata Transport -Hitchhiker Stowaway Salvinia auriculata Transport -Stowaway Salvinia auriculata Transport -Stowaway Vehicles Salvinia auriculata Transport -Stowaway Salvinia auriculata Transport -Stowaway Salvinia auriculata Transport -Stowaway Salvinia auriculata Transport -Stowaway Salvinia auriculata Unaided Unaided Salvinia minima Corridor Salvinia minima Escape from Aquaculture confinement Salvinia minima Escape from confinement Salvinia minima Escape from confinement Salvinia minima Release in nature Salvinia minima Hitchhiker Transport -Stowaway Salvinia minima Transport -Stowaway Salvinia minima Transport -Stowaway Salvinia minima Transport -Stowaway Salvinia minima Unaided Unaided Salvinia minima Transport -

Pet/aquarium/terrarium species Ornamental purpose Botanical garden/zoo/aquaria **Biological control** Other intentional release Other escape from confinement People and their luggage/equipment Other transport as stowaway Machinery/equipment Ship/boat ballast water Hitchhikers on ship/boat Interconnected waterways/basins/seas Pet/aquarium/terrarium species Research and ex-situ breeding Other intentional release Machinery/equipment Hitchhikers in or on airplane Hitchhikers on ship/boat Contaminant nursery material

	Contaminant
Salvinia minima	Transport -
Salvinia minima	Stowaway
Salvinia minima	Escape from
Survina minina	confinement
Salvinia natans	Escape from
	confinement
Salvinia natans	Release in nature
Salvinia natans	Escape from
Survina natans	confinement
Salvinia natans	Release in nature
Ceratopteris thalictroides	Escape from
1	confinement
Ceratopteris thalictroides	Release in nature
Ceratopteris thalictroides	Release in nature
Ceratopteris thalictroides	Escape from
	confinement
Acorus calamus	Escape from
	confinement
Acorus calamus	Escape from
	confinement
Acorus calamus	Release in nature
Acorus gramineus	Escape from
C	confinement
Acorus gramineus	Release in nature
Alisma plantago-aquatica	Escape from
	confinement
Echinodorus cordifolius	Escape from
	confinement
Helanthium bolivianum	Escape from
T: 1 : 0	confinement
Limnocharis flava	Transport -
Limnocharis flava	Contaminant
	Escape from confinement
Limnocharis flava	Escape from
	confinement
Limnocharis flava	Escape from
	confinement
Limnocharis flava	Escape from
	confinement
Limnocharis flava	Escape from
	confinement
Limnocharis flava	Escape from
	confinement
Limnocharis flava	Release in nature
Limnocharis flava	Release in nature
Limnocharis flava	Transport -
	Contaminant

Ship/boat ballast water Ornamental purpose Ornamental purpose Landscape/flora/fauna improvement Pet/aquarium/terrarium species Other intentional release Pet/aquarium/terrarium species Landscape/flora/fauna improvement Other intentional release Ornamental purpose Horticulture Ornamental purpose Landscape/flora/fauna improvement Pet/aquarium/terrarium species Other intentional release Horticulture Pet/aquarium/terrarium species Pet/aquarium/terrarium species Contaminant on animals Horticulture Botanical garden/zoo/aquaria Agriculture Ornamental purpose Pet/aquarium/terrarium species Research and ex-situ breeding Landscape/flora/fauna improvement Release in nature for use Transportation of habitat material

Limnocharis flava Limnocharis flava Limnocharis flava Limnocharis flava Limnocharis flava Limnocharis flava Sagittaria graminea Sagittaria latifolia Sagittaria montevidensis Sagittaria montevidensis Sagittaria montevidensis Sagittaria platyphylla Sagittaria platyphylla Sagittaria platyphylla Sagittaria rigida Sagittaria rigida Sagittaria rigida Sagittaria subulata Sagittaria subulata Sagittaria subulata Sagittaria trifolia Aponogeton distachyos Aponogeton distachyos

Transport -Contaminant Transport -Stowaway Transport -Stowaway Unaided Transport -Contaminant Transport -Contaminant Escape from confinement Escape from confinement Escape from confinement Transport -Contaminant Unaided Release in nature Release in nature Escape from confinement Escape from confinement Release in nature Escape from confinement Release in nature Escape from confinement Release in nature Escape from confinement Release in nature Escape from confinement Escape from confinement Escape from

Vehicles Container/bulk Unaided Food contaminant Seed contaminant Ornamental purpose Horticulture Ornamental purpose Contaminant on plants Unaided Landscape/flora/fauna improvement Other intentional release Pet/aquarium/terrarium species Ornamental purpose Other intentional release Pet/aquarium/terrarium species Ornamental purpose Pet/aquarium/terrarium species Horticulture Ornamental purpose Other intentional release Pet/aquarium/terrarium species Landscape/flora/fauna improvement Pet/aquarium/terrarium species Other intentional release Horticulture Horticulture Ornamental purpose

Contaminant on plants

Aponogeton distachyos Aponogeton distachyos Aponogeton madagascariensis Caladium bicolor Caladium bicolor Caladium bicolor Caladium bicolor Caladium bicolor Calla palustris Cryptocoryne beckettii Cryptocoryne walkeri Cryptocoryne wendtii Cryptocoryne wendtii Lemna minor Lemna minor Lemna minuta Lemna minuta Lemna minuta Lemna minuta Lemna perpusilla Lemna perpusilla

confinement Release in nature Escape from confinement Release in nature Transport -Stowaway Escape from confinement Escape from confinement Escape from confinement Escape from confinement Release in nature Escape from confinement Escape from confinement Escape from confinement Unaided Escape from confinement Release in nature Corridor Escape from confinement Release in nature Release in nature Escape from confinement

Pet/aquarium/terrarium species
Horticulture
Botanical garden/zoo/aquaria
Ornamental purpose
Release in nature for use Other transport as stowaway
Ornamental purpose
Pet/aquarium/terrarium species
Pet/aquarium/terrarium species
Pet/aquarium/terrarium species
Other intentional release Horticulture
Ornamental purpose
Pet/aquarium/terrarium species
Unaided Ornamental purpose
Other intentional release Interconnected waterways/basins/seas Pet/aquarium/terrarium species
Ornamental purpose
Horticulture
Aquaculture
Botanical garden/zoo/aquaria
Fishery in the wild Landscape/flora/fauna improvement Other escape from confinement

Other intentional release

Cultivation and Livestock

Hitchhiker Lemna perpusilla Transport -Stowaway Transport -Machinery/equipment Lemna perpusilla Stowaway Lemna perpusilla Transport -Hitchhikers on ship/boat Stowaway Lemna perpusilla Unaided Unaided Lemna turionifera Release in nature Other intentional release Lemna turionifera Escape from Ornamental purpose confinement Lemna valdiviana Release in nature Other intentional release Lysichiton Escape from Agriculture camtschatcensis confinement Lysichiton Escape from Horticulture camtschatcensis confinement Lysichiton Escape from Ornamental purpose camtschatcensis confinement Horticulture Orontium aquaticum Escape from confinement Release in nature Other intentional release Orontium aquaticum Orontium aquaticum Escape from Ornamental purpose confinement Orontium aquaticum Escape from Pet/aquarium/terrarium species confinement Pistia stratiotes Escape from Horticulture confinement Pistia stratiotes Escape from Aquaculture confinement Pistia stratiotes Escape from Ornamental purpose confinement Pistia stratiotes Escape from Pet/aquarium/terrarium species confinement Pistia stratiotes Release in nature Other intentional release Pistia stratiotes Release in nature Landscape/flora/fauna improvement Pistia stratiotes Transport -Hitchhiker Stowaway Pistia stratiotes Transport -Ship/boat ballast water Stowaway Pistia stratiotes Unaided Unaided Pistia stratiotes Angling/fishing aquaculture equipment Transport -Stowaway Pistia stratiotes Transport -Ship/boat hull fouling Stowaway Spirodela oligorrhiza Escape from Ornamental purpose confinement Spirodela punctata Escape from Agriculture confinement Escape from Spirodela punctata Ornamental purpose confinement

Spirodela punctata	Escape from	Pet/aquarium/terrarium species
Butomus umbellatus	confinement Escape from confinement	Horticulture
Butomus umbellatus	Escape from confinement	Botanical garden/zoo/aquaria
Butomus umbellatus	Transport - Stowaway	Ship/boat ballast water
Blyxa japonica	Escape from confinement	Ornamental purpose
Blyxa japonica	Escape from confinement	Pet/aquarium/terrarium species
Egeria densa	Transport - Contaminant	Transportation of habitat material
Egeria densa	Escape from confinement	Horticulture
Egeria densa	Escape from confinement	Ornamental purpose
Egeria densa	Release in nature	Landscape/flora/fauna improvement
Egeria densa	Escape from confinement	Botanical garden/zoo/aquaria
Egeria densa	Escape from confinement	Pet/aquarium/terrarium species
Egeria densa	Release in nature	Other intentional release
Elodea callitrichoides	Escape from confinement	Ornamental purpose
Elodea callitrichoides	Release in nature	Landscape/flora/fauna improvement
Elodea callitrichoides	Release in nature	Other intentional release
Elodea canadensis	Escape from confinement	Pet/aquarium/terrarium species
Elodea canadensis	Escape from confinement	Ornamental purpose
Elodea canadensis	Escape from confinement	Aquaculture
Elodea canadensis	Release in nature	Fishery in the wild
Elodea canadensis	Transport - Stowaway	Hitchhiker
Elodea canadensis	Transport - Stowaway	Vehicles
Elodea canadensis	Transport - Stowaway	Ship/boat hull fouling
Elodea canadensis	Unaided	Unaided
Elodea canadensis	Release in nature	Landscape/flora/fauna improvement
Elodea canadensis	Transport - Stowaway	Ship/boat ballast water
Elodea canadensis	Escape from confinement	Botanical garden/zoo/aquaria
Elodea canadensis	Escape from confinement	Horticulture

Instact entrational ContaminantContaminant ContaminantElodea canadensisRelease in nature confinementOther intentional releaseElodea nuttalliiEscape from confinementOrnamental purpose confinementElodea nuttalliiEscape from confinementPet/aquarium/terrarium species confinementElodea nuttalliiRelease in natureLandscape/flora/fauna improvementElodea nuttalliiRelease in natureOther intentional releaseHydrilla verticillataTransport - ContaminantContaminant on animalsHydrilla verticillataTransport - ContaminantContaminant on plants ContaminantHydrilla verticillataTransport - ContaminantContaminant on plants ContaminantHydrilla verticillataTransport - StowawayShip/boat hull fouling StowawayHydrilla verticillataEscape from CorridorOrnamental purpose confinementHydrocharis morsus-ranaeEscape from CorridorDetanical garden/zoo/aquaria confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementHorticulture confinementHydrocharis morsus-ranaeEscape from confinementHorticulture confinementHydrocharis morsus-ranaeEscape from confinementHorticulture confinementHydrocharis morsus-ranaeCorridorHorticulture confinementHydrocharis morsus-ranaeCorridorHorticulture confinementHydrocharis morsus-ranae <t< th=""><th>Elodea canadensis</th><th>Transport -</th><th>Contaminant on animals</th></t<>	Elodea canadensis	Transport -	Contaminant on animals
Elodea nuttalliiEscape from confinementiOrnamental purposeElodea nuttalliiEscape from confinementiPet/aquarium/terrarium species confinementiElodea nuttalliiUnaidedUnaidedElodea nuttalliiRelease in natureLandscape/flora/fauna improvementElodea nuttalliiRelease in natureOther intentional releaseHydrilla verticillataTransport - ContaminantContaminantHydrilla verticillataTransport - ContaminantContaminantHydrilla verticillataTransport - ContaminantContaminantHydrilla verticillataTransport - StowawaySinyboat hull fouling StowawayHydrilla verticillataRelease in natureLandscape/flora/fauna improvementHydrilla verticillataRelease in natureLandscape/flora/fauna improvementHydrilla verticillataRelease in natureLandscape/flora/fauna improvementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeRelease in nature StowawayOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsu		Contaminant	
confinementPet/aquarium/terrarium species confinementElodea nuttalliiUnaidedUnaidedUnaidedElodea nuttalliiRelease in natureLadoca nuttalliiRelease in natureLodea nuttalliiRelease in natureUdea nuttalliiRelease in natureHydrilla verticillataTransport - ContaminantHydrilla verticillataEscape from StowawayHydrilla verticillataBecase in natureHydrilla verticillataRelease in natureHydrocharis morsus-ranaeCoriforHydrocharis morsus-ranaeEscape from confinementHydrocharis morsus-ranaeEscape from confinementHydrocharis morsus-ranaeEscape from confinementHydrocharis morsus-ranaeEscape from confinementHydrocharis morsus-ranaeEscape from confinementHydrocharis morsus-ranaeRelease in nature econfinementHydrocharis morsus-ranaeRelease in nature econfinementHydrocharis morsus-ranaeRelease in nature econfinementHydrocharis morsus-ranaeRelease in nature econfinementHydrocharis morsus-ranaeTransport - Transport - HitchhikerHydrocharis			
confinementUnaidedElodea nuttalliiUnaidedUnaidedElodea nuttalliiRelease in natureUnaidedElodea nuttalliiRelease in natureOther intentional releaseHydrilla verticillataTransport - ContaminantContaminant on animalsHydrilla verticillataTransport - ContaminantContaminant on plantsHydrilla verticillataTransport - Transport - StowawayContaminant on plantsHydrilla verticillataTransport - StowawayShip/boat hull fouling StowawayHydrilla verticillataEscape from confinementOrnamental purpose confinementHydrilla verticillataEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeTransport - transport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - transport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - transport - totawawayHitchhikerHydrocharis morsus-ranaeTransport - totawawayHitchhikerHydrocharis morsus-ranaeTran	Elodea nuttallii	1	Ornamental purpose
Elodea nuttalliiUnaidedUnaidedElodea nuttalliiRelease in natureLandscape/flora/fauna improvementElodea nuttalliiRelease in natureOther intentional releaseHydrilla verticillataTransport - ContaminantContaminant on animalsHydrilla verticillataEscape from ContaminantPet/aquarium/terrarium species confinementHydrilla verticillataTransport - ContaminantContaminant on plantsHydrilla verticillataTransport - ContaminantShip/boat hull fouling StowawayHydrilla verticillataUnaidedUnaidedHydrilla verticillataUnaidedUnaidedHydrilla verticillataRelease in nature ConfinementLandscape/flora/fauna improvementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeRelease in nature confinementOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayVehiclesHydrocharis morsus-ranaeTransport - StowawayVehiclesHydrocharis morsus-ranaeTransport - StowawayVehiclesHydrocharis morsus-ranaeTransport - StowawayVehiclesHydrocharis morsus-ranaeTransport - StowawayVehicles <td< td=""><td>Elodea nuttallii</td><td></td><td>Pet/aquarium/terrarium species</td></td<>	Elodea nuttallii		Pet/aquarium/terrarium species
Elodea nuttalliiRelease in natureOther intentional releaseHydrilla verticillataTransport - ContaminantContaminant on animalsHydrilla verticillataEscape from confinementPet/aquarium/terrarium species confinementHydrilla verticillataTransport - ContaminantContaminant on plants ContaminantHydrilla verticillataTransport - ContaminantShip/boat hull fouling StowawayHydrilla verticillataUnaidedUnaidedHydrilla verticillataUnaidedUnaidedHydrilla verticillataRelease in natureLandscape/flora/fauna improvementHydrocharis morsus-raneCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat Stowa	Elodea nuttallii		Unaided
Hydrilla verticillataTransport - ContaminantContaminant on animalsHydrilla verticillataEscape from confinementPet/aquarium/terrarium species confiniantHydrilla verticillataTransport - Transport - StowawayContaminant on plantsHydrilla verticillataTransport - Transport - StowawayShip/boat hull fouling StowawayHydrilla verticillataUnaidedUnaidedHydrilla verticillataUnaidedUnaidedHydrilla verticillataEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementPet/aquarium/terrarium species confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeRelease in natureOther intentional releaseHydrocharis morsus-ranaeTransport - ransport - StowawayHitchhiker StowawayHydrocharis morsus-ranaeTransport - confinementVehicles StowawayHydrocharis morsus-ranaeTransport - ransport - StowawayHitchhiker StowawayHydrocharis morsus-ranaeTransport - ransport - StowawayHitchhiker StowawayHydrocharis morsus-ranaeTransport - ransport - StowawayHitchhiker<	Elodea nuttallii	Release in nature	Landscape/flora/fauna improvement
ContaminantHydrilla verticillataEscape from confinementHydrilla verticillataTransport - Transport - StowawayHydrilla verticillataTransport - StowawayHydrilla verticillataTransport - StowawayHydrilla verticillataUnaidedHydrilla verticillataUnaidedUnaidedUnaidedHydrilla verticillataEscape from confinementHydrilla verticillataEscape from confinementHydrocharis morsus-ranaeCorridorHydrocharis morsus-ranaeEscape from confinementHydrocharis morsus-ranaeRelease in natureHydrocharis morsus-ranaeRelease in natureHydrocharis morsus-ranaeRelease in natureHydrocharis morsus-ranaeTransport - transport - StowawayHydrocharis morsus-ranaeTransport - StowawayHydrocharis morsus-ranaeTransport - transport - StowawayHydrocharis morsus-ranaeTransport - transport - StowawayHydrocharis morsus-ranaeTransport - transport - StowawayHydrocharis morsus-ranaeTransport - transport - transport - stowawayHydrocharis morsus-ranaeTrans	Elodea nuttallii	Release in nature	Other intentional release
confinement Hydrilla verticillataconfinement Transport - ContaminantContaminant on plants ContaminantHydrilla verticillataTransport - StowawayShip/boat hull fouling StowawayHydrilla verticillataUnaidedUnaidedHydrilla verticillataEscape from CorridorOrnamental purpose confinementHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeEscape from ConfinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from ConfinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from ConfinementOrnamental gurpose confinementHydrocharis morsus-ranaeEscape from ConfinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from ConfinementOther intentional releaseHydrocharis morsus-ranaeRelease in nature ConfinementOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeTransport - StowawayLinetconnected waterways/basins/seasHydrocharis morsus-ranaeTransport - StowawayLinetconnected waterways/basins/seasLagarosiphon majorCorridorInterconnected waterways/basins/seas <t< td=""><td>Hydrilla verticillata</td><td></td><td>Contaminant on animals</td></t<>	Hydrilla verticillata		Contaminant on animals
Hydrilla verticillataTransport - ContaminantContaminantHydrilla verticillataTransport - StowawayShip/boat hull fouling StowawayHydrilla verticillataUnaidedUnaidedHydrilla verticillataEscape from confinementOrnamental purpose confinementHydrilla verticillataRelease in natureLandscape/flora/fauna improvementHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeEscape from confinementPet/aquarium/terrarium species confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental garden/zoo/aquaria confinementHydrocharis morsus-ranaeEscape from confinementBotanical garden/zoo/aquaria confinementHydrocharis morsus-ranaeRelease in nature confinementOther intentional releaseHydrocharis morsus-ranaeTransport - stowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - Stowaway <td>Hydrilla verticillata</td> <td></td> <td>Pet/aquarium/terrarium species</td>	Hydrilla verticillata		Pet/aquarium/terrarium species
Hydrilla verticillataTransport - StowawayShip/boat hull fouling StowawayHydrilla verticillataUnaidedUnaidedHydrilla verticillataEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeEscape from confinementPet/aquarium/terrarium species confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementBotanical garden/zoo/aquaria confinementHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from CorridorOrnamental purpose confinement	Hydrilla verticillata	Transport -	Contaminant on plants
Hydrilla verticillataUnaidedUnaidedHydrilla verticillataEscape from confinementOrnamental purposeHydrilla verticillataRelease in natureLandscape/flora/fauna improvementHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeEscape from confinementPet/aquarium/terrarium speciesHydrocharis morsus-ranaeEscape from confinementOrnamental purposeHydrocharis morsus-ranaeEscape from confinementBotanical garden/zoo/aquariaHydrocharis morsus-ranaeEscape from confinementHorticultureHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeRelease in natureOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementOrnamental purpose confinement	Hydrilla verticillata	Transport -	Ship/boat hull fouling
Hydrilla verticillataEscape from confinementOrnamental purposeHydrilla verticillataRelease in natureLandscape/flora/fauna improvementHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeEscape from confinementPet/aquarium/terrarium species confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purposeHydrocharis morsus-ranaeEscape from confinementOrnamental purposeHydrocharis morsus-ranaeEscape from confinementBotanical garden/zoo/aquaria confinementHydrocharis morsus-ranaeEscape from confinementHorticultureHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayLagarosiphon majorEscape from confinementOrnamental purpose confinement	Hydrilla verticillata	•	Unaided
confinementLandscape/flora/fauna improvementHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeEscape from confinementPet/aquarium/terrarium speciesHydrocharis morsus-ranaeEscape from confinementOrnamental purposeHydrocharis morsus-ranaeEscape from confinementOrnamental purposeHydrocharis morsus-ranaeEscape from confinementBotanical garden/zoo/aquaria confinementHydrocharis morsus-ranaeEscape from confinementHorticultureHydrocharis morsus-ranaeEscape from confinementOther intentional releaseHydrocharis morsus-ranaeRelease in nature transport - StowawayOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementOrnamental purposeLagarosiphon majorEscape from confinementOrnamental purposeLagarosiphon majorEscape from confinementOrnamental purposeLagarosiphon majorEscape from confinementOrnamental purposeLagarosiphon majorEscape from confinementAquacultureLagarosiphon majorEscape from confinementAquacultureLagarosiphon majorEscape from confinement <td>•</td> <td>Escape from</td> <td>Ornamental purpose</td>	•	Escape from	Ornamental purpose
Hydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasHydrocharis morsus-ranaeEscape from confinementPet/aquarium/terrarium species confinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementBotanical garden/zoo/aquaria confinementHydrocharis morsus-ranaeEscape from confinementHorticulture confinementHydrocharis morsus-ranaeEscape from confinementHorticulture confinementHydrocharis morsus-ranaeRelease in natureOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayVehiclesHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeTornaport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementL	5	1	1 1
Hydrocharis morsus-ranaeEscape from confinementPet/aquarium/terrarium speciesHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementBotanical garden/zoo/aquaria confinementHydrocharis morsus-ranaeEscape from confinementHorticulture confinementHydrocharis morsus-ranaeRelease in nature ransport - StowawayOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagar	Hydrilla verticillata	Release in nature	Landscape/flora/fauna improvement
Image: confinementConfinementHydrocharis morsus-ranaeEscape from confinementOrnamental purpose confinementHydrocharis morsus-ranaeEscape from confinementBotanical garden/zoo/aquaria confinementHydrocharis morsus-ranaeEscape from confinementHorticultureHydrocharis morsus-ranaeRelease in nature confinementOther intentional releaseHydrocharis morsus-ranaeRelease in nature ransport - StowawayOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - Vehicles StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeUnaidedUnaidedLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquacultureLagarosiphon majorEscape from confinementAquacultureLagarosiphon majorEscape from confinementAquacultureLagarosiphon majorEscape from confinementAquacultureLagarosiphon majorEscape from confinementAquacultureLagarosiphon majorEscape from confinementAquacu	Hydrocharis morsus-ranae	Corridor	Interconnected waterways/basins/seas
Hydrocharis morsus-ranaeEscape from confinementBotanical garden/zoo/aquaria confinementHydrocharis morsus-ranaeEscape from confinementHorticulture confinementHydrocharis morsus-ranaeRelease in nature confinementOther intentional releaseHydrocharis morsus-ranaeRelease in nature Transport - StowawayOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeUnaidedUnaidedLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementA	Hydrocharis morsus-ranae		Pet/aquarium/terrarium species
Hydrocharis morsus-ranaeEscape from Escape from confinementHorticulture confinementHydrocharis morsus-ranaeRelease in natureOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayVehiclesHydrocharis morsus-ranaeTransport - StowawayVehiclesHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeUnaidedUnaidedLagarosiphon majorEscape from confinementPet/aquarium/terrarium species confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementHagarosiphon majorEscape from confinementHorticulture confinementHagarosiphon majorEscape from confinementHorticulture confinement	Hydrocharis morsus-ranae		Ornamental purpose
Hydrocharis morsus-ranaeEscape from confinementHorticultureHydrocharis morsus-ranaeRelease in natureOther intentional releaseHydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayVehiclesHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boat StowawayHydrocharis morsus-ranaeUnaidedUnaidedLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementHorticulture confinementLagarosiphon majorEscape	Hydrocharis morsus-ranae	1	Botanical garden/zoo/aquaria
Hydrocharis morsus-ranaeTransport - StowawayHitchhikerHydrocharis morsus-ranaeTransport - StowawayVehiclesHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boatHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boatHydrocharis morsus-ranaeUnaidedUnaidedLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementPet/aquarium/terrarium species confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementHorticulture confinementLagarosiphon majorEscape from confinementAquaculture	Hydrocharis morsus-ranae		Horticulture
StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boatHydrocharis morsus-ranaeUnaidedUnaidedLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementPet/aquarium/terrarium species confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinement	Hydrocharis morsus-ranae		Other intentional release
StowawayHydrocharis morsus-ranaeTransport - StowawayVehicles StowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boatHydrocharis morsus-ranaeUnaidedUnaidedLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementPet/aquarium/terrarium species confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinement	•	Transport -	Hitchhiker
StowawayStowawayHydrocharis morsus-ranaeTransport - StowawayHitchhikers on ship/boatHydrocharis morsus-ranaeUnaidedUnaidedLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementPet/aquarium/terrarium species confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementHorticulture confinement	2	-	
StowawayHydrocharis morsus-ranaeUnaidedLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinement	Hydrocharis morsus-ranae	-	Vehicles
Hydrocharis morsus-ranaeUnaidedUnaidedLagarosiphon majorCorridorInterconnected waterways/basins/seasLagarosiphon majorEscape from confinementPet/aquarium/terrarium species confinementLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementHorticulture confinement	Hydrocharis morsus-ranae	-	Hitchhikers on ship/boat
Lagarosiphon majorEscape from confinementPet/aquarium/terrarium speciesLagarosiphon majorEscape from confinementOrnamental purpose confinementLagarosiphon majorEscape from confinementAquaculture confinementLagarosiphon majorEscape from confinementHorticulture confinement	Hydrocharis morsus-ranae		Unaided
confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinement	Lagarosiphon major	Corridor	Interconnected waterways/basins/seas
confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinement	Lagarosiphon major	Escape from	Pet/aquarium/terrarium species
confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinementLagarosiphon majorEscape from confinement			
Lagarosiphon majorconfinement Escape from confinement	Lagarosiphon major	-	Ornamental purpose
Lagarosiphon major Escape from Horticulture confinement	Lagarosiphon major	Escape from	Aquaculture
	Lagarosiphon major	Escape from	Horticulture
	Lagarosiphon major		Other intentional release

Lagarosiphon major Lagarosiphon major Lagarosiphon major Lagarosiphon major Lagarosiphon major Lagarosiphon major Limnobium laevigatum Limnobium laevigatum Limnobium laevigatum Limnobium laevigatum Limnobium laevigatum Najas gracillima Najas gracillima Najas graminea Najas graminea Najas guadalupensis Najas marina Najas minor Najas minor Najas minor Najas minor Ottelia alismoides Ottelia alismoides Ottelia alismoides Stratiotes aloides Vallisneria americana Vallisneria nana Vallisneria nana

Transport -Stowaway Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Release in nature Escape from confinement Escape from confinement Escape from confinement Transport -Stowaway Unaided Transport -Contaminant Transport -Contaminant Transport -Contaminant Transport -Contaminant Release in nature Transport -Contaminant Escape from confinement Escape from confinement Transport -Stowaway Transport -Stowaway Escape from confinement Release in nature Escape from confinement Escape from confinement Escape from confinement Escape from confinement Release in nature

Vehicles Hitchhikers in or on airplane Hitchhikers on ship/boat Unaided Landscape/flora/fauna improvement Aquaculture Ornamental purpose Pet/aquarium/terrarium species Hitchhikers on ship/boat Unaided Seed contaminant Trade of contaminated commodities Seed contaminant Trade of contaminated commodities Other intentional release Trade of contaminated commodities Pet/aquarium/terrarium species Botanical garden/zoo/aquaria Ship/boat hull fouling Vehicles Ornamental purpose Other intentional release Pet/aquarium/terrarium species Ornamental purpose Pet/aquarium/terrarium species Pet/aquarium/terrarium species Other intentional release

Hitchhiker

Vallisneria spiralis
Vallisneria spiralis
Hydrocleys nymphoides
Potamogeton crispus
Potamogeton nodosus
Potamogeton perfoliatus
Potamogeton perfoliatus
Potamogeton perfoliatus
Potamogeton perfoliatus
Iris sibirica
Iris sibirica
Iris spuria
Iris pseudacorus
Iris pseudacorus

Escape from confinement Unaided Escape from confinement Escape from confinement Release in nature Release in nature Escape from confinement Corridor Escape from confinement Escape from confinement Escape from confinement Escape from confinement Release in nature Release in nature Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Transport -Stowaway Unaided Escape from confinement Transport -Stowaway Escape from confinement Transport -Stowaway Escape from confinement Escape from confinement Escape from confinement Escape from confinement Escape from

Pet/aquarium/terrarium species Unaided Horticulture Ornamental purpose Landscape/flora/fauna improvement Other intentional release Horticulture Interconnected waterways/basins/seas Pet/aquarium/terrarium species Ornamental purpose Horticulture Aquaculture Fishery in the wild Release in nature for use Hitchhiker Hitchhikers in or on airplane Hitchhikers on ship/boat Unaided Ship/boat hull fouling Unaided Pet/aquarium/terrarium species Hitchhikers on ship/boat Horticulture Machinery/equipment Horticulture Ornamental purpose Ornamental purpose Ornamental purpose Horticulture

	CC
Iris pseudacorus	R
Iris versicolor	E
	co
Iris versicolor	E
C	CC E
Commelina benghalensis	E
Commelina communis	E
Commenna Communit	c
Commelina communis	R
Commelina communis	T
	С
Commelina diffusa	E
NG 1 1 1 1	CC T
Murdannia keisak	E
Murdannia nudiflora	co T
	C
Murdannia nudiflora	T
	St
Murdannia nudiflora	T
Mandana'a andifiana	S
Murdannia nudiflora	U
Eichhornia azurea	E
Eichhornia azurea	E
	c
Eichhornia azurea	E
	co
Eichhornia crassipes	E
Eichhornia crassipes	co R
Eichhornia crassipes	E
Elemiornia crassipes	C
Eichhornia crassipes	E
Ĩ	co
Eichhornia crassipes	E
T' 11 ' '	co
Eichhornia crassipes	T: St
Eichhornia crassipes	R
Eichhornia crassipes	T
	S
Eichhornia crassipes	R
Eichhornia diversifolia	E
	co
Eichhornia diversifolia	R
Heteranthera limosa	T

elease in nature scape from onfinement scape from onfinement scape from onfinement scape from onfinement elease in nature ransport -Contaminant scape from onfinement scape from onfinement ransport -Contaminant ransport towaway ransport towaway Inaided scape from onfinement scape from onfinement scape from onfinement scape from onfinement elease in nature scape from onfinement scape from onfinement scape from onfinement ransport towaway elease in nature ransport towaway elease in nature scape from onfinement elease in nature ransport -

confinement

Ornamental purpose Horticulture Ornamental purpose Ornamental purpose Landscape/flora/fauna improvement Seed contaminant Ornamental purpose Ornamental purpose Transportation of habitat material Other transport as stowaway Machinery/equipment Unaided Pet/aquarium/terrarium species Ornamental purpose Horticulture Ornamental purpose Landscape/flora/fauna improvement Botanical garden/zoo/aquaria Pet/aquarium/terrarium species Horticulture Machinery/equipment Release in nature for use Vehicles Other intentional release Pet/aquarium/terrarium species Other intentional release Seed contaminant

Erosion control/ dune stabilization

Heteranthera limosa Heteranthera limosa Heteranthera limosa Heteranthera limosa Heteranthera reniformis Heteranthera reniformis Heteranthera reniformis Heteranthera reniformis Heteranthera rotundifolia Heteranthera rotundifolia Heteranthera rotundifolia Heteranthera zosterifolia Heteranthera zosterifolia Pontederia cordata Pontederia cordata Pontederia cordata Pontederia rotundifolia Bolboschoenus glaucus Carex crawfordii Cyperus aggregatus Cyperus alternifolius Cyperus alternifolius Cyperus alternifolius Cyperus amuricus Cyperus difformis Cyperus difformis Cyperus difformis Cyperus difformis Cyperus difformis Cyperus difformis

Contaminant Release in nature Escape from confinement Transport -Stowaway Unaided Transport -Contaminant Release in nature Escape from confinement Transport -Stowaway Transport -Contaminant Release in nature Transport -Stowaway Release in nature Unaided Escape from confinement Release in nature Escape from confinement Unaided Release in nature Release in nature Transport -Contaminant Escape from confinement Escape from confinement Escape from confinement Release in nature Escape from confinement Transport -Contaminant Transport -Stowaway Transport -Stowaway Unaided Transport -

Other intentional release Pet/aquarium/terrarium species Vehicles Unaided Seed contaminant Other intentional release Pet/aquarium/terrarium species Vehicles Seed contaminant Other intentional release Vehicles Landscape/flora/fauna improvement Unaided Ornamental purpose Release in nature for use Horticulture Unaided Other intentional release Other intentional release Trade of contaminated commodities Horticulture Ornamental purpose Pet/aquarium/terrarium species Other intentional release Agriculture Transportation of habitat material Other transport as stowaway Machinery/equipment Unaided Trade of contaminated commodities

	Contaminant	
Cyperus eragrostis	Escape from confinement	Ornamental purpose
Cyperus eragrostis	Transport - Contaminant	Seed contaminant
Cyperus eragrostis	Release in nature	Other intentional release
Cyperus eragrostis	Transport - Contaminant	Trade of contaminated commodities
Cyperus esculentus	Escape from confinement	Agriculture
Cyperus esculentus	Escape from confinement	Horticulture
Cyperus esculentus	Release in nature	Other intentional release
Cyperus esculentus	Escape from confinement	Cultivation and Livestock
Cyperus esculentus	Escape from confinement	Ornamental purpose
Cyperus haspan	Escape from confinement	Horticulture
Cyperus imbricatus	Escape from confinement	Horticulture
Cyperus imbricatus	Escape from confinement	Ornamental purpose
Cyperus imbricatus	Transport - Contaminant	Transportation of habitat material
Cyperus imbricatus	Transport - Stowaway	Other transport as stowaway
Cyperus imbricatus	Unaided	Unaided
Cyperus imbricatus	Escape from confinement	Cultivation and Livestock
Cyperus imbricatus	Transport - Contaminant	Trade of contaminated commodities
Cyperus involucratus	Escape from confinement	Ornamental purpose
Cyperus involucratus	Unaided	Unaided
Cyperus longus	Escape from confinement	Horticulture
Cyperus meyenianus	Escape from confinement	Horticulture
Cyperus odoratus	Release in nature	Other intentional release
Cyperus papyrus	Escape from confinement	Botanical garden/zoo/aquaria
Cyperus papyrus	Escape from confinement	Ornamental purpose
Cyperus papyrus	Transport - Stowaway	Hitchhiker
Cyperus papyrus	Unaided	Unaided
Cyperus papyrus	Escape from confinement	Horticulture

Cyperus papyrus	Escape from	Cultivation and Livestock
Cyperus pupyrus	confinement	
Cyperus reflexus	Transport - Contaminant	Trade of contaminated commodities
Cyperus rotundus	Transport - Contaminant	Transportation of habitat material
Cyperus rotundus	Escape from confinement	Agriculture
Cyperus rotundus	Transport - Contaminant	Food contaminant
Cyperus rotundus	Transport - Contaminant	Seed contaminant
Cyperus rotundus	Transport - Stowaway	Ship/boat ballast water
Cyperus rotundus	Release in nature	Other intentional release
Cyperus squarrosus	Transport -	Trade of contaminated commodities
Cyperus virens	Contaminant Transport -	Trade of contaminated commodities
•	Contaminant	
Eleocharis flavescens	Release in nature	Other intentional release
Eleocharis bonariensis	Unaided	Unaided
Eleocharis parvula	Transport - Contaminant	Seed contaminant
Eleocharis parvula	Transport - Contaminant	Trade of contaminated commodities
Fimbristylis cymosa	Escape from confinement	Horticulture
Fimbristylis cymosa	Transport - Contaminant	Transportation of habitat material
Fimbristylis cymosa	Unaided	Unaided
Fimbristylis ferruginea	Unaided	Unaided
Fimbristylis littoralis	Escape from	Agriculture
	confinement	
Fimbristylis littoralis	Transport - Contaminant	Transportation of habitat material
Fimbristylis littoralis	Transport - Stowaway	Other transport as stowaway
Fimbristylis littoralis	Transport - Stowaway	Vehicles
Fimbristylis littoralis	Transport - Stowaway	Machinery/equipment
Fimbristylis littoralis	Unaided	Unaided
Kyllinga brevifolia	Release in nature	Other intentional release
Kyllinga brevifolia	Unaided	Unaided
Pycreus polystachyos	Unaided	Unaided
Juncus anthelatus	Unaided	Unaided
Juneus antinelatus	Unalucu	Ollalaca
Juncus articulatus		
	Escape from confinement Unaided	Ornamental purpose Unaided

Juncus bufonius	Unaided	Unaided
Juncus effusus	Transport - Contaminant	Transportation of habitat material
Juncus effusus	Transport -	Hitchhiker
Juncus effusus	Stowaway Transport - Stowaway	Vehicles
Juncus effusus	Unaided	Unaided
Juncus effusus	Escape from confinement	Horticulture
Juncus hybridus	Unaided	Unaided
Juncus inflexus	Unaided	Unaided
Juncus ensifolius	Escape from confinement	Pet/aquarium/terrarium species
Juncus ensifolius	Escape from confinement	Ornamental purpose
Juncus ensifolius	Escape from confinement	Horticulture
Juncus ensifolius	Escape from confinement	Agriculture
Juncus ensifolius	Escape from confinement	Research and ex-situ breeding
Juncus ensifolius	Release in nature	Introduction for conservation purposes or wildlife management
Juncus ensifolius	Release in nature	Landscape/flora/fauna improvement
Juncus ensifolius	Release in nature	Release in nature for use
Juncus ensifolius	Transport - Contaminant	Transportation of habitat material
Juncus ensifolius	Transport - Stowaway	Hitchhiker
Juncus ensifolius	Transport - Stowaway	Vehicles
Juncus ensifolius	Transport - Stowaway	Machinery/equipment
Juncus ensifolius	Unaided	Unaided
Juncus ensifolius	Escape from	Cultivation and Livestock
	confinement	
Juncus conglomeratus	Unaided	Unaided
Juncus striatus	Unaided	Unaided
Mayaca fluviatilis	Escape from confinement	Pet/aquarium/terrarium species
Agrostis lachnantha	Transport - Contaminant	Trade of contaminated commodities
Beckmannia syzigachne	Transport - Contaminant	Seed contaminant
Beckmannia syzigachne	Release in nature	Other intentional release
Beckmannia syzigachne	Escape from confinement	Ornamental purpose
Beckmannia syzigachne	Transport -	Trade of contaminated commodities

	Contaminant	
Saccharum ravennae	Escape from	Horticulture
~ .	confinement	
Saccharum ravennae	Escape from confinement	Ornamental purpose
Saccharum ravennae	Escape from	Research and ex-situ breeding
Saccharum Tavennae	confinement	Research and ex-situ breeding
Saccharum ravennae	Release in nature	Landscape/flora/fauna improvement
Saccharum ravennae	Unaided	Unaided
Sacciolepis indica	Transport -	Hitchhiker
	Stowaway	
Spartina pectinata	Escape from	Horticulture
	confinement	
Spartina pectinata	Escape from confinement	Ornamental purpose
Spartina pectinata	Release in nature	Other intentional release
Zizania aquatica		
Zizailia aquatica	Escape from confinement	Aquaculture
Zizania aquatica	Escape from	Ornamental purpose
Ĩ	confinement	
Zizania latifolia	Escape from	Aquaculture
	confinement	
Zizania latifolia	Escape from confinement	Ornamental purpose
Zizania latifolia	Release in nature	Landscape/flora/fauna improvement
Zizania latifolia	Escape from	Agriculture
	confinement	
Zizania latifolia	Transport -	Ship/boat ballast water
Arundo donax	Stowaway Escape from	Horticulture
Al ulluo uollax	confinement	Horticulture
Arundo donax	Escape from	Agriculture
	confinement	e
Arundo donax	Escape from	Ornamental purpose
	confinement	
Arundo donax	Release in nature	Landscape/flora/fauna improvement
Arundo donax	Escape from	Other escape from confinement
Arundo donax	confinement Transport -	Transportation of habitat material
Al ulido dollax	Contaminant	Transportation of habitat material
Arundo donax	Transport -	Contaminant on plants
	Contaminant	L L
Arundo donax	Transport -	Other transport as stowaway
	Stowaway	
Arundo donax	Transport -	Vehicles
Arundo donax	Stowaway Transport -	Machinery/equipment
	Transport - Stowaway	waennery/equipment
Arundo donax	Unaided	Unaided

Arundo donax Arundo donax Brachiaria mutica Brachiaria subquadripara Echinochloa colona Echinochloa crus-galli Echinochloa crus-galli

Escape from confinement Escape from confinement Transport -Contaminant Escape from confinement Transport -Contaminant Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Escape from confinement Escape from confinement Corridor Escape from confinement Transport -Contaminant Transport -Stowaway Transport -Stowaway Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Escape from confinement Escape from confinement Transport -

Aquaculture Cultivation and Livestock Contaminant on animals Agriculture Transportation of habitat material Other transport as stowaway Vehicles Machinery/equipment Unaided Horticulture Cultivation and Livestock Interconnected waterways/basins/seas Forestry Live food & live bait Horticulture Research and ex-situ breeding Agriculture Transportation of habitat material Hitchhiker People and their luggage/equipment Vehicles Machinery/equipment Container/bulk Unaided Agriculture Agriculture Transportation of habitat material

Echinochloa crus-galli Echinochloa crus-galli Echinochloa crus-galli Echinochloa crus-galli Echinochloa crus-galli Echinochloa oryzoides Echinochloa oryzoides Echinochloa oryzoides Echinochloa oryzoides Echinochloa pyramidalis Echinochloa pyramidalis Echinochloa pyramidalis Echinochloa pyramidalis Echinochloa pyramidalis Glyceria declinata Glyceria declinata Glyceria declinata Glyceria maxima Glyceria striata

Contaminant Transport -Stowaway Transport -Stowaway Unaided Transport -Contaminant Transport -Contaminant Transport -Contaminant Release in nature Transport -Contaminant Transport -Stowaway Escape from confinement Escape from confinement Release in nature Transport -Stowaway Unaided Corridor Escape from confinement Transport -Stowaway Corridor Escape from confinement Escape from confinement Escape from confinement Escape from confinement Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Transport -Contaminant Escape from

Other transport as stowaway Machinery/equipment Unaided Seed contaminant Trade of contaminated commodities Seed contaminant Other intentional release Trade of contaminated commodities Vehicles Agriculture Research and ex-situ breeding Landscape/flora/fauna improvement Hitchhikers in or on airplane Unaided Interconnected waterways/basins/seas Horticulture Hitchhiker Interconnected waterways/basins/seas Pet/aquarium/terrarium species Ornamental purpose Horticulture Agriculture People and their luggage/equipment Vehicles Machinery/equipment Unaided Contaminant on animals Ornamental purpose

	confinement	
Glyceria striata	Transport - Contaminant	Seed contaminant
Glyceria striata	Release in nature	Other intentional release
Glyceria striata	Transport - Contaminant	Trade of contaminated commodities
Glyceria striata	Transport - Stowaway	Vehicles
Helictotrichon neesii	Transport - Contaminant	Trade of contaminated commodities
Hymenachne	Corridor	Interconnected waterways/basins/seas
amplexicaulis		
Hymenachne	Escape from	Agriculture
amplexicaulis	confinement	-
Hymenachne	Transport -	Angling/fishing aquaculture equipment
amplexicaulis	Stowaway	
Hymenachne	Transport -	Transportation of habitat material
amplexicaulis	Contaminant	
Hymenachne	Transport -	People and their luggage/equipment
amplexicaulis	Stowaway	
Hymenachne	Transport -	Machinery/equipment
amplexicaulis	Stowaway	J 1 1
Hymenachne	Unaided	Unaided
amplexicaulis		
Ischaemum rugosum	Transport -	Transportation of habitat material
	Contaminant	r
Ischaemum rugosum	Transport -	Other transport as stowaway
isenaeman ragosam	Stowaway	o their transport as stowarray
Leptochloa fusca	Corridor	Interconnected waterways/basins/seas
*		-
Leptochloa fusca	Escape from confinement	Pet/aquarium/terrarium species
Leptochloa fusca	Escape from	Ornamental purpose
Leptoenioa iusea	confinement	Offiamental purpose
Leptochloa fusca	Escape from	Agriculture
Leptoenioa iusea	confinement	Agriculture
Leptochloa fusca	Escape from	Horticulture
Leptoenioa iusea	confinement	Homeunde
Leptochloa fusca	Release in nature	Landscape/flora/fauna improvement
*		
Leptochloa fusca	Transport - Contaminant	Transportation of habitat material
Leptachlan fusan		Vehicles
Leptochloa fusca	Transport - Stowaway	venicies
Leptochloa fusca	Transport -	Machinery/equipment
Leptoemoa fusea	Stowaway	Waenmery/equipment
Leptochloa fusca	Transport -	Hitchhikers in or on airplane
Leptoeniou rused	Stowaway	internation of on unplane
Leptochloa fusca	Unaided	Unaided
•		
Leptochloa fusca	Transport - Contaminant	Seed contaminant
Leptochloa fusca	Transport -	Trade of contaminated commodities

	Contaminant	
Oryza rufipogon	Escape from confinement	Cultivation and Livestock
Oryza rufipogon	Transport - Contaminant	Trade of contaminated commodities
Oryza sativa	Escape from confinement	Agriculture
Oryza sativa	Escape from confinement	Horticulture
Oryza sativa	Escape from confinement	Cultivation and Livestock
Oryza sativa	Escape from confinement	Ornamental purpose
Panicum dichotomiflorum	Escape from confinement	Agriculture
Panicum dichotomiflorum	Transport - Contaminant	Seed contaminant
Panicum dichotomiflorum	Release in nature	Other intentional release
Panicum dichotomiflorum	Escape from	Cultivation and Livestock
	confinement	
Panicum dichotomiflorum	Transport -	Trade of contaminated commodities
Panicum dichotomiflorum	Contaminant Transport	Vehicles
	Transport - Stowaway	venicies
Panicum dichotomiflorum	Unaided	Unaided
Panicum maximum	Escape from	Agriculture
	confinement	2
Panicum repens	Escape from confinement	Agriculture
Panicum repens	Escape from	Horticulture
1	confinement	
Panicum repens	Escape from confinement	Cultivation and Livestock
Paspalidium geminatum	Release in nature	Landscape/flora/fauna improvement
Paspalum distichum	Escape from	Agriculture
Paspalum distichum	confinement Transport -	Contaminant on plants
	Contaminant	
Paspalum distichum	Transport - Contaminant	Seed contaminant
Paspalum distichum	Release in nature	Erosion control/ dune stabilization
Paspalum distichum	Release in nature	Landscape/flora/fauna improvement
Paspalum distichum	Transport -	Trade of contaminated commodities
i uspuluin distronum	Contaminant	
Paspalum scrobiculatum	Transport - Contaminant	Transportation of habitat material
Paspalum vaginatum	Escape from confinement	Agriculture
Paspalum vaginatum	Escape from	Ornamental purpose

Paspalum vaginatum

Paspalum vaginatum Paspalum vaginatum

Paspalum vaginatum

Paspalum vaginatum Phalaris arundinacea

Phalaris arundinacea Phalaris arundinacea

Phalaris arundinacea

Phragmites australis Phragmites australis

Phragmites australis

Phragmites australis

Phragmites australis

Phragmites australis Phragmites australis

Phragmites australis Phragmites australis Setaria parviflora

Setaria parviflora

Setaria parviflora

Setaria parviflora Typha angustifolia Typha angustifolia

Typha domingensis

Typha domingensis Typha domingensis

Typha domingensis

Typha domingensis

Typha domingensis

Escape from confinement Release in nature Transport -Stowaway Transport -Stowaway Unaided Escape from confinement Release in nature Escape from confinement Escape from confinement Corridor Escape from confinement Escape from confinement Escape from confinement Transport -Stowaway Unaided Escape from confinement Release in nature Release in nature Escape from confinement Transport -Contaminant Transport -Stowaway Unaided Unaided Escape from confinement Transport -Contaminant Corridor Escape from confinement Transport -Stowaway Transport -Stowaway Unaided

Horticulture Landscape/flora/fauna improvement Vehicles Machinery/equipment Unaided Horticulture Landscape/flora/fauna improvement Ornamental purpose Agriculture Interconnected waterways/basins/seas Ornamental purpose Research and ex-situ breeding Other escape from confinement Hitchhikers in or on airplane Unaided Horticulture Erosion control/ dune stabilization Landscape/flora/fauna improvement Horticulture Contaminant on plants Hitchhiker Unaided Unaided Ornamental purpose Contaminant on animals Interconnected waterways/basins/seas Agriculture Hitchhiker People and their luggage/equipment

Unaided

Typha latifolia Typha latifolia	C I
Typha latifolia	c I
Typha latifolia	c I
Typha latifolia	c I
Typha latifolia	с]
Typha latifolia	(1
Typha latifolia]
Typha latifolia]
Typha laxmannii	I
Typha laxmannii	C I
Typha laxmannii	Ι
Typha laxmannii	C I
Typha minima	I
Typha minima	I
Thalia dealbata	I
Hedychium coronarium	C I
Hedychium coronarium	C I
Hedychium coronarium	I
Hedychium coronarium]
Hedychium coronarium]
Hedychium coronarium	τ
Apium graveolens	I c
Apium graveolens	I
Apium graveolens	I

Corridor Escape from confinement Escape from confinement Escape from confinement Escape from confinement Transport -Contaminant Unaided Transport -Stowaway Transport -Stowaway Escape from confinement Release in nature Escape from confinement Release in nature Escape from confinement Release in nature Transport -Contaminant Transport -Stowaway Unaided Escape from confinement Escape from confinement Release in nature

Interconnected waterways/basins/seas Horticulture
Aquaculture
Ornamental purpose
Other escape from confinement
Transportation of habitat material
Unaided Machinery/equipment
People and their luggage/equipment
Ornamental purpose
Landscape/flora/fauna improvement Horticulture
Other intentional release Horticulture
Cultivation and Livestock
Horticulture
Pet/aquarium/terrarium species
Ornamental purpose
Horticulture
Botanical garden/zoo/aquaria
Research and ex-situ breeding
Release in nature for use Contaminant on plants
Machinery/equipment
Unaided Agriculture
Horticulture
Landscape/flora/fauna improvement

Release in nature Other intentional release Apium graveolens Apium graveolens Escape from Cultivation and Livestock confinement Apium graveolens Escape from Ornamental purpose confinement Apium graveolens Unaided Unaided Centella asiatica Escape from Ornamental purpose confinement Centella asiatica Release in nature Release in nature for use Centella asiatica Transport -Contaminant on plants Contaminant Centella asiatica Transport -Machinery/equipment Stowaway Eryngium pandanifolium Escape from Ornamental purpose confinement Lilaeopsis carolinensis Unaided Unaided Oenanthe javanica Escape from Horticulture confinement Release in nature Sium sisarum Other intentional release Hydrocotyle bonariensis Unaided Unaided Hydrocotyle Escape from Pet/aquarium/terrarium species ranunculoides confinement Hvdrocotvle Escape from Ornamental purpose ranunculoides confinement Hydrocotyle Transport -Contaminant on plants ranunculoides Contaminant Hydrocotyle Unaided Unaided ranunculoides Hydrocotyle Release in nature Other intentional release ranunculoides Horticulture Hydrocotyle umbellata Escape from confinement Hydrocotyle Escape from Ornamental purpose sibthorpioides confinement Hydrocotyle Escape from Pet/aquarium/terrarium species sibthorpioides confinement Hydrocotyle verticillata Unaided Unaided Centipeda minima Trade of contaminated commodities Transport -Contaminant Eclipta prostrata Escape from Ornamental purpose confinement Transport -Seed contaminant Eclipta prostrata Contaminant Eclipta prostrata Transport -Vehicles Stowaway Shinnersia rivularis Unaided Unaided Acmella uliginosa Transport -Transportation of habitat material Contaminant Acmella uliginosa Transport -Other transport as stowaway

	Stowaway	
Acmella uliginosa	Transport -	Machinery/equipment
C	Stowaway	
Acmella uliginosa	Unaided	Unaided
Bidens frondosa	Transport - Contaminant	Contaminant on animals
Bidens frondosa	Escape from confinement	Ornamental purpose
Bidens frondosa	Release in nature	Release in nature for use
Bidens frondosa	Transport - Contaminant	Transportation of habitat material
Bidens frondosa	Transport - Stowaway	Hitchhiker
Bidens frondosa	Unaided	Unaided
Bidens frondosa	Release in nature	Landscape/flora/fauna improvement
Bidens frondosa	Transport -	Seed contaminant
	Contaminant	
Bidens frondosa	Release in nature	Other intentional release
Bidens frondosa	Transport -	Trade of contaminated commodities
	Contaminant	
Bidens tripartita	Escape from	Horticulture
	confinement	
Cotula coronopifolia	Escape from	Horticulture
	confinement	0
Cotula coronopifolia	Escape from confinement	Ornamental purpose
Cotula coronopifolia	Transport -	Trade of contaminated commodities
Cotula coronopriona	Contaminant	Trade of contaminated commodities
Gymnocoronis	Escape from	Horticulture
spilanthoides	confinement	
Gymnocoronis	Escape from	Ornamental purpose
spilanthoides	confinement	
Gymnocoronis	Escape from	Pet/aquarium/terrarium species
spilanthoides	confinement	
Gymnocoronis	Transport -	Machinery/equipment
spilanthoides	Stowaway	
Gymnocoronis	Unaided	Unaided
spilanthoides	Dalaan in stand	Other intersting 1 will say
Gymnocoronis spilanthoides	Release in nature	Other intentional release
Menyanthes trifoliata	Escape from	Horticulture
Wenyahties thonata	confinement	Horteuture
Nymphoides aquatica	Escape from confinement	Pet/aquarium/terrarium species
Nymphoides aquatica	Escape from confinement	Horticulture
Nymphoides cristata	Escape from	Horticulture
	confinement	
Nymphoides indica	Escape from	Horticulture
	confinement	

Nymphoides peltata Myosotis scorpioides Myosotis scorpioides Myosotis scorpioides Nasturtium officinale Nasturtium officinale Nasturtium officinale Nasturtium microphyllum Nasturtium microphyllum Nasturtium microphyllum Nasturtium microphyllum Nasturtium microphyllum Nasturtium microphyllum Rorippa curvisiliqua Rorippa palustris Alternanthera ficoidea Alternanthera ficoidea Alternanthera philoxeroides Alternanthera philoxeroides

Corridor Escape from confinement Escape from confinement Escape from confinement Escape from confinement Release in nature Release in nature Transport -Stowaway Unaided Escape from confinement Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Unaided Unaided Transport -Contaminant Transport -Contaminant Escape from confinement Transport -Contaminant

Interconnected waterways/basins/seas Pet/aquarium/terrarium species Ornamental purpose Horticulture Aquaculture Fishery in the wild Other intentional release Hitchhikers on ship/boat Unaided Cultivation and Livestock Agriculture Ornamental purpose Horticulture Horticulture Ornamental purpose Cultivation and Livestock Aquaculture Agriculture Hitchhiker Vehicles Machinery/equipment Unaided Unaided Unaided Seed contaminant Trade of contaminated commodities Ornamental purpose Transportation of habitat material

Alternanthera philoxeroides Alternanthera philoxeroides Alternanthera philoxeroides Alternanthera philoxeroides Alternanthera philoxeroides Alternanthera sessilis Persicaria lapathifolia Persicaria lapathifolia Persicaria maculosa Persicaria maculosa Persicaria senegalensis Montia parvifolia Ceratophyllum demersum Ceratophyllum demersum

Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Transport -Contaminant Escape from confinement Escape from confinement Transport -Stowaway Unaided Escape from confinement Escape from confinement Transport -Contaminant Escape from confinement Transport -Contaminant Escape from confinement Transport -Contaminant Escape from confinement Release in nature Transport -Stowaway Transport -Stowaway Unaided Escape from confinement Transport -

People and their luggage/equipment Vehicles Ship/boat ballast water Unaided Trade of contaminated commodities Agriculture Ornamental purpose Other transport as stowaway Unaided Pet/aquarium/terrarium species Horticulture Trade of contaminated commodities Agriculture Seed contaminant Ornamental purpose Transportation of habitat material Cultivation and Livestock Ornamental purpose Pet/aquarium/terrarium species Ornamental purpose Aquaculture Fishery in the wild Hitchhiker Vehicles Unaided Horticulture Angling/fishing aquaculture equipment

	Stowaway
Ceratophyllum	Unaided
submersum	
Lysimachia ciliata	Escape from
5	confinemer
Lysimachia ciliata	Escape from
2	confinemer
Lysimachia ciliata	Escape from
-	confinemen
Hottonia palustris	Escape from
•	confinemer
Hottonia palustris	Release in
Aeschynomene americana	Escape from
	confinemer
Aeschynomene americana	Release in
Aeschynomene americana	Transport -
Accelynomene americana	Contamina
Aeschynomene americana	Transport -
Resenynomene americana	Contamina
Aeschynomene americana	Transport -
Accertynomene americana	Stowaway
Aeschynomene americana	Transport -
Resenynomene americana	Stowaway
Aeschynomene americana	Unaided
•	
Aeschynomene americana	Transport - Contamina
Aeschynomene indica	Transport -
Aeschynomene indica	Contamina
Aeschynomene indica	Transport -
Accelynomene malea	Contamina
Galium palustre	Unaided
_	Unaided
Oldenlandia capensis	
Hygrophila difformis	Escape from
	confinemen
Hygrophila difformis	Escape from
TT 1'1 1	confinemer
Hygrophila corymbosa	Escape from
TT 1'1 1	confinemer
Hygrophila corymbosa	Release in
Hygrophila polysperma	Corridor
Hygrophila polysperma	Escape from
	confinemer
Hygrophila polysperma	Escape from
	confinemer
Hygrophila polysperma	Escape from
	confinemer
Hygrophila polysperma	Transport -
	Stowaway
Hygrophila polysperma	Transport -

Jnaided Escape from confinement Escape from confinement Escape from confinement Escape from confinement Release in nature Escape from confinement Release in nature ransport -Contaminant ransport -Contaminant ransport towaway ransport towaway Jnaided ransport -Contaminant ransport -Contaminant ransport -Contaminant Jnaided Jnaided Escape from confinement Escape from confinement Escape from confinement Release in nature Corridor Escape from confinement Escape from onfinement Escape from onfinement ransport towaway ransport -

Horticulture Cultivation and Livestock Ornamental purpose Ornamental purpose Other intentional release Agriculture Landscape/flora/fauna improvement Transportation of habitat material Contaminant on plants Other transport as stowaway Vehicles Unaided Seed contaminant Seed contaminant Trade of contaminated commodities Unaided Unaided Horticulture Pet/aquarium/terrarium species Pet/aquarium/terrarium species Other intentional release Interconnected waterways/basins/seas Pet/aquarium/terrarium species Ornamental purpose Horticulture Hitchhiker Hitchhikers on ship/boat

Unaided

	Stowaway	
Hygrophila polysperma	Unaided	Unaided
Mentha aquatica	Escape from confinement	Ornamental purpose
Mentha arvensis	Release in nature	Other intentional release
Mentha longifolia	Escape from confinement	Agriculture
Mentha longifolia	Escape from confinement	Horticulture
Mentha pulegium	Escape from confinement	Pet/aquarium/terrarium species
Mentha pulegium	Escape from confinement	Ornamental purpose
Mentha pulegium	Escape from confinement	Agriculture
Mentha spicata	Escape from confinement	Horticulture
Mentha spicata	Escape from confinement	Agriculture
Mentha spicata	Escape from confinement	Ornamental purpose
Mentha spicata	Release in nature	Landscape/flora/fauna improvement
Utricularia gibba	Transport - Contaminant	Contaminant on animals
Utricularia gibba	Escape from confinement	Pet/aquarium/terrarium species
Utricularia gibba	Release in nature	Fishery in the wild
Utricularia gibba	Transport - Stowaway	Machinery/equipment
Utricularia gibba	Unaided	Unaided
Utricularia gibba	Escape from confinement	Botanical garden/zoo/aquaria
Utricularia gibba	Corridor	Interconnected waterways/basins/seas
Mimulus luteus	Escape from confinement	Ornamental purpose
Mimulus guttatus	Escape from confinement	Ornamental purpose
Mimulus guttatus	Release in nature	Landscape/flora/fauna improvement
Bacopa caroliniana	Escape from confinement	Pet/aquarium/terrarium species
Bacopa caroliniana	Escape from confinement	Horticulture
Bacopa caroliniana	Release in nature	Other intentional release
Bacopa monnieri	Escape from confinement	Ornamental purpose
Bacopa monnieri	Escape from confinement	Pet/aquarium/terrarium species
Bacopa monnieri	Release in nature	Release in nature for use
Bacopa monnieri	Transport -	Other transport as stowaway

Bacopa monnieri Bacopa rotundifolia
Bacopa rotundifolia
Limnophila sessiliflora
Limnophila sessiliflora Lindernia crustacea
Lindernia crustacea
Lindernia crustacea Lindernia dubia
Lindernia dubia
Bergia capensis
Bergia capensis
Bergia capensis
Elatine ambigua Elatine ambigua
Ammannia auriculata
Ammannia auriculata
Ammannia baccifera
Ammannia coccinea
Ammannia coccinea
Ammannia coccinea
Ammannia robusta Cuphea carthagenensis Cuphea carthagenensis
Cuphea carthagenensis Cuphea carthagenensis
Cuphea carthagenensis
Cuphea carthagenensis

Stowaway Unaided Transport -Contaminant Transport -Contaminant Escape from confinement Release in nature Transport -Contaminant Transport -Stowaway Unaided Transport -Contaminant Transport -Contaminant Escape from confinement Transport -Contaminant Transport -Contaminant Release in nature Escape from confinement Transport -Contaminant Transport -Stowaway Transport -Contaminant Transport -Contaminant Transport -Contaminant Transport -Stowaway Unaided Corridor Escape from confinement Release in nature Transport -Contaminant Transport -Stowaway Transport -

Unaided Seed contaminant
Trade of contaminated commodities
Pet/aquarium/terrarium species
Other intentional release Transportation of habitat material
Other transport as stowaway
Unaided Seed contaminant
Trade of contaminated commodities
Horticulture
Seed contaminant
Trade of contaminated commodities
Other intentional release Cultivation and Livestock
Trade of contaminated commodities
Vehicles
Trade of contaminated commodities
Seed contaminant
Trade of contaminated commodities
Vehicles
Unaided Interconnected waterways/basins/seas Agriculture
Release in nature for use Transportation of habitat material
Hitchhiker
Vehicles

	Stowaway	
Cuphea carthagenensis	Transport - Stowaway	Machinery/equipment
Cuphea carthagenensis	Unaided	Unaided
Lythrum salicaria	Escape from confinement	Pet/aquarium/terrarium species
Lythrum salicaria	Escape from confinement	Ornamental purpose
Lythrum salicaria	Escape from confinement	Horticulture
Lythrum salicaria	Escape from confinement	Botanical garden/zoo/aquaria
Lythrum salicaria	Escape from confinement	Live food & live bait
Lythrum salicaria	Release in nature	Release in nature for use
Lythrum salicaria	Transport - Contaminant	Transportation of habitat material
Lythrum salicaria	Transport - Contaminant	Contaminant on plants
Lythrum salicaria	Transport - Stowaway	People and their luggage/equipment
Lythrum salicaria	Transport - Stowaway	Vehicles
Lythrum salicaria	Transport - Stowaway	Machinery/equipment
Lythrum salicaria	Transport - Stowaway	Ship/boat ballast water
Lythrum salicaria	Unaided	Unaided
Lythrum salicaria	Release in nature	Landscape/flora/fauna improvement
Rotala densiflora	Transport - Stowaway	Vehicles
Rotala filiformis	Transport - Contaminant	Trade of contaminated commodities
Rotala filiformis	Transport - Stowaway	Vehicles
Rotala indica	Escape from confinement	Pet/aquarium/terrarium species
Rotala indica	Escape from confinement	Horticulture
Rotala indica	Transport - Contaminant	Trade of contaminated commodities
Rotala indica	Transport - Stowaway	Vehicles
Rotala ramosior	Transport - Contaminant	Seed contaminant
Rotala ramosior	Transport - Contaminant	Trade of contaminated commodities
Rotala ramosior	Transport -	Vehicles
	Stowaway	

Trapa natans	Corridor	Interco
Trapa natans	Escape from	Pet/aqu
	confinement	
Trapa natans	Escape from	Ornam
	confinement	
Trapa natans	Escape from	Aquacı
	confinement	
Trapa natans	Escape from	Botanio
	confinement	
Trapa natans	Escape from	Horticu
	confinement	
Trapa natans	Release in nature	Other i
Trapa natans	Transport -	Hitchhi
	Stowaway	
Trapa natans	Transport -	Machir
	Stowaway	
Trapa natans	Transport -	Hitchhi
•	Stowaway	
Trapa natans	Unaided	Unaide
Trapa natans	Escape from	Cultiva
	confinement	0 0111 / 0
Epilobium ciliatum	Transport -	Contan
_ r	Contaminant	
Epilobium ciliatum	Transport -	Hitchhi
_ r	Stowaway	
Epilobium ciliatum	Unaided	Unaide
Epilobium ciliatum	Escape from	Ornam
	confinement	Omum
Epilobium ciliatum	Transport -	Transp
	Contaminant	manop
Epilobium ciliatum	Transport -	Seed co
	Contaminant	
Epilobium hirsutum	Escape from	Cultiva
	confinement	Cultivu
Ludwigia grandiflora	Corridor	Interco
Ludwigia grandiflora	Escape from	Pet/aqu
	confinement	i ci/aqi
Ludwigia grandiflora	Escape from	Ornam
Luawigia grandinora	confinement	Omani
Ludwigia grandiflora	Escape from	Horticu
Luawigia grandinora	confinement	11011101
Ludwigia grandiflora	Escape from	Aquacu
Luawigia grandinora	confinement	Iquue
Ludwigia grandiflora	Escape from	Botanio
Luawigia grandinora	confinement	Dotain
Ludwigia grandiflora	Release in nature	Other i
Ludwigia grandiflora	Release in nature	Landsc
Ludwigia grandiflora	Transport -	Contan
	Contaminant	

nterconnected waterways/basins/seas et/aquarium/terrarium species
rnamental purpose
quaculture
otanical garden/zoo/aquaria
orticulture
ther intentional release
lachinery/equipment
itchhikers on ship/boat
naided ultivation and Livestock
ontaminant on plants
itchhiker
naided rnamental purpose
ransportation of habitat material
eed contaminant
ultivation and Livestock
nterconnected waterways/basins/seas et/aquarium/terrarium species
rnamental purpose
orticulture
quaculture
otanical garden/zoo/aquaria
ther intentional release andscape/flora/fauna improvement ontaminant on plants

Ludwigia grandiflora Ludwigia grandiflora Ludwigia grandiflora Ludwigia grandiflora Ludwigia hyssopifolia Ludwigia hyssopifolia Ludwigia palustris Ludwigia peploides Ludwigia peruviana Ludwigia repens Ludwigia repens Ludwigia repens Ludwigia repens Ludwigia repens Cabomba caroliniana Cabomba caroliniana

Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Escape from confinement Transport -Contaminant Escape from confinement Corridor Escape from confinement Release in nature Transport -Contaminant Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Escape from confinement Transport -Contaminant Escape from confinement Release in nature Escape from confinement Escape from confinement Escape from confinement Corridor Escape from confinement

Hitchhiker People and their luggage/equipment Machinery/equipment Unaided Horticulture Transportation of habitat material Pet/aquarium/terrarium species Interconnected waterways/basins/seas Pet/aquarium/terrarium species Ornamental purpose Horticulture Aquaculture Botanical garden/zoo/aquaria Other intentional release Contaminant on plants Hitchhiker People and their luggage/equipment Machinery/equipment Unaided Cultivation and Livestock Seed contaminant Ornamental purpose Landscape/flora/fauna improvement Pet/aquarium/terrarium species Horticulture Cultivation and Livestock Interconnected waterways/basins/seas Aquaculture

Cabomba caroliniana Cabomba haynesii Nuphar advena Nuphar advena Nuphar japonica Nuphar japonica Nuphar japonica Nuphar lutea Nuphar pumila Nuphar pumila Nymphaea alba Nymphaea lotus Nymphaea lotus Nymphaea lotus Nymphaea lotus

Escape from confinement Escape from confinement Release in nature Transport -Stowaway Transport -Stowaway Transport -Stowaway Transport -Stowaway Unaided Escape from confinement Escape from confinement Escape from confinement Transport -Contaminant Transport -Stowaway Transport -Contaminant Escape from confinement Escape from confinement Escape from confinement Escape from confinement Release in nature Escape from confinement Escape from confinement Escape from confinement Release in nature Escape from confinement Corridor Escape from confinement Release in nature Transport -Contaminant

Pet/aquarium/terrarium species Research and ex-situ breeding Other intentional release Hitchhiker Machinery/equipment Hitchhikers in or on airplane Hitchhikers on ship/boat Unaided Ornamental purpose Horticulture Botanical garden/zoo/aquaria Contaminated bait Ship/boat hull fouling Transportation of habitat material Pet/aquarium/terrarium species Cultivation and Livestock Ornamental purpose Ornamental purpose Other intentional release Cultivation and Livestock Horticulture Ornamental purpose Other intentional release Ornamental purpose Interconnected waterways/basins/seas Ornamental purpose Release in nature for use Contaminant on plants

Nymphaea lotus Nymphaea mexicana Nymphaea mexicana Nymphaea nouchali Nymphaea odorata Nymphaea rubra Houttuynia cordata Houttuynia cordata Saururus cernuus Saururus cernuus Nelumbo nucifera Nelumbo nucifera Nelumbo nucifera Nelumbo nucifera Myosurus minimus Myosurus minimus Ranunculus lingua Myriophyllum aquaticum Myriophyllum

heterophyllum Myriophyllum Unaided Escape from confinement Escape from confinement Escape from confinement Escape from confinement Unaided Escape from confinement Release in nature Release in nature Unaided Transport -Contaminant Transport -Contaminant Escape from confinement Corridor Escape from confinement Escape from confinement Escape from confinement Escape from confinement Release in nature Transport -Contaminant Unaided Release in nature Release in nature Escape from confinement Escape from confinement Escape from

Unaided Ornamental purpose Pet/aquarium/terrarium species Pet/aquarium/terrarium species Horticulture Unaided Ornamental purpose Horticulture Ornamental purpose Horticulture Ornamental purpose Landscape/flora/fauna improvement Other intentional release Unaided Seed contaminant Trade of contaminated commodities Ornamental purpose Interconnected waterways/basins/seas Aquaculture Horticulture Ornamental purpose Pet/aquarium/terrarium species Other intentional release Contaminant on plants Unaided Landscape/flora/fauna improvement Release in nature for use Botanical garden/zoo/aquaria Pet/aquarium/terrarium species Ornamental purpose

heterophyllum	confinement	
Myriophyllum	Transport -	Hitchhikers on ship/boat
heterophyllum	Stowaway	
Myriophyllum	Transport -	Ship/boat hull fouling
heterophyllum	Stowaway	1 0
Myriophyllum	Unaided	Unaided
heterophyllum		
Myriophyllum	Escape from	Horticulture
heterophyllum	confinement	
Myriophyllum	Release in nature	Landscape/flora/fauna improvement
heterophyllum Myriophyllum	Escape from	Cultivation and Livestock
heterophyllum	confinement	Cultivation and Livestock
Myriophyllum	Escape from	Pet/aquarium/terrarium species
hippuroides	confinement	i eu aquarrant terrarrant speeres
Myriophyllum simulans	Escape from	Pet/aquarium/terrarium species
	confinement	· ·
Myriophyllum spicatum	Corridor	Interconnected waterways/basins/seas
Myriophyllum spicatum	Escape from	Pet/aquarium/terrarium species
	confinement	
Myriophyllum spicatum	Escape from	Ornamental purpose
Maria alexalizate anisotran	confinement	Horticulture
Myriophyllum spicatum	Escape from confinement	Horuculture
Myriophyllum spicatum	Escape from	Aquaculture
nijnopnjnam spreatam	confinement	1 Iquiouituro
Myriophyllum spicatum	Release in nature	Fishery in the wild
Myriophyllum spicatum	Transport -	Angling/fishing aquaculture equipment
	Stowaway	
Myriophyllum spicatum	Transport -	Ship/boat hull fouling
	Stowaway	
Myriophyllum spicatum	Unaided	Unaided
Myriophyllum spicatum	Escape from	Botanical garden/zoo/aquaria
	confinement	
Myriophyllum spicatum	Transport -	Transportation of habitat material
Myriophyllum spicatum	Contaminant Transport -	Hitchhikers on ship/boat
Wynopnynum spicatum	Stowaway	Theminkers on sinp/ ooat
Crassula aquatica	Release in nature	Other intentional release
Crassula aquatica	Escape from	Ornamental purpose
	confinement	F F F
Crassula helmsii	Corridor	Interconnected waterways/basins/seas
Crassula helmsii	Escape from	Pet/aquarium/terrarium species
	confinement	
Crassula helmsii	Escape from	Ornamental purpose
	confinement	
Crassula helmsii	Escape from	Horticulture
Concernate to the state of the	confinement	
Crassula helmsii	Transport -	Hitchhiker
	Stowaway	

Crassula helmsii	Transport -	People and their luggage/equipment
	Stowaway	r copie and mon taggage, equipment
Crassula helmsii	Transport -	Hitchhikers on ship/boat
O 1 1 1 1 "	Stowaway	TT '1 1
Crassula helmsii	Unaided	Unaided
Crassula helmsii	Transport - Contaminant	Transportation of habitat material
Crassula helmsii	Transport -	Ship/boat ballast water
Crussula nonnsh	Stowaway	Ship oou ounust water
Crassula helmsii	Transport -	Ship/boat hull fouling
	Stowaway	
Crassula peduncularis	Escape from	Ornamental purpose
Creagula raduraularia	confinement	Trade of contaminated commodities
Crassula peduncularis	Transport - Contaminant	Trade of contaminated commodities
Ipomoea aquatica	Escape from	Agriculture
1 1	confinement	0
Hypericum mutilum	Escape from	Pet/aquarium/terrarium species
	confinement	
Hypericum mutilum	Escape from confinement	Botanical garden/zoo/aquaria
Corrigiola litoralis	Escape from	Ornamental purpose
Comgiona morans	confinement	Offiamental pulpose
Nymphaea marliacea	Unaided	Unaided
Halophila stipulacea	Corridor	Interconnected waterways/basins/seas
Halophila stipulacea	Release in nature	Fishery in the wild
Halophila stipulacea	Transport -	Ship/boat ballast water
	Stowaway	
Halophila stipulacea	Unaided	Unaided
Halophila stipulacea	Transport -	Other transport as stowaway
Halanhila stinulassa	Stowaway Transport	Shire /h aat hull fauling
Halophila stipulacea	Transport - Stowaway	Ship/boat hull fouling
Halophila stipulacea	Transport -	Hitchhikers on ship/boat
1 1	Stowaway	1.
Halophila stipulacea	Escape from	Aquaculture
	confinement	
Artemisia codonocephala	Transport - Contaminant	Seed contaminant
Artemisia codonocephala	Transport -	Trade of contaminated commodities
	Contaminant	
Nymphaea odorata subsp.	Escape from	Horticulture
tuberosa	confinement	
Nymphaea lotus var.	Release in nature	Landscape/flora/fauna improvement
thermalis Nymphaea lotus var.	Release in nature	Other intentional release
thermalis	release in nature	
Austroderia richardii	Escape from	Ornamental purpose
	confinement	

1559

1560 **APPENDIX C** – Life-form

- 1561 Note: Readers can request to the corresponding author the full data set and all scripts
- 1562 regarding data manipulation and analysis.

1563

Table C1 – Life-forms based on Schneider et al. 2018. Species names are standardized
 according to The Plant List (<u>http://www.theplantlist.org/</u>),

standardized_name	Life-form	standardized_name	Life-form
Equisetum hyemale	Emergent	Paspalum intermedium	Emergent
Equisetum palustre	Emergent	Pennisetum macrourum	Emergent
Isoetes tuckermanii	Rooted	Phalaris arundinacea	Emergent
	submerged		
Marsilea minuta	Rooted floating- steamed	Phragmites australis	Emergent
Marsilea crenata	Emergent	Setaria parviflora	Emergent
Marsilea drummondii	Emergent	Sparganium emersum	Emergent
Marsilea hirsuta	Emergent	Sparganium erectum	Emergent
Marsilea macropoda	Emergent	Sparganium eurycarpum	Emergent
Marsilea mutica	Rooted floating- leaved	Sparganium glomeratum	Emergent
Marsilea oligospora	Rooted floating- leaved	Sparganium stoloniferum	Emergent
Marsilea quadrifolia	Rooted floating- steamed	Typha angustifolia	Emergent
Marsilea vestita	Rooted floating- leaved	Typha domingensis	Emergent
Marsilea vestita	Rooted submerged	Typha latifolia	Emergent
Marsilea vestita	Emergent	Typha laxmannii	Emergent
Azolla caroliniana	Free-floating	Typha minima	Emergent
Azolla cristata	Free-floating	Typha orientalis	Emergent
Azolla filiculoides	Free-floating	Xyris indica	Emergent
Azolla japonica	Free-floating	Xyris jupicai	Emergent
Azolla mexicana	Free-floating	Canna glauca	Emergent
Azolla microphylla	Free-floating	Thalia dealbata	Emergent
Azolla pinnata	Free-floating	Thalia geniculata	Emergent
Salvinia adnata	Free-floating	Hedychium coronarium	Emergent
Salvinia auriculata	Free-floating	Apium graveolens	Emergent
Salvinia cucullata	Free-floating	Apium nodiflorum	Rooted submerged
Salvinia minima	Free-floating	Apium repens	Emergent

Salvinia natans	Free-floating	Berula erecta	Emergent
Ceratopteris	Free-floating	Centella asiatica	Emergent
pteridoides			
Ceratopteris richardii	Rooted floating- steamed	Cicuta bulbifera	Emergent
Ceratopteris richardii	Rooted submerged	Cicuta maculata	Emergent
Ceratopteris richardii	Emergent	Eryngium aquaticum	Emergent
Ceratopteris thalictroides	Emergent	Eryngium foetidum	Emergent
Acorus calamus	Emergent	Eryngium pandanifolium	Emergent
Acorus gramineus	Emergent	Lilaeopsis carolinensis	Emergent
Alisma gramineum	Emergent	Oenanthe aquatica	Emergent
Alisma gramineum	Rooted submerged	Oenanthe fistulosa	Emergent
Alisma lanceolatum	Emergent	Oenanthe javanica	Emergent
Alisma plantago- aquatica	Emergent	Oenanthe javanica	Rooted floating- steamed
Baldellia ranunculoides	Emergent	Oenanthe sarmentosa	Emergent
Caldesia parnassifolia	Rooted floating- leaved	Oxypolis occidentalis	Emergent
Echinodorus berteroi	Emergent	Peucedanum palustre	Emergent
Echinodorus cordifolius	Emergent	Sium latifolium	Emergent
Echinodorus floribundus	Emergent	Sium suave	Emergent
Echinodorus scaber	Emergent	Sium sisarum	Emergent
Helanthium bolivianum	Emergent	Hydrocotyle bonariensis	Emergent
Helanthium	Rooted	Hydrocotyle	Rooted floating-
bolivianum	submerged	ranunculoides	steamed
Limnocharis flava	Emergent	Hydrocotyle tripartita	Emergent
Sagittaria brevirostra	Emergent	Hydrocotyle umbellata	Emergent
Sagittaria graminea	Emergent	Hydrocotyle vulgaris	Emergent
Sagittaria	Rooted floating-	Hydrocotyle	Emergent
guayanensis	leaved	sibthorpioides	C
Sagittaria kurziana	Rooted submerged	Hydrocotyle verticillata	Emergent
Sagittaria latifolia	Emergent	Centipeda minima	Emergent
Sagittaria macrophylla	Emergent	Eclipta prostrata	Emergent
Sagittaria montevidensis	Emergent	Grangea maderaspatana	Emergent

Sagittaria platyphylla	Emergent	Petasites frigidus	Emergent
Sagittaria rigida	Emergent	Shinnersia rivularis	Rooted
			submerged
Sagittaria sagittifolia	Emergent	Sphaeranthus africanus	Emergent
Sagittaria subulata	Rooted	Sphaeranthus senegalensis	Emergent
	submerged		
Sagittaria trifolia	Emergent	Acmella paniculata	Emergent
Aponogeton	Rooted floating-	Acmella ciliata	Emergent
distachyos	leaved		
Aponogeton	Rooted	Acmella uliginosa	Emergent
madagascariensis	submerged		
Caladium bicolor	Emergent	Bidens cernua	Emergent
Calla palustris	Emergent	Bidens frondosa	Emergent
Cryptocoryne	Rooted	Bidens parviflora	Emergent
beckettii	submerged		
Cryptocoryne	Emergent	Bidens radiata	Emergent
beckettii			
Cryptocoryne	Rooted	Bidens tripartita	Emergent
walkeri	submerged		
Cryptocoryne	Rooted	Bidens beckii	Rooted
wendtii	submerged		submerged
Cryptocoryne	Emergent	Bidens laevis	Free-floating
wendtii			
Cyrtosperma	Emergent	Cotula coronopifolia	Emergent
merkusii			
Lemna aequinoctialis	Free-floating	Enydra fluctuans	Emergent
Lemna disperma	Free-floating	Enydra sessilis	Emergent
Lemna gibba	Free-floating	Gymnocoronis spilanthoides	Emergent
Lemna minor	Free-floating	Jaegeria hirta	Emergent
Lemna minuta	Free-floating	Grammatotheca bergiana	Emergent
Lemna obscura	Free-floating	Isotoma fluviatilis	Emergent
Lemna perpusilla	Free-floating	Lobelia cardinalis	Emergent
Lemna turionifera	Free-floating	Lobelia chinensis	Emergent
Lemna valdiviana	Free-floating	Menyanthes trifoliata	Emergent
Lysichiton	Emergent	Nymphoides aquatica	Rooted floating-
camtschatcensis		,	leaved
Orontium aquaticum	Emergent	Nymphoides cristata	Rooted floating- leaved
Peltandra virginica			
	Emergent	Nymphoides geminata	Rooted floating-
Philodendron	Emergent Emergent	Nymphoides geminata Nymphoides indica	Rooted floating- leaved Rooted floating-
Philodendron bipinnatifidum Pistia stratiotes			leaved

			leaved
Spirodela oligorrhiza	Free-floating	Myosotis laxa	Emergent
Spirodela polyrrhiza	Free-floating	Myosotis scorpioides	Emergent
Spirodela punctata	Free-floating	Heliotropium supinum	Emergent
Typhonodorum	Emergent	Rotula aquatica	Emergent
lindleyanum			
Wolffia arrhiza	Free-floating	Cardamine bonariensis	Emergent
Wolffia brasiliensis	Free-floating	Nasturtium officinale	Emergent
Wolffia globosa	Free-floating	Nasturtium microphyllum	Emergent
Wolffiella gladiata	Free-floating	Rorippa teres	Emergent
Wolffiella hyalina	Free-floating	Rorippa curvisiliqua	Emergent
Butomus junceus	Emergent	Rorippa tenerrima	Emergent
Butomus umbellatus	Emergent	Rorippa palustris	Emergent
Blyxa aubertii	Rooted	Rorippa islandica	Emergent
	submerged		C
Blyxa japonica	Rooted	Rorippa amphibia	Emergent
	submerged		
Egeria densa	Rooted	Centrostachys aquatica	Emergent
	submerged		
Elodea callitrichoides	Rooted	Alternanthera ficoidea	Emergent
	submerged		
Elodea canadensis	Rooted	Alternanthera	Emergent
T 1 1	submerged	philoxeroides	
Elodea nuttallii	Rooted	Alternanthera sessilis	Emergent
TT1.:11	submerged		F 1
Hydrilla verticillata	Rooted	Aldrovanda vesiculosa	Free submerged
Hydrocharis dubia	submerged Free-floating	Persicaria acuminata	Emorgont
			Emergent
Hydrocharis morsus- ranae	Free-floating	Persicaria amphibia	Rooted floating- leaved
Lagarosiphon major	Rooted	Persicaria arifolia	Emergent
Eugarosiphon major	submerged		Linergent
Limnobium	Free-floating	Persicaria decipiens	Emergent
laevigatum	Tree nouting		Lineigent
Limnobium spongia	Free-floating	Persicaria glabra	Emergent
Limnobium spongia	Rooted floating-	Persicaria hydropiper	Emergent
r	steamed		8
Najas gracillima	Rooted	Persicaria hydropiperoides	Emergent
5 0	submerged		0
Najas graminea	Rooted	Persicaria lapathifolia	Emergent
	submerged	·	
Najas guadalupensis	Free submerged	Persicaria limbata	Emergent
Najas marina	Rooted	Persicaria maculosa	Emergent
	submerged		_

Najas minor	Rooted	Persicaria meisneriana	Emergent
Najas minor	submerged		Linergent
Najas wrightiana	Rooted	Persicaria punctata	Emergent
r (ajus ((right)ana	submerged		Lineigen
Najas wrightiana	Free submerged	Persicaria minor	Emergent
Ottelia alismoides	Rooted	Persicaria sagittata	Emergent
	submerged	C C	C
Ottelia ovalifolia	Rooted floating-	Persicaria senegalensis	Emergent
	leaved		-
Stratiotes aloides	Rooted	Rumex hydrolapathum	Emergent
	submerged		
Stratiotes aloides	Free submerged	Rumex aquaticus	Emergent
Stratiotes aloides	Emergent	Rumex britannica	Emergent
Vallisneria	Rooted	Montia fontana	Rooted
americana	submerged		submerged
Vallisneria australis	Rooted	Montia fontana	Emergent
	submerged		
Vallisneria nana	Rooted	Montia parvifolia	Emergent
	submerged		
Vallisneria spiralis	Rooted	Ceratophyllum demersum	Rooted
	submerged		submerged
Triglochin palustris	Emergent	Ceratophyllum muricatum	Rooted
			submerged
Triglochin bulbosa	Emergent	Ceratophyllum	Rooted
		submersum	submerged
Triglochin scilloides	Rooted	Hydrocera triflora	Emergent
	submerged		
Triglochin scilloides	Emergent	Lysimachia ciliata	Emergent
Hydrocleys	Rooted floating-	Lysimachia hybrida	Emergent
nymphoides	leaved		
Limnocharis	Emergent	Lysimachia vulgaris	Emergent
laforestii			
Groenlandia densa	Rooted	Hottonia palustris	Free-floating
D. J.	submerged		
Potamogeton	Rooted	Samolus ebracteatus	Emergent
acutifolius	submerged		F (
Potamogeton crispus	Rooted	Samolus valerandi	Emergent
Determenter	submerged	Accolormente entre entre	Emanant
Potamogeton diversifolius	Rooted	Aeschynomene americana	Emergent
	submerged Reated floating	Assohunomore.conore	Emorgant
Potamogeton natans	Rooted floating- leaved	Aeschynomene aspera	Emergent
Potamogeton	Rooted floating-	Aeschynomene evenia	Emergent
nodosus	leaved		Linergent
Potamogeton	Rooted	Aeschynomene indica	Emergent
1 otamogetom	Noticu		Lineigent

perfoliatus	submerged		
Potamogeton	Rooted floating-	Aeschynomene pratensis	Emergent
polygonifolius	leaved		U
Potamogeton	Rooted	Aeschynomene rudis	Emergent
praelongus	submerged	-	C
Potamogeton pusillus	Rooted	Aeschynomene sensitiva	Emergent
	submerged		
Potamogeton	Rooted	Aeschynomene virginica	Emergent
robbinsii	submerged		
Potamogeton	Rooted floating-	Neptunia oleracea	Emergent
tricarinatus	leaved		
Potamogeton	Rooted	Neptunia oleracea	Rooted floating-
trichoides	submerged		steamed
Potamogeton vaseyi	Rooted floating- leaved	Neptunia plena	Emergent
Stuckenia pectinata	Rooted	Vigna lasiocarpa	Emergent
	submerged		
Ruppia cirrhosa	Rooted	Vigna lasiocarpa	Epiphytic
	submerged		
Ruppia cirrhosa	Emergent	Galium palustre	Emergent
Crinum americanum	Emergent	Oldenlandia capensis	Emergent
Iris brevicaulis	Emergent	Hygrophila costata	Emergent
Iris fulva	Emergent	Hygrophila difformis	Emergent
Iris hexagona	Emergent	Hygrophila difformis	Rooted
C	C		submerged
Iris prismatica	Emergent	Hygrophila corymbosa	Emergent
Iris sanguinea	Emergent	Hygrophila corymbosa	Rooted
-	-		submerged
Iris sibirica	Emergent	Hygrophila polysperma	Rooted
			submerged
Iris spuria	Emergent	Hygrophila triflora	Emergent
Iris pseudacorus	Emergent	Lycopus asper	Emergent
Iris setosa	Emergent	Lycopus europaeus	Emergent
Iris versicolor	Emergent	Mentha aquatica	Emergent
Commelina	Emergent	Mentha arvensis	Emergent
benghalensis	J		C
Commelina	Emergent	Mentha longifolia	Emergent
communis	-		-
Commelina diffusa	Emergent	Mentha pulegium	Emergent
Commelina erecta	Emergent	Mentha spicata	Emergent
Cyanotis axillaris	Emergent	Utricularia breviscapa	Free submerged
Cyanotis cucullata	Emergent	Utricularia geminiscapa	Free-floating
Floscopa glomerata	Emergent	Utricularia gibba	Free submerged
Murdannia keisak	Emergent	Utricularia subulata	Emergent
The autimu Reibury	Lineigent		Lineigent

Murdannia nudiflora	Emergent	Glossostigma	Emergent
		cleistanthum	
Murdannia spirata	Emergent	Glossostigma	Rooted
		cleistanthum	submerged
Eichhornia azurea	Rooted floating-	Mimulus ringens	Emergent
	steamed		-
Eichhornia crassipes	Free-floating	Mimulus glabratus	Emergent
Eichhornia	Rooted floating-	Mimulus luteus	Emergent
diversifolia	steamed		C
Eichhornia	Emergent	Mimulus guttatus	Emergent
paniculata	0		0
Heteranthera limosa	Rooted	Bacopa caroliniana	Emergent
	submerged	1	8
Heteranthera	Rooted floating-	Bacopa caroliniana	Rooted
peduncularis	steamed	1	submerged
Heteranthera	Emergent	Bacopa egensis	Emergent
reniformis	C		C
Heteranthera	Rooted floating-	Bacopa egensis	Rooted
rotundifolia	steamed		submerged
Heteranthera	Emergent	Bacopa floribunda	Emergent
rotundifolia	C	1	e
Heteranthera	Rooted	Bacopa lanigera	Emergent
zosterifolia	submerged		-
Monochoria	Emergent	Bacopa monnieri	Emergent
korsakowii			
Monochoria	Emergent	Bacopa repens	Emergent
vaginalis			
Pontederia cordata	Emergent	Bacopa rotundifolia	Rooted floating-
			steamed
Pontederia	Rooted floating-	Callitriche brutia	Rooted
rotundifolia	steamed		submerged
Bolboschoenus	Emergent	Callitriche brutia	Rooted floating-
glaucus			leaved
Bolboschoenus	Emergent	Callitriche	Rooted
maritimus		hermaphroditica	submerged
Bolboschoenus	Emergent	Callitriche heterophylla	Rooted
planiculmis			submerged
Bolboschoenus	Emergent	Callitriche heterophylla	Rooted floating-
robustus			leaved
Carex acuta	Emergent	Callitriche lechleri	Rooted
			submerged
Carex acutiformis	Emergent	Callitriche stagnalis	Rooted floating-
			leaved
Carex aquatilis	Emergent	Callitriche deflexa	Emergent
Carex canescens	Emergent	Callitriche marginata	Emergent

<u> </u>			
Carex crawfordii	Emergent	Callitriche terrestris	Emergent
Carex schweinitzii	Emergent	Callitriche nuttallii	Emergent
Carex shortiana	Emergent	Callitriche hamulata	Rooted
<u> </u>	.		submerged
Carex cuprina	Emergent	Callitriche hamulata	Rooted floating-
Carex diluta	Emorgont	Donatrium iunaaum	leaved
Carex disticha	Emergent	Dopatrium junceum Gratiola aurea	Emergent
	Emergent		Emergent
Carex heterostachya	Emergent	Hippuris vulgaris	Rooted
Carex livida	Emorgont	Hippuris vulgaris	submerged
	Emergent		Emergent
Carex paniculata	Emergent	Limnophila chinensis	Emergent
Carex rostrata	Emergent	Limnophila heterophylla	Emergent
Cyperus acuminatus	Emergent	Limnophila indica	Emergent
Cyperus aggregatus	Emergent	Limnophila sessiliflora	Rooted
Curamia	Emorgont	Limogalla aquatica	submerged
Cyperus alopecuroides	Emergent	Limosella aquatica	Emergent
Cyperus alternifolius	Emergent	Limosella aquatica	Rooted
Cyperus alternitorius	Linergent		submerged
Cyperus amuricus	Emergent	Limosella australis	Emergent
Cyperus articulatus	Emergent	Veronica americana	Emergent
Cyperus compressus	Emergent	Veronica anagallis-	Emergent
offering compression	2	aquatica	2
Cyperus corymbosus	Emergent	Veronica beccabunga	Emergent
Cyperus cuspidatus	Emergent	Veronica catenata	Emergent
Cyperus difformis	Emergent	Veronica scutellata	Emergent
Cyperus digitatus	Emergent	Veronica undulata	Emergent
Cyperus distans	Emergent	Veronica anagalloides	Emergent
Cyperus eragrostis	Emergent	Lindernia crustacea	Emergent
Cyperus esculentus	Emergent	Lindernia diffusa	Emergent
Cyperus fuscus	Emergent	Lindernia dubia	Emergent
Cyperus glomeratus	Emergent	Lindernia procumbens	Emergent
Cyperus haspan	Emergent	Bergia capensis	Emergent
Cyperus imbricatus	Emergent	Elatine ambigua	Rooted
J1	0		submerged
Cyperus involucratus	Emergent	Elatine americana	Rooted
- +			submerged
Cyperus iria	Emergent	Elatine hungarica	Emergent
Cyperus laevigatus	Emergent	Elatine rubella	Emergent
Cyperus ligularis	Emergent	Elatine triandra	Emergent
Cyperus longus	Emergent	Caperonia castaneifolia	Emergent
Cyperus meyenianus	Emergent	Caperonia palustris	Emergent
	0		0

Cyperus michelianus	Emergent	Caperonia palustris	Epiphytic
Cyperus mitis	Emergent	Phyllanthus fluitans	Free-floating
Cyperus ochraceus	Emergent	Torenia thouarsii	Emergent
Cyperus odoratus	Emergent	Ammannia auriculata	Emergent
Cyperus papyrus	Emergent	Ammannia baccifera	Emergent
Cyperus pectinatus	Emergent	Ammannia coccinea	Emergent
Cyperus pilosus	Emergent	Ammannia latifolia	Emergent
Cyperus procerus	Emergent	Ammannia robusta	Emergent
Cyperus prolifer	Emergent	Ammannia verticillata	Emergent
Cyperus prolixus	Emergent	Cuphea carthagenensis	Emergent
Cyperus reflexus	Emergent	Cuphea racemosa	Emergent
Cyperus rotundus	Emergent	Didiplis diandra	Rooted
51	e	1	submerged
Cyperus rotundus	Epiphytic	Lythrum alatum	Emergent
Cyperus serotinus	Emergent	Lythrum hyssopifolia	Emergent
Cyperus sphacelatus	Emergent	Lythrum junceum	Emergent
Cyperus squarrosus	Emergent	Lythrum portula	Emergent
Cyperus strigosus	Emergent	Lythrum salicaria	Emergent
Cyperus	Emergent	Lythrum borysthenicum	Emergent
surinamensis	6	5	U
Cyperus tenuiculmis	Emergent	Lythrum thymifolia	Emergent
Cyperus tenuispica	Emergent	Lythrum volgense	Emergent
Cyperus virens	Emergent	Lythrum tribracteatum	Emergent
Eleocharis acicularis	Emergent	Nesaea triflora	Emergent
Eleocharis	Emergent	Rotala densiflora	Emergent
acutangula			_
Eleocharis	Emergent	Rotala filiformis	Emergent
atropurpurea			
Eleocharis dulcis	Emergent	Rotala indica	Emergent
Eleocharis	Emergent	Rotala mexicana	Emergent
erythropoda			D 1
Eleocharis exigua	Emergent	Rotala mexicana	Rooted
F 11	E	Detale mene eiem	submerged
Eleocharis flavescens	Emergent	Rotala ramosior	Emergent
Eleocharis geniculata	Emergent	Rotala rotundifolia	Emergent
Eleocharis	Emergent	Rotala rotundifolia	Rooted
macrostachya Eleocharis	Emorgont	Trong notong	submerged Pooted floating
bonariensis	Emergent	Trapa natans	Rooted floating- leaved
Eleocharis nigrescens	Emergent	Epilobium ciliatum	Emergent
Eleocharis obtusa	Emergent	Epilobium coloratum	Emergent
Eleocharis		Epilobium cylindricum	
ochrostachys	Emergent	Ephoolum cymaricum	Emergent
ociniostacitys			

Eleocharis	Emergent	Epilobium hirsutum	Emergent
pachycarpa			
Eleocharis palustris	Emergent	Epilobium parviflorum	Emergent
Eleocharis parvula	Emergent	Ludwigia adscendens	Emergent
Eleocharis parvula	Rooted	Ludwigia adscendens	Rooted floating-
F1 1	submerged	T t	steamed
Eleocharis retroflexa	Emergent	Ludwigia decurrens	Emergent
Eleocharis schaffneri	Emergent	Ludwigia grandiflora	Emergent
Eleocharis parodii	Emergent	Ludwigia longifolia	Emergent
Eleocharis wolfii	Emergent	Ludwigia erecta	Emergent
Fimbristylis aestivalis	Emergent	Ludwigia hyssopifolia	Emergent
Fimbristylis alboviridis	Emergent	Ludwigia leptocarpa	Emergent
Fimbristylis aphylla	Emergent	Ludwigia octovalvis	Emergent
Fimbristylis autumnalis	Emergent	Ludwigia palustris	Emergent
Fimbristylis	Emergent	Ludwigia palustris	Rooted
bisumbellata	8		submerged
Fimbristylis	Emergent	Ludwigia peploides	Emergent
complanata	C		e
Fimbristylis cymosa	Emergent	Ludwigia perennis	Emergent
Fimbristylis dichotoma	Emergent	Ludwigia peruviana	Emergent
Fimbristylis	Emergent	Ludwigia polycarpa	Emergent
ferruginea	Linergent		Linergent
Fimbristylis griffithii	Emergent	Ludwigia prostrata	Emergent
Fimbristylis littoralis	Emergent	Ludwigia repens	Rooted floating-
1 monstyns morans	Linergent		steamed
Fimbristylis ovata	Emergent	Ludwigia affinis	Emergent
Fimbristylis	Emergent	Cabomba caroliniana	Rooted
quinquangularis	2		submerged
Fimbristylis	Emergent	Cabomba furcata	Rooted
squarrosa	U		submerged
Fimbristylis	Emergent	Cabomba haynesii	Rooted
umbellaris	C		submerged
Fimbristylis vahlii	Emergent	Cabomba paliformis	Rooted
			submerged
Fuirena ciliaris	Emergent	Nuphar advena	Rooted floating- leaved
Fuirena cuspidata	Emergent	Nuphar advena	Rooted floating- steamed
Fuirena pubescens	Emergent	Nuphar japonica	Rooted floating- leaved
Fuirena scirpoidea	Emergent	Nuphar lutea	Rooted floating-
pointer		Prior Torrew	

			leaved
Isolepis cernua	Emergent	Nuphar pumila	Rooted floating- leaved
Isolepis setacea	Emergent	Nuphar rubrodisca	Rooted floating- leaved
Isolepis fluitans	Emergent	Nymphaea alba	Rooted floating- leaved
Kyllinga brevifolia	Emergent	Nymphaea capensis	Rooted floating- leaved
Kyllinga gracillima	Emergent	Nymphaea elegans	Rooted floating- leaved
Kyllinga melanosperma	Emergent	Nymphaea lotus	Rooted floating- leaved
Kyllinga odorata	Emergent	Nymphaea mexicana	Rooted floating- leaved
Kyllinga squamulata	Emergent	Nymphaea nouchali	Rooted floating- leaved
Lagenocarpus guianensis	Emergent	Nymphaea odorata	Rooted floating- leaved
Lepironia articulata	Emergent	Nymphaea rubra	Rooted floating- leaved
Lipocarpha maculata	Emergent	Houttuynia cordata	Emergent
Lipocarpha micrantha	Emergent	Saururus cernuus	Emergent
Oxycaryum cubense	Epiphytic	Nelumbo lutea	Rooted floating- leaved
Pycreus flavescens	Emergent	Nelumbo nucifera	Emergent
Pycreus lanceolatus	Emergent	Caltha palustris	Emergent
Pycreus macrostachyos	Emergent	Myosurus minimus	Emergent
Pycreus mundii	Emergent	Ranunculus flammula	Emergent
Pycreus polystachyos	Emergent	Ranunculus hederaceus	Rooted submerged
Pycreus pumilus	Emergent	Ranunculus hederaceus	Emergent
Pycreus flavidus	Emergent	Ranunculus lingua	Emergent
Pycreus sanguinolentus	Emergent	Ranunculus penicillatus	Rooted submerged
Pycreus unioloides	Emergent	Ranunculus multifidus	Emergent
Rhynchospora corymbosa	Emergent	Ranunculus lateriflorus	Emergent
Rhynchospora tenuis	Emergent	Ranunculus ophioglossifolius	Emergent
Schoenoplectiella erecta	Emergent	Ranunculus ophioglossifolius	Rooted submerged
Schoenoplectiella	Emergent	Ranunculus reptans	Emergent
rr			

juncoides			
Schoenoplectiella lateriflora	Emergent	Ranunculus repens	Emergent
Schoenoplectiella lineolata	Emergent	Ranunculus sceleratus	Emergent
Schoenoplectiella mucronata	Emergent	Ranunculus trichophyllus	Rooted submerged
Schoenoplectiella supina	Emergent	Ranunculus trichophyllus	Emergent
Schoenoplectus californicus	Emergent	Halerpestes cymbalaria	Emergent
Schoenoplectus lacustris	Emergent	Myriophyllum aquaticum	Emergent
Schoenoplectus smithii	Emergent	Myriophyllum crispatum	Rooted submerged
Schoenoplectus tabernaemontani	Emergent	Myriophyllum crispatum	Emergent
Schoenoplectus triqueter	Emergent	Myriophyllum heterophyllum	Rooted submerged
Schoenus apogon	Emergent	Myriophyllum hippuroides	Rooted submerged
Scirpoides holoschoenus	Emergent	Myriophyllum humile	Emergent
Scirpus cyperinus	Emergent	Myriophyllum humile	Rooted submerged
Scleria gaertneri	Emergent	Myriophyllum pinnatum	Emergent
Scleria lacustris	Emergent	Myriophyllum pinnatum	Rooted submerged
Eriocaulon truncatum	Emergent	Myriophyllum quitense	Rooted submerged
Eriocaulon cinereum	Rooted submerged	Myriophyllum sibiricum	Rooted submerged
Eriocaulon cinereum	Emergent	Myriophyllum simulans	Rooted submerged
Eriocaulon decangulare	Emergent	Myriophyllum simulans	Emergent
Eriocaulon melanocephalum	Rooted submerged	Myriophyllum spicatum	Rooted submerged
Juncus anthelatus	Emergent	Myriophyllum spicatum	Emergent
Juncus brachycarpus	Emergent	Proserpinaca intermedia	Emergent
Juncus brevicaudatus	Emergent	Crassula aquatica	Emergent
Juncus articulatus	Emergent	Crassula aquatica	Rooted submerged
Juncus bufonius	Emergent	Crassula helmsii	Emergent
Juncus bulbosus	Emergent	Crassula helmsii	Rooted

			submerged
Juncus diffusissimus	Emergent	Crassula natans	Emergent
Juncus effusus	Emergent	Crassula natans	Rooted floating-
			steamed
Juncus hybridus	Emergent	Crassula peduncularis	Emergent
Juncus inflexus	Emergent	Crassula vaillantii	Emergent
Juncus	Emergent	Ipomoea alba	Emergent
microcephalus			
Juncus oxycarpus	Emergent	Ipomoea alba	Epiphytic
Juncus pelocarpus	Emergent	Ipomoea aquatica	Emergent
Juncus subnodulosus	Emergent	Ipomoea asarifolia	Emergent
Juncus ensifolius	Emergent	Ipomoea carnea	Emergent
Juncus	Emergent	Ipomoea carnea	Epiphytic
conglomeratus			
Juncus dregeanus	Emergent	Sphenoclea zeylanica	Emergent
Juncus lomatophyllus	Emergent	Hydrolea spinosa	Emergent
Juncus striatus	Emergent	Hydrolea zeylanica	Emergent
Mayaca fluviatilis	Rooted	Stellaria aquatica	Emergent
	submerged		
Agrostis perennans	Emergent	Illecebrum verticillatum	Emergent
Agrostis lachnantha	Emergent	Illecebrum verticillatum	Rooted
			submerged
Agrostis stolonifera	Emergent	Hypericum elodes	Emergent
Amphibromus	Emergent	Hypericum mutilum	Emergent
fluitans			
Beckmannia	Emergent	Corrigiola litoralis	Emergent
eruciformis			
Beckmannia	Emergent	Ranunculus japonicus	Emergent
syzigachne			
Catabrosa aquatica	Emergent	Trapa natans var.	Rooted floating-
Saccharum ravennae	Emangant	bispinosa Nymphasa nayahali yar	leaved Reated floating
Saccharum Tavennae	Emergent	Nymphaea nouchali var. caerulea	Rooted floating- leaved
Saccharum	Emergent	Angelica pachycarpa	Emergent
spontaneum	Linergent	ningeneu paenyeurpu	Emergent
Sacciolepis indica	Emergent	Carex viridula subsp.	Emergent
r	0	oedocarpa	0
Sacciolepis striata	Emergent	Isolepis cernua var.	Emergent
1	0	platycarpa	0
Scolochloa	Emergent	Montia fontana subsp.	Rooted
festucacea		chondrosperma	submerged
Spartina pectinata	Emergent	Montia fontana subsp.	Emergent
Chrysopogon		chondrosperma Spartina townsendii	

nigritanus			
Chrysopogon zizanioides	Emergent	Nymphaea marliacea	Rooted floating- leaved
Zizania aquatica	Emergent	Typha glauca	Emergent
Zizania latifolia	Emergent	Halophila stipulacea	Rooted submerged
Zizania palustris	Emergent	Althaea longiflora	Emergent
Acroceras macrum	Emergent	Potamogeton fluitans	Rooted floating- leaved
Acroceras zizanioides	Emergent	Zostera noltii	Rooted submerged
Alopecurus aequalis	Emergent	Salvinia olfersiana	Free-floating
Alopecurus geniculatus	Emergent	Eleocharis mamillata subsp. austriaca	Emergent
Alopecurus longiaristatus	Emergent	Ludwigia peploides subsp. montevidensis	Emergent
Arundo donax	Emergent	Smilax rotundifolia	Emergent
Brachiaria arrecta	Emergent	Smilax rotundifolia	Epiphytic
Brachiaria arrecta	Rooted floating- steamed	Typha provincialis	Emergent
Brachiaria eruciformis	Emergent	Cladium mariscus subsp. jamaicense	Emergent
Brachiaria mutica	Emergent	Juncus effusus subsp. solutus	Emergent
Brachiaria subquadripara	Emergent	Zizania aquatica var. interior	Emergent
Brachiaria fasciculata	Emergent	Limnophila ludoviciana	Emergent
Dimeria ornithopoda	Emergent	Najas guadalupensis subsp. olivacea	Free submerged
Echinochloa colona	Emergent	Cyperus michelianus subsp. pygmaeus	Emergent
Echinochloa crus- galli	Emergent	Halophila decipiens	Rooted submerged
Echinochloa crus- pavonis	Emergent	Anemopsis californica	Emergent
Echinochloa holciformis	Emergent	Chloracantha spinosa	Emergent
Echinochloa oryzoides	Emergent	Ludwigia peploides var. glabrescens	Emergent
Echinochloa polystachya	Rooted floating- steamed	Persicaria amphibia var. natans	Rooted floating- leaved
Echinochloa pyramidalis	Emergent	Cullen americanum	Emergent
Echinochloa stagnina	Emergent	Nymphaea daubeniana	Rooted floating- leaved

Echinochloa walteri	Emergent	Ludwigia kentiana	Emergent
Glyceria arkansana	Emergent	Ludwigia kentiana	Rooted
	-	_	submerged
Glyceria canadensis	Emergent	Eleocharis flavescens var. olivacea	Emergent
Glyceria declinata	Emergent	Potamogeton undulatus	Rooted
			submerged
Glyceria fluitans	Emergent	Nymphaea thiona	Rooted floating- leaved
Glyceria grandis	Emergent	Artemisia codonocephala	Emergent
Glyceria maxima	Emergent	Astragalus uliginosus	Emergent
Glyceria notata	Emergent	Nymphaea odorata subsp. tuberosa	Rooted floating- leaved
Glyceria septentrionalis	Emergent	Cyperus nutans var. eleusinoides	Emergent
Glyceria striata	Emergent	Dentella repens var. serpyllifolia	Emergent
Gynerium sagittatum	Emergent	Halodule wrightii	Rooted
			submerged
Helictotrichon neesii	Emergent	Juncus acutus subsp. leopoldii	Emergent
Hymenachne	Rooted floating-	Ludwigia adscendens	Emergent
amplexicaulis	steamed	subsp. diffusa	
Isachne globosa	Emergent	Ludwigia adscendens	Rooted floating-
		subsp. diffusa	steamed
Ischaemum latifolium	Emergent	Juncus castaneus	Emergent
Ischaemum rugosum	Emergent	Ceratophyllum muricatum	Rooted
		subsp. australe	submerged
Leersia hexandra	Emergent	Lycopodiella caroliniana var. meridionalis	Emergent
Leersia oryzoides	Emergent	Sagittaria lancifolia subsp. media	Emergent
Leptochloa fusca	Emergent	Ranunculus aquatilis var.	Rooted
		diffusus	submerged
Leptochloa panicea	Emergent	Ranunculus aquatilis var. diffusus	Emergent
Leptochloa scabra	Emergent	Sagittaria montevidensis subsp. calycina	Emergent
Luziola peruviana	Emergent	Arundinaria gigantea subsp. tecta	Emergent
Luziola subintegra	Emergent	Posidonia oceanica	Rooted
0	G		submerged
0 11 '		D1 1 C	
Oryza glaberrima	Emergent	Pluchea rufescens	Emergent

		thermalis	leaved
Oryza rufipogon	Emergent	Angelica purpurascens	Emergent
Oryza sativa	Emergent	Limnophila rugosa	Emergent
Panicum aquaticum	Emergent	Crassula natans var. minus	Emergent
Panicum	Emergent	Crassula natans var. minus	Rooted floating-
dichotomiflorum			steamed
Panicum gilvum	Emergent	Cyperus digitatus subsp. auricomus	Emergent
Panicum laxum	Emergent	Pontederia reniformis	Rooted floating-
			steamed
Panicum maximum	Emergent	Paspalum geminatum	Emergent
Panicum mertensii	Emergent	Austroderia richardii	Emergent
Panicum paludosum	Rooted floating-	Batrachium trichophyllum	Rooted
	steamed		submerged
Panicum paludosum	Emergent	Carex viridula subsp. brachyrhyncha	Emergent
Panicum repens	Emergent	Cladium mariscus subsp. intermedium	Emergent
Panicum sumatrense	Emergent	Cladium tetraquetrum var. planifolium	Emergent
Panicum subalbidum	Emergent	Polygonum thunbergii	Emergent
Paspalidium geminatum	Emergent	Asclepias incarnata subsp. pulchra	Emergent
Paspalum acuminatum	Emergent	Cyperus sumatrensis	Emergent
Paspalum distichum	Emergent	Ludwigia arcuata x repens	Emergent
Paspalum	Emergent	Ludwigia arcuata x repens	Rooted floating-
fasciculatum			steamed
Paspalum modestum	Emergent	Schoenoplectus glaucus	Emergent
Paspalum notatum	Emergent	Glyceria pedicellata	Emergent
Paspalum quadrifarium	Emergent	Eriocaulon benthamii	Emergent
Paspalum scrobiculatum	Emergent	Schoenoplectus kuekenthalianus	Emergent
Paspalum vaginatum	Emergent	Callitriche peploides	Emergent
Paspalum virgatum	Emergent	Hygrophila stricta	Emergent

1568 APPENDIX D -- Native species per region

1569 Note: Readers can request to the corresponding author the full data set and all scripts

- 1570 regarding data manipulation and analysis.
- 1571

Table D1 - Top 10 regions ranked according to the number of native species in each region
(upper section) and according to the species-area ratio (bottom section). Regions are named
according to the TDWG scheme (Brummitt et al., 2001) level 4. Country names are
extracted from GloNAF database. N. of Species is the count of native species in each
region; Spec./Area is the ratio between the number of native species and the area (in km2)
of each polygon (van Kleunen et al., 2019). Type column identifies island and mainland
regions. Region column shows the identity of each area (polygon) in the dataset.

1579

Regions ranked considering the absolute number of native species				
TDWG4 Region	Country	N. of Species	Туре	Region
Bolivia	Bolivia	191	Mainland	151
Veracruz	Mexico	179	Mainland	474
Italy	Italy	172	Mainland	411
Texas	United States of Americ	a 171	Mainland	797
Colombia	Colombia	170	Mainland	306
France	France	168	Mainland	340
Macedonia	Macedonia	165	Mainland	481
Peru	Peru	165	Mainland	530
Japan	Japan	164	Island	416
Yunnan	China	162	Mainland	277
Regi	ons ranked considering	the species-area ra	atio Regions	
TDWG4 Region	Country N	. of Species/Km ²	Туре	Region
Seychelles	Seychelles	43.71	Island	707
Seychelles	Seychelles	28.61	Island	680
Seychelles	Seychelles	18.43	Island	692
Samoa	Samoa	16.63	Island	814
Seychelles	Seychelles	16.31	Island	705
Seychelles	Seychelles	9.53	Island	719
Seychelles	Seychelles	8.52	Island	690
Macau	Macao	8.49	Mainland	284
Seychelles	Seychelles	8.39	Island	683
Seychelles	Seychelles	6.75	Island	718

1580

1581

1582 4 GENERAL CONCLUSION

1583

The two approaches of this thesis represent advances in the study of the ecology of 1584 aquatic macrophyte invasion both locally and globally. Analyzing the introduction and 1585 expansion of *H. verticillata*, it is noted that this species does not represent a substantial 1586 1587 threat to the upper Paraná river floodplain (UPRF). This finding is valuable for managers with a limited amount of resources since the management of this species is very costly and 1588 practically impossible in large areas such as UPRF. The monitoring used showed evidence 1589 of anthropogenic changes in the abiotic conditions of environments not colonized by H. 1590 verticillata at first, but which, over time, proved to be favorable for its establishment. Such 1591 evidence leads us to the conclusion that constant monitoring of *H. verticillata* and abiotic 1592 conditions in the face of anthropogenic impacts is necessary. However, managers working 1593 in UPRF or other floodplains with a similar situation should consider monitoring studies to 1594 assess the lack of impact, or even the positive interactions of this species, before spending 1595 1596 on management strategies.

1597 Globally, this study contributes a valuable dataset that can be used by local 1598 managers in different locations around the world. It has been shown that most introductions of aquatic macrophyte species occur via intentional introduction pathways, which are easier 1599 1600 to contain. As this work progressed by identifying such pathways, as well as the potential source and sink regions for naturalized macrophyte species, a tool is created for managers 1601 1602 and decision-makers related to aquatic environments. Our results could be used to prevent introductions of species into progress, or even anticipate such introductions. The data set, as 1603 well as the scripts used in the analizes can be requested from the corresponding author. 1604