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Padrões de distribuição espacial das assembleias de peixes em reservatórios 
neotropicais 

 

RESUMO 

Dada a grande diversidade de espécies de peixes contidas na região Neotropical, bem como a 
importância desses organismos como elo nas cadeias tróficas aquáticas, se faz necessário 
conhecer os distintos processos que governam a organização espacial de suas comunidades. 
Sabe-se que a estrutura das assembleias de peixes varia acentuadamente em relação ao espaço 
a depender de fatores abióticos, interações bióticas e processos de dispersão. Entretanto, esses 
fatores determinantes na estruturação das comunidades de peixes variam indiscriminadamente 
em corpos aquáticos barrados. O curso de grandes rios tem sido alterado devido à construção 
de reservatórios e o número de empreendimentos em construção ou inventariados vem 
aumentando significativamente nas últimas décadas. Portanto, avaliar como ocorre a 
organização espacial das assembleias de peixes nesses ambientes (i.e., barrados), bem como 
desvendar os preditores associados a essa organização é de extrema importância para fins 
conservacionistas e implementações de medidas de manejo. Para investigar tais aspectos, na 
primeira abordagem foram estudadas três cascatas de reservatórios pertencentes a diferentes 
bacias hidrográficas, para avaliar os efeitos da disposição em série dos reservatórios nos padrões 
de diversidade, distribuição e riqueza das assembleias de peixes. Na segunda abordagem, foram 
avaliados 29 reservatórios situados no estado do Paraná com o objetivo de identificar relações 
entre a organização das guildas tróficas de peixes com preditores ambientais, espaciais e 
morfológicos. Os resultados encontrados pelas duas abordagens sugerem que, na maioria dos 
reservatórios estudados, as alterações ambientais provocadas devido à construção de barragens, 
bem como suas características morfológicas e modos de operação têm efeitos negativos sobre 
a diversidade, distribuição e abundância das espécies de peixes e exercem influência sobre as 
diferentes guildas tróficas de peixes.  

 
Palavras-chave: Cascata de reservatórios. Guildas tróficas. Metacomunidades. Organização 

espacial. Peixes de água doce.  
 
 



 
 

 

 

Spatial distribution patterns of fish assemblages in Neotropical reservoirs 
 
 

ABSTRACT 

Given the great diversity of Neotropical fish species, as well as the importance of such 
organisms as a link within aquatic food chains, it is essential to assess different processes that 
drive the spatial organization of their communities. It is known that the structure of fish 
assemblages varies markedly in relation to space, depending on abiotic factors, biotic 
interactions, and dispersion processes. However, these determining factors in the structuring of 
fish communities vary indiscriminately in dammed aquatic bodies. The course of large rivers 
has been altered due to the construction of reservoirs and the number of projects under 
construction or inventoried has been increasing significantly in recent decades. Therefore, 
evaluating how the spatial organization of fish assemblages occurs in environments (i.e., 
dammed), as well as unraveling the predictors associated with this organization is of extremely 
important for conservation purposes and the implementation of management measures. To 
investigate such aspects in dammed environments, in the first study three cascades of reservoirs 
belonging to different hydrographic basins were studied, in which the effects of these reservoirs 
arranged in series on the patterns of diversity, distribution and richness of the assemblages were 
evaluated. In the second study, 29 reservoirs located in the state of Paraná were evaluated in 
order to identify relationships between the organization of fish trophic guilds and 
environmental, spatial and morphological predictors. The results found suggest that, in most of 
the studied environments, the environmental changes caused by the construction of dams, as 
well as their morphological characteristics and modes of operation have negative effects on the 
diversity, distribution and abundance of fish species and exert an influence on the different fish 
trophic guilds.  
 
Keywords: Cascade of reservoirs. Trophic guilds. Metacommunities. Spatial organization. 

Freshwater fish. 
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1 INTRODUCTION 
 

Fish are a fundamental link in aquatic food chains, have limited dispersion, interact 

closely with environmental conditions, in addition to having great economic value as a 

basis for human food consumption (Petry et al. 2011). Freshwater environments comprise 

about 1% of the Earth's surface, however, they contain approximately 45% of the planet's 

fish species (Lévêque et al. 2008). Specifically, the Neotropical region is home to the 

greatest diversity of freshwater fish species in the world, with estimates of approximately 

9,000 species (Birindelli & Sidlauskas 2018). Inserted in this context, Brazil, which has 

a vast territorial dimension and large hydrographic basins, stands out as the country with 

the greatest richness of this ichthyofaunistic diversity (Agostinho et al. 2005), with 

approximately 3,500 species of fish cataloged in its various freshwater environments 

(Froese & Pauly 2020). Furthermore, it is noteworthy that the country also exhibits an 

extraordinary rate of endemism, since many species have a geographical distribution 

limited to the hydrographic systems in which they occur (McAllister et al. 1997). Thus, 

knowing the processes that govern the organization of these communities through space 

is essential to help in the conservation of the biodiversity of the Brazilian ichthyofauna 

(Legendre et al. 2005; Leprieur et al. 2009; Zbinden & Matthews 2017). 

 The structure of ecological communities varies markedly over space and time, and 

these variations have many causes and consequences. Typically, communities are 

assembled by a combination of abiotic factors, biotic interactions, and dispersal 

processes/capacity (Chase & Leibold 2003; Leibold et al. 2004). Unraveling the relative 

importance of these factors has been a major challenge for understanding this assemble 

(Holyak et al. 2005; Hildrew 2009; Mittelbach 2012), as well as for management, 

conservation and monitoring of biodiversity (Brown et al. 2011; Heino et al. 2013). These 
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studies become even more important in disturbed aquatic systems, as they can help to 

better understand the dynamics of fish communities and generate useful information for 

the conservation, restoration and management of rivers that suffer high levels of 

degradation. 

 The course of large rivers has been heavily modified by human disturbances 

(Nilsson et al. 2005; Vorosmarty et al. 2010). Among the main sources of degradation of 

aquatic environments are the construction of dams (Dudgeon et al. 2006). The 

construction of large dams severely alters the hydrological regime (Poff et al. 2007), 

causing the loss of natural environments and changes in limnological conditions and 

spatial heterogeneity. The changes caused in the continued transfer of matter, energy and 

nutrients from the river due to dams affect the availability of resources, reproductive 

success and fish recruitment, with effects on species composition (Ward & Stanford 1983; 

Agostinho et al. 2004; Luz-Agostinho et al. 2008; Oliveira et al. 2015). In this way, fish 

assemblages are reorganized along the river course (Pelicice et al. 2018), changing the 

patterns of diversity in space (Oliveira et al. 2005). This transformation process is even 

more intense when these reservoirs are arranged in series (cascades), promoting 

cumulative and synergistic impacts that can propagate throughout the river. 

 The number of dams has increased significantly in recent decades to meet the 

energy demands arising from the rapid growth of human population and economy, 

especially in the Neotropical region (Winemiller et al. 2016). Only a small fraction of 

rivers in the world remains unchanged (Vorosmarty et al. 2010). For Brazil, recent 

estimates indicate that 1,027 dams are under construction or have already been 

inventoried (Zarlf et al. 2015). Given this scenario, it is extremely important to assess 

how fish assemblages are distributed (e.g., in relation to richness, abundance and trophic 
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organization) in barred environments and which factors predict possible patterns. These 

aspects were addressed in two approaches, briefly described below. 

 In the first approach we analyze the effects of three reservoir cascades on the 

diversity, distribution and abundance of fish assemblages, seeking to identify convergent 

spatial patterns and inferences about the mechanisms that structure fish 

metacommunities. In the second approach, we seek to understand the main factors 

responsible for structuring the trophic guilds of fish, evaluating the relative importance 

of spatial, morphological and environmental characteristics in different reservoirs. 
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2 EFFECTS OF RESERVOIR CASCADES ON DIVERSITY, DISTRIBUTION, 
AND ABUNDANCE OF FISH ASSEMBLAGES IN THREE NEOTROPICAL 
BASINS 
 

ABSTRACT 
 

River systems are characterized by the existence of longitudinal processes structuring fish 
assemblages. However, the construction of dams, many of them built in cascades, are 
disrupting these processes worldwide. Here, we analyzed the fish assemblages across 
reservoir cascades in three Brazilian river basins (Iguaçu, Paranapanema, and São 
Francisco) to identify whether there is a spatial convergent pattern and to infer the 
mechanisms structuring metacommunities in these Neotropical rivers. Linear models 
were used to assess the effect of reservoir cascades, and the associated morphological, 
spatial and environmental variables, on the species richness and diversity along them. We 
analyzed if reservoir cascades produce similar species distribution patterns using the 
elements of metacommunity structure framework and beta diversity and its components. 
Finally, super-organizing maps were used to find common trends in species abundances 
and the environmental, morphological, and spatial variables along cascades. The negative 
relationship between species richness and diversity and the position in the cascade 
indicated diversity declines along cascades. However, the resulting metacommunities 
varied in each river basin. They conformed a quasi-Gleasonian structure, a Clementsian 
structure, and a nested structure with stochastic species loss in the Iguaçu, Paranapanema, 
and São Francisco River basins, respectively. Generally, total beta-diversity (βsor) and 
species turnover (βsim) between pairs of reservoirs increased along reservoir cascades, 
especially at the downstream end, whereas nestedness (βsne) depicted distinct trends in 
each river basin. By contrast, there were general decreases in species abundances along 
cascades, especially downstream the fourth reservoir, with very few species benefiting 
from such situation. In general, species present in the downstream reservoirs were subsets 
of the species present in the upstream reservoirs (particularly in the São Francisco River 
Basin), while some had singular responses to the environmental gradient and appeared or 
disappeared at random. Although the cascade has an effect on fish assemblages, reservoir 
characteristics and operation also influence them. Our study highlights the impact of such 
structures and shows general patterns of fish assemblages that should help to mitigate the 
resulting ecological impacts and assist the process of infrastructure planning. 

Keywords: Freshwater fish, Tropical reservoirs, Cascading Reservoir Continuum 
Concept, Serial dams, Serial Discontinuity Concept 
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2.1 Introduction 
 

A major goal of community ecology is to identify and interpret the patterns of species 

distribution and abundance (Leibold et al., 2004; Mittelbach, 2012). A comprehension of 

these patterns will permit us to better understand and model both current and future 

distributions of species. Environmental conditions, both biotic and abiotic, are the main 

factors that govern species occurrence and hence communities in terms of species 

richness and diversity (Jackson et al., 2001; Peres-Neto, 2004). A variety of distributional 

patterns have been hypothesized in nature (e.g., Elements of metacommunity structure 

(EMS) approach; Leibold and Mikkelson, 2002) to describe community structure through 

the analysis of spatial organization. So, the recognition of distributional patterns is the 

first step to understand the processes structuring ecological communities and the general 

rules that govern them. Thus, the identification of a non-random spatial organization in 

communities is an evidence of the action of at least one underlying structuring factor 

(Oliveira et al., 2005). 

In community ecology, the interaction between organisms and the environment is 

often illustrated by the concept of environmental filtering, as abiotic conditions can act 

as thresholds precluding species presence (Kraft et al., 2015). Both environmental 

filtering and biotic interactions influence species assemblages and interact dynamically 

to drive species distribution patterns, as the strength and direction of biotic interactions 

can strongly influence and be influenced by the abiotic context (Callaway et al., 2002; 

Kraft et al., 2015). Environmental gradients partly act as environmental filters that allow 

or exclude species in local communities depending on the combination of organism traits, 

abiotic features, and selective forces (Capers et al., 2010; Comte et al., 2016; Daga et al., 

2012; Poff, 1997). Therefore, finding similar patterns in independent systems can suggest 
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the existence of fundamental mechanisms driving the organization of the communities 

(Tisseuil et al., 2012). 

River systems are characterized by some predictable environmental gradients 

caused by the longitudinal variation in abiotic and biotic factors (e.g., temperature, slope, 

water flow, conductivity), which drive the structure of the environments and communities 

(Johnson et al., 1995; Vannote et al., 1980). These longitudinal patterns along streams 

and rivers courses have been described using various conceptual frameworks, such as the 

continuous river concept, the spiral nutrient concept and the process domain concept 

(Montgomery, 1999; Vannote et al., 1980; Webster and Patten, 1979), all of them 

assuming an uninterrupted continuum. The course of rivers, however, has been intensely 

modified by anthropogenic activities (Grill et al., 2019; Vörösmarty et al., 2010; Zarfl et 

al., 2015). The construction of large dams alters natural flow regimes, nutrient and 

sediment fluxes and favors dramatic changes in the former habitats, typically by depleting 

downstream segments and turning upstream segments into homogeneous uninterrupted 

lentic habitats (Poff et al., 2007; Santos et al., 2020). Consequently, fish assemblages are 

reorganized along the river course, changing the biodiversity distribution patterns 

(Agostinho et al., 2000; Oliveira et al., 2005). The new ecosystem created by damming 

may have its impacts explained by the serial discontinuity concept (SDC) (Ward and 

Stanford, 1983). According to this concept, these infrastructures causes discontinuity in 

physical and biological characteristics, especially in relation to matter, energy, and 

nutrient dynamics (Granzotti et al., 2018; Santos et al., 2018; Ward and Stanford, 1983). 

The SDC predicts shifts in biotic and abiotic factors that vary in intensity and direction 

(upstream or downstream) as a function of the distance to the reservoir. The loss of 

connectivity by impoundments leads to longitudinal shifts in different variables (e.g., 

temperature, substrate, nutrients and biodiversity), especially when these impoundments 
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are arranged in cascades, producing decreases of fish diversity in downstream river 

segments or dams (Ward and Stanford, 1983). Furthermore, due to the discontinuities 

caused by dams, species appear or disappear from local assemblages, creating turnover 

and/or nested longitudinal patterns, which change the distribution of fish assemblages 

(Pelicice et al., 2018). 

The impacts and environmental changes caused in river systems are even more 

intense when reservoirs are built in cascades or series, as they produce cumulative or 

synergistic impacts that can propagate throughout the river system (Barbosa et al., 1999; 

Santos et al., 2018). More pronounced biotic and abiotic modifications are common 

because river systems present interconnected ecological processes but, especially, when 

the outflow of a reservoir is the only inflow of the downstream one (Santos et al., 2020). 

In this regard, the cascading reservoir continuum concept (CRCC) was proposed by 

Barbosa et al. (1999) as a conceptual framework to formalize the ecological processes in 

systems with dam sequences. This concept highlights the changes that occur in 

environmental factors, such as water quality, sediment and nutrient fluxes or connectivity 

of the river segments. Reservoir cascades typically lead to oligotrophication of 

downstream reservoirs with a direct consequence in the biodiversity and distribution 

patterns (Barbosa et al., 1999; Ney, 1996; Straškraba, 1994). In addition, decreases in 

biodiversity and functional changes in the composition of assemblages, especially due to 

the decreases in habitat heterogeneity, are expected to be frequent (Ward and Stanford, 

1983), as it has been already verified in some studies (Loures and Pompeu, 2018; Santos 

et al., 2016). For example, Santos et al. (2020) found a decrease in the abundance of 

detritivorous species along the longitudinal gradient of a reservoir cascade due to an 

intense oligotrophication process. This impoverishment of the biotic community can be 

expected for other functional groups in reservoir cascades, especially over time, since the 
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change in the trophic state of the reservoirs typically results in a decrease in primary 

productivity of the system (Barbosa et al., 1999), negatively affecting the secondary 

productivity and finally the fishes (Hoeinghaus et al., 2009). Nevertheless, the ultimate 

configuration and extension of the effects may depend on the specificities of the reservoir 

cascade, such as the morphological/operational (e.g., residence time, volume or depth) 

and spatial (e.g., cascade position, altitude or distance to source) characteristics of the 

constituent reservoirs and their interactions with the original matter and sediment fluxes 

of the river basin (Santos et al., 2018; Straškraba et al., 1993). 

In tropical countries, a large expansion of hydroelectric projects is in progress and 

a myriad of additional dams have been projected to satisfy the energy demands of the 

rapidly-growing human population and economic development (Lees et al., 2016; 

Winemiller et al., 2016; Zarfl et al., 2015). Only in Brazil, 1,027 dams, including large 

and small hydroelectric, are under construction or inventoried (Zarfl et al., 2015). For a 

future scenario (2030) in which all projects are supposed to be implemented, the number 

of barred water bodies will likely double, with more than 70% of the plants being installed 

in streams where there are no impoundments yet (Toffoli, 2015). Modifications in 

environmental conditions, following reservoir construction, can result in varied effects on 

the original fish assemblages (Bailly et al., 2016). Therefore, understanding the effects of 

reservoir cascades on fish assemblages is an urgent need, especially in countries such as 

Brazil where hydropower represents the main energy source. 

In this context, we analyzed the fish assemblages across reservoir cascades in 

three Brazilian river basins (Iguaçu, Paranapanema, and São Francisco) to identify 

whether there is a spatial convergent pattern and to infer the mechanisms structuring 

metacommunities. We hypothesized that reservoir cascades would have a convergent 

controlling effect on the diversity, distribution, and abundance of fish assemblages in 
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these different river basins. We expected a downstream reduction in species diversity 

along reservoir cascades and, as a consequence, a nestedness metacommunity structure. 

We also expected a decrease in the abundance of some species along the cascade, since 

reservoirs become less productive and consequently would sustain depleted communities. 

Specifically, we evaluated the three reservoir cascades in three different ways. First, we 

assess species diversity patterns using richness and diversity indices, and through linear 

models we tested and disentangled the effects of the environmental, spatial, and 

morphological characteristics of the reservoir cascades on species diversity. Secondly, to 

test for the existence of similarities in assemblage structure, we applied the elements of 

metacommunity structure (EMS) framework to delineate metacommunity types in each 

reservoir cascade, then we compared the dissimilarities between upstream and 

downstream reservoirs using beta diversity and performed a DistLM (Distance-based 

Linear Model) to verify the effects of the environmental, spatial, and morphological 

characteristics of the reservoir cascades on beta diversity components. Finally, we used 

super-organizing maps to identify common trends (i.e., clusters) in species abundances 

and the environmental, morphological, and spatial variables along cascades. 

 

2.2 Methods 

2.2.1 Study area 
 

The data used in this study were collected from three large Brazilian basins: Iguaçu River, 

Paranapanema River, and São Francisco River (Fig. 1). The first two basins are located 

in the Paraná River basin, which has the second largest drainage area (2.8 · 106 km2) 

after the Amazon basin (Galves et al., 2009; Stevaux et al., 1997) and is the most 

impounded Neotropical basin with 72% of its hydraulic potential already exploited 
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(Souza-Filho et al., 2004; Agostinho et al., 2007). Currently, there are 54 dams built in 

the basin and an additional ongoing project (AECweb, 2020; ITAIPU, 2020).  

 

 

Fig. 1. Location of the hydrographic basins and their respective reservoir cascades in Brazil: A) 

Iguaçu River basin, B) Paranapanema River basin, and C) São Francisco River basin. 
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The Iguaçu River basin has an area of approximately 7.2 · 103 km2 and runs 1,060 

km westward receiving water from various tributaries until it flows into the Paraná River. 

The high slope of the Iguaçu River basin, on the third plateau, constituted a major 

attraction for hydroelectric use, and from 1975 it began to change dramatically with the 

installation of the first large hydroelectric plant (Foz do Areia). Although there are 12 

large reservoirs in the middle/lower and another three in the upper Iguaçu River basin 

(Daga et al., 2016), in this study we investigated five of them arranged in cascade (Fig. 

1). These reservoirs in cascade occupy about 41.0% of the river length and turned the 

stretch of the great rapids of Iguaçu in a succession of large lakes, representing 655 km2 

of flooded area (Barão, 2007). 

The Paranapanema River basin is a main tributary of the upper Paraná River basin 

and has a drainage basin of approximately 106,500 km2 (ANA, 2016). Dozens of 

hydropower dams were built in the basin during the 20th century and eleven large dams 

regulate the main channel, affecting the upper, middle and lower reaches of the basin 

(Pelicice et al., 2018). Here we studied seven of these cascading reservoirs (Fig. 1), which 

together flood approximately 1,800 km2 of its drainage basin (Agostinho et al., 2008). 

The São Francisco River basin, the third largest river basin in Brazil and the 25th 

longest river in the world, has a drainage area of approximately 636,420 km2, occupies 

about 8% of the Brazilian territory, and has its hydroelectrical potential highly exploited, 

reaching a total flooded area of 5856.2 km2. The cascade reservoir complex of the São 

Francisco River basin is the only complex in Latin America inserted in a semi-arid region 

known as the Drought Polygon, where marked seasonal variations in water flow occur. 

Currently, the São Francisco River basin has 28 hydroelectric dams and complexes of 

dams providing 10.8 GW of installed generation capacity, however, in this study, we 

investigated six of them arranged in a cascade. There are approximately 117 proposed 



 
 

 

28 

sites for the development of new small and medium-sized dams, mainly in the upper 

reaches of the basin to the west and south (O’Hanley et al., 2020). 

We studied cascades of 5, 7, and 6 consecutive mainstem reservoirs in each of 

these three river basins, respectively (Fig. 1). Basic data on these reservoirs are given in 

Tables S1 and S2. These reservoirs vary in terms of age, area, elevation, and water 

residence time, but correspond to a very similar regional species pool of fish faunas. 

Considerable details on the fish assemblages of all of these reservoirs in the Iguaçu (Daga 

et al., 2015, 2020; Santos et al., 2017), Paranapanema (Pelicice et al., 2018; Santos et al., 

2017), and São Francisco (Santos et al., 2017, 2018, 2020) basins are available. 

 
2.2.2 Data collection 
 

2.2.2.1 Environmental data 

Environmental data were obtained at different periods. For the São Francisco, the surveys 

in Sobradinho reservoir occurred between October 2006 and July 2009, while the other 

reservoirs of this system were sampled quarterly between December 2007 and September 

2010. The Iguaçu and Paranapanema basins were sampled in July and November 2001. 

Diverse environmental variables were collected in every reservoir and survey, namely 

water temperature (°C), conductivity (µS cm-1), dissolved oxygen (mg L-1), turbidity 

(NTU) and pH were measured from surface water in the field using a multiparameter 

probe. In addition, water transparency (m) was estimated using Secchi disk. Samples 

obtained using a Van Dorn bottle (2.5 L) were stored in polyethylene bottles and placed 

on ice to preserve in low temperatures until analysis. Using the methodology described 

by Mackereth et al. (1978) and APHA (2005), we obtained the following variables: 

chlorophyll-a (µg L-1; Nusch, 1980) and, nitrate and total phosphorus concentrations (µg 

L-1; APHA 2005; Mackereth et al., 1978). Limnological conditions have a strong 
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influence on the structure of fish assemblages, as they are related to the productivity and 

ecological tolerance and fitness (Huston, 1979, 2004; Miranda and Krogman, 2015). 

 

2.2.2.2 Morphological data 

Following Pelicice et al. (2015) and Santos et al. (2017), we also recorded some variables 

that are more related to the morphology and functioning of the reservoirs and determined 

to have potential influence on fish assemblages: reservoir age, area, length, volume, and 

depth, water residence time, and accumulated volume of upstream reservoirs (Table S2). 

 

2.2.2.3 Spatial data 

For analyses, as descriptors of the spatial gradient along each cascade, we used the 

position of the reservoir in the cascade, elevation of each reservoir, and watercourse 

distance between the reservoir and river source. For position in the cascade, we assigned 

a value of 1 to the most upstream reservoir, 2 for the reservoir located immediately 

downstream of the first, and so on. Elevation values were obtained using Google Earth. 

The hydrologic distance was estimated with a shapefile of the hydrographic network and 

the Dijkstra algorithm, which measures the smallest distances between two points 

(Dijkstra, 1959; Loro et al., 2015), using the QNEAT3 complement (Qgis Network 

Analysis Toolbox; Raffler, 2018), implemented in QGIS 3.0 (QGIS Development Team, 

2018). 
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2.2.2.4 Biological data 

Our fish dataset was based on 132 sample surveys. For Iguaçu and Paranapanema River 

basins, each reservoir was sampled twice (in July and November 2001), totaling 10 and 

14 surveys, respectively. For São Francisco River basin, samples were taken every two 

months between November 2006 and September 2009 in the Sobradinho reservoir, and 

between February 2008 and December 2010 in the other reservoirs (18 months of samples 

in each of the 6 reservoirs, totaling 108 surveys). In São Francisco surveys, environmental 

data were always obtained after the biotic data and the months nearest to the fish sampling 

campaigns were used for analyses. 

Fish were caught in the lacustrine region of the reservoirs with gill nets of different 

mesh sizes (2.4–14 cm between knots for Iguaçu and Paranapanema; 1.2–9 cm between 

knots for São Francisco), which were exposed for 24 h in each reservoir and revisited at 

8:00, 16:00, and 22:00 h. For all basins, we used both species richness and relative 

abundance. Relative abundance of each species captured was expressed as catch per unit 

of effort (CPUE; number of individuals in 1000 m2 of gillnet during 24 h) for each 

sampling unit. The data used in this study were obtained by Núcleo de Pesquisas em 

Limnologia, Ictiologia e Aquicultura of the Universidade Estadual de Maringá (for Iguaçu 

and Paranapanema) and by Laboratório de Ictiologia e Limnologia of the Universidade 

Federal Rural de Pernambuco (for São Francisco).  

 

2.2.3 Data analysis 
 

To perform all analyses, the two months of sampling, of both environmental and biotic 

variables, were used for the Iguaçu and Paranapanema basins. For São Francisco River 

basin, the sampling of environmental variables and of the fish assemblage were performed 
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at different times in the reservoirs (18 samples for the fish community and 12 for 

environmental). Thus, it was necessary to impute the values of the environmental 

variables in the missing months to also obtain 18 months of samples for these variables. 

Due to the temporal structure of the collected data, we performed the imputation using 

the “moving averages” technique, in which the imputed values are a weighted average 

of four observations, namely the two previous ones and the two subsequent ones to the 

absent value. For this analysis we used the imputeTS package (Moritz and Bartz-

Beielstein, 2017) in R software (R Core Team 2020). 

 

2.2.3.1 Diversity patters along cascades 

To characterize fish diversity in reservoirs, two metrics based on Hill numbers (Hill, 

1973) were used: species richness (Hill number of order 0, 0D) and the exponential of 

Shannon’s index (Hill number of order 1, 1D). To test the effects of the cascade position 

in relation to fish diversity (using the two diversity metrics), we used linear models in the 

package stats in the R software (R Core Team, 2019). Models were calculated separately 

for the two indices and the interaction between basin and cascade position was used to 

test whether the effect of cascades varied among basins. 

In addition, linear modelling was used to evaluate the influence of the 

morphological, spatial and environmental variables on the diversity indices. In order to 

reduce the collinearity among predictors, we removed predictors with Pearson’s | r | > 

0.6, as recommended by Dormann et al. (2013); thus, six variables were retained to 

perform the analyses: altitude, residence time, depth, area, Secchi and total phosphorus. 

Secondly, we computed variance inflation factors (VIF) on each model (Fox and Monette, 

1992); all variables had VIF < 10 indicating no severe multicollinearity in our models. 

The predictors effects were centered and standardized, so that the regression coefficients 
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would become comparable in magnitude (Schielzeth, 2010). Then, we selected the most 

parsimonious models (i.e., in relation to the set of predictor variables used) with the 

lowest Akaike’s information criterion corrected (AICc) for small sample size with 

ΔAICc<2 (Burnham and Anderson, 2002). When more than one model had ΔAICc<2, we 

retained the predictor variables selected for both. In both diversity indices, all selected 

predictor variables were evaluated (see Table S3 in Supplementary Information).  

 

2.2.3.2 Elements of metacommunity structure (EMS) and beta diversity 

To analyze the distribution patterns of the assemblages along each reservoir cascade and 

verify which idealized metacommunity structure best fitted the species distributions, we 

used the EMS framework described by Leibold and Mikkelson (2002) and later expanded 

by Presley et al. (2010). Based on a species-by-site incidence matrix, EMS analysis 

assesses the coherence, turnover, and boundary clumping of species distributions, looking 

for the best fit model. The different metacommunity characteristics are evaluated in a 

hierarchical way: coherence (step 1), turnover (step 2), and boundary clumping (step 3). 

By ordering the matrix, the species with similar occurrence among sites are closer to one 

another. Coherence, the first pattern tested, is assessed by counting the number of gaps in 

species range from the ordinated matrix and by comparing that value to a null model. If 

the number of gaps is significantly less than those occurring at random (checkerboard 

distribution), then turnover is evaluated. Turnover is assessed by counting the number of 

species replacements between sites and comparing that value to the null distribution. A 

significant negative turnover suggests a nested distribution, whereas a significant positive 

turnover suggests an evenly spaced, Clementsian or Gleasonian structure (distinguished 

in the sequence using a boundary clumping analysis). Finally, boundary clumping was 

evaluated using Morisita's dispersion index and subsequently tested against expected 
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distributions using a chi-squared test. Values significantly greater than one indicate 

clumped range boundaries (Clementsian), values significantly less than one indicate 

hyperdispersed range boundaries (evenly spaced) and close to one indicate randomly 

distributed range boundaries (Gleasonian). Each of these six structures has an analogous 

quasi-structure (Presley et al., 2010), which is defined by stochastic range turnover. The 

EMS framework can be viewed as a three-dimensional space, in which communities 

represent points in space, allowing metacommunities to be qualitatively compared to one 

another. To perform EMS analyses, we used the “Metacommunity” function of the 

metacom package (Dallas, 2014) in R (R Core Team 2019). Due to the environmental 

gradients that occurs in basins with cascading reservoirs, we used a user-defined 

incidence matrix of sites-by-species previously ordered according to reservoirs’ position 

for each cascade. The EMS metric interpretations were compared to a fixed-proportional 

(R1) null model. All null models were based on 9,999 permutations. 

Complementarily, we evaluated the correlation (Spearman) between the cascade 

position (mid-point between reservoirs) and the beta diversity (βsor) and its turnover 

(βsim) and nestedness (βsne) components for each basin. We used the Baselga (2010) 

method to calculate and partition the beta diversity based on the Sørensen index and 

extracted the dissimilarity values between the first reservoir and the downstream ones 

from the dissimilarity matrices (βsor, βsim and βsne) for the correlation analysis. For this, 

we use the “beta.pair” function (i.e., to calculate the beta diversity pairwise between the 

reservoirs) implemented in the betapart package in R (Baselga and Orme, 2012). Finally, 

the “cor.test” function was used to calculate and test the significance of the Spearman 

correlation. 

To evaluate the influence of morphological, spatial and environmental variables 

on beta diversity components and to select the best explanatory model, we applied a 
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DistLM (Distance-based Linear Model). The variables were selected following a forward 

variable selection approach using the Akaike’s information criterion (AICc) as 

performance criteria and the process stopped when adding any additional variable caused 

increases in the AIC (Anderson et al., 2008; Blanchet et al., 2008). Prior to model 

development, the beta diversity components were standardized and the Euclidean 

distances between surveys were calculated. The morphological, spatial and 

environmental variables were also standardized, and collinear variables were removed 

before the forward variable selection (Neter et al., 1996). Distance-based redundancy 

analysis (dbRDA) was used to examine the influence of predictors on the spatial 

distribution of samples (Anderson et al., 2008). The “capscale”, “rda”, and “ordistep” 

functions (9,999 permutations) were used to perform DistLM and dbRDA, both from the 

vegan package (R Core Team, 2020). 

 

2.2.3.3 Super-organizing maps  

Super-organizing maps (Kohonen, 1982; Wehrens and Buydens, 2007; Wehrens and 

Kruisselbrink, 2018) were used to verify the existence of common trends (i.e., clusters) 

among species abundance (CPUEs) and the environmental, morphological, and spatial 

variables along the reservoir cascade. Self-organizing maps are a kind of artificial neural 

networks used for dimensionality reduction and data exploration that do not assume 

linearity or specific shapes on the analyzed trends and super-organizing maps (hereafter, 

SOM) are variants that are able to accommodate the existence of multiple surveys per 

river basin. Both are based on the development and ordination of a series of prototype 

neurons that minimize their distance to the training samples (in this case the sequences of 

CPUEs of fish species and the environmental, morphological, and spatial variables along 

reservoir cascades). The resulting unit neurons are usually ordinated into a bidimensional 
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map and the optimization of the organizing map is conducted to globally preserve the 

original relationships (topology) of the input data. Therefore, unit neurons that are located 

near to each other in the map have similar associated samples (in our case trends along 

reservoir cascades). Unlike standard self-organizing maps, the super-organizing maps 

involve the development of multiple overlaying self-organizing maps, where each one 

maps different datasets of equal number of samples but encompassing different input 

variables or, as in this case, multiple surveys that involved the same sampled variables 

(e.g., CPUE of a given species). Consequently, the super-organizing map for Iguaçu and 

Paranapanema included two layers each and that for São Francisco, 18. The input trends 

along reservoir cascades are assigned to the closest unit neuron across SOM layers (i.e., 

surveys). Therefore, after the optimization, the resulting map can be used to inspect the 

existence of gradients within the simplified version of the responses along reservoir 

cascades or to cluster the resulting prototype sequences (codebooks) to find main trends 

across surveys, as depicted in Fig. 2. 

The development and visualization of the SOMs were performed using the 

kohonen R package (Wehrens and Kruisselbrink, 2018). The input data were arrayed into 

multilayer datasets, one layer per survey, where rows corresponded to species CPUEs and 

environmental, morphological, and spatial variables and columns to the ordered sequence 

of reservoirs from upstream to downstream (Fig. 2-I). Prior to the SOM training, each 

row corresponding to the CPUEs and the environmental, morphological, and spatial 

variables along the reservoir cascade was standardized (z-score) to remove the effects of 

different measurement units. The surveys performed in Sobradinho (i.e., the uppermost 

reservoir of the São Francisco River basin) in 2006 were removed as they became non-

informative. A hexagonal lattice was selected and the dimensions of the map (number of 

unit neurons in the X and Y dimensions) were not predefined. The selected dimensions 
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were those that simultaneously minimized the quantization and topographic errors 

(Céréghino and Park, 2009) (Fig. 2-II) and they varied between 1 and 12 provided that 

there were sufficient data to train the map. SOM convergence can be sensitive to initial 

conditions; therefore, each SOM was trained 5 times while the number of iterations was 

set to 1000. 

Once the optimal dimensions of the SOMs were determined, we plotted the 

resulting maps to inspect the existence of common trends and distribution patterns. In 

addition, we used the resulting SOM codebooks to cluster the input trends. However, 

unlike standard self-organizing maps were codebooks are arrayed into a single matrix, 

super-organizing map also render the codebooks as 3D matrices, which limits the 

applicability of standard clustering approaches used in former studies (e.g., Zhang et al., 

2018). To overcome such limitation, we built undirected networks based on the distance 

matrix among codebooks using the igraph R package (Csardi and Nepusz, 2006). The 

“cluster_louvain” function (Blondel et al., 2008), which implements the multi-level 

modularity optimization algorithm to find the community structure that maximizes the 

modularity, was used to cluster the unit neurons (Fig. 2-III). Finally, the sequences of 

species CPUEs and the environmental, morphological, and spatial variables associated to 

each cluster were simplified into single trends with confidence intervals to inspect 

similarities among groups and river basins (Fig. 2-IV). 
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Fig. 2. Flowchart depicting the process followed to find common trends among species 

abundances (CPUEs) and environmental, morphological, and spatial variables along the reservoir 

cascades with super-organizing maps. 

 

2.3 Results 
 

2.3.1 Diversity patterns along cascades 
 

The fish diversity of reservoirs showed differences among cascades (see Fig. S4 in 

Supplementary Information): i) in Iguaçu, the species richness did not vary along the 

cascade but the exponential of Shannon index (1D) showed a tendency to increase 

downstream; ii) in Paranapanema, the species richness patterns along the cascade are not 

so clear, although there is a general downstream reduction in 1D; iii) in São Francisco, 

there is a clear downstream decline in both diversity indices. 

The linear models indicated that the basin and cascade position, as well as the 

interaction between them, had significant effects on both diversity metrics (Table 1). The 

most parsimonious linear model included: altitude, residence time, depth, area, Secchi 

and total phosphorus, respectively (see Table S5 in Supplementary Information). The 

model parameters indicated a positive relationship between the reservoir diversity 

(richness and 1D) and morphological characteristics of the reservoir as area and residence 

time. On the other hand, the variables depth, Secchi (only for richness) and altitude 

showed negative relationships with the diversity metrics (Table S5). 

 

Table 1 Linear models of fish richness and the exponential of Shannon’s index (Hill number of 

order 1, 1D) with river basin and reservoir cascade position. SS = sum of squares; d.f. = degrees 

of freedom. P values < 0.05 are bolded. 

Diversity metrics Source of variation SS d.f. F-value P 
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(R2adjusted) 

Richness 
(0.781) 

Cascade position 6061.50 1 349.28 <0.001 
Basin 1174.90 2 33.85 <0.001 
Cascade position × Basin 1457.40 2 41.87 <0.001 

1D  
(0.617) 

Cascade position 755.51 1 135.67 <0.001 
Basin 426.17 2 38.26 <0.001 
Cascade position × Basin 128.37 2 11.53 <0.001 

 

2.3.2 Fish metacommunities structure and beta diversity 
 

In the three river basins (Iguaçu, Paranapanema, and São Francisco), the corresponding 

total observed richness of fish species was 30, 72, and 60, respectively. Although all 

metacommunities exhibited significant negative coherence, the patterns of species 

distribution along reservoir cascades varied for each basin. The fish metacommunity of 

the Iguaçu River basin exhibited a quasi-Gleasonian structure (Fig. 3a). It was also 

characterized by non-significant positive turnover, and a non-significant Morisita’s index 

larger than one (Table 2). The fish assemblage of Paranapanema River exhibited positive 

turnover, and a significant Morisita’s index larger than one (Table 2), corresponding to a 

Clementsian structure (Fig. 3b). A Nested structure with stochastic species loss was found 

for São Francisco River (Fig. 3c), characterized by negative turnover, and non-significant 

Morisita’s index larger than one (Table 2).  
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Fig. 3. Species presence (in blue) in the reservoirs of the Iguaçu (uppermost), Paranapanema 

(central), and São Francisco (lower) river basins. Reservoirs arranged by their longitudinal 

position are in rows; species are in columns. The total observed species richness is also given. 

 

Table 2 Elements of metacommunity structure (EMS) analysis of the Iguaçu, Paranapanema e 

São Francisco river basins. SD = standard deviation; EAbs = number of embedded absences. The 

mean and standard deviation values refer to the simulated communities. 

Basin 
Coherence Species turnover Boundary 

Interpretation EAbs z P Mean SD Rep z P Mean SD Morisita's 
Index P 

Iguaçu 12 -7.37 <0.01 39.9 3.69 163 1.29 0.19 125.4 29.97 1.19 0.07 Quasi-Gleasonian 

Paranapanema 94 -15.65 <0.01 232.1 8.88 275
3 3.04 <0.01 2165.7 238.49 1.21 <0.01 Clementsian 

São Francisco 39 -12.19 <0.01 127.8 7.28 518 -2.59 <0.01 769.3 96.89 1.08 0.14 Nested stochastic 
species loss 
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In Iguaçu and Paranapanema, turnover was the component that had the largest 

contribution (mean = 0.19 ± 0.08 SD and mean = 0.33 ± 0.09 SD, respectively), while 

nestedness was the main contributor in São Francisco (mean = 0.15 ± 0.10 SD). 

Generally, total beta-diversity (βsor) and turnover (βsim) between the first reservoir (i.e., 

reference) and downstream reservoirs increased along the reservoir cascade in every 

basin, especially by the end of the cascade, except in the Paranapanema River basin, 

where βsor and βsim did not vary much along the cascade to markedly decrease in the 

last downstream pair of reservoirs (Fig. 4). By contrast, nestedness (βsne) depicted 

distinct trends in each river basin. It was mainly increasing in São Francisco, whereas in 

Iguaçu and Paranapanema it showed a unimodal trend with the minima at the extremes 

and in the middle, respectively. However, no significant Spearman correlation was found 

between any of them and cascade position (see Table S6 in Supplementary Information), 

but that found for total beta-diversity and nestedness in São Francisco (rS =1.0, P=0.017). 

 



 
 

 

41 

 

Fig. 4. Total beta diversity and its components (nestedness and turnover) of fish in reservoir along 

the three cascades (river basins). Each of the reservoirs was compared with the first, most 

upstream reservoir. 

 

The DistLM for all basins included morphological and environmental variables 

for total beta-diversity (βsor) and turnover (βsim): area, depth, residence time and nitrate, 

respectively. For nestedness (βsne), only the morphological variable area was included 

(see Table S7 in Supplementary Information) (Fig. 5). 
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Fig. 5. Distance-based redundancy analysis (dbRDA) with the predictor variables (area, residence 

time, depth and nitrate) showing the greatest importance for the linear model DistLM.  

 

2.3.3 Abundance patterns along cascades 
 

The optimal SOM dimensions varied for each river basin but the total number of 

neuron nodes correlated with the number of species collected in each river basin (Fig. 6). 

The “cluster_louvain” function indicated the existence of three major clusters in each 

river basin, although the variables assigned to each cluster differed (see Figs. S8 in 
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Supplementary Information for additional results). The clusters indicated different trends 

along cascades in each river basin and the uncertainty was higher for Iguaçu and 

Paranapanema due to the smaller number of surveys, although the largest uncertainty 

among surveys corresponded to the environmental variables collected in the Iguaçu River 

basin regardless of the cluster (Fig. 7). 

 

 

Fig. 6. Depiction of the optimal super-organizing maps obtained for every river basin. Overlaid 

red lines are the prototype codebooks obtained in every layer of the optimal super-organizing 

map. The different color patterns highlight the different clusters. 

 

The first cluster of the Iguaçu River basin included most of the spatial variables 

(67%) and approximately 45% of species and morphological variables, with Psalidodon 

bifasciatus being the most abundant species in this group (Fig. 7). This cluster 

encompassed flat-to-increasing trends with their maxima in the third reservoir of the 

cascade (i.e., Salto Santiago). The second cluster included decreasing trends and included 

most of the remaining variables, including 43% of species. The most characteristic 

variables of this group were chlorophyll-a, total phosphorus, turbidity, water residence 

time and age, whereas the species experiencing the most pronounced decreases were 

Glanidium ribeiroi and Hypostomus derbyi. The last cluster encompassed few species 
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and variables that showed a close-to-unimodal pattern with the maxima around the fourth 

reservoir such as the invasive Coptodon rendalli.  

In Paranapanema the species were evenly distributed across clusters (Fig. 7). The 

first cluster included flat (species and environmental variables) or increasing trends 

(morphological and spatial variables). By contrast, the second and third clusters 

encompassed irregular decreasing trends. The second cluster included most of the 

environmental variables (63%) and no spatial variables, whereas the third cluster 

encompassed most of the morphological (71%). The most characteristic variables of the 

second group were chlorophyll-a, total phosphorus, and Secchi, and the species that 

showed the most decreasing trend along the cascade was Trachelyopterus galeatus. The 

most characteristic variables of the third cluster were area, depth, water residence time 

and volume, whereas the species depicting the strongest decreasing trends were 

Hypostomus spp. and Plagioscion squamosissimus. 

The first cluster of São Francisco encompassed clearly decreasing trends and 

42% of the species and 57% of the morphological variables. The most characteristic 

variables included in this group were area, volume, total phosphorus concentration, and 

turbidity. The species experiencing the largest decrease along the cascade was 

Triportheus guentheri, followed by Curimatella lepidura and Tetragonopterus 

franciscoensis. The second cluster encompassed the remaining variables that showed flat-

to-increasing trends, although the clustered species abundances did not increase. The last 

cluster only included a few species (17%), less abundant in the uppermost reservoir of 

the basin (i.e., Sobradinho). The most remarkable species of the last group that showed 

the largest decreases along the cascade were Bryconops affinis, Acestrorhynchus britskii, 

Moenkhausia costae, and Plagioscion squamosissimus. Specific percentages and the 
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complete list of features assigned to each cluster can be consulted in Tables S9 

(Supplementary Information). 

 

 

Fig. 7. Line charts depicting the mean values of the original trends assigned to each unit neuron 

cluster obtained after clustering the prototype codebooks of the super-organizing maps. The 

shaded areas correspond to 95% confidence intervals. The small bar plots next to the line charts 

depict the proportion of trends (i.e., species CPUEs and the environmental, morphological, and 

spatial variables) included in the group. 
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2.4 Discussion 
 

By evaluating the three basins (Iguaçu, Paranapanema, and São Francisco) together and 

separately, we confirmed that reservoir cascades have a deleterious effect on the species 

distribution, diversity and abundance. Along the cascades, it is possible to observe 

relevant changes and decreases on species diversity, especially richness, and abundance, 

with major changes in species composition (i.e., beta-diversity) at the downstream end of 

the cascades and few species being able to sustain higher abundances in these 

impoverished downstream environments. The linear models showed that both the position 

in the cascade and the morphological, spatial, and environmental variables (e.g., residence 

time, depth, area, altitude, total phosphorus and Secchi) influenced diversity reservoir 

structure. The SOMs highlighted how the abundances of large groups of species (e.g., 

clusters 1 and 3 of São Francisco and cluster 2 of Iguaçu) decrease along cascades, 

although there were irregular patterns caused by the local characteristics of each reservoir 

(Barbosa et al., 1999; Santos et al., 2017, 2018; Straškraba, 1994), especially in Iguaçu 

and Paranapanema. This is reflected in the analyzed cascades of the Iguaçu and 

Paranapanema rivers as they exhibited positive turnover with some species individual 

responses to the reservoir sequence and appearing or disappearing at random prompting 

different metacommunity structures. The species present in the downstream reservoirs of 

São Francisco exhibited, on the contrary, a clearer patter as they were, in general, subsets 

of the species present in the upstream reservoirs. Thus, for São Francisco (i.e., the best 

sampled basin) the expected pattern of reduction of species richness and formation of 

subsets in the downstream reservoirs (nestedness pattern) was clearly found, 

corroborating the main hypothesis of the study. 
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2.4.1 Diversity patterns along cascades 
 

As hypothesized, reservoirs affected the species diversity along cascades. Although other 

variables have also an influence (water residence time, area and depth), our hypothesis 

that the cascade has a controlling effect on species diversity was confirmed, since cascade 

position had significant effect on both diversity indices. However, these changes patterns 

in diversity showed differences between basins. For the São Francisco basin, there was a 

clear decrease in diversity in the downstream direction. On the other hand, the Iguaçu and 

Paranapanema basins did not present as clear patterns, partly due to the smaller sample 

size. In general, reservoirs that had lower cascade position (i.e., upstream in the cascade) 

were those that showed greater species diversity. By contrast, reservoirs with the lowest 

species diversity were those with the higher cascade position (i.e., downstream position), 

which contradicts the general pattern observed in numerous studies on natural river 

systems where species richness is higher in lowland river segments (Bistoni and Hued, 

2002; Suvarnaraksha et al., 2012). Nonetheless, some studies carried out in reservoir 

cascades have shown a reduction in species richness in the downstream direction (Loures 

and Pompeu, 2019; Pelicice et al., 2018), as also verified by beta diversity, whose values 

increased along the cascade.  

Another characteristic that proved to be important in determining species 

diversity along reservoir cascades was water residence time, which is closely related to 

the size of the reservoir and their type of operation (i.e., accumulation or run-of-river). 

Reservoirs that had higher residence times showed greater species diversity, as also 

observed by Li et al. (2012) and Santos et al. (2017). The variability of water level 

fluctuations has to be considered important for biota inhabiting these lowland 

environments, since they are interfacing aquatic and littoral zones, which provides 

heterogeneity of physical structure, habitat diversity, trophic resources and shelter (Leira 



 
 

 

48 

and Cantonati, 2008; Logez et al., 2016). Reservoirs with smaller fluctuations of water 

level reduce fish access to littoral habitats that are essential nursery areas and feeding 

grounds, as well as affect the timing and physiological condition for the reproduction of 

fish (Matthews, 1998; Vazzoler, 1996; Winemiller et al., 2016). Thus, water level 

variation that could provide better conditions for fish feeding and reproduction is virtually 

absent in these reservoirs with lower residence time, and this condition seems to result in 

impoverished fish assemblages. Unfortunately, reservoirs that are located upstream of the 

studied basins are usually larger (i.e., with larger areas) and have longer water residence 

times (i.e., accumulation reservoirs). This spatial arrangement adds a confounding 

element on the effect of reservoir cascades that will require further confirmation in 

additional river basins. However, observing the best sampled cascade (i.e., São 

Francisco), this decreasing pattern of diversity was quite clear, which reinforces the 

conclusions about the negative effects on the ichthyofauna. 

 

2.4.2 Fish metacommunities structure and beta diversity 
 

Our EMS analysis results in conjunction with beta diversity patterns further supported the 

role of the cascades as major drivers in species composition along the three river basins, 

as major changes occurred at the downstream end of the cascades, although intrinsic 

characteristics of each basin and reservoir also influenced community structures along 

the environmental gradients. The structure of the fish metacommunity along the cascade 

of the Iguaçu River basin followed a quasi-Gleasonian pattern. This pattern reveals 

individual species responses to environmental variation and may be linked to the 

dispersion capacity of each species (Gascón et al., 2016; Presley et al., 2010). This is 

because the Iguaçu River is known for having large waterfalls along its entire route 
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(Baumgartner et al., 2012), which favored the appearance of a higher number of 

endemisms in the basin (Daga et al., 2016). Thus, the evolutionary patterns coupled to the 

former and current characteristics of the basin have an influence on the actual 

metacommunity structure, presenting at certain points species capable of thriving in these 

environments with specifics geomorphological and hydrographical characteristics 

(Muniz et al., 2020).  

On the other hand, the metacommunity structure in the Paranapanema basin 

showed a Clementsian pattern along the cascade. This structure implies similar responses 

by species groups to an environmental gradient (Clements, 1916). Pelicice et al. (2018) 

formerly analyzed the species composition in some reservoirs of this cascade and verified 

that, although many species seem to be widely distributed in all reservoirs, some are 

restricted to certain impoundments. A possible explanation for this pattern found in the 

Paranapanema basin may be due to the preservation of some remnant lotic areas and large 

tributaries close to some reservoirs, which allow an increase in some groups of species at 

certain points in the cascade. Several authors have evaluated the importance of tributaries 

(e.g., Laranjinha River, Cinzas River and Tibagi River) for the maintenance and viability 

of the ichthyofauna in other river basins and in the Paranapanema River (Dias et al., 2004; 

Galindo et al., 2020; Orsi et al., 2010). The presence of these environments helps the 

sustenance of the populations of migratory fish in some reservoirs along the cascade (e.g., 

Capivara), favoring an increase in species richness and also abundance. This indicates 

that the former and current characteristics of the basin, at the catchment but also and the 

local scales, interact with the native community assemblages to permit or preclude the 

establishment of newcomer species, thus shaping the actual metacommunity structure.  

We found a pattern of nested species for São Francisco with loss of species in the 

upstream-downstream direction. This pattern was expected for the São Francisco River 
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basin, since Santos et al. (2016) already found a nested distribution pattern for the benthic 

assemblage in this same cascade. Nestedness may arise as a result of environmental 

conditions of the habitats or species-specific characteristics, such as dispersal ability or 

tolerance of abiotic conditions (Henriques-Silva et al., 2013). Especially in reservoir 

cascades, where permanent lentic areas change environmental conditions and decrease 

hydrological connectivity, intensification of species loss is expected (Santos et al., 2016; 

Vitorino et al., 2016). This is because these changes caused by reservoirs can affect and 

eliminate functional groups (Mims and Olden, 2012), as evidenced by the reduction of 

migratory and invertivorous fish species in this same cascade (Santos et al., 2017) or other 

examples of reduction in migratory and rheophilic species in Neotropical reservoirs 

(Agostinho et al., 2008). Santos et al. (2017), who previously evaluated the São Francisco 

cascade, verified that the differences in the environmental, spatial and morphological 

characteristics that occur along these reservoirs (i.e., turbidity, area, type of operation, 

position of the reservoir in the cascade) were highly associated with different functional 

traits of the ichthyofauna. They found that along the cascade, the reservoirs characteristics 

act as filters for the presence or absence of the species, thus showing that the functional 

characteristics of the species were determinant for their occurrence in a certain reservoir 

along the cascade, since reservoirs change environmental conditions and as a 

consequence limit species presence. 

 

2.4.3 Abundance patterns along cascades 
 

In contrast to the general patterns observed in natural river basins (Bistoni and Hued, 

2002; Suvarnaraksha et al., 2012), the results obtained with the SOMs indicated that in 

each of the three basins there were mainly both: species that reduce their abundance and 
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species that sustain similar abundance along the cascades. Nonetheless, the number of 

species able to revert these patterns were limited to a few. These general trends reinforce 

the conclusions obtained with the linear models of the diversity indices, the structures of 

metacommunities and the beta diversity decomposition, indicating that reservoir cascades 

exert an influence on species presence, the resulting species diversity but also on the 

specific abundances. 

Among clusters that exhibited reduction patterns, the main spatial variable 

selected was elevation (i.e., a proxy for the longitudinal gradient). This result suggests 

that fish-assemblage composition and abundance depend on the longitudinal position, 

with some influence of the adjacent reservoir, as verified by the serial discontinuity 

concept (Ward and Stanford, 1983). In fact, Loures and Pompeu (2018) evaluating a 

cascade of reservoirs in the Araguari river, found that almost 20% of the fish assemblage 

structure was explained by the position of the reservoir in the cascade, which emphasizes 

the importance of the longitudinal gradient for reservoirs cascades. Similarly, other 

studies have found a reduction in species abundance in a longitudinal gradient of dammed 

rivers (Agostinho et al., 2016; Orsi and Britton, 2014).  

As with the DistLM analysis, we verified a convergence of the selected 

morphological variables in the clusters of decreasing patterns, such as area and residence 

time. Loures and Pompeu (2018) also found that the reservoir area is aligned to the 

species-area hypothesis (MacArthur and Wilson, 1967), which predicts that larger areas 

encompass a greater number of species and individuals. Thus, fish species abundance in 

the Neotropics tends to be positively correlated with the reservoir area, since larger areas 

have higher environmental heterogeneity and hence support larger populations (Bailly et 

al. 2016; Ortega et al., 2018). The residence time also influences the species abundance 

patterns, with lower values of abundance found in reservoirs with shorter residence times 
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(due to the inferior stability mentioned in section 4.1). The largest reservoirs (i.e., usually 

uppermost) have long residence time and tend to have a greater abundance of species 

(Baumgartner et al., 2020; Li et al., 2012; Santos et al. 2017, 2018). Along the cascade, 

subsequent reservoirs generally tend to be smaller and have shorter residence times, 

which is reflected in the lower abundance of species. The residence time has a great 

influence on the nutrient retention, which influences the heterogeneity and productivity 

of the reservoir (Soares et al., 2012) and consequently the fish assemblage (Franco et al., 

2018; Miranda and Krogman, 2015; Muniz et al., 2019). 

Regarding the environmental variables, there was also convergence of turbidity, 

chlorophyll-a, and total phosphorus in the clusters where there was a reduction in species 

abundance. In general, along the cascades it is expected a decrease in turbidity (directly 

dependent on the retention time), decreases in phosphorus, nitrate and phosphate 

concentrations following the decrease in turbidity, an increase in light penetration, a 

decrease in oxygen concentration, and finally, a decrease in pH (Santos et al., 2020). 

Thus, limnological and trophic alterations can cause local changes in fish assemblage 

along reservoir cascades (Pagioro et al., 2005; Santos et al., 2018, 2020). 

In addition, it was possible to notice that few groups of fish have a slight increase 

in their abundance along the cascade, while most of them did not clearly vary or presented 

a marked decrease or extirpation in the downstream reservoirs. Santos et al. (2017) 

demonstrated the role of dams as environmental filters, reducing the abundance of 

migratory and invertivorous species (e.g., T. guentheri, T. galeatus, A. britskii – species 

selected in clusters with decreasing trend). Along with that, there was an increase in the 

abundance of sedentary species towards the upstream reservoirs (e.g., P. bifasciatus and 

A. affinis – species selected in clusters with increasing trend) (Oliveira et al., 2018). 

Agostinho et al. (2016), in a synthesis of the impacts of reservoirs on the ichthyofauna, 
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highlighted the dominance of species with trophic plasticity, sedentary lifestyle, parental 

care, small body size and low market value, which coincides with most of the species 

included in the clusters with flat trend along the cascades. In addition, due to changes in 

habitat quantity and quality, impoundments facilitate freshwater invasions by non-native 

species (Casimiro et al., 2017) and these often become abundant in these areas, as it was 

the case of C. rendalli in the Iguaçu River basin. 

 

2.4.4 Limitation and caveats 
 

As it usually occurs with ecological studies using large space-time scales, we recognize 

some limitations of our study that must be considered. First, we have sampling 

inconsistencies along the evaluated reservoir cascades. Two of the three basins analyzed 

(i.e., Iguaçu and Paranapanema) have only two sampling campaigns while the third basin 

(São Francisco) has 18. This imbalance in the number of samples may be responsible for 

a bigger contribution of the São Francisco basin in the found patterns. The second 

limitation is that for the São Francisco river basin there is a lack of environmental data as 

they were not measured in every biological survey. Although the data have these 

limitations, this does not take away the importance of this study, since little is known 

about the changes that cascading reservoirs cause on diversity, distribution and abundance 

of fish assemblages and the SOMs, where each basin is analyzed separately, indicated 

that few species are able to increase their abundances in the downstream reservoirs of the 

studied cascades. 

 

 



 
 

 

54 

2.5 Conclusions 
 

The effects of the reservoir cascades on fish diversity, distribution, and abundance using 

large-scale spatial analyses (i.e., across river basins) was analyzed. Our results 

demonstrate that the impacts of reservoir cascades in contrasting basins affected fish 

assemblages, although each reservoir can respond differently due to e.g. environmental 

settings and operation because the effects seems to be context dependent (i.e., varies 

depending on the basin and its characteristics). Understanding the effects of reservoir 

cascades on fish assemblages is important, as its impacts are pervasive and, in many 

circumstances, can be irreversible (Agostinho et al., 2008). This understanding becomes 

even more necessary since hundreds of new reservoirs are planned for construction in the 

coming years (Zarfl et al., 2015). It will become necessary to favor more meaningful 

assessments of fish assemblage changes in relation to ecosystem functioning and its 

vulnerability to river fragmentation by dams, especially when constructed in sequence, 

given the possible amplification of negative effects on the biota.  
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SUPPLEMENTARY INFORMATION 

APPENDIX S1- Study reservoirs and variables used 

Table S1. Mean (± standard deviation) of environmental variables used in this study. IG = Iguaçu; PP = Paranapanema; SF= São Francisco. N = 

sample size for each reservoir.  

 
Reservoir 

 
River 

 
N 

Water 
Temperature 

(°C) 

Dissolved 
Oxygen 
(mg L-1) 

Turbidity 
(NTU) 

Chlorophyll-a 
(µg L-1) 

pH 
Conductivity 

(μS cm-1) 
Nitrate 
(μg L-1) 

Total 
phosphorus 

(μg L-1) 

Secchi 
(m) 

Foz do Areia IG 2 22.1 ± 5.7 7.00 ± 0.1 10.77 ± 7.8 7.72 ± 9.1 7.66 ± 1.2 43.13 ± 5.5 461.50 ± 84.1 13.10 ± 1.7 1.95 ± 0.0 

Salto Segredo IG 2 22.8 ± 7.3 6.76 ± 0.2 10.57 ± 5.8 3.28 ± 1.7 6.95 ± 0.2 39.59 ± 10.4 558.50 ± 37.5 9.70 ± 4.7 1.33 ± 0.6 

Salto Santiago IG 2 23.0 ± 6.0 7.04 ± 0.1 4.79 ± 3.6 11.22 ± 14.8 7.70 ± 1.3 38.49 ± 1.9 422.50 ± 68.6 11.65 ± 2.1 2.03 ± 1.2 

Salto Osório IG 2 22.6 ± 5.6 7.23 ± 0.2 8.98 ± 0.0 12.01 ± 14.7 7.75 ± 1.4 37.68 ± 1.3 503.00 ± 8.5 6.20 ± 4.0 1.50 ± 0.4 

Salto Caxias IG 2 23.1 ± 4.0 7.04 ± 0.2 2.70 ± 0.3 3.65 ± 3.5 7.11 ± 0.4 37.64 ± 1.6 508.00 ± 50.9 10.45 ± 2.3 2.53 ± 0.2 

Chavantes PP 2 22.4 ± 3.1 7.49 ± 0.4 3.71 ± 4.1 2.82 ± 3.0 6.98 ± 0.4 55.39 ± 1.0 172.50 ± 46.0 7.20 ± 0.8 5.15 ± 1.1 

Salto Grande PP 2 20.3 ± 0.6 7.85 ± 0.0 4.73 ± 0.7 2.74 ± 1.7 7.34 ± 0.1 59.76 ± 1.8 227.00 ± 49.5 14.40 ± 5.8 5.80 ± 0.0 

Canoas II PP 2 26.0 ± 0.7 6.87 ± 0.6 7.42 ± 5.4 4.72 ± 3.7 6.80 ± 0.1 58.99 ± 2.6 200.50 ± 65.8 10.70 ± 2.4 1.18 ± 0.6 

Canoas I PP 2 26.2 ± 0.9 6.60 ± 0.4 9.73 ± 12.0 0.94 ± 0.8 6.89 ± 0.2 57.95 ± 1.7 191.50 ± 55.9 10.25 ± 0.5 1.95 ± 0.6 

Capivara PP 2 25.8 ± 0.3 6.45 ± 0.4 3.41 ± 0.6 3.55 ± 0.2 6.82 ± 0.2 57.64 ± 1.8 293.00 ± 28.3 8.35 ± 4.0 2.20 ± 0.6 

Taquaruçu PP 2 20.0 ± 0.1 7.34 ± 0.6 5.22 ± 2.0 4.16 ± 1.1 7.54 ± 0.4 59.49 ± 3.1 330.50 ± 91.2 8.60 ± 5.8 4.10 ± 0.0 

Rosana PP 2 19.2 ± 0.9 7.33 ± 0.2 4.85 ± 2.3 1.96 ± 2.3 6.96 ± 0.1 59.54 ± 1.0 361.00 ± 76.4 9.90 ± 0.0 2.10 ± 0.2 

Sobradinho SF 18 27.4 ± 1.6 7.66 ± 0.6 14.99 ± 9.1 2.52 ± 1.4 7.84 ± 0.3 63.80 ± 24.9 46.00 ± 39.1 66.50 ± 19.6 1.20 ± 0.6 

Itaparica SF 18 26.5 ± 2.0 7.75 ± 0.4 4.96 ± 2.5 2.83 ± 1.1 7.92 ± 0.3 70.92 ± 17.9 37.50 ± 22.5 59.50 ± 17.0 2.70 ± 1.1 

Moxotó SF 18 26.7 ± 1.9 7.65 ± 0.4 4.40 ± 1.8 2.58 ± 1.0 8.01 ± 0.4 109.4 ± 40.1 45.00 ± 38.2 66.00 ± 17.8 3.00 ± 1.2 

Paulo Afonso I SF 18 26.6 ± 1.6 7.63 ± 0.7 2.60 ± 2.1 1.71 ± 0.8 7.82 ± 0.5 69.00 ± 15.0 65.00 ± 35.7 50.50 ± 19.6 3.25 ± 0.9 
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Paulo Afonso IV SF 18 26.3 ± 2.0 7.60 ± 0.4 3.68 ± 1.2 1.93 ± 0.6 7.99 ± 0.4 72.80 ± 17.1 23.50 ± 27.8 50.50 ± 16.4 3.23 ± 1.4 

Xingó SF 18 27.7 ± 1.5 7.55 ± 0.3 3.24 ± 1.3 3.29 ± 1.4 8.08 ± 0.2 73.09 ± 20.2 37.00 ± 29.2 49.00 ± 9.5 3.65 ± 1.2 
 

Table S2. Morphological and spatial characteristics of the studied reservoirs. 

Reservoir River Position  Elevation  Distance to  Age Area  Length  Water residence Volume  Depth  Accumulated  

(m) source (m)  (years) (km2) (km)  time (days) (hm3) (m)  volume (hm3) 

Foz do Areia Iguaçu 1 721 407966.8 34 139 60 102 5779 135 0 

Salto Segredo Iguaçu 2 608 505150.1 22 84.88 70 47 3000 100 5779 

Salto Santiago Iguaçu 3 500 591024.3 35 208 70 50.8 6753 78 8779 

Salto Osório Iguaçu 4 398 656388.9 34 62.9 35 16 1270 43 15532 

Salto Caxias Iguaçu 5 326 746733.7 16 144.2 75 33 900 53 16802 

Chavantes Paranapanema 1 472 307396.1 44 400 40 418 8795 78 0 

Salto Grande Paranapanema 2 381 360560.9 56 12 15 1.5 44 9.2 8795 

Canoas II Paranapanema 3 364 396145.7 22 22.51 30 5.5 140 16.5 8839 

Canoas I Paranapanema 4 350 430385.0 15 30.85 30 3.8 207 26 8979 

Capivara Paranapanema 5 340 543581.1 39 419.3 110 119 10540 52.5 9186 

Taquaruçu Paranapanema 6 284 623807.5 25 80.1 60 10 672 26.5 19726 

Rosana Paranapanema 7 255 738426.8 28 220 90 18.6 1920 26 20398 

Sobradinho São Francisco 1 386 1846463.5 35 4214 200 104.40 34116 30 0 

Itaparica São Francisco 2 302 2306677.0 26 828 180 72 10782 101 34116 

Moxotó São Francisco 3 254 2332949.3 38 93 25 5 1150 50 44898 

Paulo Afonso I São Francisco 4 225 2338464.1 60 4.8 5 31 26 80 46048 

Paulo Afonso IV São Francisco 5 248 2351774.4 36 12.9 5 31 127 80 46074 

Xingó São Francisco 6 141 2403260.7 20 60 50 16 3800 100 46201 
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Table S3. Model selection table used to choose the best variables (with deltaAICc < 2 ) to perform 

the linear model analysis of of fish richness and the exponential of Shannon’s index (Hill number of 

order 1, 1D). 

Response 
variables 

Altitude Area Depth 
Total 

phosphorus 
Residence 

 time 
Secchi df AICc delta weight 

Richness 

 

-0.828 1.594 -1.182  1.422 0.433 7 545.7 0.00 0.446 

-1.125 1.531 -1.121 0.371 1.383 0.515 8 545.8 0.18 0.409 

-0.700 1.298 -1.265  1.552  6 548.7 3.01 0.099 

-0.827 1.242 -1.244 0.174 1.546  7 550.4 4.77 0.041 

 1.174 -1.596 -0.327 1.808  6 556.9 11.23 0.002 

 -2.892 4.425 -1.256 1.503 1.892  7 811.1 0.00 0.386 

1D 

 

-3.647 5.180  1.682 1.336  6 812.8 1.76 0.160 

-2.721 4.258 -1.327 1.389 1.986 -0.298 8 813.0 1.96 0.145 

-1.793 4.906 -1.439  1.948  6 813.7 2.65 0.103 

-1.614 4.493 -1.555  2.130 -0.605 7 814.6 3.53 0.066 
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APPENDIX S2- Additional results  

 

 

Figure S4. Box plots of diversity metrics (richness and the exponential of Shannon’s index 

(Hill number of order 1, 1D) along the reservoirs cascades in the three river basins. 
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Table S5. Results of the linear model analysis with p-value of the permutation for the 

selected model. P values < 0.05 are bolded. 

Response 
variables 
(R2 adjusted) 

Predictor 
variables 

Estimate SE t-value P-value 

Richness 

(0.676) 

Intercept 17.57 0.44 39.83 <0.001 
Altitude -2.72          0.82 -3.30 0.001 
Residence time 1.98 0.62 3.19 0.002 
Depth  -1.33 0.65 -2.03 0.044 
Area 4.26 0.75 5.65 <0.001 
Secchi -0.30 0.55 -0.54 0.588 

Total phosphorus 1.39 0.72 1.92 0.057 

 Intercept 6.30 0.16 39.35 <0.001 

1D 

(0.767) 

Altitude -1.12 0.30 -3.76 <0.001 

Residence time 1.38 0.23 6.12 <0.001 

Depth  -1.12 0.24 -4.72 <0.001 

Area 1.53 0.27 5.59 <0.001 

Secchi 0.51 0.20 2.58 0.012 
Total phosphorus 0.37 0.26       1.41 0.160 

SE, standard error of the estimate represents the average distance that the observed values fall 

from the regression line; t-value, t-distributed for generalizes linear mixed models; P-value, 

probability of a random influence of factor. 
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Table S6. Spearman’s correlation test across components of beta diversity and its 

components and reservoir cascade position. rS = Spearman’s rank correlation coefficient 

(rho); βsor = beta diversity; βsim = turnover component; βsne = Nestedness component. 

P values < 0.05 are bolded. 

 

Basin Variable rS 
P-

value 

Iguaçu 

βsor 1.0 0.083 

βsim 1.0 0.083 

βsne -0.2 0.916 

Paranapanema 

βsor -0.2 0.741 

βsim -0.2 0.741 

βsne  0.5 0.356 

São Francisco 

βsor  1.0 0.017 

βsim  0.3 0.553 

βsne  1.0 0.017 
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Table S7. Results of of DistLM (Distance-based Linear Model) analysis with p-value of 

the permutations for the selected models. Pseudo-F = the multivariate analogue of 

Fisher’s ratio, estimates by how much the sum of square deviates from random; d.f. = 

number of degrees of freedom. P values < 0.05 are bolded. 

 

Components 
(R2adj) 

Predictor 
variables 

d.f. Variance Pseudo-F P-value 

βsor 
(0.663) 

Area 1 0.409 3.773 0.003 
Depth 1 0.792  7.302 0.001 
Nitrate 1 2.095 19.320 0.001 
Residence time  1 0.395 3.643 0.001 

βsim 
(0.718) 

Area 1 0.362 3.705 0.002 
Depth 1 0.745 7.609 0.001 
Nitrate 1 2.065 21.087 0.001 
Residence time 1 0.364 3.724 0.002 

βsne 
(3.265) 

Area 1 0.042 9.156 0.001 
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Figures S8. Analysis with super-organising maps (Super-SOM) 

 

 

Figure S8a. Relationships of topographic and quantization errors with percentage of 

empty cells (i.e. unit neuron nodes) obtained during the optimisation of the dimensions 

(X, Y) of the super- organising map (Super-SOM) used to scrutinise the ecological trends 

in the Iguaçu River Basin. The selected Super-SOM rendered the topographic and 

quantization errors highlighted by the green dot (X=5 and Y=9). The percentage of empty 

cells is depicted for illustrative purposes since it was not considered to select the optimal 

Super-SOM. 

 

Figure S8b. Overlay of the codebooks of the optimal super-organising map (Super-SOM) 

summarising the ecological trends in the Iguaçu River Basin (left). Mapping of the species 

and environmental, morphological, and spatial factors within the optimal Super-SOM 

(right). 
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Figure S8c. Relationships of topographic and quantization errors with percentage of 

empty cells (i.e. unit neuron nodes) obtained during the optimisation of the dimensions 

(X, Y) of the Super-SOM used to scrutinise the ecological trends in the Paranapanema 

River Basin. The selected Super-SOM rendered the topographic and quantization errors 

highlighted by the green dot (X=9 and Y=10). The percentage of empty cells is depicted 

for illustrative purposes since it was not considered to select the optimal Super-SOM. 

 

 

Figure S8d. Overlay of the codebooks of the optimal Super-SOM summarising the 

ecological trends in the Paranapanema River Basin (Left). Mapping of the species and 

environmental, morphological, and spatial factors within the optimal Super-SOM (Right). 
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Figure S8e. Relationships of topographic and quantization errors with percentage of 

empty cells (i.e., unit neuron nodes) obtained during the optimisation of the dimensions 

(X, Y) of the Super-SOM used to scrutinise the ecological trends in the São Francisco 

River Basin. The selected Super-SOM rendered the topographic and quantization errors 

highlighted by the green dot (X=8 and Y=8). The percentage of empty cells is depicted 

for illustrative purposes since it was not considered to select the optimal Super-SOM. 

 

 

Figure S8f. Overlay of the codebooks of the optimal Super-SOM summarising the 

ecological trends in the São Francisco River Basin (Left). Mapping of the species and 

environmental, morphological, and spatial factors within the optimal Super-SOM (Right). 
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S9. Clusters of Super-SOM analysis 

 

Table S9a. Percentages of the variables that were included in each group of factors of the 

three clusters formed for each basin (Iguaçu, Paranapanema and São Francisco). 

 

Iguaçu 
  Species Environmental Morphological Spatial 

Cluster 1 46.7% 25.0% 42.8% 66.7% 

Cluster 2 43.3% 50.0% 57.1% 33.3% 

Cluster 3 10.0% 25.0% 0.0% 0.0% 

 
    

Paranapanema 
  Species Environmental Morphological Spatial 

Cluster 1 44.44% 37.5% 14.3% 66.7% 

Cluster 2 29.17% 62.5% 14.3% 0.0% 

Cluster 3 26.39% 0.0% 71.4% 33.3% 

 
    

São Francisco 
  Species Environmental Morphological Spatial 

Cluster 1 41.7% 25.0% 57.1% 33.3% 

Cluster 2 41.7% 75.0% 42.9% 66.7% 

Cluster 3 16.7% 0.0% 0.0% 0.0% 



 
 

 

83 

Table S9b. Complete list of variables assigned to each cluster of each basin. Number 1 

indicates selection of the variable in the respective cluster. 

Iguaçu River basin 

Features Cluster 
1 

Cluster 
2 

Cluster 
3 

Astyanax lacustris 1 0 0 
Psalidodon bifasciatus 1 0 0 
Astyanax dissimilis 1 0 0 

Psalidodon gymnodontus 1 0 0 
Astyanax minor 1 0 0 
Apareiodon vittatus 1 0 0 

Bryconamericus ikaa 0 1 0 
Bryconamericus sp. 0 1 0 
Cyprinus carpio 0 1 0 

Australoheros cf. facetus 0 1 0 
Ctenopharyngodon idella 0 1 0 

Crenicichla iguassuensis 1 0 0 

Corydoras paleatus 0 0 1 
Crenicichla sp2 1 0 0 

Cyphocharax santacatarinae 1 0 0 

Geophagus iporangensis 0 1 0 
Glanidium ribeiroi 0 1 0 

Hypostomus commersoni 1 0 0 

Hypostomus derbyi 0 1 0 
Hoplias gr. malabaricus 0 1 0 

Hypostomus myersi 0 1 0 

Megaleporinus macrocephalus 1 0 0 
Odontesthes bonariensis 1 0 0 
Oligosarcus longirostris 1 0 0 

Pimelodus britskii 0 0 1 
Pimelodus ortmanni 1 0 0 
Rhamdia branneri 0 1 0 

Rhamdia voulezi 0 1 0 
Tatia jaracatia 0 1 0 
Coptodon rendalli 0 0 1 

Chlorophyll 0 1 0 
Conductivity 0 1 0 
Dissolved.oxygen 0 0 1 

pH 0 0 1 

Secchi 1 0 0 
Temperature 1 0 0 

Total.phosphorus 0 1 0 
Turbity 0 1 0 
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Accumulated.volume 1 0 0 
Age 0 1 0 

Area 1 0 0 
Depth 0 1 0 
Length 1 0 0 

Residence.time 0 1 0 
Volume 0 1 0 
Altitude 0 1 0 

Cascade.position 1 0 0 
Distance.source 1 0 0 

 

Paranapanema River basin 

Features Cluster 
1 

Cluster 
2 

Cluster 
3 

Apareiodon affinis 1 0 0 
Astyanax lacustris 1 0 0 
Apteronotus brasiliensis 0 0 1 
Psalidodon bockmanni 1 0 0 
Psalidodon fasciatus 1 0 0 
Acestrorhynchus lacustris 1 0 0 
Astronotus ocellatus 1 0 0 
Apareiodon piracicabae 1 0 0 
Ageneiosus militaris 0 0 1 
Crenicichla britskii 1 0 0 
Crenicichla haroldoi 1 0 0 
Cichla kelberi 1 0 0 
Crenichicla sp. 1 0 0 
Crenicichla sp2 1 0 0 
Geophagus iporangensis 1 0 0 
Gymnotus carapo 0 0 1 
Galeocharax gulo 0 0 1 
Hypostomus ancistroides 0 1 0 
Hypostomus cf. auroguttatus 1 0 0 
Hypophthalmus oreomaculatus 0 1 0 
Hypostomus hermanii 0 0 1 
Hoplosternum littorale 1 0 0 
Hoplias gr. malabaricus 0 0 1 
Moenkhausia bonita 0 0 1 
Hypostomus nigromaculatus 0 0 1 
Hypostomus regani 0 0 1 
Hypostomus strigaticeps 0 0 1 
Hypostomus sp1 0 0 1 
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Hypostomus spp 0 0 1 
Iheringichthys labrosus 1 0 0 
Leporinus amblyrhynchus 1 0 0 
Leporinus sp1 0 0 1 
Leporinus sp2 0 0 1 
Leporinus friderici 0 0 1 
Leporinus lacustris 0 1 0 
Megaleporinus obtusidens 0 1 0 
Leporinus octofasciatus 0 0 1 
Loricariichthys platymetopon 0 1 0 
Leporellus vittatus 1 0 0 
Moenkhausia intermedia 1 0 0 
Metynnis cf. maculatus 0 1 0 
Megalancistrus parananus 0 1 0 
Pimelodus absconditus 0 1 0 
Trachelyopterus galeatus 0 1 0 
Pterodoras granulosus 0 1 0 
Pimelodella gracilis 0 1 0 
Prochilodus lineatus 0 1 0 
Pimelodus maculatus 1 0 0 
Pimelodus ortanus 0 1 0 
Pinirampus pirinampu 0 1 0 
Proloricaria prolixa 0 0 1 
Proloricaria sp. 0 1 0 
Plagioscion squamosissimus 0 0 1 
Rhinelepis aspera 0 0 1 
Roeboides descalvadensis 0 1 0 
Rhinodoras dorbignyi 1 0 0 
Rhamphichthys hahni 0 1 0 
Rhamdia quelen 1 0 0 
Rhaphiodon vulpinus 0 1 0 
Schizodon borellii 0 1 0 
Salminus brasiliensis 1 0 0 
Sternopygus macrurus 1 0 0 
Serrasalmus maculatus 1 0 0 
Serrasalmus marginatus 0 1 0 
Schizodon nasutus 1 0 0 
Satanoperca sp. 0 1 0 
Steindachnerina brevipinna 1 0 0 
Steindachnerina insculpta 1 0 0 
Triportheus angulatus 1 0 0 
Tatia neivai 1 0 0 
Chlorophyll 0 1 0 
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Conductivity 1 0 0 
Dissolved.oxygen 0 1 0 
pH 0 1 0 
Secchi 0 1 0 
Temperature 1 0 0 
Total.phosphorus 0 1 0 
Turbity 1 0 0 
Accumulated.volume 1 0 0 
Age 0 1 0 
Area 0 0 1 
Depth 0 0 1 
Length 0 0 1 
Residence.time 0 0 1 
Volume 0 0 1 
Altitude 0 0 1 
Cascade.position 1 0 0 
Distance.source 1 0 0 

 

São Francisco River basin 

Features Cluster 
1 

Cluster 
2 

Cluster 
3 

Acestrorhynchus britskii 0 0 1 
Acestrorhynchus lacustris 1 0 0 
Astronotus ocelatus 0 1 0 
Astyanax lacustris 1 0 0 
Anchoviella vaillanti 0 0 1 
Bryconops affinis 0 0 1 
Brycon orthotaenia 1 0 0 
Bergiaria westermanni 0 1 0 
Conorhynchos conirostris 0 1 0 
Cichla spp 0 1 0 
Crenicichla lepidota 0 1 0 
Curimatella lepidura 1 0 0 
Colossoma macropomum 1 0 0 
Cichlasoma sanctifranciscense 0 1 0 
Duopalatinus emarginatus 0 1 0 
Leporinus sp. 1 0 0 
Eigenmanni virescens 1 0 0 
Franciscodoras marmoratus 0 1 0 
Gymnotus carapo.1 0 1 0 
Hoplias intermedius 0 1 0 
Hoplosternum littorale 1 0 0 
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Hoplias gr. malabaricus 1 0 0 
Hypostomus spp.1 0 1 0 
Lophiosilurus alexandri 0 1 0 
Leporinus melanopleura 0 1 0 
Leporinus piau 0 0 1 
Leporinus taeniatus 1 0 0 
Leporellus vittatus 1 0 0 
Megalancistrus barrae 0 1 0 
Megaleporinus reinhardti 1 0 0 
Moenkhausia costae 0 0 1 
Metynnis spp 1 0 0 
Myleus micans 0 1 0 
Orthospinus franciscensis 1 0 0 
Oreochromis niloticus 1 0 0 
Prochilodus argenteus 1 0 0 
Prochilodus brevis 0 1 0 
Pseudoplatystoma corruscans 1 0 0 
Prochilodus costatus 0 0 1 
Pterygoplichthys etentaculatus 0 1 0 
Pachyurus francisci 0 0 1 
Phenacogaster franciscoensis 0 1 0 
Trachelyopterus galeatus 1 0 0 
Pimelodus spp 1 0 0 
Pimelodus maculatus 0 1 0 
Pygocentrus piraya 1 0 0 
Pachyurus squamipinnis 0 1 0 
Plagioscion squamosissimus 0 0 1 
Rhinelepis aspera.1 0 1 0 
Rineloricaria sp. 0 1 0 
Roeboides xenodon 0 0 1 
Serrasalmus brandtii 0 0 1 
Steindachnerina elegans 0 1 0 
Salminus franciscanus 1 0 0 
Schizodon knerii 1 0 0 
Sternopygus macrurus.1 0 1 0 
Synbranchus marmoratus 0 1 0 
Tetragonopterus franciscoensis 1 0 0 
Triportheus guentheri 1 0 0 
Chlorophyll 0 1 0 
Conductivity 0 1 0 
Dissolved.oxygen 0 1 0 
pH 0 1 0 
Secchi 0 1 0 
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Temperature 0 1 0 
Total.phosphorus 1 0 0 
Turbity 1 0 0 
Accumulated.volume 0 1 0 
Age 0 1 0 
Area 1 0 0 
Depth 0 1 0 
Length 1 0 0 
Residence.time 1 0 0 
Volume 1 0 0 
Altitude 1 0 0 
Cascade.position 0 1 0 
Distance.source 0 1 0 
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3 FISH TROPHIC GUILDS ORGANIZATION IN RESERVOIRS WITH 
DIFFERENT ENVIRONMENTAL, SPATIAL, AND MORPHOLOGICAL 
FEATURES 
 

ABSTRACT 
 
Several studies have shown that reservoirs and their morphological characteristics alters 

the continuity in matter, energy, and nutrient transfer in rivers, which can alter resource 

availability, food supply and, ultimately fish trophic structure. We sampled 29 reservoirs 

to verify the main factors related to the structure of their fish trophic guilds. We 

determined the relative importance of spatial, morphological and environmental 

characteristics of the reservoirs (predictors) on the distribution patterns of fish trophic 

guilds. To assess the influence of these sets of predictors on the composition and 

abundance of fish trophic guilds, we used variation partitioning analyses. Distance-based 

redundancy analysis was used to examine the influence of predictors on the spatial 

distribution of samples for the three components of variation partitioning. The structure 

of fish trophic guilds revealed that the spatial features were the most important predictors, 

followed by the environmental and the morphological ones. The trophic guilds that 

showed spatial segregation were herbivores and omnivores. Reservoirs with higher 

concentration of total nitrogen had a greater abundance of herbivores and detritivores, 

whereas higher concentrations of total suspended material were related to greater 

abundance of piscivores. Older reservoirs had lower abundances of herbivores and 

piscivores and greater abundances of omnivores. Larger reservoirs had a greater 

abundance of piscivores and omnivores. Longer water retention time was related to a 

greater abundance of piscivores. Our findings have important implications for the 

management of reservoirs since changes in the abundance of trophic guilds can severely 

modify the networks of ecosystem interactions. 

 
Keywords: Ecoregions · Iguaçu River · Neotropical fish · Upper Paraná · Water resource 

management 
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3.1 Introduction 
 

Ecological communities and the study of their structuring factors have a long and rich 

history. Especially for freshwater fish, several factors were listed for acting 

simultaneously influencing the structuring of these communities, such as historical 

events, biotic interactions, environmental variables, and dispersal (Poff 1997; Jackson et 

al. 2001; Cetra et al. 2017). However, the modification of aquatic environments as a result 

of anthropogenic actions (e.g., dam constructions) can lead to additional and important 

changes in the distribution and structure of aquatic biota, being one of the major threats 

to freshwater fish (Poff 1997; Tejerina-Garro et al. 2005; Agostinho et al. 2016; Pelicice 

et al. 2018).  

Most of the world’s large rivers are already fragmented by dams, with many 

fluvial systems converted into series of impoundments. A wide range of studies has 

shown that the construction of dams in rivers constitutes one of the main sources of fish 

assemblage alterations due to changes in natural flow regimes (Poff and Zimmerman 

2010; Pelicice et al. 2015; Winemiller et al. 2016; Dias et al. 2020). The formation of 

huge lentic areas (e.g., reservoirs) changes several environmental filters that regulate local 

assemblages, related mainly to hydrological, morphological, and limnological conditions 

(Poff 1997; Agostinho et al. 2016). Specifically, impoundments alter the continuity in the 

matter, energy, and nutrient transfer (Vannote et al. 1980; Ward and Stanford, 1983), 

which can alter resource availability (Luz-Agostinho et al. 2008; Abujanra et al. 2009), 

reproductive success, and recruitment (Agostinho et al. 2004; Oliveira et al. 2015; 

Angulo-Valencia et al. 2016), and ultimately fish species composition (Ganassin et al. 

2021).  

One of the main factors that limit the establishment and initial accommodation of 

the fish fauna in these new environments is the water dynamic (Mérona and Vigouroux 
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2012). This occurs because the rapid changes from the flooding and new flow conditions 

change the diet and the trophic structure of the fish fauna, favoring the proliferation of 

some species and the disappearance of others (Delariva et al. 2013; Dias et al. 2020). In 

the initial phases of reservoir formation, it is observed an intense heterotrophic activity, 

due to the incorporation of the terrestrial organic material into the aquatic environment 

(Loureiro-Crippa and Hahn 2006; Agostinho et al. 2007; Gubiani et al. 2011). After few 

years, it is possible to detect a process of trophic accommodation and depression, with a 

decrease in nutrient availability due to sedimentation and exportation processes (i.e., 

marginal areas do not have much influence on the trophic structure of fish assemblages) 

(Agostinho et al. 2007; Cunha-Santino et al. 2013). Therefore, these changes in food 

availability cause a large restructuration of the food web, which results in a new trophic 

ecosystem structure (Baxter 1977). Additionally, the morphological characteristics in 

local and regional factors of the dams (i.e., design of construction and its operational 

procedures), such as morphometry of the catchment, discharge, patterns of water 

circulation, depth, habitat structure, species pool, and surface area are important 

determinants of the degree of alteration in the structure and dynamics of the local biota 

(Agostinho et al. 2016), which also influence the trophic structure.  

Regarding the organization of trophic guilds in reservoirs, it is expected that 

environmental variables act as proxies of productivity, and morphological variables 

operate together in determining higher or lower values of the abundance of certain guilds 

(Ximenes et al. 2011; Lima et al. 2018; Muniz et al. 2020). For instance, reservoirs that 

have higher water residence values (i.e., reduced flow) show an increase in sedimentation 

rates, which over time causes changes in productivity and limnology in these 

environments, reducing the abundance of herbivores and detritivores (Muniz et al. 2020; 

Santos et al. 2020). However, under these conditions, omnivorous species (i.e., species 
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considered trophic opportunists) can be favored due to pre-adaptations favorable to the 

consumption of a wide variety of food resources (Agostinho et al. 2016). The age of the 

reservoirs is also determinant in the abundance of guilds (Muniz et al. 2020). For example, 

older reservoirs have lower primary production values, which causes a reduction in the 

abundance of the majority of the trophic guilds and an increase in small opportunistic 

fish. Consequently, piscivores are favored in these environments, because they prey small 

opportunistic fish that became abundant (Gubiani et al. 2011; Agostinho et al. 2016). 

Understanding the variations caused in the trophic composition of the 

ichthyofauna in dammed environments is essential to assess the real impacts of reservoirs 

and to support in management and operation plans of these artificial systems. Thus, this 

study aimed to verify the main factors that explain the structure of fish trophic guilds in 

29 Neotropical reservoirs. We determine the relative importance of spatial, morphological 

and environmental characteristics of reservoirs on the distribution patterns of fish trophic 

guilds. We expect to find that environmental, and morphological variables of reservoirs 

will be more correlated with the distribution of fish trophic guilds than spatial variables. 

More specifically, we expect higher abundance of herbivores, detritivores, invertivores, 

and insectivores guilds in reservoirs with higher concentrations of organic matter and 

nutrients (i.e., more strongly correlated with environmental variables), and higher 

abundance of piscivores and omnivores guilds are expected in larger/deeper, older, and 

with longer water residence time reservoirs (i.e., more strongly correlated with 

morphological variables). 
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3.2 Methods 
 

3.2.1 Study area 
 

We studied 29 reservoirs located in rivers of the Paraná State and neighboring states in 

Brazil (Fig. 1 and Table S1 in Supplementary File 1). Twelve reservoirs are located in the 

Iguaçu River basin; seven in the Paranapanema River basin; four in the Coastal (or 

Litorânea) drainage basin; two in the Tibagi River basin; two in the Ivaí River basin; and 

two in the Piquiri River basin (Fig. 1 and Table S1 in Supplementary File 1). Therefore, 

out of the 29 studied reservoirs, 25 belong to the Paraná River basin (Paranapanema, 

Tibagi, Ivaí, Piquiri, and Iguaçu rivers), all running westward (i.e., Inland Slope), and 

another four reservoirs belong to the Coastal basin in drainages emptying directly into the 

Atlantic Ocean (i.e., Atlantic Slope). However, the Iguaçu River basin is isolated from 

the Paraná River by an insurmountable barrier for fish (the Iguaçu Falls), while the other 

river basins running in the Inland Slope belong to the upper Paraná River basin. Thereby, 

for better visualization, the reservoirs were classified as belonging to three distinct 

ichthyofauna provinces: i) Iguaçu - reservoirs located within the limits of the Iguassu 

ecoregion (sensu Abell et al. 2008); ii) Paraná - reservoirs within the limits of the upper 

Parana ecoregion (sensu Abell et al. 2008) encompassing the Tibagi, Piquiri, Ivaí and 

Paranapanema rivers; iii) Coastal - reservoirs within the limits of the Ribeira de Iguape 

and Southeastern Mata Atlântica ecoregions (sensu Abell et al. 2008) situated in the 

Atlantic Slope. 
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Fig. 1 Map showing the location of the 29 studied reservoirs in river basins from Paraná 

State and neighboring states 

 

3.2.2 Data collection 
 

3.2.2.1 Fish samplings 

Fish assemblages were sampled in the lacustrine region of the reservoirs, in different 

habitat (littoral, surface—pelagic, and near the bottom—bathypelagic) using gillnets of 

different mesh sizes (2.4 – 14 cm between opposing knots) exposed for 24 h. Fish were 

collected in the morning, afternoon, and night. The collections were carried out in 2001 in 

the dry (july) and rain (november) periods. Taxonomic identification of the fishes collected 

in the Iguaçu River basin follows Baumgartner et al. (2012) and Mezzaroba et al. (2021), 

Frota et al. (2016) and Reis et al. (2020) to the Ivaí River basin, Cavalli et al. (2018) and 

Reis et al. (2020) to the Piquiri River basin, Jarduli et al. (2020) and Reis et al. (2020) to 

the Paranapanema and Tibagi River basins, and Oyakawa et al. (2006), Frota et al. (2019), 
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and Reis et al. (2020) to the Coastal basin. The list of species captured in each river basin 

is presented in Table S2 in Supplementary File 2. 

 

3.2.2.2 Characterization of trophic guilds 

The use of trophic guilds has been widely used to detect changes caused by disturbances 

in fish communities (Delariva et al. 2013; Félix et al. 2013; Ferrareze et al. 2015; Garcia 

et al. 2018; Lima et al. 2018; Dias et al. 2020). Given the fact that guild is defined as “a 

group of species that exploits the same class of environmental resources in a similar way” 

(Root 1967), the guild-based approach is promising since it can aggregate species from 

different taxonomic positions, because it simplifies community analysis and allows 

comparisons between different locations and environments (Gerking 1994; Growns 2004; 

Welcomme et al. 2006; Vasconcelos et al. 2014; Dias et al. 2020). Thus, comparing trophic 

structures of fish assemblages from different reservoirs through the guild approach can 

facilitate to understand the processes and impacts that occur after reservoir is formed, and, 

maybe, reveal commons patterns. Also, the guild-based approach accounts for intrinsic 

differences in the identity of species, providing an overview of how fish populations are 

distributed and what influences this distribution as a result of the changes generated by the 

construction of dams and associated reservoirs (Arantes et al. 2019). 

Fish species were classified into six trophic guilds (Table S3 in Supplementary File 

3) based on published papers (see references in Supplementary File 4), as follow: i) 

Herbivores – species that feed primarily on algae and superior plants such as leaves, seeds, 

and fruits; ii) Invertivores – species that explore the river floor mainly in the bottom strata, 

feeding on benthic organisms such as testate amoebae, microcrustaceans, and small 

mollusks; iii) Insectivores – species that predominantly ingest aquatic and terrestrial 

insects at different stages of development; iv) Omnivores – species that consume plants 
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ranging from algae to higher plants and animals from invertebrates to fish (these species 

feed on at least three trophic levels, without an obvious predominance of any particular 

resource); v) Piscivores – species that consume mainly fish including foraging species and 

juveniles of large-sized fish species, and that can complement their diet with insects, plants 

or invertebrates but in low proportions; vi) Detritivores – species that consume large 

amounts of debris or sediment along with associated organisms, such as algae, larvae of 

aquatic insects (especially chironomids), fragments of plants, adult insects, and benthic 

invertebrates.  

 

3.2.2.3 Environmental data 

Limnological conditions have a strong influence on the structure of fish assemblages at 

local scales, as they are related to productivity, ecological tolerance, and fitness (Huston 

1979, 2004; Miranda and Krogman, 2015). Limnological variables (i.e., environmental 

features) were measured from surface water samples obtained on the same day of fish 

sampling. Conductivity (μS cm−1), pH, turbidity (NTU), and dissolved oxygen (mg L−1) 

were measured in the field with a multiparameter probe. Water collected with a Van Dorn 

sampler (2.5 L) was stored in polyethylene bottles, placed on ice, and preserved in low 

temperatures until analysis. Following standard protocols (Mackereth et al. 1978; APHA 

2005), we obtained the following variables: total suspended material (mg L−1), alkalinity 

(mEq L−1), total phosphorus (μg L−1; APHA 2005), orthophosphate (μg L−1; APHA 2005), 

phosphate (μg L−1; APHA 2005), total dissolved phosphorus (μg L−1; APHA 2005), 

chlorophyll-a (μg L−1; Nusch 1980), total nitrogen (μg L−1; Mackereth et al. 1978), nitrate 

(μg L−1; Mackereth et al. 1978), ammonia (μg L−1; Mackereth et al. 1978), dissolved 

organic carbon (μg L−1; Shimadzu–TOC5000A) and biovolume of phytoplankton (mm3 L-

1). 
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3.2.2.4 Spatial data 

To summarize the spatial structure of reservoirs, we used Principal Coordinates of 

Neighbour Matrices (PCNM). For the construction of the spatial data matrix, we used the 

hydrological distance between the reservoirs. The hydrologic distance is calculated on a 

shapefile representing the hydrographic network, using as starting and finishing points the 

geographical coordinates of each reservoir (i.e., latitude and longitude). The calculation of 

the distances is performed with the Dijkstra algorithm, which measures the smallest 

distances between two points (Dijkstra 1959; Loro et al. 2015). We performed the 

calculation with the QNEAT3 complement (Qgis Network Analysis Tool- box), 

implemented in Qgis 3.0 (QGIS Development Team 2018). 

The PCNM method is used to model spatial structure at multiple spatial scales and 

to incorporate this representation in statistical analysis (Borcard et al. 2011). The spatial 

structure, derived from the hydrological distances among reservoirs, was summarized in a 

resemblance matrix (Euclidean distance) and this matrix was truncate to retain only the 

distances among close neighbors. Then, a Principal Coordinates Analysis (PCoA) of the 

truncated distance matrix was conducted to summarize the spatial structure in PCNMs 

(axes generated in the PCoA). The eigenvectors were then used as spatial explanatory 

variables in a model. The scores of the first PCNM represent the greatest scale in the 

sample sites, while the last represents the smaller scale (i.e., the PCNM produces a spectral 

decomposition of space and can model spatial structure at all the spatial scale that can be 

perceived by the data set; Borcard et al. 2004). This procedure was performed in R, using 

the “pcnm” function implemented in the vegan package. 
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3.2.2.5 Morphological data 

Following Gubiani et al. (2011) and Pelicice et al. (2015), we also recorded some variables 

that are more related to the morphology and operation of the studied reservoirs: reservoir 

age, area, depth, volume, water residence time, and if a reservoir belongs, or not, to a 

reservoir cascade (Table S1 in Supplementary File 1). These variables are directly related 

to the structuring of fish communities in reservoirs. As reservoirs age, changes in diversity 

and functioning of fish communities are expected, such as a reduction in species richness 

and selection of species that have more generalist strategies (Miranda and Krogman 2015; 

Muniz et al. 2020). The variables area, depth, and volume refer to the size of the reservoir 

and are directly related to the species-area hypothesis and habitat heterogeneity, one of the 

main structuring elements of fish communities (Bailly et al. 2016). The residence time of 

the water is related to the flow and fluctuations in water level of the environment; frequent 

and unpredictable fluctuations directly affect the species that inhabit the littoral region, 

whether for shelter or foraging (Santos et al. 2017). Since reservoir cascades have 

predictable environmental variations (e.g., increased water transparency in the 

downstream direction), fish communities belonging to this system respond to these 

variations (Santos et al. 2017; Ganassin et al. 2021). All of these influences in the structure 

of the fish communities mentioned above have direct effects on food webs, also leading to 

direct effects on composition of trophic guilds in reservoirs. 

 

3.2.3 Data analysis 
 

We used variation partitioning analyses to assess the influence of three predictor sets on 

the composition and abundance of fish trophic guilds. These predictor sets of variation 

partition were: environmental (which included total nitrogen (TOTN), total suspended 
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material (TSM), chlorophyll-a, and conductivity); morphological (age, area, water 

residence time, and a categorical variable that indicates whether the reservoir belong to a 

cascade); and spatial (which included PCNM15, PCNM5, PCNM1, PCNM6, PCNM13, 

PCNM4, PCNM11, and PCNM2). Distance-based redundancy analysis (dbRDA), using 

the Euclidean distance in the Hellinger-transformed matrix of composition and abundance 

of trophic guilds, was used to examine the influence of three components of variation 

partitioning on the spatial distribution of species, as described by the composition of 

trophic guilds in multivariate space.  For the visualization of the results detected by the 

dbRDA we used a canonical analysis of principal coordinates (CAP), which generates 

graphic clusters through permutation (Anderson and Willis 2003).  

For all statistical analyses some data transformations and variables selection were 

performed, as described below. The environmental variables (except pH) were log10(x) 

transformed to homogenize the scale of the different units of measurement included in this 

matrix. To reduce the effects of very abundant guilds, we transformed the abundance of 

trophic guilds into square roots (Clarke and Gorley 2006). For each set of variables that 

represent the evaluated components, the correlation value between them was evaluated, 

and for the pairs of variables that presented Pearson correlation (|r|) > 0.7, one of them was 

removed, as recommended by Dormann et al. (2013). This procedure is important to avoid 

multicollinearity problems in models. Then, with the environmental variables selected, we 

carried out a forward selection procedure to select only the environmental variables that 

had significant influences on the composition and abundance of fish trophic guilds. This 

procedure was also performed for the spatial component since it had 24 PCNMs and it is 

the most recommended selection of variables in these cases (Borcard et al. 2011). Forward 

selection is recommended when there is a large set of variables and the objective is to 

reduce dimensionality, to increase the predictive power of models (i.e., reduce the loss of 
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degrees of freedom).  

 

3.3 Results 
 

Variation partitioning analyses (Fig. 2 and Table 1) regarding the structure of fish trophic 

guilds revealed that: i) the spatial characteristics (18%) were the most important predictors, 

followed by environmental features (5%); ii) rather surprisingly, morphological features 

of the reservoirs explained minimal variation (only 1%); iii) the joint variation explained 

by environmental and spatial features was also very important (13%). All these predictors 

explained 43% of the data set variability. Spatial variables, especially PCNM2 and 

PCNM5, showed significant correlations with environmental and morphological variables 

(Fig. 3). This correlation shows spatial patterns of large scales in the assessed 

environmental and morphological variables. Furthermore, all morphological variables 

were correlated in some way with environmental variables, especially with conductivity, 

chlorophyll-a, and total suspended material, showing that the morphology of the reservoir 

affects the environmental conditions and local productivity (which explains the 

significance of its overall effect rather than the unique; Table 1).  
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Fig 2 Results of the variation partitioning analyses of the key structural components of 

fish trophic guilds. The figures correspond to percentages. The analysis used three sets of 

predictors: environmental features; spatial components; and morphological features. See 

Methods for further details 

 

Table 1 Variation partitioning analyses of three predictor sets on the metrics of all fish 

trophic guilds. The explained variation (R2adj) and corresponding P value are shown 

Response variable 

 
Factors 

R2adj 

overall 
P 

R2adj 

unique 
P  

Abundance of all trophic 

guilds 

Environmental    0.202 0.001 0.054 0.021 

Spatial  0.360 0.001 0.181 0.001 

Morphological 0.068 0.011 0.013  0.233 

Note: Bolding indicates significant P values. P significance based on 9999 randomizations. 
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Fig 3 Pairwise relationships between all selected predictors for evaluation of shared 

effects. Below the diagonal, the bivariate scatterplots with the linear regression function 

are shown; the diagonal shows the histogram with an estimated Kernel density function; 

above the diagonal, the Pearson correlation coefficients with significance levels (▪, P < 

0.10; *, P < 0.05; **, P < 0.01; ***, P < 0.001) 

 

Through the results of the dbRDA, we were able to indicate more specific 

relationships among the predictors selected in the three evaluated components 

(environmental, spatial and morphological) and the fish trophic guilds. Regarding the 

environmental component, it was possible to observe that herbivores had high positive 

correlation with total nitrogen concentrations, i.e., they were in greater abundances in 

reservoirs with higher values of this variable, especially in reservoirs of the Iguaçu 

province (Fig. 4a). On the other hand, omnivores and invertivores were found in greater 

abundances in reservoirs with higher values of total suspended material and conductivity, 
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respectively. The guilds piscivores, insectivores, and detritivores did not seem to be related 

to any of the environmental variables, although detritivores showed a tendency to increase 

abundances in reservoirs with higher concentration of nitrogen and suspended total 

material (see Fig. S1 in Supplementary File 5). 

The spatial variables PCNM 1, PCNM15, and PCNM6 tended to separate reservoirs 

of the Iguaçu province from the others (Fig. 4b). Most of the reservoirs in this province 

showed high abundances of herbivores. Furthermore, PCNM5 seems to contain most 

reservoirs of the Paraná province, with high abundance of omnivores. The other trophic 

guilds did not show such clear differences between the provinces (see Fig. S2 in 

Supplementary File 5). 

Finally, for the morphological component, it is possible to notice that the different 

characteristics of the reservoirs had fewer effects in the differentiation of guilds (Fig. 4c; 

all guilds are near in this figure). However, some significant relationships have been 

verified (see Fig. S3 in Supplementary File 5). Age of reservoirs showed positive 

relationships with the abundance of omnivores and negative relationships with the 

abundance of piscivores, detritivores, and herbivores. From the visual inspection of the 

dbRDA graph, it is possible to verify that the oldest reservoirs are inserted in the Paraná 

province. On the other hand, reservoirs with larger areas, common in the Iguaçu province, 

presented a greater abundance of piscivores and herbivores. In addition, the guild of 

piscivores also appears to be correlated with the residence time of the water, and herbivores 

related to the insertion of the reservoir in a cascade system. The other trophic guilds 

showed no differences considering the morphological component. 
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Fig 4 Ordination plots of the canonical analysis of principal coordinates (CAP) used in 

dbRDA for (a) environmental, (b) spatial, and (c) morphological components. The 

different colors represent the three ichthyofaunistic provinces in which the reservoirs are 

inserted 
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3.4 Discussion 
 

Overall, spatial, environmental, and morphological components showed significant effects 

on the composition of trophic guilds in the studied reservoirs. However, only the spatial 

and environmental components had significant unique effects. Among them, the one that 

presented the greatest variability explained for the composition of the guilds was the 

spatial, followed by the environmental and morphological. In addition, the shared effect 

between the environmental and spatial, and between spatial and morphological 

components showed a considerable percentage of the explained variability. When we 

evaluated the components separately, we observed that some variables influenced certain 

trophic guilds. In relation to the spatial component, the trophic guilds that showed spatial 

segregation were herbivores and omnivores. The environmental component showed that 

reservoirs with a higher concentration of total nitrogen had a greater abundance of 

herbivores and detritivores species, and higher concentrations of total suspended material 

were related to a greater abundance of piscivores. On the other hand, reservoirs with higher 

conductivity showed greater abundance of invertivores species. Regarding the 

morphological component, it was found that older reservoirs had lower abundances of 

herbivores and piscivores and greater abundances of omnivores. Larger reservoirs have a 

greater abundance of piscivores and omnivores, and the longer the water retention time, 

the greater the abundance of piscivores.  

The greatest explanation for the spatial component was due to the fact that the 

studied reservoirs are distributed in different ichthyofaunistic provinces belonging to 

different ecoregions (Abell et al. 2008). Large-scale spatial patterns are expected to be 

important in the distribution of fishes and, consequently, in the trophic guilds. Indeed, fish 

composition of the reservoirs may differ between basins because they have different 

biogeographic origins, and consequently, different species pool (Muniz et al. 2021). Each 
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province studied here (i.e., Iguaçu, Paraná, and Coastal) harbor distinct ichthyofaunas as 

a result of evolution and isolation over a long period (Ribeiro 2006; Abell et al. 2008; 

Albert et al. 2020), presenting its own limnological and geomorphological characteristics 

(Luiz et al. 2003; Pool et al. 2010). Muniz et al. (2021) evaluated the taxonomic and 

functional structures of the ichthyofauna of these same reservoirs and also found that the 

basin is important in determining species composition concerning these two parameters 

(i.e., reservoirs inserted in the same province/ecoregion were closer in the 

multidimensional space). For instance, we observed a clear spatial separation in herbivores 

among the different ichthyofaunistic provinces, with greater abundances in the Iguaçu 

province. In fact, a greater abundance of herbivores is expected for this province due to 

the high richness and abundance of species of the genera Astyanax and Psalidodon (Reis 

et al. 2020). Species of these genera are generally classified as omnivores, but many studies 

show a clear tendency to herbivory (Pini et al. 2019). The variation in the feeding spectrum 

may be linked to the seasonal feeding plasticity present in such species, which can facilitate 

coexistence among them in the Iguaçu province (Neves et al. 2021). 

Environmental conditions, the second component that most explained the 

variability in the composition and distribution of guilds, are known to directly affect fish 

communities and food dynamics, especially in dammed environments (Agostinho et al. 

2008; Vidotto-Magnoni and Carvalho 2009; Zeng et al. 2017; Schmutz and Moog 2018). 

The interruption of natural flow, alteration in water level, in the flow of matter and energy 

caused by dams are changes that change limnology and productivity of reservoirs, 

reflecting in the structuring of the fish trophic guilds (Agostinho et al. 2008; Miranda and 

Krogman 2015). Although the morphology does not have a unique significant effect, its 

global effect can be explained by the correlation of environmental variables with the 

characteristics of the reservoirs (Fig. 3). This high correlation occurs because many of 
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these environmental changes are directly related to age, the shape of the reservoir (e.g., 

area, depth), its location (i.e., inserted in cascade), and scheme of operation (i.e., water 

residence time). Thus, these reservoir characteristics can lead to real variation in the 

limnological features of these environments and, therefore in the trophic guild composition 

(Agostinho et al. 2007; Vidotto-Magnoni and Carvalho 2009; Schmutz and Moog 2018).  

As expected, the herbivore guild showed different patterns of abundance and 

distribution across the reservoirs. Its greater abundances were verified in younger, with 

larger areas and more productive reservoirs (i.e., with higher concentrations of total 

nitrogen). Muniz et al. (2020) evaluating the association between age of the reservoir and 

different functional traits found that recent reservoirs presented higher abundances of 

herbivores species compared to the older ones. Reducing the abundance of herbivores 

species along the reservoir aging may be associated with decreased food resources (i.e., 

reduction of macrophytes, phytoplankton, and periphyton) or increased abundance of 

species with a wider food spectrum (i.e., strong competitors). In fact, the early years of 

reservoirs are characterized by the large contribution of allochthonous resources and 

flooded vegetation. Over time, due to the reduced interface between riparian vegetation 

and reservoirs, these resources become scarce in these environments, which may explain 

the decrease in the abundance of herbivores in older reservoirs (Dias et al. 2020; Muniz et 

al. 2020).  

Similarly, the greater abundance of detritivores found in younger reservoirs and with 

higher concentrations of total nitrogen and total suspended material was also expected and 

may be related to the quality of detritus and its access. Detritivores are considered trophic 

specialists with morphological adaptations of the mouth and digestive tract that do not 

allow them to use other types of resources (Fugi et al. 2001; Delariva et al. 2013). Although 

this resource is apparently unlimited, detritivores are highly selective and tend to feed on 
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protein-rich material with a higher level of organic matter (Bowen 1987). Thus, the 

changes that occur over time in reservoirs, mainly due to diminished nutrients (total 

phosphorus and nitrogen), productivity (chlorophyll-a), and more intense sedimentation 

process, may alter the nutritional quality of detritus (Santos et al. 2020), which justifies 

the lower abundance of individuals belonging to this guild in older and less productive 

reservoirs. Still, previous studies carried out in reservoirs arranged in cascade show that 

the abundance of detritivores is even smaller in reservoirs further downstream, due to the 

intense oligotrophization and intensity of these processes in the last reservoirs of a cascade 

(Santos et al. 2020). 

The omnivore guild, as we expected, had its greatest abundance in older reservoirs. 

Previous studies carried out in the studied reservoirs have also found that the age of the 

reservoir has a strong association with functional traits related to fish feeding, with older 

reservoirs showing high abundances of omnivorous species (Muniz et al. 2020). The main 

resources consumed in reservoirs are autochthonous (e.g., zooplankton, insects, other 

aquatic invertebrates, debris, fish), thus, species that consume these types of food prevail 

and are favored (Agostinho et al. 2007). However, these items are rarely consumed in a 

restricted way by specialist taxa, and the ingestion of different items, usually the most 

available, is the most common diet pattern, belonging to omnivores. Besides, few species 

have pre-adaptations to thrive in lacustrine conditions in the Neotropical region. Thus, 

species that have functional traits (e.g., omnivory) that allow greater plasticity will benefit 

(Gomes and Miranda 2001; Agostinho et al. 2016). Therefore, dammed environments, 

which are frequently disturbed, favor the establishment of these species because they have 

adaptive advantages compared to others with a more specialized and restricted diet (Jepsen 

and Winemiller 2002). 

Our results suggested that the greatest abundance of piscivores was recorded for 
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reservoirs with larger areas and longer water residence time. Among the studied reservoirs, 

those with the lowest chronological age were also those with the largest areas and longest 

water residence times. These variables reflect the morphological and operational 

characteristics of the reservoir and have direct relationships with the degree of impact of 

these projects on fish populations (Ganassin et al. 2021). This is because reservoirs with 

larger areas generally have longer water residence times, which provides heterogeneity of 

physical structure, habitat diversity, trophic resources, shelter and, greater richness and 

abundance of fish species (Leira and Cantonati 2008; Logez et al. 2016; Ganassin et al. 

2021). For instance, larger reservoirs are expected to have higher invertebrate species 

richness than smaller reservoirs (Santos et al. 2016), resulting in greater availability of 

food for the prey of piscivores. Moreover, in reservoirs with longer water residence time, 

greater transparency is expected, and this increase in water transparency may favor 

visually-oriented piscivores (Rodríguez and Lewis 1997; Tejerina-Garro et al. 1998). 

Contrary to what we expected, piscivores showed lower abundance in older reservoirs. 

This may be related to the fact that in the first years of the reservoir formation, the large 

incorporation of organic matter produces a marked increase in food availability, especially 

for small fish (Trophic upsurge period; Kimmel and Groeger 1986). Thus, this increase in 

small species can lead to the proliferation of piscivores in subsequent moments (Agostinho 

et al. 2007; Pereira et al. 2016). However, over time there is a reduction and 

homogenization of the ichthyofauna including the prey for piscivores, which may explain 

the lower abundances of individuals belonging to bottom-up control in older reservoirs.  

No clear relationship was found for the distribution of invertivores and insectivores 

guilds regarding the different characteristics of the reservoirs. Perhaps reservoirs are not 

very suitable environments for individuals belonging to these guilds. In fact, the 

construction of reservoirs reduces the water-margin interface (i.e., after some time), which 
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decreases the contribution of allochthones items in the fish diet (Agostinho et al. 2007), 

especially important for insectivores. Still, the retention of water and the decrease of flow 

that occur in all reservoirs due to the dams enhance sedimentation rates (Straskraba and 

Tundisi 1999), which over time, causes sediment accumulation, anoxia patterns, decrease 

of depth and, as a consequence, homogenizes the bottom habitats, which is the most 

important sources of resources for invertivores (Santos et al. 2016). 

 

3.5 Conclusions 
 

Our findings suggest that alterations caused by damming are reflected in the structure of 

the food chain according to the trophic guild considered. Specifically, the region where 

the reservoir is inserted, variables related to its form and operation scheme, as well as the 

environmental characteristics (e.g., productivity levels) are determinant in the distribution 

and abundance of the different guilds. Due to the major changes expected for aquatic 

bodies in the coming years with the construction of several dams (Zarlf et al. 2015), 

understand structuring factors of the trophic network is fundamental. This is true by the 

fact that in freshwater ecosystems fishes are mediators of ecosystem functions (Closs et 

al. 2016). Therefore, changes in the trophic structure of the fish assemblage leads to 

changes in the structure of the aquatic community as a whole (Holmund and Hammer 

1999). Thus, our results have important implications for management and conservation 

actions, since changes in the abundance of trophic guilds can result in severe modifications 

to networks of ecosystem interactions (Acevedo and Cassinello 2009). Still, further 

assessments of fish trophic changes are necessary to systematically evaluate the ecosystem 

functioning and its vulnerability to river fragmentation by dams, especially in reservoirs 

constructed in sequences (i.e., reservoirs cascade), given changes in natural taxonomic and 
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phylogenetic patterns (Zhang et al. 2019) and the inevitable amplification of negative 

effects on fish diversity. 
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SUPPLEMENTARY INFORMATION 

APPENDIX S1 – Characteristics of the studied reservoirs  

 

 

Table S1. Characteristics of the 29 study reservoirs located in the Paraná State, Brazil. Age: difference between 

2001 (fish samplings) and the year of reservoir formation; Depth = maximum depth; R.T. = water residence time; 

Cascade insertion = 1 – inserted in a reservoir cascade, 0 – not inserted in a reservoir cascade; MAWT = mean 

annual water temperature 

 

Reservoir River basin Province Age 
(years) 

Area 
(km²) 

Depth 
 (m) 

R.T. 
(days) 

Volume 
(km³) 

Cascade 
insertion 

MAWT 
(°C) 

Alagados Tibagi Paraná 56 7.2 9.3 46.00 0.03 0 19.85 
Canoas I Paranapanema Paraná 2 30.8 26.0 6.00 207.00 1 23.95 
Canoas II Paranapanema Paraná 2 22.5 16.5 4.40 140.00 1 23.55 
Capivara Paranapanema Paraná 26 419.3 52.5 126.80 10540.00 1 23.70 
Capivari  Litorânea Coastal 31 12.0 43.0 48.00 156.00 0 19.95 
Cavernoso Iguaçu Iguaçu 36 2.9 8.3 0.60 4.02 0 19.50 
Chavantes Paranapanema Paraná 31 400 78.0 352.70 8795.00 1 21.90 
Curucaca Iguaçu Iguaçu 19 2.0 10.5 47.00 26.10 0 17.55 
Foz do Areia Iguaçu Iguaçu 21 139 135 102.00 5779.00 1 20.70 
Foz do Chopim Iguaçu Iguaçu 31 2.9 6.0 59.10 26.10 0 20.05 
Guaricana Litorânea Coastal 44 7.0 17.0 13.00 4.02 0 19.95 
Harmonia Tibagi Paraná 51 3.0 12.0 11.50 8.00 0 20.90 
Jordão Iguaçu Iguaçu 5 3.4 60.0 5.60 110.00 0 18.45 
Melissa Piquiri Paraná 39 2.9 5.3 0.04 8.00 0 17.90 
Mourão Ivaí Paraná 37 11.3 12.7 70.00 0.06 0 20.95 
Passauna Iguaçu Iguaçu 23 14.0 15.0 420.00 0.50 0 16.50 
Patos Ivaí Paraná 52 1.3 5.8 0.20 26.10 0 18.50 
Piraquara Iguaçu Iguaçu 22 3.3 18.0 438.00 0.50 0 19.90 
Rosana  Paranapanema Paraná 15 220 26.0 18.60 1920.00 1 24.15 
Santa Maria  Piquiri Paraná 51 0.1 4.3 11.10 44.22 0 16.70 
Salto Caxias Iguaçu Iguaçu 3 124 53.0 31.00 3573.00 1 21.80 
Salto Grande Paranapanema Paraná 43 12 9.2 1.40 44.20 1 21.95 
Salto do Meio Litorânea Coastal 70 0.1 6.2 0.70 0.04 0 18.35 
Salto Osório Iguaçu Iguaçu 26 51 43.0 16.00 1270.00 1 21.20 
Salto Santiago Iguaçu Iguaçu 22 208 78.0 51.00 6753.00 1 21.60 
Salto Segredo Iguaçu Iguaçu 9 82.5 100.0 47.00 3573.00 1 21.80 
Salto do Vau Iguaçu Iguaçu 42 2 3.5 0.04 0.04 0 16.20 
Taquaruçu Paranapanema Paraná 9 80.1 26.5 7.90 672.50 1 23.60 
Vossoroca Litorânea Coastal 52 5.1 12.5 106.30 0.04 0 19.95 
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APPENDIX S2 – List of species collected in the studied reservoirs 

 

Table S2. List of the species collected in the sampled reservoirs. The ‘X’ indicates presence of the species 

collected in each river basin 

 

 River basins 

ORDER 

Family 

Species 

Coastal Iguaçu Ivaí Paranapanema Piquiri Tibagi 

CYPRINIFORMES       

Cyprinidae       

Ctenopharyngodon idella (Valenciennes, 1844)  X     

Cyprinus carpio Linnaeus, 1758 X X X  X  

Hypophthalmichthys molitrix (Valenciennes, 1844)  X     

Hypophthalmichthys nobilis (Richardson, 1845)  X     

CHARACIFORMES       

Crenuchidae       

Characidium travassosi Melo, Buckup & Oyakawa, 2016  X     

Erythrinidae       

Hoplias lacerdae Miranda Ribeiro, 1908    X    

Hoplias aff. malabaricus (Bloch, 1794) X X X X X X 

Parodontidae       

Apareiodon affinis (Steindachner, 1879)    X   

Apareiodon ibitiensis Amaral Campos, 1944    X   

Apareiodon piracicabae (Eigenmann, 1907)    X   

Apareiodon vittatus Garavello, 1977  X     

Cynodontidae       

Rhaphiodon vulpinus Spix & Agassiz, 1829    X   

Serrasalmidade       

Colossoma macropomum (Cuvier,1816)      X 

Metynnis lippincottianus Cope, 1870 X   X   
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Piaractus mesopotamicus (Holmberg, 1887)      X 

Serrasalmus maculatus Kner, 1858    X   

Serrasalmus marginatus Valenciennes, 1837    X   

Anostomidae       

Leporellus vittatus (Valenciennes, 1850)    X   

Leporinus amblyrhynchus Garavello & Britski, 1987    X   

Leporinus friderici (Bloch, 1794)    X   

Leporinus lacustris Amaral Campos, 1945    X   

Leporinus octofasciatus Steindachner, 1915    X   

Leporinus sp. 1    X   

Leporinus sp. 2    X   

Megaleporinus macrocephalus (Garavello & Britski, 
1988)  X     

Megaleporinus piavussu (Britski, Birindelli & Garavello, 
2012)    X   

Schizodon borellii (Boulenger, 1900)    X   

Schizodon nasutus Kner, 1858    X   

Curimatidae       

Cyphocharax modestus (Fernández-Yépez, 1948)  X     

Steindachnerina brevipinna (Eigenmann & Eigenmann, 
1889)    X   

Prochilodontidae       

Prochilodus lineatus (Valenciennes, 1837) X  X X X X 

Triportheidae       

Triportheus nematurus (Kner, 1858)    X   

Bryconidae       

Salminus brasiliensis (Cuvier, 1816)    X   

Acestrorhynchidae       

Acestrorhynchus lacustris (Lütken, 1875)    X   

Characidae       

Aphyocharax anisitsi Eigenmann & Kennedy, 1903    X   

Aphyocharax dentatus Eigenmann & Kennedy, 1903    X   

Astyanax dissimilis Garavello & Sampaio, 2010  X     
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Astyanax lacustris (Lütken, 1875) X X X X X X 

Astyanax laticeps (Cope 1894) X      

Astyanax minor Garavello & Sampaio, 2010  X     

Astyanax serratus Garavello & Sampaio, 2010  X     

Astyanax sp. 1  X     

Astyanax sp. 2 X      

Astyanax sp. 3 X      

Astyanax sp. h  X     

Astyanax sp. i   X    

Astyanax sp. l   X  X  

Astyanax sp. m X      

Astyanax sp. n X      

Bryconamericus aff. iheringii (Boulenger, 1887)     X X 

Bryconamericus ikaa Casciotta, Almirón & Azpelicueta, 
2004  X     

Bryconamericus pyahu Azpelicueta, Casciotta & 
Almirón, 2003  X     

Bryconamericus sp.c  X     

Bryconamericus sp.d  X     

Deuterodon iguape Eigenmann, 1907 X      

Deuterodon sp. X      

Galeocharax gulo (Cope, 1870)    X   

Hyphessobrycon eques (Steindachner, 1882)    X   

Mimagoniates microlepis (Steindachner, 1877) X X     

Moenkhausia cf. gracilima Eigenmann, 1908    X   

Moenkhausia aff. intermedia Eigenmann, 1908    X   

Oligosarcus longirostris Menezes & Géry, 1983  X     

Oligosarcus paranensis Menezes & Géry, 1983   X  X  

Piabarchus stramineus (Eigenmann, 1908)    X   

Psalidodon bifasciatus (Garavello & Sampaio, 2010) X X     

Psalidodon bockmanni (Vari & Castro, 2007)    X   

Psalidodon aff. fasciatus (Cuvier, 1819)    X   



 
 

 

127 

Psalidodon gymnodontus Eigenmann, 1911  X     

Psalidodon gymnogenys (Eigenmann,1911)  X     

Psalidodon aff. paranae (Eigenmann, 1914)     X X 

Roeboides descalvadensis Fowler, 1932    X   

Serrapinnus heterodon (Eigenmann, 1915)    X   

GYMNOTIFORMES       

Gymnotidae       

Gymnotus cf. carapo Linnaeus, 1758  X X X   

Gymnotus sylvius Albert & Fernandes-Matioli, 1999     X  

Rhamphichthyidae       

Rhamphichthys hahni (Meinken, 1937)    X   

Sternopygidae       

Eigenmannia sp.    X   

Sternopygus macrurus (Bloch & Schneider, 1801)    X   

Apteronotidae       

Apteronotus ellisi (Alonso de Arámburu, 1957)    X   

SILURIFORMES       

Auchenipteridae       

Ageneiosus militaris Valenciennes, 1836    X   

Auchenipterus osteomystax (Miranda Ribeiro, 1918)    X   

Glanidium ribeiroi Haseman, 1911  X     

Tatia jaracatia Pavanelli & Bifi, 2009  X     

Tatia neivai (Ihering, 1930)    X   

Trachelyopterus galeatus (Linnaeus, 1766)    X   

Doradidae       

Pterodoras granulosus (Valenciennes, 1821)    X   

Rhinodoras dorbignyi (Kner, 1855)    X   

Heptapteridae       

Pimelodella gracilis (Valenciennes, 1835)    X   

Rhamdia branneri Haseman, 1911  X     

Rhamdia aff. quelen (Quoy & Gaimard, 1824) X  X X X X 
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Rhamdia voulezi Haseman, 1911  X     

Pimelodidae       

Hypophthalmus oremaculatus Nani & Fuster, 1947    X   

Iheringichthys labrosus (Lütken, 1874)    X   

Pimelodus britskii Garavello & Shibatta, 2007  X     

Pimelodus maculatus Lacepède, 1803    X   

Pimelodus microstoma Steindachner, 1877    X   

Pimelodus ornatus Kner, 1858    X   

Pimelodus ortmanni Haseman, 1911  X     

Pinirampus pirinampu (Spix & Agassiz, 1829)    X   

Clariidae       

Clarias gariepinus (Burchell, 1822)  X     

Callichthyidae       

Callichthys callichthys (Linnaeus, 1758) X      

Corydoras ehrhardti Steindachner , 1910 X  X   X 

Corydoras aff. paleatus (Jenyns, 1842) X X     

Corydoras sp.  X     

Hoplosternum littorale (Hancock, 1828)    X   

Loricariidae       

Hypostomus ancistroides (Ihering, 1911)    X X  

Hypostomus cf. aspilogaster (Cope 1894)   X    

Hypostomus cf. auroguttatus Kner, 1854    X   

Hypostomus commersoni Valenciennes, 1836 X X X    

Hypostomus derbyi (Haseman, 1911)  X     

Hypostomus hermanni (Ihering, 1905)    X   

Hypostomus margaritifer (Regan, 1908)    X   

Hypostomus myersi (Gosline, 1947)  X     

Hypostomus nigromaculatus (Schubart, 1964)    X   

Hypostomus regani (Ihering, 1905)    X   

Hypostomus strigaticeps (Regan, 1908)    X   

Hypostomus sp. 1    X   
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Hypostomus sp. 2    X   

Loricariichthys platymetopon Isbrücker & Nijssen, 1979    X   

Megalancistrus parananus (Peters, 1881)    X   

Proloricaria prolixa (Isbrücker & Nijssen, 1978)    X   

Proloricaria sp.    X   

Rhinelepis aspera Spix & Agassiz, 1829    X   

Rineloricaria kronei (Miranda Ribeiro, 1911) X      

Rineloricaria latirostris (Boulenger, 1900)   X  X  

Rineloricaria maacki Ingenito, Ghazzi, Duboc & 
Abilhoa, 2008  X     

Ictaluridae       

Ictalurus punctatus (Rafinesque, 1818)  X     

ATHERINIFORMES       

Atherinopsidae       

Odontesthes bonariensis (Valenciennes, 1835)  X     

CICHLIFORMES       

Cichlidae       

Astronotus crassipinnis Heckel, 1840    X   

Australoheros cf. facetus (Jenyns, 1842) X      

Australoheros kaaygua Casciotta, Almirón & Gómez, 
2006  X     

Cichla kelberi Kullander & Ferreira, 2006    X   

Coptodon rendalli (Boulenger, 1897) X X X X X X 

Crenicichla britskii Kullander, 1982   X X   

Crenicichla jaguarensis Haseman, 1911    X   

Crenicichla iguassuensis Haseman, 1911  X     

Crenicichla sp. (Holmberg, 1891)    X   

Crenicichla tesay Casciotta & Almirón, 2009  X     

Geophagus aff. brasiliensis (Quoy & Gaimard, 1824)  X X X X X 

Geophagus iporangensis Haseman, 1911 X      

Oreochromis niloticus (Linnaeus, 1758) X X   X  

Satanoperca sp.    X   
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CYPRINODONTIFORMES       

Poeciliidae       

Phalloceros harpagos Lucinda, 2008 X X    X 

PERCIFORMES       

Sciaenidae       

Plagioscion squamosissimus (Heckel, 1840)    X   

Centrarchidae       

Micropterus salmoides (Lacepède, 1802) X  X    
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APPENDIX S3 – Species belonging to each trophic guild 

 

Table S3. Species belonging to each trophic guild. Pisc = piscivore; Det = detritivore; Ins = insectivore; Omn = 

omnivore; Inv = invertivore; Her = herbivore. See references in supporting information S3 

 

       

Species                 Trophic guilds 
Pisc Det  Ins Omn Inv Her 

Acestrorhynchus lacustris  X          
Ageneiosus militaris          X  
Apareiodon affinis    X        
Apareiodon ibitiensis    X        
Apareiodon piracicabae    X        
Apareiodon vittatus    X        
Aphyocharax anisitsi          X  
Aphyocharax dentatus      X      
Apteronotus ellisi      X      
Astronotus crassipinis  X          
Astyanax lacustris        X    
Astyanax dissimilis           X 
Astyanax laticeps      X      
Astyanax minor           X 
Astyanax serratus        X    
Astyanax sp. 1        X    
Astyanax sp. 2        X    
Astyanax sp. 3        X    
Astyanax sp. h        X    
Astyanax sp. i        X    
Astyanax sp. l        X    
Astyanax sp. m        X    
Astyanax sp. n        X    
Auchenipterus osteomystax      X      
Bryconamericus iheringii    X        
Bryconamericus ikaa    X        
Bryconamericus pyahu    X        
Bryconamericus sp. c      X      
Bryconamericus sp. d      X      
Callichthys callichthys      X      
Characidium travassosi          X  
Cichla kelberi  X          
Australoheros cf. facetus        X    
Clarias gariepinus  X          
Colossoma macropomum        X    
Coptodon rendalli      X      
Corydoras aff. paleatus          X  
Corydoras ehrhardti      X      
Corydoras sp.      X      
Crenicichla britskii      X      
Crenicichla iguassuensis  X          
Crenicichla jaguarensis        X    
Crenicichla sp.      X      
Crenicichla tesay  X          
Ctenopharyngodon idella           X 
Cyphocharax modestus    X        
Cyprinus carpio        X    
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Deuterodon iguape        X    
Deuterodon sp.       X      
Eigenmannia sp.   X    
Galeocharax gulo X      
Geophagus brasiliensis     X  
Glanidium ribeiroi    X   
Gymnotus carapo     X  
Gymnotus sylvius     X  
Hoplias aff. malabaricus X      
Hoplias lacerdae X      
Hoplosternum littorale     X  
Hyphessobrycon eques   X    
Hypophthalmichthys molitrix   X    
Hypophthalmichthys nobilis   X    
Hypophthalmus oreomaculatus     X  
Hypostomus ancistroides  X     
Hypostomus cf. aspilogaster  X     
Hypostomus cf. auroguttatus  X     
Hypostomus commersoni  X     
Hypostomus derbyi  X     
Hypostomus hermanni  X     
Hypostomus margaritifer  X     
Hypostomus myersi  X     
Hypostomus nigromaculatus  X     
Hypostomus regani  X     
Hypostomus sp. 1  X     
Hypostomus sp. 2  X     
Hypostomus strigaticeps  X     
Ictalurus punctatus X      
Iheringichthys labrosus     X  
Leporellus vittatus   X    
Leporinus amblyrhynchus     X  
Leporinus friderici    X   
Leporinus lacustris    X   
Leporinus octofasciatus    X   
Leporinus sp. 1    X   
Leporinus sp. 2    X   
Loricariichthys platymetopon  X     
Megalancistrus parananus  X     
Megaleporinus macrocephalus    X   
Megaleporinus piavussu    X   
Metynnis lippincottianus      X 
Micropterus salmoides X      
Mimagoniates microlepis   X    
Moenkhausia cf. gracilima   X    
Moenkhausia intermedia     X  
Odontesthes bonariensis     X  
Oligosarcus longirostris X      
Oligosarcus paranensis X      
Oreochromis niloticus     X  
Phalloceros harpagos    X   
Piabarchus stramineus   X    
Piaractus mesopotamicus       
Pimelodella gracilis   X    
Pimelodus britskii    X   
Pimelodus maculatus    X   
Pimelodus microstoma    X   
Pimelodus ornatus    X   
Pimelodus ortmanni    X   
Pinirampus pirinampu X      
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Plagioscion squamosissimus X      
Prochilodus lineatus  X     
Proloricaria prolixa      X 
Proloricaria sp.  X     
Psalidodon bifasciatus           X 
Psalidodon bockmanni           X 
Psalidodon aff. fasciatus         X    
Psalidodon gymnodontus      X      
Psalidodon gymnogenys          X  
Psalidodon aff. paranae           X 
Pterodoras granulosus        X     
Rhamdia branneri  X          
Rhamdia aff. quelen  X          
Rhamdia voulezi  X          
Rhamphichthys hahni       X      
Rhaphiodon vulpinus  X          
Rhinelepis aspera    X        
Rhinodoras dorbignyi          X  
Rineloricaria latirostris  
Rineloricaria maacki    X        

Rineloricaria kronei   X     
Roeboides descalvadensis      X      
Salminus brasiliensis  X          
Satanoperca sp.    X        
Schizodon borellii           X 
Schizodon nasutus           X 
Serrapinnus heterodon            
Serrasalmus maculatus   X          
Serrasalmus marginatus  X          
Steindachnerina brevipinna    X        
Sternopygus macrurus      X      
Tatia jaracatia          X  
Tatia neivai      X      
Trachelyopterus galeatus        X    
Triportheus nematurus      X      
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APPENDIX S4 – References used to determine the species trophic guilds 

References used to review the trophic guilds of the fish species present in reservoirs of the Paranapanema, Tibagi, 

Ivaí, Piquiri, Iguaçu, and Coastal river basins. 
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small and old Brazilian Reservoir. Braz Arch Biol Technol 51:503-512. doi: 
10.1590/S1516-89132008000300009 

Abelha MCF, Goulart E, Kashiwaqui EAL, Silva MR (2006) Astyanax paranae 
Eigenmann, 1914 (Characiformes: Characidae) in the Alagados Reservoir, Paraná, 
Brazil: diet composition and variation. Neotrop ichthyol 4:349-356. doi: 
10.1590/S1679-62252006000300006 

Agostinho AA, Suzuki HI, Fugi R, Alves DC, Tonella LH, Espindola LA (2015) 
Ecological and life history traits of Hemiodus orthonops in the invasion process: 
looking for clues at home. Hydrobiologia 746:415-430. doi: 10.1007/s10750-014-
2030-2 

Agostinho AA, Gomes LC, Suzuki HI, Julio Jr, HF (2003) Migratory fishes of the Upper 
Paraná River basin, Brazil. In: Carolsfeld J, Harvey B, Ross C, Baer A (orgs) 
Migratory Fishes of South America: Biology, Fisheries and Conservation Status, 
1rd edn. World Fisheries Trust, Victoria, pp 19-99 

Aguiaro T, Castelo Branco CW, Verani JR, Caramaschi EP (2003) Diet of the clupeid 
fish Platanichthys platana (Regan, 1917) in two different Brazilian coastal lagoons. 
Braz Arch Biol Technol 46:215-222. doi: 10.1590/S1516-89132003000200013 

Albert JS (2003) Family Apteronotidae. In: Reis RE, Kullander SO, Ferraris CJ (eds) 
Checklist of freshwater fishes of South and Central America. EdiPUCRS, Porto 
Alegre, pp 497-502 

Albert JS, Crampton WGR (2003) Seven new species of the Neotropical electric fish 
Gymnotus (Teleostei, Gymnotiformes) with a redescription of G. carapo 
(Linnaeus). Zootaxa 287:1-54. doi: 10.11646/zootaxa.287.1.1 

Alkinks-Koo M (2000) Reproductive timing of fishes in a tropical intermittent stream. 
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APPENDIX S5 – Additional results 

Pairwise relationships between each predictor and fish trophic guilds composition for evaluation of shared effects. 

 

 

Figure S1. Pairwise relationships between environmental predictors and the fish trophic 

guilds composition for evaluation of shared effects. Below the diagonal, the bivariate 

scatterplots with the linear regression function are shown; the diagonal shows the 

histogram with an estimated kernel density function; above the diagonal, the Pearson 

correlation coefficients with significance levels (▪, P < 0.10; *, P < 0.05; **, P < 0.01; 

***, P < 0.001) 
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Figure S2. Pairwise relationships between spatial predictors and the fish trophic guilds 

composition for evaluation of shared effects. Below the diagonal, the bivariate 

scatterplots with the linear regression function are shown; the diagonal shows the 

histogram with an estimated kernel density function; above the diagonal, the Pearson 

correlation coefficients with significance levels (▪, P < 0.10; *, P < 0.05; **, P < 0.01; 

***, P < 0.001) 
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Figure S3. Pairwise relationships between morphological predictors and the fish trophic 

guilds composition for evaluation of shared effects. Below the diagonal, the bivariate 

scatterplots with the linear regression function are shown; the diagonal shows the 

histogram with an estimated kernel density function; above the diagonal, the Pearson 

correlation coefficients with significance levels (▪, P < 0.10; *, P < 0.05; **, P < 0.01; 

***, P < 0.001) 
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4 CONCLUDING REMARKS 

 

Based on the results obtained, it was possible to identify different patterns related to the 

distribution of fish communities due to the presence of dams. In dammed environments, 

the environmental changes caused by the reservoirs, as well as their characteristics and 

modes of operation, evidenced changes in the composition, abundance, richness and 

distribution of fish species, as well as their trophic guilds. Reservoirs arranged in cascade 

in different hydrographic basins showed reductions in diversity in the upstream-

downstream direction and, above all, in the abundance of many fish species. 

Approximately 50% of the species showed decreases in their abundances along the 

reservoir succession, showing that only a small portion of the species manages to maintain 

their populations or even benefit from environments altered by reservoirs, especially 

when they are in a cascade system, where the changes are more intense and synergistic. 

Still, evaluating the composition of different trophic guilds of fish belonging to different 

reservoirs, it is noted that the changes caused in these environments due to the 

construction of the dam can act as filters, selecting greater or lesser abundances of certain 

guilds. Specifically, newer and more productive reservoirs have the highest abundances 

of herbivores and detritivores, while older reservoirs have the highest abundances of 

omnivores. Reservoirs with larger areas and water residence time were the ones that had 

greater abundances of piscivores. However, it should be noted that the evidence presented 

in both approaches of this work is configured in hypotheses in search of convergent 

patterns, requiring future and extensive investigations in other reservoirs and at other 

spatial scales. 

 

 


