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Abstract

In this thesis we study the controllability problem for control systems: the question

of whether any point in the space can reach any other point using the positive time

trajectories of a given control system. We give special attention to bilinear and affine

systems.

In chapter 1 we recall various known results from control theory and from Lie the-

ory, which will be used in later chapters. In chapter 2 we show necessary and sufficient

conditions for controllability in one class of affine system. In chapter 3 we construct

the tangent system using curves originating an isotropy subgroup of an action, and

use this idea to get partial results for a class of bilinear control systems. In chapter 4

we show an equivalence between the flag type of a connected semigroup in Sl(Rd) and

the existence of invariant cones for the action of this semigroup in exterior products.

Keywords: Control systems, Controllability, Lie groups, Semigroups, Control sets,

Flag manifolds.



Resumo

Nesta dissertação estudamos o problema da controlabilidade para sistemas de con-

trole: se de qualquer ponto no espaço é possível chegar à qualquer outro ponto uti-

lizando as trajetórias em tempo positivo do sistema de controle. Damos atenção espe-

cial à sistemas bilineares e afins.

No capítulo 1 relembramos diversos resultados da teoria de controle e da teoria de

Lie, que serão utilizados nos capítulos seguintes. No capítulo 2 mostramos condições

necessárias e suficientes para a controlabilidade de uma classe de sistemas afins. No

capítulo 3 construímos o sistema tangente utilizando curvas com origem em um sub-

grupo de isotropia de uma ação, e utilizamos essa ideia para obter resultados parciais

para uma classe de sistemas bilineares. No capítulo 4 mostramos uma equivalência

entre o tipo flag de um semigrupo conexo de Sl(Rd) e a existência de cones invariantes

pela ação desse semigrupo em espaços exteriores.

Palavras-chave: Sistemas de controle, Grupos de Lie, Semigrupos, Conjuntos de

controle, Variedades flag.
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2 The system ẋ = Ax+ a+Bu 36

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Unrestricted case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Restricted case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Tangent control system 64

3.1 Definition of a tangent control system . . . . . . . . . . . . . . . . . . . . 64

3.2 An application in Bilinear Control System . . . . . . . . . . . . . . . . . . 70

3.2.1 Computing the tangent application for bilinear control systems. . 74

3.2.2 Real maximal eigenvalue . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.3 The system {a,B,−B} . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Invariant cones for semigroups of Sl(Rn) 87

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Cones in k-fold exterior product . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Cones, flag type and controllability . . . . . . . . . . . . . . . . . . . . . . 95



CONTENTS 12

4.4 Flag type and invariance of convex sets . . . . . . . . . . . . . . . . . . . 100

4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 110



CHAPTER 1

INTRODUCTION

In this chapter we recall several concepts and results related to control systems and

semigrupos of Lie groups. In order to have a self contained text we prove various of

those known results. These results will be useful for our goal of studying global and

local controllability for certain control systems. We will freely use the notations and

concepts of the references [1], [8], [16], [17], [18], [19], [20].

1.1 Control systems

Control systems have many different definitions, depending on the context being stud-

ied. There are also many different types of control systems, such that it is hard to give

a general definition including all of them (see e.g. [1], [8], [19]). In this section we in-

troduce 2 definitions of control systems. First, we define a continuous control system

using vector fields in differentiable manifolds. This first definition is better suited to

present the specific control systems which will be attacked in this thesis, and also some

of the examples. Later, we define a control system as a Lie semigroup acting in a man-

ifold M . This second definition is better suited for some of the more general results in

the later chapters. During this section we will also include observations on some of the

alternative ways one could define a control system.

Whenever we say a function is differentiable we mean continuously differentiable,

unless stated otherwise. Furthermore, in some occasions we will use the notation x→
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f(x) for the function that takes x into f(x), mostly to keep some observations short

while avoiding ambiguity. Of course we also use f : A → B to mean f has domain in

A and codomain in B.

Definition 1.1.1. A continuous control system is an ordered set (M,F , U,U) where M is a

differentiable manifold, U is a nonempty arbitrary set, F :M × U → TM is such that for any

fixed c ∈ U the function Fc defined by m → F(c,m) is a vector field in M , and U is a set of

functions with domain in R and codomain in U , satisfying the following properties:

1. For any c ∈ U , the constant function

f : R→ U

t→ c

is in U .

2. For any u ∈ U and α ∈ R the function

αu : R→ U

t→ u(α + t)

is in U .

3. For any piecewise constant function f : R→ U the function

w : R→ U

t→ f(t)(t)

is in U .

4. For any x0 ∈M and u ∈ U , the initial valued problem

ẋ(t) = F(x(t), u(t))

x(0) = x0
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has unique and global solution such that, for a fixed u and t, the solution on time t depends

differentiably on the initial condition x0. Here a solution is assumed to be a continuous

function satisfying the differential equation for almost all points.

The definition above is more complicated than it needs to be. For our purposes, a

continuous control system could simply be defined as a set of complete vector fields in

a manifold M without losing much, as explained later in this section. The reason we

chose this definition is to better match the problems presented in the next chapters.

The functions in U are called controls. Conditions 1 and 3 imply that all piecewise

constant functions f : R→ U are controls, as follows.

Proposition 1.1.2. For a control system defined as previously, any piecewise constant function

f : R→ U is contained in U .

Proof. Let f : R→ U a piecewise constant function, and define

g : R→ U

t→ gt

where gt is the constant function

gt : R→ U

s→ f(t).

Note that gt ∈ U by the item 1, such that g is well defined. Furthermore, g is piecewise

constant as it is constant in any interval where f is constant. Therefore, by condition 3,

the function

w : R→ U

t→ g(t)(t)

is contained in U . But, for all t ∈ R,

w(t) = g(t)(t) = gt(t) = f(t)

such that w = f . Therefore f ∈ U .
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On the other hand, if U is the set of piecewise constant functions u : R → U , then

conditions 1,2 and 3 follow naturally, while condition 4 is true if Fc is a complete vec-

tor field with differentiable flow for all c ∈ U (for example, if Fc are all complete and

differentiable vector fields). Thus, assuming F satisfies the condition above, the small-

est set of controls needed for a control system (M,F , U,U) is the set of all piecewise

constant functions with domain in R and codomain in U . In general, the properties of

a control system are very often preserved by restricting a set of controls U to only these

piecewise constant functions, such that the set U could be instead be defined as the set

of all piecewise constant functions u : R→ U without losing much.

Furthermore, the function F in the definition serves mostly a transition purpose, so

that Fu(t) is a vector field in M for each t ∈ R. One could instead define U to be the set

of vector fields in M , and use the differential equation

ẋ(t) = u(t)(x(t))

to define the system, eliminating the need for the intermediate function F .

From the uniqueness and globality of solution in item 4, it is possible to define the

function

ϕ :M × U × R→M

(x0, u, T )→ ϕ(x0, u, T )

where ϕ(x0, u, T ) is the solution to the initial valued problem

ẋ(t) = F(x(t), u(t))

x(0) = x0

on time t = T . Note that, by definition,

ϕ(x, u, 0) = x.

The function ϕ is called the solution of the system, and has interesting properties. One

of the most important of said properties is the cocycle property, which is presented in

the following result.
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Proposition 1.1.3. Let x ∈ M , u, v ∈ U and T1, T2 ∈ R. If T1 and T2 are both non negative,

then

ϕ(ϕ(x, u, T1), v, T2) = ϕ(x,w, T1 + T2)

where w ∈ U is defined by

w(t) =

 u(t); if t < T1

v(t− T1); if t ≥ T1.

Furthermore, if T1 and T2 are both non positive, then

ϕ(ϕ(x, u, T1), v, T2) = ϕ(x,w, T1 + T2)

where

w(t) =

 u(t); if t > T1

v(t− T1); if t ≤ T1.

Proof. We will prove the case T1, T2 ≥ 0, the other case is analogous. First, note that the

function s→ v(s− T1) is in U by 2. Define the piecewise constant function

f : R→ U

t→

 u; if t < T1

(s→ v(s− T1)); if t ≥ T1

then, for any t ∈ R

f(t)(t) =

 u(t); if t < T1

v(t− T1); if t ≥ T1
= w(t),

and, by condition 3, w ∈ U .

Now we show ϕ(ϕ(x, u, T1), v, T2) = ϕ(x,w, T1+T2). Note that this equality is trivial

if T1 = 0 or T2 = 0, by using the previously mentioned ϕ(y, z, 0) = y for any y ∈M, z ∈

U . We therefore assume T1, T2 > 0. Since w(t) = u(t) for all t < T1, then, for t ∈ (0, T1),

d

dt
ϕ(x,w, t) = F(ϕ(x,w, t), w(t)) = F(ϕ(x,w, t), u(t)).

Furthermore, ϕ(x,w, 0) = x by definition, therefore, ϕ(x,w, t) is solution to the differ-



1.1 Control systems 18

ential equation

ẋ(t) = u(t)(x(t))

x(0) = x

in the interval [0, T1], therefore ϕ(x, u, T1) = ϕ(x,w, T1). Then, the function

g : R→M

t→ ϕ(x,w, t+ T1)

is such that g(0) = ϕ(x,w, T1) = ϕ(x, u, T1) and

d

dt
g(t) = F(g(t), w(t+ T1)) = F(g(t), v(t))

for all t > 0, therefore g(t) = ϕ(ϕ(x, u, T1), v, t) for all t > 0 and, in particular,

ϕ(ϕ(x, u, T1), v, T2) = g(T2) = ϕ(x,w, T1 + T2).

The cocycle property has a very interesting consequence. By fixing u and T we can

define the application

ϕT
u :M →M

x→ ϕ(x, u, T ).

The cocycle property then implies that, for T1, T2 ≥ 0 or T1, T2 ≤ 0, ϕT1
v ◦ ϕT2

u = ϕT1+T2
w

for some w ∈ U . This means that the sets

S := {ϕT
u ;T ≥ 0, u ∈ U}

S−1 := {ϕT
u ;T ≤ 0, u ∈ U}

are closed for the composition of functions and are, therefore, semigroups with this

operation. The notation S−1 is used because this semigroup is, in fact, the inverse of S.

This is a consequence of the next property.
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Proposition 1.1.4. For x ∈M , T ∈ R and u ∈ U ,

ϕ(ϕ(x, u, T ), v, T ) = x

where v is defined by

v(t) = u(t+ T )

Proof. We will show, in fact, that

ϕ(ϕ(x, u, T ), v, t) = ϕ(x, u, T + t).

for all t ∈ R. Let

g : R→M

t→ ϕ(x, u, T + t)

Then

g(0) = ϕ(x, u, T )

and
d

dt
g(t) =

d

dt
ϕ(x, u, T + t) = F(g(t), u(t+ T )) = F(g(t), v(t))

for all t ∈ R, therefore

ϕ(ϕ(x, u, T ), v, t) = g(t) = ϕ(x, u, T + t).

In particular,

ϕ(ϕ(x, u, T ), v,−T ) = ϕ(x, u, T − T ) = x.

This means that ϕ−T
v as defined in the proposition is the inverse of ϕT

u . Since an

element ϕT
u is in S if, and only if, ϕ−T

v is in S−1 and vice versa, we have that S−1 is

the inverse of S. In particular, all of the applications ϕT
u are bijections in M , and it is

similarly possible to define the following group:

G = {ϕT1
u1
ϕT2
u2
...ϕTn

un
;n ∈ N, u1, u2, ..., un ∈ U , T1, T2, ..., Tn ∈ R}.
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Since the cocycle property requires T1, T2 to not have opposite signs, it is not always

possible to write an element of G as a single ϕT
u for some u ∈ U , T ∈ R, thus the

definition using finite compositions of these functions is required.

By item 4, the applications ϕT
u are differentiable. Since the inverse of an application

ϕT
u is also written as ϕ−T

w for some w ∈ U and −T ∈ R, then these inverses are also dif-

ferentiable, such that each ϕT
u is a diffeomorphism. Furthermore, since a concatenation

of diffeomorphisms is also a diffeomorphism, all elements of G are diffeomorphisms.

The set S defined previously is called the semigroup of the system, and the set G is

called the group of the system. The group G motivates the definition of group action:

Definition 1.1.5. Let G be a group and M a set. An action of G in M is a function

ρ : G×M →M

(g, x)→ gx

satisfying

Idx = x

g(hx) = (gh)x

for all x ∈M and g, h ∈ G.

If S ⊂ G is a semigroup we also say that S acts on M .

Note that the group and the semigroup of a continuous control system act naturally

in the respective manifold M by sx = s(x) for all s ∈ G, x ∈M .

A continuous control system is controllable in M if for any x, y ∈M there are u ∈ U

and T ≥ 0 such that ϕ(x, u, T ) = y. Equivalently, the system is controllable if for any

x, y ∈M there is s = ϕT
u in the semigroup S of the system such that sx = y, or, yet, if

Sx =M ∀x ∈M.

A semigroup acting on M and satisfying Sx = M for all x is called transitive. This

means that controllability can be studied simply from the semigroup of the system. In

fact, from the controllability point of view a control system could also be defined as the

action of a semigroup in a manifold. This definition has the advantage of including non
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continuous control systems. The control systems which we want to study in this thesis

are continuous ones, mainly the bilinear control system and some other special cases

of the affine control system in Rn, both of which will be defined later. Nonetheless, the

association of semigroups with control systems is used on many of the results which

will be shown, both for simplicity and for generality. This motivates us to include the

definition of control systems through semigroups. First, we define a Lie group.

Definition 1.1.6. A Lie group is a smooth manifold G with a smooth group product

p : G×G→ G

(g, h)→ gh.

Some other relations between Lie theory and control systems will be presented in

the next section. For now, we define a control system as a Lie semigroup acting on a

manifold.

Definition 1.1.7. A control system is an ordered set (M,G, S, ρ) where M is a manifold, G is

a Lie group, S ⊂ G is a nonempty semigroup, and

ρ : G×M →M

(g, x)→ gx

is a differentiable action. In this case we also say that S is the semigroup of the system, and the

semigroup S−1 is defined as the inverse semigroup of S.

As previously mentioned, there are other definitions for control system (e.g. [1], [8],

[19]).

If there is no risk of confusion regarding the other elements, we will just say that

the semigroup S is the control system, or that S is a control system in M

At a first glance it might seem restrictive to require for G to be a Lie group. How-

ever, any group G is a lie group with the discrete topology (although possibly not

second countable). By choosing this topology to the group G of a continuous control

system, the action

ρ : G×M →M
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(g, x)→ gx = g(x)

becomes differentiable as it is differentiable in the second coordinate (each g ∈ G is a

differentiable application), such that, by taking S ⊂ G as the semigroup of the system,

(M,G, S, ρ) becomes a control system. This means any continuous control system can

also be seen as a control system. However, this discretization ofG is not necessarily the

best approach for defining a Lie structure on it, as all of the geometry in this group is

lost by doing so, and the resulting manifolds end up on most cases having uncountably

many connected components, such that they are not second countable. Second count-

ability is often a wanted property for manifolds, sometimes even required in their def-

inition, as the lack of the second countable property leads to pathological behaviors in

multiple scenarios. The next section in this chapter will explore Lie semigroups gen-

erated from invariant vector fields in G and the Lie-Palais Theorem which provides,

under certain conditions, a much more interesting way of relating continuous control

systems to Lie semigroups. On the other hand, not all control systems are continuous,

as illustrated by the next example.

Example 1.1.8. Let G be the group (R,+). Since + is smooth, G is a Lie group with the

canonical manifold structure of R. Consider the action of G on itself defined by

ρ : G×G→ G

(g, h)→ g + h.

It is then possible to define a control system from the semigroup S = {1} ∪ (2,+∞). This

control system cannot be written as a continuous continuous control system, since the sets

Sx = {x+1}∪ (x+2,+∞) are disconnected and, therefore, cannot be obtained from solutions

in positive time of the differential equations in a continuous control system.

The previous definition of controllability can be generalized naturally to control

systems. The semigroup S is associated with positive time, while S−1 is associated

with negative time. In this case, the control system is defined to be controllable if for

any x, y ∈M there is s ∈ S such that sx = y, or, equivalently, if

Sx =M



1.1 Control systems 23

for all x ∈ M , that is, if S is transitive in M . Remember that, for continuous control

systems, this condition is equivalent to the previous definition of controllability, by

considering S = {ϕT
u ;u ∈ U , T ≥ 0}.

Other important concepts regarding controllability of control systems are the posi-

tive and negative orbits. For a point x ∈M the positive orbit of x, denoted byO+(x), is

defined by Sx where S is the semigroup of the system. In continuous control systems,

this set coincides with the set of all y such that y = ϕ(x, u, T ) for some u ∈ U and T ≥ 0.

If y ∈ O+(x) we say that y can be reached from x. The negative orbit is defined as

S−1(x), and, similarly, for a continuous control system this set coincides with the set of

all y such that y = ϕ(x, u, T ) for some u ∈ U and T ≤ 0.

By definition, if y ∈ O+(x) then there is s ∈ S such that y = sx. Since S−1 is the

inverse of S, then s−1 ∈ S−1 and s−1y = s−1sx = x, such that x ∈ O−(y). Analogously,

if x ∈ O−(y) then y ∈ O+(x), that is, y ∈ O+(x) if, and only if, x ∈ O−(y). Furthermore,

if y ∈ O+(x) and z ∈ O+(y) then z ∈ O+(x). This is because y ∈ O+(x) and z ∈ O+(y)

implies there are s, r ∈ S such that sx = y and ry = z. Then z = ry = (rs)x, where

rs ∈ S since S is a semigroup, and, therefore z ∈ O+(x). Analogously, if y ∈ O−(x) and

z ∈ O−(y) then z ∈ O−(x). By repeatedly applying this property, if there is a chain of

points x1, x2, ..., xn such that each xi is in the positive orbit of its predecessor xi−1 then

xn ∈ O+(x1), and analogously for negative orbits. The next result is a classical result on

control theory and shows some equivalences regarding controllability control system

and their positive and negative orbits (see [17]).

Proposition 1.1.9. Let (M,G, S, ρ) be a control system with M ̸= ∅. then the following are

equivalent.

1. The system is controllable in M

2. O+(x) =M for all x ∈M

3. O−(x) =M for all x ∈M

4. O+(x) = O−(x) =M for all x ∈M

5. There exists x ∈M such that O+(x) = O−(x) =M .

Proof. As previously mentioned, if the system is controllable then Sx = M for all x ∈
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M . By definition of orbit, O+(x) = Sx, therefore O+(x) = M for all x ∈ M , showing

1⇒ 2.

For the implication 2⇒ 3, let x, y ∈M be arbitrary points. Then x ∈ O+(y) by item

2, and, therefore, y ∈ O−(x). Since y is arbitrary, O−(x) = M and since x is arbitrary

this equality is true for all x ∈M , showing item 3.

The implication 3 ⇒ 4 is shown analogously. Let arbitrary x, y ∈ M , then y ∈

O−(x). Therefore x ∈ O+(y). Since x and y are both arbitrary then O+(x) = M for all

x ∈ M . The equality O−(x) = M is already true by item 3 therefore O+(x) = O−(x) =

M for all x ∈M .

The implication 4⇒ 5 is direct by restriction to a single element of M .

Finally, to show 5 ⇒ 1, let x ∈ M as described in item 5 and let y, z ∈ M arbitrary.

Then y ∈ O−(x) and z ∈ O+(x), as O−(x) = O+(x) = M . Therefore x ∈ O+(y), and we

have the chain x ∈ O+(y), z ∈ O+(x), which implies z ∈ O+(y). Since y, z are arbitrary,

the system is controllable.

We then have some topological definitions regarding controllability of the system.

In many cases it is easier to show that a point is contained in the topological closure

of an orbit, rather than in the orbit itself. Motivated by this we have the definition of

approximate controllability: If for any x, y ∈ M and any open set V containing y there

is z ∈ V such that z ∈ O+(x), then the system is said to be approximately controllable.

This is equivalent to

Sx =M

for all x ∈M , where Sx denotes the topological closure of this set. One can also define

backward approximate controllability by asking whether

S−1x =M

for all x. Interestingly, unlike the the previous case, approximate controllability is not

equivalent to backward approximate controllability. This is illustrated by the following

example.

Example 1.1.10. Define the following vector fields in R2, where the tangent bundle of R2 is
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associated with R2 itself:

X : R2 → R2

(x, y)→ (−y2, 0)

Y : R2 → R2

(x, y)→ (1, 0)

Z : R2 → R2

(x, y)→

 (0, 0); if x ≤ 0

(0, x2); if x > 0

W : R2 → R2

(x, y)→

 (0, 0); if x ≤ 0

(0,−x2); if x > 0

All of these vector fields are differentiable and complete, such that their flows are differentiable

and globally defined. In fact,

Xt(x, y) = (x− ty2, y)

Yt(x, y) = (x+ ty, y)

Zt(x, y) =

 (x, y); if x ≤ 0

(x, y + tx2); if x > 0

Wt(x, y) =

 (x, y); if x ≤ 0

(x, y − tx2); if x ≥ 0

Let U = {X, Y, Z,W} and U the set of all piecewise constant function f : R → U , and

consider the continuous control system (M,F , U,U) where F is defined by F(x, c) = c(x) for

all c ∈ U and M = R2. We note that the vector fields X, Y are horizontal while the vectors

fields Z,W are vertical. Furthermore, Y is always a vector field to the right, while X is always

to the left, except on y = 0 where it vanishes. This means that from a point (a, b) ∈ R2, it is

possible, with these two vector fields, to reach any point in the horizontal line y = b if b ̸= 0,

but only the points (x, b) where x > a if b = 0. For the vertical controls, we note that both Z

and W vanish if x ≤ 0, and, otherwise, Z is always pointing up while W is always pointing

down. Then, from a point (a, b) and using only these two vector fields it is possible to reach the

entire vertical line x = a if a > 0, but only the point (a, b) if a ≤ 0.
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Let r = {(x, 0) ∈ R2} be the horizontal line y = 0. Then it is possible to show that, for any

point p ∈ R2, R2 \ r ⊂ Sp, as follows. Let q ∈ R2 \ r arbitrary. We first choose a sufficiently

large t such that Ytp is in the set x > 0. Remember that this can be done to any point. Let

p1 = Ytp. Since p1 is in the set x > 0, it is possible to reach any point in it’s vertical line

using the vector fields Z andW . In particular, it’s possible to reach any value for the coordinate

y. Then, let p2 be a point in this vertical line such that the y coordinate of p2 matches the y

coordinate of q, or, equivalently, such that p2 and q are in the same horizontal line. Note that

this line is not r, as we are assuming q ̸∈ r. Therefore, it is possible to reach any point in this

line from p2, in particular, it is possible to reach q. Then we have

q ∈ Sp2, p2 ∈ Sp1, p1 ∈ Sp,

therefore

q ∈ Sp.

Since q is arbitrary in R2 \ r, we conclude that R2 \ r ⊂ Sp.

In particular, Sp = R2 for all p ∈ R2, such that the system is approximately controllable.

However, a point (a, 0) with a ≤ 0 can only be reached from a point (b, 0) with b ≤ a. Then,

S−1(a, 0) is a ray if a < 0, and, in particular, is not dense. The system is, therefore, not

backward approximately controllable.

Note that controllability implies approximate controllability, because if Sx = M

then Sx = M . Analogously, controllability implies backward approximate control-

lability. In particular, the control system shown in the previous example cannot be

controllable, as it is not backward approximate controllable. Thus, the previous exam-

ple is also an example of a control system which is approximately controllable but not

controllable.

A control system is said to be forward accessible if Sx has nonempty interior for all

x ∈ M , and is said to be backward accessible if S−1x has nonempty interior for all x.

A system is said to be accessible if it is forward accessible and backwards accessible.

Similarly to the previous case, if the system is controllable then it is forward and back-

ward accessible, but they do not imply controllability. The next result shows that the

combination of accessibility with approximate controllability is enough to prove con-

trollability.
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Proposition 1.1.11. If a control system S on a manifold M is approximately controllable and

backward accessible, then it is controllable. Alternatively, if S is backward approximately con-

trollable and forward accessible then S is controllable.

Proof. Assume S is approximately controllable and backward accessible. Then, for

arbitrary x, y ∈M , Sx is dense inM while S−1y has nonempty interior inM . Therefore,

these two sets intersect each other. Let z ∈ Sx∩S−1y, then z ∈ Sx and y ∈ Sz, therefore

y ∈ Sx. Since x, y are arbitrary, the system is controllable. The other implication is

analogous.

Another important concept involving approximate controllablity is control sets.

Definition 1.1.12. A control set is a set C ⊂M satisfying

1. For all x ∈ C, C ⊂ Sx.

2a. C has more than one element.

3. C is a maximal set satisfying 1.

For a continuous control system, condition 2a is sometimes replaced with the fol-

lowing:

2b. For all x ∈ C there is u ∈ U such that ϕ(x, u, t) ∈ C for all t > 0.

In this case the previous condition 3 instead requires C to be a maximal set satisfy-

ing both 1 and 2b. 2b is not equivalent to 2a, such that these two definitions of control

system differ from each other. In this thesis we use the version stated in definition

1.1.12 whenever talking about control systems, unless stated otherwise.

Remember that if y ∈ Sx and z ∈ Sy then z ∈ Sx. The closures of the orbits satisfy

a similar relation: if y ∈ Sx and z ∈ Sy then z ∈ Sx. This is due to the continuity of

the action, as follows: for any open set V containing z there is s ∈ S such that sy ∈ V .

Since s is a diffeomorphism and, in particular, an homeomorphism, then s−1(V ) is an

open set containing y. Then, there is r ∈ S such that rx ∈ s−1(V ). Then srx ∈ V , where

sr ∈ S. Since V is an arbitrary open set containing z, then z ∈ Sx. Analogously for the

closures of the negative orbits.

Control sets have an interesting property of no intersection: if two control sets C,D

intersect each other, then C = D. The reason is as follows: assume C,D intersect,

and let x ∈ C,D. Then x ∈ Sy for any y in C or D, such that Sx ⊂ Sy for any
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y ∈ C ∪D. Furthermore, Sx contains C and D, as x is a point contained in both control

sets. This means C ∪D ⊂ Sx ⊂ Sy for all y ∈ C ∪D. By the maximality of control sets,

C = D = C ∪D.

We close this section with a very interesting result regarding control sets in compact

manifolds, which makes good use of these properties.

Theorem 1.1.13. Let S be a control system in a compact manifold M with dimension ≥ 1,

and assume S is forward accessible. Then, for any x0 ∈M there exists an invariant control set

C ⊂ Sx0 ⊂ M , that is, C is a control set such that SC ⊂ C. Furthermore, C has nonempty

interior, and there is only a finite number of invariant control sets in M .

Proof. Let D be the set

D = {Sx;x ∈ Sx0}.

Note that all elements ofD are contained in Sx0, as they are written as Sxwith x ∈ Sx0.

We order D as follows: given two sets c, d ∈ D define c ≤ d if d ⊂ c. Note that this is

the inverse of the inclusion order for sets. Now, for any totally ordered set E ⊂ D let

e :=
⋂
d∈E

d.

Note that the elements in D are all closed and nonempty, such that e is a decreasing

intersection of closed and nonempty sets. Since M is compact, e is also nonempty. Let

x ∈ e, then, by definition of e, x is contained in all d ∈ E. Remember that each d ∈ E

is written as Sy, such that any z contained in Sx is also contained in Sy as x ∈ d = Sy.

This means Sx is contained in all d ∈ E, and, therefore, is an upper bound for the set

E. By Zorn’s lemma, there is a maximal element C ∈ D. By definition of D, C can be

written as Sx for some x ∈ Sx0. Note that, for any y ∈ C, we have y ∈ Sx such that

Sy ⊂ Sx = C and, therefore Sy ≥ C. Since C is a maximal element of D and Sy ∈ D

as y ∈ Sx ⊂ Sx0, then Sy = C. Since y is arbitrary, C satisfies the first condition of a

control system, and is also invariant as Sy ⊂ Sy ⊂ C for any y ∈ C. Furthermore, since

Sx ⊂ C and the system is accessible, then C has nonempty interior and, in particular,

is not unitary (this is why we ask dimension at least 1). Note that the same argument

shows that any invariant set in M has nonempty interior. Finally, if D is another set

satisfying the first 2 conditions of a control set and containing C, then x ∈ D and,

therefore, D ⊂ Sx = C, such that C is maximal. Therefore C is an invariant control set
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with nonempty interior.

Now assume there are infinite invariant control sets in M . Then it is possible to

create a sequence (Ci)i∈N of these sets such that Ci ̸= Cj whenever i ̸= j. These sets are

all nonempty by condition 2 of control sets, then, for each i ∈ N let xi ∈ Ci. Since M is

compact, we can assume, without loss in generality, that the sequence xi converges to

a point x ∈M . By the first part of the theorem, there is an invariant control set C ⊂ Sx,

and, by a previous observation, C has nonempty interior. In particular, the interior of

C must intercept Sx, such that sx ∈ Int(C) for some s ∈ S. Then, sV ⊂ Int(C) for

some open set V containing x, and, therefore, there is n0 ∈ N such that sxi ∈ Int(C) for

all i > n0. But sxi ∈ Ci, as the Ci are invariant. Therefore each Ci for i > n0 intersect C.

By the no intersection theorem, Ci = C for all i > n0, which contradicts the hypothesis

that the Ci are all distinct. Therefore, there must be only a finite number of invariant

control sets in M .

1.2 Lie semigroups and control theory

In this section we recall some interesting properties regarding actions of Lie groups

in manifolds, and their implications on control systems. As in the first section, we

will consider control systems to be semigroups of Lie groups acting differentiably in a

manifold.

For Lie group theory, in special Lie group actions we suggest [20], and, for semi-

group actions see [11], [12], [16].

One thing to note is that for a semigroup S ⊂ G to have any chance of bring tran-

sitive in a manifold M , first the group G itself must be transitive. Interestingly, the

transitivity of G can be calculated, under some very general conditions, from the dif-

ferential of the action at the identity. This is a consequence of the following local lemma

Lemma 1.2.1. Let G be a Lie group acting in a manifold M by

ϕ : G×M →M

(g,m)→ gm.

Assume G is second countable. Then the following are equivalent for any x ∈ M , where ϕx
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denotes the application g → gx:

1. The differential DIdϕx : TIdG→ TxM is surjective.

2. ϕx is open.

3. x ∈ Int(Gx).

4. Int(Gx) ̸= ∅

Proof. If 1 is true, then, by the submersed manifold theorem, ϕx is locally surjective in

Id, that is, for any open set V containing Id, x ⊂ V x. Now, for any open setW ⊂ G and

w ∈ W , we have that w−1W is an open set containing Id, such that x ∈ Int(w−1Wx).

Since ϕw is an homeomorphism in M , then ϕxw = wx ∈ Int(Wx) = Int(ϕx(W )). Since

W and w ∈ W are arbitrary, ϕx is open.

The implication 2⇒ 3 can be obtained from the inclusion

x = Idx ⊂ Gx = (IntG)x = Int(Gx)

where the last equality is true if condition 2 is true.

Condition 3 implies 4 directly.

The implication 4 ⇒ 1 is more complex, involving concepts which were not dis-

cussed in this thesis. As such, we will only provide a sketch of how it can be proven.

Consider the quotient G/Hx where Hx is the isotropy subgroup of x:

Hx = {g ∈ G; gx = x}.

It can be shown that this quotient admits a natural manifold structure, such that it is

second countable if G is second countable, and such that the function

f : G/Hx →M

gHx → gx

is an immersion satisfying f(G/Hx) = Gx. Furthermore, if G does not satisfy the rank

condition in x then dim(G/Hx) < dim(M). Sard’s theorem can then be used to show

that f(G/Hx) has empty interior in M .
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Then, 4 implies 1 by contrapositive.

Proposition 1.2.2. Let G be a Lie group acting in a connected manifold M by

ϕ : G×M →M

(g,m)→ gm.

Assume G second countable. Then the following are equivalent

1. The differential DIdϕx : TIdG→ TxM is surjective for all x ∈M

2. ϕx is open for any x ∈M

3. x ∈ Int(Gx) for any x ∈M

4. G is accessible in M

5. G is transitive in M .

Proof. The equivalences 1⇔ 2⇔ 3⇔ 4 are direct consequences of the previous lemma

(Remember that G = G−1 such that G is accessible if, and only if, Gx has nonempty

interior for all x ∈ M ). Furthermore, we know that transitivity implies accessibility,

such that 5 implies 4. To complete the proof, note that 2 implies Gx is open for all

x ∈M . However, the union ⋃
x∈M

Gx

can be shown to be a partition of M . Since the Gx are all open and nonempty, and M

is connected, then Gx =M for all x ∈M .

Remember that a Lie group is second countable if, and only if, it has countable

many components. From this point on, all Lie groups are assumed to be second count-

able, unless stated otherwise.

This proposition is very interesting as it not only gives a way to compute the con-

trollability of Lie group, but also shows that controllability is equivalent to accessibility

in this case. When a Lie group G satisfies the hypothesis of D(ϕx)Id being surjective in

a point x ∈M we say that G satisfies the rank condition in x, or that G has full rank in

x. If G satisfies the rank condition in all x ∈ M , we say G satisfies the rank condition

or has full rank in M .
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When studying controllability of semigroups it is usually assumed that the associ-

ated Lie group satisfies the rank condition on the entire manifold, as, otherwise, the

semigroup is sure to not be controllable. This assumption then implies that G is also

accessible, as mentioned in the previous result.

It is also usual to ask the semigroup S to have nonempty interior in G. In some

cases, if a semigroup S does have empty interior in G, it is possible to restrict the study

to a subgroup H still containing S and such that S has nonempty interior in H . This is

not always possible, and depends a lot on the type of semigroup being studied, such

that in some occasions it’s possible to ask the semigroup to have nonempty interior

without loss in generality, while in others this is a restrictive condition. The advantage

in asking the semigroup to have nonempty interior is that accessibility of the group

then implies accessibility of the semigroup. This is because if G satisfies the rank con-

dition then ϕx is open for all x such that (Int(S))x = ϕx(Int(S)) is an open set contained

in Sx for all x ∈ M , and ϕx(Int(S
−1)) = ϕx(Int(S)

−1) is an open set contained in S−1x

for all x ∈M , such that S is accessible.

In particular, if S has non empty interior in G and G satisfies the rank condition in

M then S is controllable if, and only if, it is approximately controllable.

A very important type of Lie semigroups are the semigroups generated by sets in

the Lie algebra. Let G a Lie group and C ⊂ g a nonempty subset. The semigroup

generated by C is the semigroup S generated by all exponentials of elements in C at

positive time:

S = ⟨etc; t ≥ 0, c ∈ C⟩

= {et1c1et2c2 ...etkck ; k ∈ N, t1, t2, ..., tk ≥ 0, c1, c2, ..., ck ∈ C}.

We will denote such a semigroup by ⟨C⟩. These semigroups have an interesting prop-

erty that allows to compute whether their interior in G is empty.

Proposition 1.2.3. Let S ⊂ G be the semigroup generated by a set C ⊂ g, and denote by h the

smallest Lie subalgebra containing C. Int(S) is nonempty in G if, and only if, h = g.

If S is generated by a set C ⊂ g that is not contained in any proper sub algebra of g,

we say that S satisfies the rank condition in G, or that S has full rank in G. By the pre-

vious proposition, if S satisfies the rank condition on G then it has nonempty interior

in G, and if, furthermore, G satisfies the rank condition in M , then S is accessible in M .
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On the other hand, if S does not satisfy the rank condition in G, then there is a smallest

sub algebra h that contains C. Denoting by H the connected subgroup of G with Lie

algebra h, we have that S ⊂ H , such that for these kinds of semigroups it is always

possible to restrict the study to a subgroup where S has nonempty interior. Note that

in the process of restricting the subgroup like this we might lose the rank condition on

the manifold, as the applicationD(ϕx)Id becomes restricted to h. Nonetheless, this have

an interesting consequence. Let S be a semigroup generated by a set C ⊂ g, and let

D ⊂ g the smallest closed convex cone containing C. If R = ⟨D⟩ then it can be shown

that S = R. This is because et(αX) = e(tα)X and et(X+Y ) can be arbitrarily approximated

by the concatenations in the form

(
e

t
k
Xe

t
k
Y
)k

with k ∈ N. This then allows the following result.

Proposition 1.2.4. Let S ⊂ G be a semigroup generated by a set C ⊂ g and acting in a

manifold M , and let D the smallest closed convex cone containing C and R = ⟨D⟩. Then S is

controllable in M if, and only if, R is controllable in M .

Proof. Let h be the smallest sub algebra containing C, note that D ⊂ h as h is a sub-

space and, in particular, a closed convex cone containing C. IfH denotes the connected

subgroup generated by h then both S and R are contained in H and satisfy the rank

condition in H . Then, if H is not controllable in M , neither S nor R are controllable.

Otherwise, controllability is equivalent to approximate controllability for S, and the

same for R, such that it suffices to show that local controllability for these two sub-

groups is equivalent. In fact, we have Sx ⊂ Sx ⊂ Sx and Rx ⊂ Rx ⊂ Rx such that

Sx = Sx = Rx = Rx

showing that approximate controllability is equivalent for these two semigroups.

Note that S = ⟨C⟩ coincides with the positive orbit from Id of the continuous con-

trol system (G,F , C,U) where U is the set of all piecewise constant functions u : R→ C

and F is defined by F(g,X) = Xr(g). Here, Xr denotes the only right invariant vec-

tor field satisfying Xr(Id) = X . It can be calculated in a point g ∈ G using the right
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translation

Rg : G→ G

h→ hg

by

Xr(g) = D(Rg)Id(X).

S−1 coincides with the negative orbit from Id of this same system. This control system

can be transported to the manifold M , by defining the function F2 as

F2(x,X) =
d

dt

∣∣∣∣
t=0

etXx.

If ϕ1, ϕ2 denote the solutions of (G,F , C,U) and (M,F2, C,U), respectively, it can be

shown that ϕ2(x, u, T ) = ϕ1(Id, u, T )x, such that the positive, negative orbits from the

second system coincide with Sx, S−1x, respectively, for all x ∈ M . As such, controlla-

bility properties of the continuous control system (M,F2, C,U) are equivalent control-

lability properties of S.

Interestingly, if we instead define U as the larger set of integrable functions u : R→

C, we still get the equality ϕ2(x, u, T ) = ϕ1(Id, u, T )x. In this case, the positive orbit

from Id in the system (G,F , C,U) can still be shown to be a semigroup R, such that

controllability properties of (M,F2, C,U) are equivalent to controllability properties of

the semigroup R. Furthermore, it can be shown that R coincides with the closure of

the previous semigroup S. This happens because integrable functions can be approx-

imated by piece-wise constant function. Then, an argument similar to the previous

proposition shows that controllability for R is equivalent to controllability for S. As

such, not much in gained by adding these extra functions to U .

One natural question is which continuous control systems can be obtained in a

similar way as subsets of the Lie algebra of some Lie group acting on the respective

manifold. This is equivalent to the question of whether given a set C of vector fields in

M there is a Lie group G acting differentiably in M and a function f : C → g such that,

for any X ∈ C and x ∈M ,

X(x) =
d

dt
etf(X)x.

A very important result which answers this question is Lie-Palais theorem (see



1.2 Lie semigroups and control theory 35

[20]), which assures that such a group G exists if, and only if, the set C generates a

Lie algebra of complete vector fields with finite dimension.

Theorem 1.2.5. (Lie-Palais) Let h a real Lie algebra of smooth vector fields in a manifold M .

Assume all X ∈ g are complete and that h has finite dimension. Then there is a connected Lie

group G acting in M by ϕ such that the function

f : g→ h

X → f(X)

where

f(X)(x) = D(ϕx)Id(v) =
d

dt
etXx

is an isomorphism of Lie algebras.

For the inverse implication, it can be shown that if G is a Lie group acting in a

manifold M and f is as in the theorem, then f(X) is complete for all X ∈ g and f is a

Lie homomorphism such that f(g) is a Lie algebra with finite dimension.

Remember that we ask the differential equations in a continuous control system to

be global, such that the vector fieldsFc are complete for each c ∈ G. Thus, a continuous

control system defined from smooth vector fields can be viewed as the semigroup of a

connected Lie group G acting differentiably on M if the set {Fc; c ∈ U} generates a Lie

algebra of finite dimension.

Chapter 4 will use many results from Flag theory for semigroups in semissimple

Lie groups. This is a very rich and deep theory, and is worth an entire study on its on.

We talk more about it in section 4 itself.



CHAPTER 2

THE SYSTEM ẋ = Ax + a +Bu

2.1 Preliminaries

The control systems studied in this chapter are defined by families of differential equa-

tions in the form
d

dt
x(t) = Ax(t) + a+Bu(t)

A ∈Mn, B ∈Mn×m, a ∈ Rn, u ∈ U ,

where U = {u : R → U ;u is integrable}, and U is a nonempty subset of Rm. By

integrable we mean that u is Riemann integrable in any interval of R.

When a function u and an initial point x(0) = x0 are fixed, the equation above

becomes an ordinary differential equation with unique and global solution, such that

the solution depends smoothly on the starting condition.

Using the notation for continuous control systems introduced in section 1.1, such

a control system is defined by an ordered pair (Rn,F , U,U) where U,U are as defined

above and F is defined by

F : Rn × U → Rn

(x, c)→ Ax+ a+Bc.

Here, the tangent bundle of Rn is associated with the space itself.
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Such control system is completely determined by A, a,B, U , therefore, we will de-

note it by (A, a,B)U . If U = Rm, we will also use the notation (A, a,B).

The control system (A, a,B)U can be shown to be equivalent to a semigroup S in

the affine Lie group Aff(Rn), generated by the set

{(A, a+Bc); c ∈ U} ⊂ aff(Rn).

As previously mentioned, nothing is lost in terms of controllability by instead re-

stricting U to piece-wise constant function and requiringU to be a convex set. In section

2.3 we also include a proof that is specific for the case considered in this chapter.

As usual, we denote the solution of the system by ϕ. Remember that the solution

is a function ϕ : Rn × U × R → Rn where ϕ(x0, u, T ) is defined as the solution of

ẋ(t) = F(x(t), u(t)) on time T .

A linear control system is defined by a family of differential equations in the form

d

dt
x(t) = Ax(t) +Bu(t)

A ∈Mn, B ∈Mn×m, u ∈ U ,

where U = {u : R→ U ;u is locally integrable}, and U ⊂ Rm is nonempty.

This differential equation also has unique and global solution depending smoothly

on the starting conditions, such that it also defines a control system (Rn,Fl, U,U) where

Fl(x, c) = Ax+Bc,

similar to the previous system. This system also satisfies the conditions of the Lie-

Palais theorem, and can be associated with the semigroup in Aff(Rn) generated by

{A+Bc; c ∈ U}.

As in the previous case, nothing is lost in terms of controllability if U is restricted to

piece-wise constant functions or if U is required to be convex.

The linear system is completely determined by A,B, U , and we will denote such

system by (A,B)U , or, if U = Rm, by (A,B). To avoid ambiguity, we will sometimes
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denote the linear system’s solution by ϕ′ if the symbol ϕ is already being used to denote

the solution of the system (A, a,B)U . This will be made clear beforehand in the cases

where it is used.

The problem studied in this chapter is the one of finding conditions for the control-

lability or uncontrollability of the affine systems previously described.

The first result which will be shown is regarding the solution of those systems.

Proposition 2.1.1. The solution of the affine system (A, a,B)U is given by:

ϕ(x0, u, T ) = eTAx0 +

∫ T

0

e(T−s)A(Bu(s) + a) ds.

Proof. The affine solution for the class studied can be derived from the linear solution.

For each control u, let u′ be defined by u′(t) =

u(t)
1

 ∈ Rm+1, where the elements of

Rm and Rm+1 are viewed as column-matrices, and let B′ =
(
B a

)
∈ Rn×(m+1). Then

B′u′(t) = Bu(t) + a

for all t ∈ R. Consequently, the ordinary differential equation associated with control

u can be rewritten as a differential equation from the linear system:

ẋ = Ax(t) + a+Bu(t) = Ax(t) +B′u′(t).

Since the differential equations coincide, then ϕ is also solution to the system (A,B′)

with control u′. It’s a known fact (see [2, 3] for details) that said solution is unique and

is the function

eTAx0 +

∫ T

0

e(T−s)A(B′u′(s))ds.

Therefore,

ϕ(x0, u, T ) = eTAx0 +

∫ T

0

e(T−s)A(B′u′(s))ds =

eTAx0 +

∫ T

0

e(T−s)A(Bu(s) + a)ds
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2.2 Unrestricted case

In this section we show necessary and sufficient conditions for the controllability of

the unrestricted systems (A, a,B). A very useful construction is the following quotient.

This idea was used by Willens in the Section 5 of [21].

Given V a subspace ofRn and a function f : Rn → Rn, we say that f can be projected

on Rn/V if a + V = b + V implies f(a) + V = f(b) + V for all a, b ∈ Rn, and define the

projection of f as the function:

f : Rn/V → Rn/V

x+ V → f(x+ V ) := f(x) + V.

If f can be projected on Rn/V then it’s projection is well defined.

In a similar way, given a control system defined by a flow ϕ : Rn×U ×R→ Rn, we

say that it can be projected on Rn/V if, for all fixed u and T the function x→ ϕ(x, u, T )

can be projected, and define the projected flow by

ϕ(x+ V, u, T ) = ϕ(x, u, T ) + V.

As in the previous case, if the control system can be projected then the projected flow

is well defined. Furthermore, orbits in the original system project into orbits in the

projected system. In particular, if the original system is controllable then the projected

system is also controllable. For this reason projections will be very useful for showing

non controllability of some systems: if we can project a system on a a system that is not

controllable then the original system is also not controllable.

Natural examples for functions that can be projected are linear transformations on

their invariant spaces, and also the exponentials of these transformations on those

same spaces, since if a space is invariant under a linear transformation then it is also

invariant under it’s exponential. In any of those cases, the projected function is still

linear. It is also possible to show that, if A is a linear transformation, V is one of it’s

invariant spaces, and A, etA denote, respectively, the projections of A and etA on Rn/V ,

then etA = etA.
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An interesting invariant subspace shows up on linear systems: in an unrestricted

system (A,B), the positive and negative orbits from the origin coincide as the same set,

and are both A invariant subspaces. In fact, if O denotes the positive/negative orbit

from the origin, then O is the image of the Kalman matrix

(
An−1B An−2B ... AB B

)
(see [2, 3]) or, equivalently,O is the smallestA invariant subspace containing the image

of B. In the next result we show that (A, a,B)U can be projected on Rn/O .

Lemma 2.2.1. Consider the system (A, a,B)U and letO be the positive/negative orbit from the

origin by the linear system (A,B). Then (A, a,B)U can be projected on Rn/O . Furthermore,

the solution of the projected system is in given by

ϕ(x+O , u, T ) = eTAx+

∫ T

0

esAa ds+O .

Proof. Let ϕ′ denote the flow of the linear system (A,B), and let x, y ∈ Rn be such that

x− y ∈ O . Then:

ϕ(x, u, T )− ϕ(y, u, T ) =

= eTAx+

∫ T

0

e(T−s)A(Bu(s) + a) ds− eTAy −
∫ T

0

e(T−s)A(Bu(s) + a) ds =

= eTA(x− y) = ϕ′(x− y, 0, T ).

By hypotheses, x − y ∈ O . If T = 0, then ϕ′(x − y, 0, T ) = x − y ∈ O . If T > 0 then

ϕ′(x − y, 0, T ) is in the positive orbit from x − y, while x − y is in the positive orbit

from the origin. Therefore, ϕ′(x− y, 0, T ) is in the positive orbit from the origin, that is,

ϕ′(x − y, 0, T ) ∈ O . Analogously, if T < 0 then ϕ′(x − y, 0, T ) is in the negative orbit

from the origin, and, therefore, is in O .

Therefore, ϕ(x, u, T ) + O = ϕ(y, u, T ) + O , and the system can be projected in

Rn/O .

For the solution, we have:

ϕ(x+O , u, T ) = ϕ(x, u, T ) +O =

= eTAx+

∫ T

0

e(T−s)A(Bu(s) + a) ds+O =
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= eTAx+

∫ T

0

e(T−s)ABu(s) ds+

∫ T

0

e(T−s)Aa ds+O =

= eTAx+ ϕ′(0, u, T ) +

∫ T

0

e(T−s)Aa ds+O

= eTAx+

∫ T

0

e(T−s)Aa ds+O ,

writing k = T − s in the integral we get:

eTAx+

∫ T

0

e(T−s)Aa ds+ V = eTAx+

∫ 0

T

−ekAa dk +O =

= eTAx+

∫ T

0

ekAa dk + V = eTAx+

∫ T

0

esAa ds+O .

Ending the proof.

Note that the solution from the projected system is independent from the control such

that the trajectory from a point will always be same, regardless of the control chosen.

That is a good indication that these systems will never be controllable except for trivial

cases, such as when Rn/O is an unitary set. This is proven in the next results.

Lemma 2.2.2. The projected system from lemma 2.2.1 can be projected once again on Img(A),

and the solution of this second projection is

ϕ(x+O + Img(A), u, T ) = x+ Ta+O + Img(A).

Proof. Let x+O , y +O be such that x+O − y +O = x− y +O ∈ Img(A). Then

ϕ(x+O , u, T )− ϕ(y +O , u, T ) =

= eTAx+

∫ T

0

esAa ds− eTAy −
∫ T

0

esAa ds+O =

= eTA(x− y) +O = eTA(x− y +O ).

Since x− y +O ∈ Img(A) and Img(A) is A invariant, then eTA(x− y +O ) ∈ Img(A),

showing that the system can be projected.

Now for the flow, note that if A is the projection of A then A is the null transforma-

tion, sinceA(x+O ) ∈ Img(A) for all x+O ∈ Rn/O , and, therefore, eTA is the identity
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transformation for any real T . Therefore,

etAx+O + Img(A) = etA(x+O + Img(A)) = x+O + Img(A),

for any t ∈ R, x ∈ Rn, and, therefore:

ϕ(x+O + Img(A), u, T ) = eTAx+

∫ T

0

esAa ds+O + Img(A)

= x+

∫ T

0

a ds+O + Img(A) =

= x+ Ta+O + Img(A).

Theorem 2.2.3. The projected system

ϕ(x+O , u, T ) = eTAx+

∫ T

0

esAa ds+O

is controllable if, and only if, Rn/O has dimension 0, or, equivalently, O = Rn.

Proof. If R/O has dimension 0 then it is an unitary set, and, therefore, the system

is controllable. We have to show that the system is not controllable if the space has

dimension greater or equal to one. For that, we consider two cases,

a+O ∈ Img(A)

or

a+O ̸∈ Img(A).

If a +O ∈ Img(A) then there exists a′ +O such that A(−a′ +O ) = a +O . Then

the orbit of −a′ +O is {a′ +O }, in fact, for all T ∈ R, u ∈ U :

ϕ(a′ +O , u, T ) = −eTAa′ +

∫ T

0

esAa ds+O =

= −eTAa′ + a′ − a′ +
∫ T

0

esAa ds+O = −(eTAa′ − a′)− a′ +
∫ T

0

esAa ds+O
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= −
∫ T

0

esAAa′ ds− a′ +
∫ T

0

esAa ds+O = −a′ +
∫ T

0

esA(a− Aa′) ds+O .

By definition of a′ we have that a − Aa′ ∈ O , and, since O is A invariant, then

esA(a−Aa′) ∈ O for all s ∈ R. Therefore the integral in the last term is contained inO

and is null in the quotient. Then

ϕ(a′ +O , u, T ) = a′ +O ,

and the orbit of a′ + O is {a′ + O }. Since we’re assuming that Rn/O has dimension

greater than 0, and, therefore, isn’t unitary, then {a′+O } is a proper set, and the system

is not controllable.

If a + O ̸∈ Img(A), then A is not surjective in Rn/O . In particular, the quotient

(Rn/O )/A has dimension greater than 0. By lemma 2.2.2 we can project the system in

this quotient, and the projected system is given by

ϕ(x+O + Img(A), u, T ) = x+ Ta+O + Img(A).

In particular, the positive orbit from the origin is the set {Ta+O +Img(A;T ≥ 0}. That

set is either a ray or a single point, and, since (R/O )/Img(A) has dimension greater

than 0, it is also proper. Therefore the projected system is not controllable. As men-

tioned before, this implies that the system from the theorem is also not controllable.

Corollary 2.2.4. If (A,B) is not controllable then (A, a,B) is not controllable.

Proof. The controllability of (A,B) is equivalent to the condition O = Rn. If (A,B)

is not controllable then O ≠ Rn is not controllable, which, by previous theorem, im-

plies that (A, a,B) can be projected in a non controllable system and therefore is not

controllable.

The previous corollary gives a necessary condition for the controllability of the un-

restricted systems (A, a,B) studied in this section. In the next part of this section we

show that this condition is also sufficient for the controllability of these systems.

Lemma 2.2.5. If the linear system (A,B) is controllable in Rn then any vector x ∈ Rn can be

written as AxA +BxB where xA ∈ Rn, xB ∈ Rm.
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Proof. Let

V := Img(A) + Img(B) = {a+ b; a ∈ Img(A), b ∈ Img(B)}

Since Img(A), Img(B) are both subspaces, then so is V . Furthermore, we have that

Img(B) ⊂ V and A(V ) ⊂ Img(A) ⊂ V , such that V is an A-invariant subspace that

contains Img(B). SinceO is the smallest subspace with these properties, thenO ⊂ V .

If we assume that (A,B) is controllable, then O = Rn such that x ∈ Rn = O ⊂ V . By

definition of V , we have

x = a+ b

where a ∈ Img(A), b ∈ Img(B). Since a, b are in the respective images, then there are

xa ∈ Rn, xb ∈ Rm such that a = Axa, b = BxB, and, therefore,

x = AxA +BxB

.

Theorem 2.2.6. The system (A, a,B) is controllable if, and only if, the linear system (A,B) is

controllable.

Proof. It was already show in previous results that controllability for (A, a,B) implies

controllability for (A,B) (corollary 2.2.4). What is left is to show the other implication.

Assume (A,B) is controllable. Then, by lemma 2.2.5, a = AaA + BaB for some

aA ∈ Rn, aB ∈ Rm. Denote by ϕ the flow of the affine system (A, a,B) and by ϕ′ the

flow of the linear system (A,B). Note that

d

dt
(ϕ′(x0 + aA, u+ aB, t)− aA) =

Aϕ′(x0 + aA, u+ aB, t) +B(u(t) + ab) =

A(ϕ′(x0 + aA, u+ aB, t)− aA) + AaA +BaB +B(u(t)) =

A(ϕ′(x0 + aA, u+ aB, t)− aA) + a+Bu(t)

and

ϕ′(x0 + aA, u+ aB, 0)− aA = x0 + aA − aA = x0,
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that is, ϕ′(x0 + aA, u+ aB, T )− aA is solution to the differential equation

ẋ = Ax+ a+Bu.

By uniqueness of solution,

ϕ(x0, u, T ) = ϕ′(x0 + aA, u+ aB, T )− aA

for all x0 ∈ Rn, u ∈ U , T ∈ R. Now choose arbitrary x, y ∈ Rn. Since (A,B) is control-

lable, then there exists u ∈ U and T > 0 such that

ϕ′(x+ aA, u, T ) = y + aA.

Then:

ϕ(x, u− aB, T ) = ϕ′(x+ aA, u, T )− aA = y.

2.3 Restricted case

In this section we study the controllability of the restricted systems (A, a,B)U , assum-

ing that U is a bounded subset of Rm. Without loss in generality, we also assume

that U is not contained in a proper affine subspace of Rm. In fact, if it is the case that

U ⊂ V + b where V is a proper subspace of Rm and b ∈ Rm, then the system (A, a,B)U

can be shown equivalent to (A, a + B(b), B|V )U−b, in the sense that both systems are

composed of the same vector fields and the first system is controllable if and only if the

second one is. Therefore, if U is contained in a proper affine subspace of Rm, then the

problem can be simplified into a version where U is not contained in any proper affine

subspace.

Our objective is to show conditions for the controllability of the systems (A, a,B)U .

The first such condition is derived from the previous section. Since (A, a,B)U is a re-

striction of (A, a,B), then all of it’s trajectories will also be trajectories from the system

(A, a,B). In particular, if (A, a,B)U is controllable then (A, a,B) is also controllable.

That means that a necessary condition for the controllability in the restricted version
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is the controllability of the unrestricted version, or, equivalently, the controlability of

(A,B).

This condition is quite useful because, as we will see in the next results, (A, a,B)U

is equivalent to a translated restricted linear system whenever (A,B) is controllable.

Proposition 2.3.1. Let (A, a,B)U be such that a = AaA + BaB for some aA ∈ Rn, aB ∈ Rn,

and let W = U + aB. Then the system (A, a,B)U is controllable if, and only if, (A,B)W is

controllable.

Proof. Let ϕ denote the solution of (A, a,B)U and ϕ′ the solution of (A,B)W . Then, for

x ∈ Rn and a control u from (A, a,B)U ,

d

dt
ϕ′(x+ aA, u+ aB, t)− aA = A(ϕ′(a+ aA, u+ aB, t)) +B(u(t) + aB)

= A(ϕ′(a+ aA, u+ aB, t)− aB) +B(u(t)) + AaA +BaB

= A(ϕ′(a+ aA, u+ aB, t)− aB) +B(u(t)) + a,

and

ϕ′(x+ aA, u+ aB, 0)− aA = x+ aA − aA = x,

therefore, ϕ′(x + aA, u + aB, T ) − aA satisfies the diferential equation of the system

(A, a,B)U , and, therefore ϕ′(x + aA, u + aB, T ) − aA = ϕ(x, u, T ). Furthermore, (u −

aB)(t) ∈ W if, and only if, u(t) ∈ U . Therefore, the trajectories from one of the sys-

tems are the translated trajectories from the other one, and their controlabilities are

equivalent.

Corollary 2.3.2. If (A,B) is controllable then there is v ∈ Rm and W = U + v such that the

controllability of (A, a,B)U is equivalent to the controllability of (A,B)W .

Remember that aA, aB as above exist whenever (A,B) is controllable, such that the

corollary is a direct implication from the proposition.

There is a know result about the controllability of (A,B)U : if 0 ∈ Int(U) and U is

bounded, then (A,B)U is controllable if, and only if (A,B) is controllable and all the

eigenvalues of A are 0 or purely imaginary [2, 3]. Note that this condition does not

depend on the restriction U , and, therefore, the controllability of (A,B)U is equivalent
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for all restrictions U that are bounded and contain the origin in their interior. That

motivates the following definition:

Definition 2.3.3. We say that a linear system (A,B) is controllable restricted to the origin

(C.R.O) if (A,B)U is controllable for some restriction U that is bounded and contains the origin

in it’s interior. Equivalently, (A,B) is C.R.O. if (A,B)U is controllable for all such restrictions,

or, also equivalently, if (A,B) satisfies the Kalman rank condition and all eigenvalue of A are 0

or purely imaginary [2, 3].

Proposition 2.3.4. If U is bounded and (A,B)U is controllable, then (A,B) is C.R.O.

Proof. Let W = U ∪B(0, 1), where B(0, 1) is the open ball in Rm centered on the origin.

Note that W is still bounded and 0 ∈ Int(W ). Furthermore, U ⊂ W , and then, the

set of controls of (A,B)U is contained in the set of controls of (A,B)W . Therefore, the

controllability of (A,B)U implies the controllability of (A,B)W . Since W is a bounded

set that contains the origin in this interior, then (A,B) is C.R.O.

Corollary 2.3.5. If (A, a,B)U , with bounded U , is controllable, then (A,B) is C.R.O.

Proof. We saw that the controllability of (A, a,B)U implies the controllability of (A,B)W

whereW = U+v for some v ∈ Rm. SinceU is bounded, thenW = U+v is also bounded,

therefore, by the previous proposition, (A,B) is C.R.O.

This corollary gives us another necessary condition for the controllability of (A, a,B)U :

(A,B) must be C.R.O.

For the next and last condition, we need some results about convex sets. Some of

those results are topological ones. An useful fact connecting both is that ifC is a convex

set then x ∈ Int(C) if, and only if, there exists a basis β of Rn such that x+ jb ∈ Int(C)

for all b ∈ β and j ∈ {−1, 1}.

A definition that is very useful when studying convex sets is the definition of con-

vex closure.

Definition 2.3.6. LetC ⊂ Rn. The convex closure ofC is the set of all convex sums of elements

in C. We will denote it by cv(C):

cv(C) =

{
x ∈ Rn; ∃ (x1, ..., xk ∈ C; a1, ..., ak ∈ [0, 1]);

k∑
i=1

aixi = x and
k∑

i=1

ai = 1

}
.
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Note that the convex closure itself is a convex set. In fact, cv(C) can be equivalently defined as

the intersection of all convex set that contain C, or the smallest convex set containing C.

Lemma 2.3.7. If C ⊂ Rn is a convex set and 0 ̸∈ Int(C), then the set

D := {αx;α > 0 e x ∈ C}

doesn’t contain the origin in it’s interior and is a convex cone, that is, if x1, x2, ..., xd ∈ D and

α1, α2, ..., αd are positive real numbers then
d∑

i=1

αdxd ∈ D.

Proof. First we show that D is a convex cone. For that, consider the set

E := {αx;α > 0 e x ∈ C}.

Note thatD = E. We will show thatE is a convex cone. In fact, given α1c1, α2c2, ..., αdcd ∈

E and λ1, λ2, ..., λd > 0, let

M =
d∑

i=1

λiαi > 0.

Note that
d∑

i=1

λiαici =M
d∑

i=1

λiαi

M
ci,

where
d∑

i=1

λiαi

M
ci

is a convex sum of elements of C, and, therefore, is in C. Then,

M

d∑
i=1

λiαi

M
ci ∈ E.

ThereforeE is a convex cone. Now, to show thatD is a convex cone, let x1, x2, ..., xd ∈ D

and α1, α2, ..., αd > 0. Since D = E then, for each xi there is a sequence x1i , x2i , ... ∈ E

converging for xi. Then,

d∑
i=1

αixi =
d∑

i=1

αi lim
j→+∞

xji = lim
j→+∞

d∑
i=1

αix
j
i ∈ E = D.

Now we show that 0 ̸∈ Int(D). Assume, by contradiction, that 0 ∈ Int(D). Then,

for some ϵ > 0, ϵe1, ϵe2, ..., ϵen,−ϵe1,−ϵe2, ...,−ϵen ∈ D, where e1, e2, ..., en denote the
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vectors in the canonical base. But D is a convex cone, therefore ±e1,±e2, ...,±en ∈

D. Since D = E, then, for each ei there is a sequence a1i , a2i , ... and b1i , b
2
i , ... such that

lim
j→+∞

aji = ei and lim
j→+∞

bji = −ei. Then, for suficiently big k,

0 ∈ Int(cv({ak1, ak2, ..., akn, bk1, bk2, ..., bkn})) ⊂ Int(E)

⇒ 0 ∈ Int(E).

Then

±e1,±e2, ...,±en ∈ E,

and, therefore,

α1e1, α2e2, ..., αnen,−β1e1,−β2e2, ...,−βnen ∈ C

for some positive numbers α1, α2, ..., αn, β1, β2, ..., βn. If

ϵ = min(α1, α2, ..., αn, β1, β2, ..., βn) > 0,

then ±ϵe1,±ϵe2, ...,±ϵen ∈ C, and, then, 0 ∈ Int(C), contradicting the hypothesis 0 ̸∈

Int(C).

Lemma 2.3.8. If C ⊂ R2 is a convex set such that 0 ̸∈ Int(C), then there exists a basis X, Y

of R2 such that, for every x = αX + βY ∈ C, α ≥ 0

Proof. Let D := {αx;α > 0, x ∈ C}. By lema 2.3.7, D is a convex cone and 0 ̸∈ Int(D).

Note that if D = {0} or if D = ∅, then C = {0} or C = ∅, and the lemma is trivial.

Otherwise, if δD denotes the boundary of D, then δD ̸⊂ {0}. Then, there is a nonzero

Y ∈ δD. If D ⊂ ⟨Y ⟩, then, for any X which is linearly independent to Y , X, Y is the

desired basis, as any element in D and, in particular C, is in the form 0X + βY , where

0 ≥ 0. Otherwise, let X ∈ D such that X ̸∈ ⟨Y ⟩. Then X, Y are linearly independent,

and are a basis. We will show that this basis is as described in the lemma.

Assume, by contradiction, that there is x = −αX + βY ∈ C such that α > 0. Since

C ⊂ D, then x ∈ D. Furthermore, Y ∈ D, since Y ∈ δD and D is a closed set, and

X ∈ D by construction. D is closed for positive linear sums, since it’s a convex cone.
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We will show that Y − ϵ1X ∈ D, for some ϵ1 > 0. In fact, if β < 1, then −β + 1 > 0, and

(−β + 1)Y + (−αX + βY ) = Y − αX ∈ D,

and, if β ≥ 1, then 1
β
> 0, and:

1

β
(−αX + βY ) = Y − α

β
X ∈ D.

On both cases, there exists ϵ1 > 0 such that Y − ϵ1X ∈ D. Now, since D is convex,

then the segment from Y to Y − ϵ1X is contained in D, and, therefore Y − ϵX ∈ D for

all ϵ ≤ ϵ1. Let ϵ = min{ϵ1, 12}. Then 1 − ϵ > 0, and, using again that D is closed for

positive linear sums, we get

(1 + ϵ)Y = Y + ϵY ∈ D;

(1− ϵ)Y = Y − ϵY ∈ D;

Y + ϵX ∈ D.

Therefore, Y ± ϵX, Y ± ϵY ∈ D. Since X, Y is a base of R2, and D is convex, then

Y ∈ Int(D), which is a contradiction with Y ∈ δ(D).

Proposition 2.3.9. If C is a convex subset of Rn with n > 0, and 0 ̸∈ Int(C), there there

exists a basis {X, Y1, Y2, ...Yn−1} of Rn such that, for any x = αX +
n−1∑
i=1

βiYi, if x ∈ C then

α ≥ 0.

Proof. The proposition is trivial for R1. We will show using induction that it holds for

Rn.

Let C ⊂ Rn a convex set such that 0 ̸∈ Int(C). Then, for some vector ek from the

canonical basis, αek ̸∈ C for all α > 0 or αek ̸∈ C for all α < 0. Let V be any n − 1

dimension subspace containing ek. Note that 0 is not in the interior of V ∩ C on the

subspace topology of V , since αek ∈ (V − (V ∩ C)), for all α > 0 or for all α < 0. Then,

by the induction hypothesis, there is a basis Z, Y1, ..., Yn−2 of V such that

x = αZ +
n−2∑
i=1

βiYi,



2.3 Restricted case 51

with α ≥ 0 for all x ∈ C ∩ V . Let W = ⟨Y1, Y2, ..., Yn−2⟩. Note that W has dimension

n−2, thereforeRn/W has dimension 2. Furthermore, if π : Rn → R2/W is the canonical

projection, then αZ +W ̸∈ π(C) for all α < 0, since the elements of π−1(αZ +W ) are

contained on V and are in the form

αZ +
n−2∑
i=1

βiYi.

where α < 0. Therefore, 0 +W ̸∈ Int(π(C)). W has dimension 2 and π(C) is convex

since it is the image of a convex set by a linear transformation, therefore, the lema

2.3.8 holds for π(C), and there is a basis X + W,Y + W of Rn/W such that α ≥ 0

whenever αX + W + βY + W ∈ π(C). Then, writing Yn−1 = Y , we have, for any

x = αX +
n−1∑
i=1

βiYi ∈ C, π(x) = αX + βn−1Yn−1 ∈ π(C), therefore α ≥ 0.

The above property allows us to show a last necessary condition for controllabillity

Proposition 2.3.10. If (A,B)U is controllable, then

0 + V ∈ Int(π(B(cv(U)))),

where V = Img(A) and π : Rn → Rn/V is the canonical projection

Proof. If V = Rn then Rn/V is null, and the proposition is trivial, since 0 + V ∈

Int(π(B(cv(U)))) will be true for any nonempty set U . We will assume otherwise, and

show that the proposition hold by contrapositive. If 0 + V ̸∈ Int(π(B(cv(C)))) then,

by proposition 2.3.9, there exists a basis β = {X, Y1, ..., Yd} of Rn/V such that α ≥ 0

whenever αX +
d∑

i=1

βiYi ∈ π(B(cv(U))).

Let x ∈ O+(0) arbitrary. Then x = ϕ(0, u, T ) for some control u and positive time T .

Then:

π(x) = π

(
eTA0 +

∫ T

0

e(T−s)AB(u(s)) ds

)
=

∫ T

0

e(T−s)AB(u(s)) + Img(A) ds.

We recall a property which was used previously:

etAx+ Img(A) = x+ A

(
+∞∑
i=1

tiAi−1

i!
x

)
+ Img(A) = x+ Img(A),
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for all t ∈ R, therefore,

π(x) =

∫ T

0

B(u(s)) + Img(A) ds =

∫ T

0

π(B(u(s))) ds.

Note that π(B(u(s))) ∈ π(B(U)) ⊂ π(B(cv(U))), such that the integral above is an

integral of elements in π(B(cv(U))). But every element in this set have a non negative

first coordinate on the basis β, therefore, the numerical result of the integral also has a

non negative first coordinate on that basis. Then, x is an element of the set

S :=

{
αX +

d∑
i=1

βY ;α ≥ 0

}
.

Since x ∈ O+(0) is arbitrary, we have π(O+(0)) ⊂ S. But S is a proper subset of Rn/V

and π is surjective, therefore, oo+(0) ̸= Rn and the system is not controllable.

Corollary 2.3.11. If (A, a,B)U is controllable, then

0 + V ∈ Int(π(B(cv(U)) + a)),

where V = Img(A) and π : Rn → Rn/V is the canonical projection.

Proof. If (A, a,B)U is controllable then (A,B) is controllable and then

a = AaA +BaB

For some aA ∈ Rn and aB ∈ Rm. From the previous proposition and the equivalence of

the systems (A, a,B)U and (A,B)U+aB with respect to controllability, we have that the

controllability of (A, a,B)U implies

0 + V ∈ Int(π(B(cv(U + aB)))).

The convex closure of a translated set is the translation of the convex closure, then we

have

B(cv(U + aB)) = B(cv(U) + aB) = B(cv(U)) +BaB.
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Furthermore, AaA ∈ Img(A) by definition, therefore π(AaA) = 0 + Img(A). Then,

π(B(cv(U)) +BaB) = π(B(cv(U)) +BaB + AaA) = π(B(cv(U)) + a).

Therefore,

0 + V ∈ Int(π(B(cv(U)) + a)).

So far we have that, if U is bounded, the following conditions are necessary for

controllability of (A,B)U :

• (A,B) must be C.R.O. Note that this condition also is also implying the control-

lability of (A,B). Equivalently, the Kalman matrix must have full rank and all of

the eigenvalues of A must have real part equal to zero.

• 0+V ∈ Int(π(B(cv(U)))), where V = Img(A) and π : Rn → Rn/V is the canonical

projection.

We can also make a similar list for the controlability of (A, a,B)U . It is very similar

to the previous one, due to the relations between those systems:

• (A,B) must be C.R.O. Note that this condition also is also implying the control-

lability of (A,B). Equivalently, the Kalman matrix must have full rank and all of

the eigenvalues of A must have real part equal to zero.

• 0 + V ∈ Int(π(B(cv(U)) + a)), where V = Img(A) and π : Rn → Rn/V is the

canonical projection.

In the remaining of this section we show that those conditions are also sufficient for the

controllability of the respective systems. The first step is to show that the controllability

of (A,B)U is equivalent to the controllability of (A,B)cv(U). An idea that will be used

for that is the idea of approximated controllability. Remember that a control system

is approximatelly controllable if the positive and negative orbits from any point x are

both dense in the manifold where the system is being considered.

Remember as well that the controllability of a system implies the approximated

controllability for the same system, and that the inverse implication is true if the sys-

tem is equivalent to a Lie semigroup generated by exponentials, which includes the
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systems studied here. In the following results we show a less general proof of this,

specific for the systems considered in this chapter.

Lemma 2.3.12. Denoting by O−
(A,B)U

,O+
(−A,−B)U

the orbits by (A,B)U , (−A,−B)U , respec-

tively, then

O−
(A,B)U

(x) = O+
(−A,−B)U

(x)

for all x ∈ Rn.

Proof. Denote by ϕ the solution of the system (A,B)U and by ϕ′ the solution of the

system (−A,−B)U . We will show that ϕ(x, u, T ) = ϕ′(x, v,−T ), where v is defined by

v(t) = u(−t). We do that by showing that ϕ′(x, v,−t) satisfies the initial value problem

from the first system:

d

dt
ϕ′(x, v,−t) = (−Aϕ′(x, v,−t)−B(v(−t))) (−1) = Aϕ′(x, v,−t) +B(u(t))

ϕ′(x, v, 0) = x.

Then ϕ(x, u, T ) = ϕ′(x, v,−T ), since this problem has unique solution. Therefore, y ∈

O−
(A,B)C

(x) if and only if there is a control u and a time T < 0 such that y = ϕ(x, u, T ) =

ϕ′(x,−u,−T ), which happens if, and only if, y ∈ O+
(−A,−B)C

(x). Therefore the two sets

are equal.

Lemma 2.3.13. Let C ⊂ Rn be a set, A : Rn → Rn a linear transformation and I any open

interval in R. If V is the smallest A invariant subspace containing C, then the set D :=

{etAc; t ∈ I, c ∈ C} spans V .

Proof. First we show that the lemma holds when 0 ∈ I .

LetW be the space spanned byD. We have thatW ⊂ V , since any etAc is in V . Assume,

by contradiction, that W ̸= V . Since 0 ∈ I ,then e0c = c ∈ W for all c ∈ C, then C ⊂ W .

Since W ⊊ V and V is the smallest A invariant subset containing C, then W is not A

invariant. Then, there is x ∈ W such that Ax ̸∈ W . Write

x =
n∑

i=1

etiAci,

and note that

etAx =
n∑

i=1

e(t+ti)Aci.
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Since I is open, then etAx ∈ W for sufficiently small t. But

d

dt

∣∣∣∣
t=0

etAx = Ax ̸∈ W,

then etA ̸∈ W for sufficiently small t, which is a contradiction on the hypothesis that

the et+tiAci are all in W .

Now, for the general case, let α ∈ I . Note that

{etAx; t ∈ I, x ∈ C} = {eαAetA; t ∈ (I − α), x ∈ C} = eαA{etA; t ∈ (I − α), x ∈ C}.

Since α ∈ I , then 0 ∈ (I − α), then, by what was shown previously, the set {etA; t ∈

(I − α), x ∈ C} spans V . Since eαA is an isomorphism, and V is a finite dimension

subspace invariant by eαA, then the restriction of eαA to V is still an isomorphism,

therefore eαA{etA; t ∈ (I − α)} spans V .

Lemma 2.3.14. GivenC,A, I, V as in the previous lemma, it is possible to choose t1, t2, ..., tn ∈

I, x1, x2, ..., xn ∈ C such that et1x1, et2x2, ..., etnxn spans V and t1, t2, ..., tn are two by two

distinct.

Proof. The previous lemma assures the existence of et1Ax1, et2Ax2..., etnAxn spanning V .

A spanning set for a finite dimension space will still span the space when perturbed

(assuming said perturbation is contained withing the space itself). Then, for suffi-

ciently small perturbations of t1, t2, ..., tn, the vectors et1Ax1, et2Ax2..., etnAxn will still

span Rn. I is an open set, by hypothesis, then those values will remain in I under

small perturbations. Therefore, we can change t1, t2, ..., tn slightly to make them dis-

tinct without losing the properties of the lemma.

Lemma 2.3.15. If (A,B) is controllable and U is not contained in a proper affine subspace,

then the positive and negative orbits from 0 of (A,B)U have nonempty interior.

Proof. Since (A,B) is controllable, then the smallest A invariant subspace containing

the image of B is Rn. Let D := {x− y;x, y ∈ C}, since C is not contained in any proper

affine subspace, then D spans R, and, therefore, B(D) spans Img(B). Consequently,

the smallest A invariant subspace containing B(D) is still Rn. By lemma 8 there are

distinct t1, t2, ..., tn > 0 and z1, z2, ..., zn ∈ B(D) such that et1z1, et2z2, ..., etnzn span Rn.
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Without losing generality, assume that t1 < t2 < ... < tn. Then, writing s0 = 0, there

are s1, s2, ..., sn such that 0 = s0 < t1 < s2 < t2 < s2 < ... < tn < sn. Define:

αi = si − si−1,

βi = si − ti,

λi = ti − si−1 = αi − βi,

write zi = B(xi)− B(yi), with xi, yi ∈ C, and, for each i ∈ {1, 2, ..., n} and t ∈ R, define

the control

uit : R→ C

s→

 yi, if t < s

xi if s ≤ t

and the functions

fi : R× Rn → Rn

(t, v)→ f t
i (v) := ϕ(v, uit, αi).

Note that fi is of class C1 on the set Si := {(t, x) ∈ R× Rn; 0 < t < αi}. This is verified

by the continuity of it’s partial derivatives:

dfi
dt

=
d

dt

(
eαiAv +

∫ αi

0

e(αi−s)AB(uit(s)) ds

)
=

=
d

dt

(∫ t

0

e(αi−s)AB(xi) ds−
∫ t

αi

e(αi−s)AB(yi) ds

)
=

= e(αi−t)AB(xi − yi) = e(αi−t)Azi,

dfi
dv

=
d

dv

(
eαiAv +

∫ αi

0

e(αi−s)AB(uit(s)) ds

)
= eαiAv.

since both functions above are continuous in Si, then fi isC1 in this set. Note that when

t = βi:
dfi
dt

∣∣∣∣
t=βi

= e(αi−βi)Azi = eλiAzi,

furthermore, by the definition of fi, we have that if t > 0 then f t
i (v) is in the positive
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orbit from v. Define the function

F : Rn → Rn

(t1, t2, ..., tn)→ f t1
1 f

t2
2 ...f

tn
n (0).

F is C1 in (0, α1) × (0, α2) × ... × (0, αn), since it’s a composition of C1 functions. Fur-

thermore, if ei is the i-th vector of the canonical basis in Rn, then:

dF

dei

∣∣∣∣
(β1,β2,...,βn)

= Df1Df2...Dfi−1

(
dfi
dt

∣∣∣∣
βi

)
= eα1Aeα2A...eαi−1AeλiAzi =

e

(
λi+

i−1∑
j=1

αj

)
A

zi = e(λi+si−1)Azi = etiAzi.

Where Dfj denote the respective spacial derivatives. Since the vectors etiAzi span Rn,

then the derivative of F in (β1, β2, ..., βn) is bijective, therefore, by the inverse function

theorem, F is locally invertible in this point. In particular, F ((0, α1) × (0, α2) × ... ×

(0, αn)) has nonempty interior. As was previously mentioned, this set is contained in

O+(0), therefore O+(0) has nonempty interior.

To show the same for O−(0), note that the Kalman criteria is equivalent for (A,B)

and (−A,−B). Then, since (A,B) is controllable, (−A,−B) must also be. Denoting

by O+
(−A,−B)(0) the positive orbit in the system (−A,−B), the previous argument as-

sures that Int(O+
(−A,−B)) ̸= ∅. But, by lemma 2.3.12, O−(0) = O+

(−A,−B)(0), therefore

Int(O−(0)) ̸= ∅.

Corollary 2.3.16. If U is not contained in any proper affine subspace and (A,B)U is approxi-

mately controllable then O+(0) and O−(0) have nonempty interior.

Proof. If (A,B)U is approximately controllable then so is (A,B), since the system (A,B)

contains all of the orbits from (A,B)U . However, the positive and negative orbits from

the origin for the system (A,B) coincide with the image of the Kalman matrix ([2,

3]), which is either maximal or not dense. Since we’re assuming that this system is

approximately controllable, then the orbit from the origin must be maximal, which

implies that the Kalman matrix has full rank and the system is controllable. Then,

the previous lemma ensures that O+(0),O−(0) in the system (A,B)U have nonempty

interior.
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From the Lie theory and semigroup theory point of view, the hypothesis of control-

lability for (A,B) can be shown to imply full rank for the semigroup associated to the

system (A,B)U in some subgroup H which is transitive in Rn.

Proposition 2.3.17. If U is not contained in a proper affine subspace, then (A,B)U is control-

lable if, and only if, it is approximately controllable.

Proof. If (A,B)U is controllable then it is also approximately controllable. We will show

the other implication.

Assume (A,B)U to be approximately controllable. Then for any x, y ∈ Rn, O−(y)

and O+(x) are dense. Furthermore, by the corollary 2.3.16, O+(0) and O−(0) have

nonempty interior. Then, there are z ∈ O+(x) ∩ O−(0) and w ∈ O−(y) ∩ O+(0). We

have y ∈ O+(w), w ∈ O+(0), 0 ∈ O+(z), z ∈ O+(x), therefore y ∈ O+(x). Since x, y are

arbitrary, the system is controllable.

On the next results we fall back to the notation O+
Σ(x),O

−
Σ(x) for the the positive,

negative orbits of x in the system Σ, respectively.

Proposition 2.3.18. For a control system (A,B)U with U bounded and not contained in an

affine proper subspace, the following are equivalent.

• (A,B)U is approximately controllable.

• (A,B)cv(U) is approximately controllable.

Proof. We will show thatO+
(A,B)U

(x) = O+
(A,B)cv(U)

(x) for all x ∈ Rn. Note thatO+
(A,B)U

(x) ⊂

O+
(A,B)cv(U)

(x), since U ⊂ cv(U). to show the other inclusion, let ϵ > 0, x ∈ Rn,

y ∈ O+
(A,B)cv(U)

(x) be arbitrary. Then there is a control u and a time T > 0 such that

∥ϕ(x, u, T )− y∥ < ϵ

3
. (2.3-1)

Recall that

ϕ(x, u, T ) = eTAx+

∫ T

0

e(T−s)AB(u(s)) ds.

SinceB(U) is bounded, there isM such that ∥v∥ < M for all v ∈ B(U). Since e(T−s)A is a

continuous function, and [0, T ] is compact, there is δ > 0 such that ∥e(T−t1)A−e(T−t2)A∥ <
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ϵ
3MT

whenever |t1 − t2| < δ. Take a partition P = {0 = α1, α1, ..., αd+1 = T} with

intervals smaller than δ such that:∥∥∥∥∥
∫ T

0

e(T−s)AB(u(s)) ds−
d∑

i=1

(αi+1 − αi)e
(T−αi)ABvi

∥∥∥∥∥ < ϵ

3

⇒

∥∥∥∥∥ϕ(x, u, T )−
(
eTAx+

d∑
i=1

(αi+1 − αi)e
(T−αi)ABvi

)∥∥∥∥∥ < ϵ

3
, (2.3-2)

where vi = u(αi). Since vi ∈ cv(U), there exists wi1, wi2, ..., wili ∈ U and positive num-

bers βi1, βi2, ..., βili such that:

vi =

li∑
j=1

βijwij,

li∑
j=1

βij = 1.

Let

γij := αi + (αi+1 − αi)

j∑
k=1

βij,

for i = 1, ..., d, j = 0, 1, ..., li. Note that γili = γ(i+1)0 = αi+1. Define the function:

u2 : (0, T ]→ U

t→ wij, se t ∈
(
γi(j−1), γij

]
.

Note that: ∥∥∥∥∥ϕ(x, u2, T )−
(
eTAx+

d∑
i=1

(αi+1 − αi)e
(T−αi)ABvi

)∥∥∥∥∥ =

∥∥∥∥∥
(

d∑
i=1

li∑
j=1

∫ γij

γi(j−1)

e(T−s)ABwij

)
−

(
d∑

i=1

li∑
j=1

βij(αi+1 − αi)e
(T−αi)ABwij

)∥∥∥∥∥ =

∥∥∥∥∥
d∑

i=1

li∑
j=1

∫ γij

γi(j−1)

(e(T−s)A − e(T−αi)A)Bwij

∥∥∥∥∥ ≤
d∑

i=1

li∑
j=1

∫ γij

γi(j−1)

∥∥(e(T−s)A − e(T−αi)A)Bwij

∥∥ < d∑
i=1

li∑
j=1

∫ γij

γi(j−1)

ϵ

3MT
M ≤

=
d∑

i=1

l1∑
j=1

(αi+1 − αi)βij
ϵ

3T
=

d∑
i=1

(αi+1 − αi)
ϵ

3T
=
ϵ

3
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⇒

∥∥∥∥∥ϕ(x, u2, T )−
(
eTAx+

d∑
i=1

(αi+1 − αi)e
(T−αi)ABvi

)∥∥∥∥∥ < ϵ

3
. (2.3-3)

From 2.3-1, 2.3-2, 2.3-3 and the triangular inequality we have

∥ϕ(x, u2, T )− y∥ < ϵ,

showing that y ∈ O+
(A,B)U

(x).

The argument above, together with lemma 2.3.12, also assures the equality of the clo-

sures for the negatie orbits:

O−
(A,B)U

= O+
(−A,−B)U

= O+
(−A,−B)cv(U)

= O−
(A,B)cv(U)

.

Then, the approximated controllability for the systems (A,B)U and (A,B)cv(U) is equiv-

alent.

Theorem 2.3.19. If U is bounded and not contained in a proper affine subspace, then the

following are equivalent:

• (A,B)U is controllable

• (A,B)cv(U) is controllable

Proof. By propositions 2.3.17, 2.3.18, (A,B)U is controllable if, and only if, (A,B)U is

approximately controllable, if and only if (A,B)cv(C) is approximately controllable if

and only if (A,B)cv(C) is approximately controllable.

Corollary 2.3.20. If U is bounded and not contained in a proper affine subspace, then the

following are equivalent:

(A, a,B)U is controllable

(A, a,B)cv(U) is controllable

Proof. It’s a direct consequence of the previous lemma and the equivalence between

the two systems.

For the final theorem we will use a few more properties of convex sets.

Lemma 2.3.21. If C ⊂ Rn is convex then Int(C) ̸= ∅ if, and only if, C is not contained in

any proper affine subspace.
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Proof. Any propper affine subspace has empty interior, therefore if C is contained in

one then Int(C) = ∅. For the other implication, assume that C is not contained in

any proper affine subspace. Then there is a basis y1 − x, y2 − x, ..., yn − x such that

y1, y2, ..., yn, x ∈ C. Since C is convex, then{(
1−

n∑
i=1

αn

)
x+ α1y1 + α2y2 + ...+ αnyn; 0 < αi <

1

n

}
⊂ C ⇒

{
x+ α1(y1 − x) + α2(y2 − x) + ...+ αn(yn − x); 0 < αi <

1

n

}
⊂ C.

This set is open since y1 − x, y2 − x, ..., yn − x is a basis. Therefore, Int(C) ̸= ∅.

Lemma 2.3.22. If C ⊂ Rn is a convex set with nonempty interior, T : Rn → Rm is a linear

transformation and x ∈ Int(T (C)), then there is y ∈ Int(C) such that T (y) = x.

Proof. Let v ∈ Int(C), and let e1, ..., en the canonical basis of Rn. Then there is α > 0

such that v + αei ∈ C and v − αei ∈ C, for all i ∈ {1, ..., k}. Given y ∈ Int(T (C)),

there is sufficiently small β > 0 such that y + β(y − T (v)) ∈ T (C), and, then, T (w) =

y + β(y − T (v)), for some w ∈ C. Let x = β
1+β

v + 1
1+β

w ∈ C. Note that:

T (x) =
β

1 + β
T (v) +

1

1 + β
T (w) =

β

1 + β
T (v) +

1

1 + β
(y + β(y − T (v))) =

=
β

1 + β
T (v) +

1 + β

1 + β
y − β

1 + β
T (v) = y.

Furthermore, writing γ = β
1+β

α > 0, then, for all i ∈ {1, ..., n}, j ∈ {−1, 1}:

β

1 + β
(v + jαei) +

1

1 + β
w =

β

1 + β
v +

1

1 + β
w + j

β

1 + β
αei = x+ jγei ∈ C,

that is, x + γei ∈ C and x − γei ∈ C for all i ∈ {1, ..., n}, therefore, by the convexity of

C, x ∈ Int(C).

Finally, we show that the necessary conditions found previously are also sufficient.

Theorem 2.3.23. A system (A,B)U with U bounded and not contained in any proper affine

subspace is controllable if, and only if, both of the following conditions are true:

• (A,B) is C.R.O.. Equivalently, the Kalman matrix of (A,B) has full rank, and all of the

eigenvalues of A have their real component equal to zero.
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• 0+ V ∈ Int(π(B(cv(U)))), where V ⊂ Rn is the image of A and π : Rn → Rn/V is the

canonical projection.

Proof. The necessity of those two items for controllability was already shown in the

first part of the section. We will now assume that (A,B)U satisfies both conditions and

show that it is controllable.

Note that cv(U) is a convex set which is not contained in an affine subspace, there-

fore, by lemma 2.3.21, cv(U) has nonempty interior. Then, since 0+V ∈ Int(π(B(cv(U)))),

and π ◦ B is a linear application, by lemma 2.3.22 there is v ∈ Int(cv(U)) such that

π(B(v)) = 0 + V . Equivalently, there is v ∈ Int(cv(U)) such that π(B(v)) ∈ Img(A),

therefore, there exists w ∈ Rn such that Aw = Bv ⇐⇒ Aw−Bv = 0. Now, the system

(A,B)cv(U) is equivalent to (A, 0, B)cv(U), which is equivalent to the system (A,B)cv(U)−v,

by proposition 2.3.1. Since ∈ Int(cv(U)), then 0 ∈ Int(cv(U)− v). Then, since (A,B) is

C.R.O., we have that (A,B)cv(U)−v is controllable, and, therefore, (A,B)cv(U) is control-

lable. By theorem 2.3.19, (A,B)U is also controllable.

Corollary 2.3.24. An affine system (A, a,B)U with U bounded and not contained in any

proper affine subspace of Rm is controllable if, and only if, both of the following conditions are

true:

• (A,B) is C.R.O.. Equivalently, the Kalman matrix of the system (A,B) has full rank

and all the eigenvalues of A have positive component equal to zero.

• 0 + V ∈ Int(π(B(cv(U)) + a)), where V ⊂ Rn is the image of A and π : Rn → Rn/V .

Proof. Once again, the necessity of those two conditions was shown in the first part of

the section. For the other implication, assume that both conditions are true. Then, from

the controllability of (A,B), a can be written as

a = AaA +BaB,

such that the controllability of (A, a,B)U is equivalent to the controllability of (A,B)U+aB .

From the previous theorem, the system (A,B)U+aB is controllable if, and only if, (A,B)

is C.R.O. and

0 + V ∈ Int(π(B(cv(U))) + aB).
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The first condition is already true by hypothesis, and, as mentioned previously, the

equality a = AaA +BaB implies

Int(π(B(cv(U))) + aB) = Int(π(B(cv(U)) + a)).

Therefore the second condition is also true, so (A,B)U+aB , and, therefore (A,B)U , are

controllable.



CHAPTER 3

TANGENT CONTROL SYSTEM

3.1 Definition of a tangent control system

In this chapter we define the tangent control system, which is an useful tool for study-

ing local controllability. The idea is to consider curves originating in the isotropy sub-

group of a point x ∈ M and contained in the semigroup of the system for positive

time, and differentiate the action of these curves in x in time 0. Interesting results can

be obtained from this construction.

Let G be a Lie group and R ⊂ G a semi group. For this construction R is not

assumed to have nonempty interior. Define

CR = {ϕ : R→ G : ϕ is C1 and ϕ(0) ∈ R}

the set of all diferentiable curves in G originating in R. We study local properties of

these curves, so CR could alternatively be defined as a set of germs without losing

much.

Note that CR is a semigroup with the product ϕφ : R→ G defined by

(ϕφ)(t) = ϕ(t)φ(t).

If R is a subgroup then CR is group with inverse defined by ϕ∗(t) = (ϕ(t))−1. We use
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the notation ϕ∗ in this case as to not be mistaken with the notation for inverse function,

which is usually denoted by ϕ−1. Moreover, if R is not a subgroup, then CR ⊂ CG, such

that CR is contained in a group. Now fix a semigroup S ⊂ G. Given a subsemigroup R

contained in S, the topological closure of S, we denote

SR = {ϕ ∈ CR : ϕ(t) ∈ S for all t > 0},

the set of curves in CR that stay in S in positive time, and by S∗
R the set of curves in CR−1

that stay in S−1 in positive time. It can be shown that S∗
R = (SR)

−1 and if SR and S∗
R are

nonempty then both are semigroups.

Now suppose that G acts on the manifold M , let v ∈ M and denote by Hv = {g ∈

G; gv = v} the isotropy subgroup of v. For simplicity, denote CHv as Cv. Suppose also

that a subsemigroup R ⊂ S is contained in Hv, then SR ⊂ Cv. Observe that in this case

the curves f(t)v are in M and f(0)v = v for all f ∈ Cv. Moreover, if f ∈ SR, then the

curve f(t)v is also in O+(v) for all positive t, since f(t) ∈ S for all t ≥ 0. Now for every

g ∈ G denote by ϕg the diffeomophism

ϕg :M →M

ϕg(m) = g(m).

When g ∈ Hv, ϕg(v) = v and therefore Dvϕg : TvM → TvM is an automorphism. In

particular, if f ∈ Cv then f(0) ∈ Hv and hence Dvϕf(0) ∈ Gl(TvM). Also define the map

F : Cv → TvM,F (f) =
d

dt

∣∣∣∣
t=0

f(t)v.

These maps were defined in order to represent Cv in the following affine group:

Aff(TvM) = Gl(TvM)⋊ TvM.

Recall that the affine group operation is defined by (g, v) · (h,w) = (gh, v + gw) for all

(g, v), (h,w) ∈ Gl(TvM) ⋊ TvM . We call affine action the natural action of Gl(TvM) ⋊

TvM on TvM given by (g, v) · w = gw + v with (g, v) ∈ Gl(TvM)⋊ TvM and w ∈ TvM .
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Define

ρ : Cv → Aff(TvM)

by ρ(f) = (Dvϕf(0), F (f)). It is not difficult to see that this is a group homomorphism.

The image ρ(SR) is, therefore, a semigroup of Aff(TvM), and defines a control system

in TvM by the affine action. In the next results we show that the controllability of

ρ(SR) is closely related with the local controllability of S in v. We call ρ(SR) the tangent

semigroup and the system associated to it the tangent system.

Note that
d

dt
f(t)v

∣∣∣∣
t=0

= F (f) = ρ(f)(0).

We first show that the controllability of ρ(SR) implies local controllability for S in v. To

show this we need the lemma 3.1.1, presented next. The proof of this lemma is rather

large and diverges a bit from the other results in this section, so we decided to included

it in section 3.3.

Lemma 3.1.1. LetM a finite dimensional differentiable manifold, F : Rn →M a differentiable

map and its derivative

D0F : Rn → TF (0)M.

If C ⊂ Rn is a generating cone (that is, Int(C) ̸= 0) with D0F (C) = TF (0)M , then F (0) ∈

Int(F (Int(C))).

Proof. See section 3.3

Theorem 3.1.2. If (ρ(SR))(0) = TvM , then v ∈ Int(S(v)). If (ρ(S∗
R))(0) = TvM , then

v ∈ Int(S−1(v)).

Proof. Suppose that (ρ(SR))(0) = TvM and that b1, b2, . . . , bk ∈ TvM generate positively

TvM . Now we define the curves f1, f2, . . . , fk ∈ SR by recurrence. As (ρ(SR))(0) =

TvM , there exists f1 such that ρ(f1)(0) = b1. For i = 2, . . . , k, suppose that f1, f2, . . . , fi−1

are defined. Let

Ti := ((Dvϕf1(0))(Dvϕf2(0)) · · · (Dvϕfi−1(0)))
−1 ∈ Gl(TvM)

and let fi such that ρ(fi)(0) = Ti(bi) ∈ TvM .
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Define the map

A : Rk → G

(t1, t2, . . . , tk)→ f1(t1)f2(t2) · · · fk(tk).

If Q denotes the positive orthant of Rk, i.e.,

Q = {(t1, t2, . . . , tk) ∈ Rk; t1, t2, . . . , tk ≥ 0},

then Int(Q) = {(t1, t2, ..., tk) ∈ Rk; t1, t2, ..., tk > 0} and A(Int(Q)) ⊂ S, since fi(ti) ∈ S

for ti > 0. Note that A(0) ∈ R ⊂ Hv. Now take

B : Rk →M

(t1, t2, . . . , tk)→ A(t1, t2, . . . , tk)v = f1(t1)f2(t2) · · · fk(tk)v.

As A(Int(Q)) ⊂ S, then B(Int(Q)) = A(Int(Q))v ⊂ O+(v), and knowing that A(0) ∈

Hv, we have B(0) = v. To compute the partial derivatives of B note that for every

i ∈ {1, 2, . . . , k}, we have

B(0, 0, . . . , ti, . . . , 0) = f1(0)f2(0) · · · fi(ti) · · · fk(0)v = ϕf1(0)ϕf2(0) · · ·ϕfi−1(0)fi(ti)v

hence,
d

dei

∣∣∣∣
0

B =
d

dt

∣∣∣∣
0

(ϕf1(0)ϕf2(0) · · ·ϕfi−1(0)fi(ti)v) =

(Dvϕf1(0))(Dvϕf2(0)) · · · (Dvϕfi−1(0))

(
d

dt

∣∣∣∣
t=0

fi(ti)v

)
=

(Dvϕf1(0))(Dvϕf2(0)) · · · (Dvϕfi−1(0))Tibi = bi

Since D0B is a linear map and Q is a cone generated by e1, e2, . . . , ek, then D0B(Q)

is a cone generated by D0B(e1), D0B(e2), . . . , D0B(ek). As we see in the above equal-

ity, these vector coincide with b1, b2, . . . , bk, that generate TvM positively by definition.

Hence, D0B(Q) = TvM . By Lemma 3.1.1, we have v = B(0) ∈ Int(B(Q)) ⊂ Int(S(v)).

Similarly we prove that v ∈ Int(S−1(v)) if (ρ(S∗
R))(0) = TvM .

As a consequence we have the main result of this section

Corollary 3.1.3. If the tangent system is controllable then S is locally controllable in v.
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Proof. If ρ(SR) is controllable then

(ρ(SR))(0) = (ρ(SR))−1(0) = (ρ(S∗
R))(0) = TvM.

Hence by above result v ∈ Int(S(v))∩ Int(S−1(v)), therefore S is locally controllable in

v.

From definition of the tangent semigroup we have the following property

Proposition 3.1.4. If (T, v) ∈ ρ(SR) then (T, αv) ∈ ρ(SR) for all α > 0.

To see this, take a curve f such that ρ(f) = (T, v) and define g(t) = f(αt), hence

ρ(g) = (T, αv). This property implies that the positive and negative orbits from the

origin are cones (not necessarily convex). Knowing that a cone is the entire space if

and only if the origin is in its interior we have that these orbits are maximal if and only

if the origin is in their interiors. Then we have the following result.

Proposition 3.1.5. The tangent system is controllable if and only if it is locally controllable in

the origin.

Therefore the previous relation between the tangent system and local controllability

can also be characterized as follows.

Corollary 3.1.6. If the tangent system is locally controllable in the origin then S is locally

controllable in v.

The other implication is true under some additional hypotheses. One natural thing

to ask is for R to coincide with S ∩ Hv. Some hypothesis must also be required from

S to ensure enough curves in SR. Here, we ask for R ∩ Int(S) to be nonempty and for

the group G to be second countable. In reality, we want G to satisfy the rank condition

in v, which comes as a consequence of the orbit of v having nonempty interior if G is

second countable. Thus, by assuming G to be second countable, local controllability in

v then implies the rank condition in v.

Note that the rank condition implies the following property: for any x ∈ TvM there

is X ∈ TIdG such that DIdϕv(X) = x, and then there is a curve f : R → G such that

f(0) = Id and f ′(0) = X , and, consequently, d
dt

∣∣
t=0

f(t)v = x
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The next theorem will also make use of the following observation: given a curve

f : R→ G such that f(0) = g and f ′(0) = x ∈ TgG, and an open set V containing g, it is

possible to construct a curve f2 : R → G such that f2(0) = f(0) = g, f ′
2(0) = f ′(0) = x

and f2(R) ⊂ V . In fact, let I = (−ϵ, ϵ) be a sufficiently small interval such that f(I) ⊂ V ,

we first construct a diffeomorfism ψ : R → (−ϵ, ϵ) such that ψ(0) = 0 and ψ′(0) = 1.

One example is

ψ(t) =
ϵ

π
arctan

(π
ϵ
t
)

Then f2 can be defined as f◦ψ. Furthermore, ifG acts on a manifoldM , then d
dt

∣∣
t=0

f(t)m =

d
dt

∣∣
t=0

f2(t)m for anym ∈M . This means no derivatives are lost by confining the curves

to V .

Theorem 3.1.7. If G is second countable, R = S ∩Hv and R ∩ Int(S) is nonempty then the

following are equivalent:

1. S is locally controllable in v

2. ρ(SR) is controllable in TvM

3. ρ(SR) is locally controllable in the origin in TvM

Proof. The equivalence between 2 and 3 and the implication 2⇒ 1 were already shown

in previous results. We must show 1 ⇒ 2. Assume S locally controllable in v and let

W be an open set containing v such that W ⊂ S(x) for all x ∈ W . The hypothesis

R ∩ Int(S) ̸= ∅ implies there is h ∈ Int(S) such that h−1(v) ∈ W . Then there is g ∈ S

such that g(v) = h−1(v), and, therefore, hg ∈ R ∩ Int(S). Let V ⊂ S an open set

containing hg. Then V g−1h−1 is an open set containing the Identity. Remember that

local controllability in v implies full rank for the group G in v, as G is second countable

by hypothesis. Then, for any x ∈ TvM , there is a curve f : R→ G such that f(0) = Id,
d
dt

∣∣
t=0

f(t)v = x and f(R) ⊂ V g−1h−1. Then f(t)hg is contained in V ⊂ S for all t and

satisfies f(0)hg = hg ∈ R, therefore (t→ f(t)hg) ∈ SR. Furthermore

ρ(t→ f(t)hg)0 =
d

dt

∣∣∣∣
t=0

f(t)hgv =
d

dt

∣∣∣∣
t=0

f(t)v = x.

Since x is arbitrary in TvM , we have ρ(SR)(0) = TvM .

For the negative orbit, note that S−1 is also locally controllable in v. In fact, for

any n,m ∈ W there is an element g ∈ S such that gm = n, and, therefore, g−1n = m.
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Furthermore, R∩ Int(S−1) = (R∩ Int(S))−1 ̸= ∅. Then, the same arguments show that

ρ(S∗
R)(0) = TvM , and, therefore, ρ(SR) is controllable in TvM .

3.2 An application in Bilinear Control System

In this section we show an application of the tangent system in bilinear control systems:

ẋ = Ax+ uBx, x ∈ Rd \ {0}, u : R→ R, (3.2-1)

where A and B are d × d-matrices and u is piecewise constant. In the notation of the

first chapter, this is the continuous control system (Rn,F ,R,U) where

F(x, r) = Ax+ rBx

Here we ask the controls to be piecewise constant as nothing is lost in terms of con-

trollability and this makes it easier to define the semigroup of the system: the bilinear

control system is equivalent to the semigroup in Gl(Rn) generated by exponentials of

the set

C = {A+ rB; r ∈ R} ⊂ gl(Rn).

(see e.g Colonius and Kliemann [1] and Elliot [8]).

It is often usefull to instead consider the semigroup generated by the set

D = {A,B,−B} ⊂ gl(Rn).

Note that C and D generate the same closed convex cone in gl(Rn), such that their

two subgroups are equivalent controllability wise. The set D has the advantage of

being a discrete set containing only 3 elements. As such, in many contexts, including

this chapter, the semigroup used for the study of the bilinear control system is the

semigroup generated by D. We will denote this semigroup by S. Note that

S = {er1Bes1A...erkBeskA; k ∈ N; r1, r2, ..., rk ∈ R; s1, s2, ..., sk ∈ (0,+∞)}

A very useful tool in studying the controllablility in Rn − {0} of bilinear control
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systems and semigroups of matrices in general is the projective space, defined by

P (Rn) = {V ⊂ Rn : V is a one dimentional subspace}.

An element V ∈ P (Rn) is often denoted by [x] for a vector x ∈ V different from 0.

A linear automorphism g ∈ Gl(Rn) takes one dimensional subspaces into one di-

mensional subspaces, and acts in P (Rn) by defining

g : P (Rn)→ P (Rn)

[v]→ g[v] := g([v]) = [gv]

where g([v]) denotes the set of images by g from every element of [v]. This induces a

control system in P (Rn), by acting the semigroup S defined previously on it.

It can be shown that the bilinear control system is controllable in Rn \ {0} if, and

only if, it is controllable in P (Rn) and R∗
+x ⊂ Sx for some x ∈ Rn \ {0}. In particular,

if B has at least one eigenvalue with nonzero real part and the system is controllable

in P (Rn) and accessible in Rn \ {0} then the second condition can be shown to also

be true, such that the system is controllable in Rn. This means that the set of pairs

(A,B) which make the system controllable in P (Rn) but not in Rn has measure zero in

gl(Rn) × gl(Rn). This is a particular property of the unrestricted bilinear system. For

other types of linear semigroups of Gl(Rn), while their action in the projective space

is strongly related with their action in Rn \ {0} and controllability in Rn \ {0} implies

controllability in P (Rn), in general the set of the semigroups which fail the inverse

implication isn’t always of measure zero. Alternatively, the reciprocal holds with a lot

more generality when semigroups are considered in Sl(Rn).

The set P (Rn) has a natural manifold structure such that the function

f : Sn−1 → P (Rn)

x→ [x]

defines a covering of P (Rn). In particular, the tangent space in a point [v] ∈ P (Rn) is

isomorphic to the space v⊥, the tangent of v
∥v∥ in Sn−1.
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It can be shown that the function

ρ : Gl(Rn)× P (Rn)→ P (Rn)

(g, [v])→ [gv]

is well defined and is a differentiable action.

We say that B has a real maximum Eigenvalue if B has a real eigenvalue α such the

Eigenspace associated with α has dimension 1 and any eigenvalue λ distinct from α

has real part smaller than α. In this case we say that α is the real maximum Eigenvalue

of B. If [v] is the Eigenspace associated with α, then there is a proper subspace V ⊂ Rn

of possible exceptions such that for all w ∈ Rn \ V,

lim
t→+∞

etB[w] = [v].

By rewriting this equation one also has

lim
t→+∞

e(−t)(−B)[w] = [v].

This means that [v] ∈ S[w]∩S−[w] for all w not in V . This has interesting consequences

regarding controllability, as will be shown in the following lemma.

Lemma 3.2.1. If [v] and V are as described above, then S is controllable in P (Rn) if, and only

if, S is locally controllable in [v] and there is no nontrivial subspace simultaneously invariant

by both A and B.

Proof. If S is controllable then it is also locally controllable in any point, and in par-

ticular [v]. Furthermore, note that if W is a subspace distinct from {0} and Rn and

invariant by both A and B, then it is also invariant by their exponentials, and therefore

by S. That means orbits from W are stuck in W , and therefore S can’t be controllable.

Therefore controllability of S implies no nontrivial space is simultaneously invariant

by both A and B.

For the other implication we first show that the inclusion [v] ∈ S[x] holds for all

[x] ∈ P (Rn). We already had the inclusion for all [x] ̸∈ V . For [x] ∈ [V ], we first show

that there is [y] ∈ S[x] such that [y] ̸∈ [V ]. To do this assume, by contradiction, that
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S[x] ⊂ [V ]. Let W be the subspace generated by Sx, then W is nontrivial since W ⊂ V

which is proper in Rn and W ̸= {0} since W contains x ̸= 0. Furthermore, W is S

invariant. This is because any element w ∈ W can be written as

w =
k∑

i=1

αisix

where αi ∈ R and si ∈ S. Then, for any r ∈ S:

rw = r
k∑

i=1

αisix =
k∑

i=1

αi(rsi)x ∈ W.

By hypothesis, since W is nontrivial, there is w ∈ W such that Aw ̸∈ W or Bw ̸∈ W .

If Aw ̸∈ W then eϵAw ̸∈ W for sufficiently small ϵ > 0, which contradicts W being

invariant. Similarly, if Bw ̸∈ W , then eϵBw ̸∈ W for sufficiently small ϵ > 0.

Either case leads to a contradiction, therefore S[x] ̸⊂ [V ]. Then, there is [y] ∈ S[x]

such that [y] ̸∈ V . By the previous argument,

[v] ∈ S[y] ⊂ S[x].

Therefore, [v] ⊂ S[x] for all [x] ∈ P (Rn).

It can be shown analogously that

[v] ∈ S−1[x]

for all [x] ∈ P (Rn).

Now let arbitrary [x], [y] ∈ P (Rn), and a controllable open set U containing v. By the

previous argument, there are [z] ∈ S[x]∩U and [w]∩S−1[y]∩U . Since U is controllable

and both [z], [w] are in U , then [w] ∈ S[z]. We then have the chain [z] ∈ S[x], [w] ∈

S[z], [y] ∈ S[w], therefore [y] ∈ S[x], showing the controllability of S in P (Rn).

By the previous section, local controllability of S in [v] can be studied from it’s

tangent system in [v]. Unfortunately it is not easy to calculate S ∩Hv, which would be

required for the equivalence shown in that section, but we can study subsemigroups

R ⊂ S ∩Hv for one way conditions that guarantee local controllability if true. For this,

we first show how to compute the application ρ : C[v] → Aff(T[v]P (Rn)) described in
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the previous chapter for this particular case.

3.2.1 Computing the tangent application for bilinear control systems.

Let

ρ : C[v] → Aff(T[v]P (Rn))

f → (Dϕf(0),
d

dt

∣∣∣∣
t=0

f(t)[v])

as in the previous section, where ϕf(0) denotes the application [x]→ f(0)[x]. Let f ∈ C[v]
and M = f(0) ∈ Gl(Rn), N = f ′(0) ∈ gl(Rn) = Mn(R). We can assume, without loss

in generality, that ∥v∥ = 1, as [v] =
[

v
∥v∥

]
. Let β1 = {v, w2, w3, ..., wn} be an orthonormal

basis for Rn. Note that M [v] = f(0)[v] = [v], and, therefore, the matrix representation

of M in β1 is written as

[M ]β1

β1
=

m M1

0 M2


for some m ∈ R, M1 ∈ M1×(n−1), M2 ∈ M(n−1)×(n−1). Note that m ̸= 0 and det(M2) ̸= 0

since M = f(0) ∈ G must be invertible. Let

π : S1 → P (Rn)

x→ [x]

be the natural covering of P (Rn). The tangent TvSn−1 can be associated with the space

v⊥, which is spanned by the basis β2 := {w2, w3, ..., wn}. Since P (Rn) is a local diffeo-

morphism, the space T[v]P (Rn) is equal to Dπv(TvSn−1), and, by our previous associa-

tion, T[v]P (Rn) is the space spanned by the basis β3 := {Dvπ(w2), Dvπ(w3), ..., Dvπ(wn)}.

Note that, by definition, Dvπ sends the elements of β2 into the elements of β3, preserv-

ing order, and therefore

[Dvπ]
β2

β3
= Idn−1.

An invertible linear transformation g acts in Sn−1 by

ψg : S
n−1 → Sn−1

x→ gx

∥gx∥
.



3.2 An application in Bilinear Control System 75

This action is equivariant by π to the action in P (Rn):

ϕg ◦ π = π ◦ ψg.

Differentiating both sides we get

Dϕg ◦Dπ = Dπ ◦Dψg.

Assuming g[v] = [v] and restricting this equality to T[v]G, we have that Dπv is an in-

vertible linear transformation, and, therefore

D[v]ϕg = Dvπ ◦Dvψg ◦D[v]π
−1.

We calculate DϕM by replacing g with M . First, define the normalization applica-

tion:

η : Rn − {0} → Sn−1

x→ x

∥x∥
.

Note that ψg = η ◦ g|Sn−1 for arbitrary g, and, therefore,

Dvψg = Dg(v)η ◦ g|TSn−1 .

Let u,w ∈ Rn, u ̸= 0. Remember that

d

dt

∣∣∣∣
t=0

∥u+ tw∥ = d

dt

∣∣∣∣
t=0

√
⟨u+ tw, u+ tw⟩ = 1

∥u∥
⟨u,w⟩.

Then,

Duη(w) =
d

dt

∣∣∣∣
t=0

u+ tw

∥u+ tw∥
=
w∥u∥ − u 1

∥u∥⟨u,w⟩
∥u∥2

=

=
1

∥u∥

(
w −

〈
u

∥u∥
, w

〉
u

∥u∥

)
Note that the applicationw → w−

〈
u

∥u∥ , w
〉

u
∥u∥ is the orthogonal projection on the plane

u⊥. Then, Duη is the composition of this projection with 1
∥u∥Id. In particular, for g =M
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and u = mv =M(v), its matrix from β1 to β2 is

[Dmvη]
β1

β2
=
(
0(n−1)×1

1
m
Idn−1

)
composing with M we get

[D[v]ϕM ]β2

β2
=
(
0(n−1)×1

1
m
Idn−1

)
[M |v⊥ ]β2

β1
.

Remember that

[M ]β1

β1
=

m M1

0 M2


and, therefore, the restriction M |v⊥ is represented by the matrix

[M |v⊥ ]β2

β1
=

M1

M2

 .

Then,

[DvψM ]β2

β2
=
(
0(n−1)×1(n−1)×1

1
m
Idn−1

)M1

M2

 =
(

1
m
M2

)
.

That is, in order to get the matrix [DvψM ]β2

β2
we just have to remove the first line and the

first column of [M ]β1

β1
and multiply the resulting (n− 1)× (n− 1) matrix by 1

m
, where m

is entry 1, 1 of [M ]β1

β1
. The differential D[v]ϕM will have this same matrix representation

in the basis β3. In fact, since Dvπ takes β2 in β3, preserving order, then its matrix on

these basis is

[Dvπ]
β2

β3
= Idn−1.

Furthermore,

[Dvπ
−1]β3

β2
= Id−1

n−1 = Idn−1.

Therefore,

[D[v]ϕM ]β3

β3
= Idn−1

1

m
M2Idn−1 =

1

m
M2

Note that this is the first entry of the application ρ. Therefore, it’s first coordinate can

be calculated from an orthonormal basis β1 = {v, w2, ..., wn} by removing the first line

and the first column of the matrix [f(0)]β1

β1
and dividing the remaining (n− 1)× (n− 1)

matrix by the entry 1, 1 of [f(0)]β1

β1
.
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For the second coordinate we once again use the action in Sn−1 to calculate the

action in P (Rn). By the equivariance between these systems we have

π ◦ ψf(t) = ϕf(t) ◦ π

for all t in the domain of f , and, therefore,

Dvπ

(
d

dt

∣∣∣∣
t=0

ψf(t)v

)
=

(
d

dt

∣∣∣∣
t=0

ϕf(t)π(v)

)
(
d

dt

∣∣∣∣
t=0

f(t)[v]

)
= Dvπ

(
d

dt

∣∣∣∣
t=0

η(f(t)v)

)
= Dvπ ◦Df(0)vη ◦ f(0)v.

Remember that

[Df(0)vη]
β1

β2
= [Dmvη]

β1

β2
=
(
0(n−1)×1

1
m
Idn−1

)
=
(
0(n−1)×1 Idn−1

)
.

Then, writing [N ]β1

β1
as

[N ]β1

β1
=

 n N1

N2 N3


where n ∈ R, and N1, N2, N3 are 1× (n− 1), (n− 1)× 1, (n− 1)× (n− 1), respectively,

we have

[Dvπ ◦Df(0)vη ◦ f(0)v]β3 = Id
(
0(n−1)×1

1
m
Idn−1

) n N1

N2 N3

 1

0(n−1)×1

 =

(
0(n−1)×1

1
m
Idn−1

)
◦

 n

N2

 =
1

m
N2

That is, the second coordinate of ρ can be calculated from the first column of f ′(0) = N

by removing it’s first coordinate and dividing by the coordinate 1, 1 of f(0).

3.2.2 Real maximal eigenvalue

We now study the case when B has a maximal real eigenvalue associated with a one

dimensional subspace [v]. As previously mentioned, denoting H[v] ∩ S by R, it is usu-

ally not easy to calculate SR. Instead, we study the controllability of smaller subgroups
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of SR for a one way only condition. The subsemigroup we chose to study is the sub-

semigroup generated by the constant curves

C := {f : R→ Gl(Rn), t→ esB : s ∈ R}

and the curves

D := {f : R→ Gl(Rn), t→ ertA : r ∈ [0,+∞)}.

Denote byR the subsemigroup of SR generated by C ∪D. Let β = {v, w1, w2, ..., wn} be

an orthonormal basis of Rn, and write

B =

 b B1

0(n−1×1) B2



A =

α A1

a A2


where α, b ∈ R, a is (n− 1)× 1, A1, B1 are 1× (n− 1) and A2, B2 are (n− 1)× (n− 1).

Note that

esB =

 esb C

0(n−1×1) esB2


for some 1× (n− 1) matrix C, and, therefore, the image of the elements f : t → esB in

C is (
esB2

esb
, 0

)
= e(sB2−bId,0),

that is, ρ(C) is the one parameter group in Aff(T[v]P (Rn) generated by

(B2 − bId, 0) ,

or, equivalently, the semigroup generated by

{(B2 − bId, 0) , (−(B2 − bId), 0)} .

Furthermore, the elements f : t→ ertA in D satisfy f ′(0) = rA and f(0) = Id, therefore,

ρ(f) = (Id, ra) = er(0,a),
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and ρ(D) is the semigroup generated by (0, a). Since R is generated by C ∪ D, then

ρ(R) is the semigroup generated by the set

{(B2 − bId, 0) ,− (B2 − bId, 0) , (0, a)} .

Denoting B2 − bId by B, the semigroup generated by the above set is the semigroup

{et1aes1B...etkaeskB : ti, si ∈ R, ti ≥ 0, k ∈ N},

where etia denotes the application x → x + tia. It is associated to the control system

defined by the differential equation

ẋ(t) = a+ u(t)Bx(t),

with the set of controls U including all piecewise constant functions u : R → R. We

denote this system by {a,B,−B}. It is a particular case of the biaffine system

ẋ(t) = a+ Ax(t) + u(t)(b+Bx(t))

by taking A and b as 0. We study these systems in the next subsection.

3.2.3 The system {a,B,−B}

In the next results we study controllability of the system {a,B,−B}. For this entire

subsection, whenever we mention cones it is implicit that we are also assuming con-

vexity, unless stated otherwise.

Proposition 3.2.2. Let t1, t2, ..., tk, s1, s2, ..., sk ∈ Rk, then

etkBeska...et2Bes2aet1Bes1a(0) =
k∑

i=1

e

(
k∑

j=i
tj

)
B

sia

Proof. The proof follows by induction. The case k = 1 is trivial. Assuming the equality

holds for k = n− 1 we have

etkBeska...et1Bes1a(0) = etkB(etk−1Besk−1a...et1Bes1a(0) + ska) =



3.2 An application in Bilinear Control System 80

= etkB

k−1∑
i=1

e

(
k−1∑
j=i

ti

)
B

sia

+ etkBska =

=

k−1∑
i=1

e

(
k∑

j=i
tj

)
B

sia

+ e

(
k∑

j=k
tj

)
B

ska =

=

 k∑
i=1

e

(
k∑

j=i
tj

)
B

sia



For a linear transformation B : Rn → Rn we say that a set C is invariant by the flow

of B if etBC ⊂ C for all t ≥ 0. Note that if C is a subspace then this is equivalent to B

invariance, however this equivalence is not true for all kinds of sets. This definition is

used in the following corollary

Corollary 3.2.3. Denote byO+,O− the positive and negative orbits of 0 in the system {a,B,−B},

respectively. Then

O+ =

{
k∑

i=1

αie
tiBa; k ∈ N, αi > 0, ti ∈ R,∀i ∈ {1, ..., k}

}

O− =

{
k∑

i=1

−αie
tiBa; k ∈ N, αi > 0, ti ∈ R,∀i ∈ {1, ..., k}

}
= −O+

In other words, O+ is the cone generated by {etBa; t ∈ R}, and O− is the cone generated by

{−etBa; t ∈ R}. O+ coincides, also, with the smallest cone invariant by the flow of B that

contains a. As a consequence, the following are equivalent:

• The system is controllable.

• The system is locally controllable in the origin

• O+ = Rn

• Rn is the smallest cone invariant by the flow of B that contains a.

Proposition 3.2.4. If B has a real eigenvalue then the system is not controllable.
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Proof. Let β = {b1, b2, ..., bn} be a basis of Rn such that

[B]ββ :=

J1 0

0 M

 ,

where J1 is the Jordan block associated to the real eigenvalue, let’s say, λ:

J1 =



λ 1 0 . . . 0

0 λ 1 . . . 0

0 0 λ . . . 0
...

...
... . . . ...

0 0 0 . . . λ


.

Denote by k the number of lines/columns of J1, and define the linear functional

p : Rn → R

(a1, a2, ..., ak, ..., an)→ ak.

Then p(etBv) = eλp(v) for any t ∈ R, v ∈ Rn. In particular, p−1((0,+∞)), p−1((−∞, 0)), p−1(0)

are cones invariant by the flow of B such that their union covers all of Rn. Therefore,

O+ ⊂ p−1((0,+∞)), or O+ ⊂ p−1((−∞, 0)), or O+ ⊂ p−1(0), depending on which of

these sets contain a. In any case, O+ ̸= Rn, and the system is not controllable.

That means that for {a,B,−B} to be controllable B must have only complex eigen-

value. Interestingly, the only cones invariant by such a matrix are subspaces. This is

shown in the next result

Proposition 3.2.5. Let B : Rn → Rn a real linear transformation with no real eigenvalues. If

V ̸= ∅ is a cone invariant by the flow of B then V is a subspace.

Proof. We will first prove that if Int(V ) ̸= 0 then V = Rn. The proof of this will follow

by induction on the dimension n of the space.

The claim is trivial is trivial in R0. We will prove it in Rn, n > 0 assuming it holds

true for dimensions smaller than n.

Since B has no real eigenvalues and we are assuming n > 0 then B must have at
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least one pair of conjugated complex eigenvalues. Then, there must be a B invariant

space W of dimension 2 such that the restriction BW is represented, in some basis of

W , by the matrix a −b
b a


with a, b ∈ R, b ̸= 0. Then,

etBW = etBW = etaRtb

where Rtb denotes the rotation by tb in the previously mentioned basis of W . The only

cones in W invariant by the flow of BW are {0} and V . Now let π : Rn → Rn/V be the

canonical projection. Since W is B invariant, the linear transformation B projects into

a linear transformation

B̂ : Rn/W → Rn/W

x+W → Bx+W

such that π ◦ B = B̂ ◦ π and π ◦ etB = etB̂ ◦ π for all t ∈ R. The linear transformation

B̂ has no real eigenvalues. In fact, if B̂ has a real eigenvalue then it would have a real

eigenvector z+W ̸= 0+W associated to it, such that ⟨z+W ⟩would be B̂ invariant. But

then the subspace Z := W + ⟨z⟩ = π−1(⟨z +W ⟩) is a 3 dimensional subspace invariant

by B. A real linear transformation in an odd dimension space must always have a real

eigenvalue, such that B must have a real eigenvector in W . But that contradicts the

hypothesis of the theorem. Then, B̂ must have no real eigenvalues.

The cone V projects into a cone π(V ). π is an open application and we are assuming

V has nonempty interior, therefore Int(π(V )) ̸= ∅. Furthermore, π(V ) is invariant by

the flow of B̂, as etB̂ ◦ π(V ) = π ◦ etB(V ) ⊂ πV for t > 0. Note that dim(Rn/W ) =

n− 2 < n. Then, by the induction hypothesis, π(V ) = Rn/W .

In particular, 0+W ∈ Int(π(V )), then, Int(V ) intersects π−1(0+W ) = W (see lemma

2.3.22). Note that V,W are both invariant by the flow of B such that V ∩W must also

be invariant by the flow of B. Since V ∩W ⊂ W , this intersection is invariant by the

flow of B if, and only if, it is invariant by the flow of BW . Then, V ∩W is either {0} or

W . Since Int(V ) must intersect W , then V ∩W cannot equal {0}, therefore V ∩W = W ,

that is, W ⊂ V .

We then have W ⊂ V and π(V ) = Rn/W . This is enough to prove that V = Rn. In
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fact, since V is a convex cone, then it is closed for sums of it’s elements. Let x ∈ Rn

arbitrary, then x +W ∈ π(V ) and there must be y ∈ V such that π(y) = x +W , that is,

x− y ∈ W . But W ⊂ V such that x− y ∈ V , and, therefore, x = y + (x− y) ∈ V . Since

x ∈ Rn is arbitrary, then Rn ⊂ V .

Now for the theorem itself, let V as in the hypothesis and let W be the subspace

generated by V . Since V is a convex cone, then V has nonempty interior in W . Fur-

thermore, since W is generated by a set the is invariant by the flow of B, then W itself

is invariant by the flow of B, as the etB are all linear application. Since W is a subspace

then it is also invariant by B, and it is possible to consider the restriction BW . Since B

has no real eigenvalues then neither does BW , and, since V is invariant by the flow of

B then it is also invariant by the flow of BW . Then, the previous argument assures that

V = W , showing that V is a subspace.

Theorem 3.2.6. The system {a,B,−B} is controllable if, and only if, both of the following are

true:

1. B has no real eigenvalues

2. a is not contained in a proper B invariant subspace.

Proof. As shown in proposition 3.2.2, the system is controllable if, and only if, a is con-

tained in a proper cone that is invariant by the flow of B. Since any subspace is in

particular a cone, a must not be contained in any proper B invariant subspace, and, by

proposition 3.2.4, B must also not have any real eigenvalue. This shows that controlla-

bility implies 1 and 2. For the other implication, assume B has no real eigenvalues. By

proposition 3.2.5, all of the cones invariant by the flow of B are subspaces. Then, if a is

not contained in any B invariant proper subspace the system is controllable.

It is possible to calculate the conditions of the previous theorem as follows: condi-

tion 1 can be calculated from the characteristic polynomial of B and condition 2 can

be calculated from the B cyclic space of a, that is, condition 2 is true if the vectors

a,Ba,B2a, ..., Bn−1a span Rn.

3.3 Appendix

In this section we prove the lemma 3.1.1 from section 3.1.
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Lemma 3.1.1. Let

F : Rn →M

be a continuously differentiable function such that F (0) = v. If V ⊂ Rn is a closed convex

cone with nonempty interior such that DF0(V ) = TvM then v ∈ Int(F (Int(V ))).

Proof. DF0 must be a surjective linear function, since DF0(V ) = TvM .

Let

ϕ : TvM → Rm

be a chart such that ϕ(v) = 0 and

F̂ := ϕ ◦ F : Rn → Rm.

The lemma is equivalent to the inclusion

0 ∈ Int(F̂ (Int(V ))).

Let X = ker(DF̂0) and Y = X⊥. Then

Rn = X ⊕ Y.

Furthermore, bothDF0 andDϕv are surjective, thereforeDF̂0 is surjective and is an iso-

morphism from Y to Rm. Since V is convex with nonempty interior and 0 ∈ Int(Rn) =

Int(DF̂0(V )), then there is x0 ∈ Int(V ) such that DF̂0(x0) = 0 (see lemma 2.3.22). If

0 = x0 ∈ Int(V ) then V = Rn and

0 ∈ Int(F̂ (Rn)) = Int(F̂ (Int(Rn))) = Int(F̂ (Int(V )))

by the submersion theorem. Assume x0 ̸= 0. To simplify the calculations, choose an

inner product ⟨·, ·⟩ in Rn and the respective norm and metric such that ∥x0∥ = 1. Let

ϵ > 0 such that B(x0, ϵ) ⊂ V . Note that B(αx0, αϵ) ⊂ V for all α > 0 since V is a cone.

Define

F̃ : X ⊕ Y = Rn → Rm ⊕X

(x, y)→ (F̂ (x, y), x).
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Note that F̃ is a differentiable function and DF̃0 is an isomorphism. Let ⟨·, ·⟩2 be the

inner product in Rm ⊕X induced from ⟨·, ·⟩ by DF̃0, that is, the product defined by

⟨u,w⟩2 = ⟨(DF̃0)
−1u, (DF̃0)

−1w⟩.

We choose this inner product as it is the only product of Rm ⊕X which makes DF̃0 an

isometry from the product ⟨·, ·⟩ in Rn. This further simplifies some of the calculations.

Since F̃ is differentiable and has invertible differential in 0, then it has a local dif-

ferentiable inverse F̃−1. Let U ⊂ Rm ⊕ X be an open set containing 0 such that U is

contained in the domain of F̃−1 and

1

∥u∥2
∥F̃−1(u)−D(F̃−1)0(u)∥ < ϵ

for all u ∈ U . Let α > 0 sufficiently small such that

(0, αx0) ∈ U

Note that

∥(0, αx0)∥2 = ∥DF̃0(αx0)∥2 = α.

Therefore

ϵ >
1

α
∥F̃−1(0, αx0)−D(F̃−1)0(0, αx0)∥ =

1

α
∥F̃−1(0, αx0)− αx0∥.

In particular, if y0 = F̃−1(0, αx0), then y0 ∈ B(αx0, αϵ) ⊂ Int(V ). Also, since (0, αx0) ∈

U , which is contained in the domain of F̃−1, then F̃ is still a local diffeomorphism

in y0. In particular, F̃ is open in y0. Since y0 ∈ Int(V ) and F̃ is open in y0, then

(0, αx) = F̃ (y) ∈ Int(F̃ (Int(V ))). Finally, note that F̂ = π ◦ F̃ where

π : Rm ⊕X → Rm

(a, b)→ a

is the natural projection and, in particular, an open function. Therefore,

0 = π(0, αx) ∈ π(Int(F̃ (Int(V )))) = Int(F̂ (Int(V )))
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completing the proof.



CHAPTER 4

INVARIANT CONES FOR SEMIGROUPS OF Sl(Rn)

The results presented in this chapter are a joint work with Emerson V. Castelani, João

A. N. Cossich and Alexandre J. Santana, and we are very grateful to Luiz A. B. San

Martin for suggesting this problem and many of the ideas used. We deal with invariant

cones for semigroup actions to study controllability of control systems. In our context

this question is related with the flag type of the semigroup (in particular semigroup of

the control system) and hence with the control sets of the semigroup (or of the control

system). Note that it is far from achieving global results on controllability of bilinear

control systems, that is, to find sufficient conditions for controllability is a long term

and still incomplete area of research (see e.g. Elliot [8]). But, in the last few decades,

several papers have been published showing that the Lie theory, especially the theory

of semigroups of semisimple Lie groups, provides tools to study controllability (see

e.g. Do Rocio, San Martin and Santana [5], Do Rocio, Santana and Verdi [6], Dos Santos

and San Martin [7] and San Martin [12]). As an example, we recall the bilinear control

system presented in the previous chapter:

ẋ = Ax+ uBx, x ∈ Rd \ {0}, u ∈ R, (4.0-1)
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where A and B are d×d-matrices, we have that the semigroup S of the system is given

by the concatenations of solutions:

S = {etk(A+ukB)etk−1(A+uk−1B) . . . et1(A+u1B), ti ≥ 0, k ∈ N}

and the group system has a similar definition just changing the positive times ti by real

times (see e.g Colonius and Kliemann [1] and Elliot [8]). And if we consider A and B

generating a semisimple Lie algebra g we have the possibility to use the semisimple

Lie theory to study controllability of the system, for example in case of g = sl(Rd) we

have that this system is controllable in Rd \ {0} (Sx = Rd \ {0} for all x ∈ Rd \ {0}) if

and only if S = Sl(Rd) (see [5] and [16]).

One of the most interesting ways to prove that the above system is not controllable

is to show the existence of some S-invariant proper subset of Rd, a trap of the system.

This problem was addressed in [10], by Sachkov, but in [5] the authors searched these

invariant sets among the convex cones, since if a set C is invariant by the system then

the convex closure ofC is also invariant. In this chapter we follow a similar approach to

improve and generalize the results contained in [5] and in particular to give a necessary

and sufficient condition for controllability of the above system when A,B ∈ sl(Rd).

More specifically, we prove that the system is controllable if and only if it does not

have an invariant proper cone in the k-fold exterior product of Rd,
∧k Rd, for all k ∈

{1, . . . , d − 1}. In fact, this is a consequence of our following transitivity result: Let

S ⊂ Sl(Rd) be a connected semigroup with nonempty interior. Then S = Sl(Rd) if and

only if there are no S-invariant and proper cones in
∧k Rd, for all k ∈ {1, · · · , d − 1}.

These two results are built from the theory of flag type of a semigroup.

We briefly recall the main concept or tool of this chapter. Consider S ⊂ Sl(Rd) a

semigroup with nonempty interior. Denote by FΘ the flag manifold of all flags (V1 ⊂

· · · ⊂ Vk) of subspaces Vi ⊂ Rd with dimVi = ri, i = 1, . . . , k and Θ = {r1, . . . , rk}.

Take the canonical projection πΘ
Θ1

: FΘ → FΘ1 with Θ1 ⊂ Θ and denote by F the full flag

manifold with the sequence ΘM = {1, 2, . . . , d−1}. There is a natural (transitive) action

of Sl(Rd) in these flag manifolds. Recall that an invariant control set is closed and its

interior is dense on it, as S is assumed to have nonempty interior and, therefore, be

accessible. One important result is that in each flag manifold FΘ there exists just one

S-invariant control set. Moreover, there exist Θ ⊂ ΘM such that π−1
Θ (CΘ) = C where
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πΘ : F→ FΘ is the canonical projection, and CΘ, C are the invariant control sets in F,FΘ

respectively. In addition, among these flag manifolds there is exactly one, denoted by

FΘ(S), which is minimal (see [12]). The flag manifold FΘ(S) (or Θ(S)) is called the flag

(or parabolic) type of S (for details see San Martin [11] and San Martin and Tonelli

[16]). We note that once we know the invariant control set CΘ(S) in the flag type FΘ(S)

then every invariant control set is described because for any Θ we have CΘ = πΘ (C)

and C = π−1
Θ(S)

(
CΘ(S)

)
. Given Θ = {r1, . . . , rn} with 0 < r1 < · · · < rn < d define

Θ∗ = {d − rn, . . . , d − r1}. The flag manifold FΘ∗ is said to be dual of FΘ. With this we

have that the flag type of S−1 is given by the flag manifold FΘ(S)∗ dual to the flag type

of S (see [13]).

From this semigroup theoretical development, considering S a connected semi-

group with nonempty interior and taking Θ(S) its flag type, we prove our main result:

there exists a non-trivial S-invariant cone W ⊂
∧k Rd if and only if k ∈ Θ(S). Hence,

as a consequence we show the controllability and transitivity results mentioned above.

4.1 Preliminaries

Recall that the flag manifolds FΘ are compact and the minimal flag manifolds are the

Grassmannians FΘ = Gk(d), where Θ = {k}. A particular case, when k = 1, is the

projective space Pd−1 = G1(d).

From now on, in this section we discuss the special caseGk(d), 1 ≤ k ≤ d−1. In this

work it is convenient represent Gk(d) in the following algebraic way. Let Bk(d) be the

set of d×k matrices of rank k. Define inBk(d) the following equivalence relation: p ∼ q

if exists a ∈ Gl(Rk) with q = pa. In other words, p ∼ q if, and only if, the columns of p

and q generate the same subspace of Rd. Then we can see Gk(d) as Bk(d)/ ∼. Denote

the elements of Gk(d) by [p]. There is a natural action ρk of the Lie group Sl(Rd) on

Gk(d), which is given by ρk(g, [p]) = [gp].

Now take an arbitrary basis B of Rd and NB the nilpotent group of lower triangular

matrices (with respect to B) with ones on the main diagonal. The decomposition of

Gk(d) into NB-orbits is called Bruhat decomposition of Gk(d), moreover if we change

the basis the decomposition also changes. There is just a finite number of these orbits,

NB[p] with [p] ∈ Gk(d). It is well known that exists only one open and dense orbit,
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NB[p0], where [p0] is the subspace spanned by the first k basic vectors (see [14]). We

have that NB[p0] can be written as  Ik

X


with Ik the k × k identity and X an arbitrary (d− k)× k matrix. Taking

η =

 A1 0

Y A2

 ∈ NB

with A1 and A2 invertible, it follows that

ρk(η, [p0]) = [ηp0] =

 A1 0

Y A2

 Ik

0

 =

 A1

Y

 =

 Ik

Y A−1
1

 .
Note that this orbit is diffeomorphic to euclidean spaces.

Another important concept here is the split regular or just regular element, that is

the h ∈ Sl(Rd) with positive and distinct eigenvalues, where in some basis (denoted by

B(h)), h = diag{λ1, . . . , λd} with λ1 > · · · > λd > 0. Considering the action on Gk(d),

the fixed points for h are the subspaces spanned by k basic vectors. Moreover, these

fixed points are hyperbolic and with respect to B(h), the stable manifolds are the NB-

orbits. One interesting dynamical property is that the stable manifold of the subspace

[p0] is open and dense, and, if [p0] is the space generated by the first k vectors of B(h)

then it is the unique attractor for h, such that hm[q] → [p0] for generic [q]. Now taking

h−1 instead of h and reverting the order of the basis, it follows that h has also just one

repeller, and it is the subspace spanned by the last k basic vectors {ed−k+1, . . . , ed} of

B(h).

We recall other dynamical facts. Let S ⊂ Sl(Rd) be a semigroup with nonempty

interior and denote by reg(S) the set of regular elements in intS. As before take Ck the

S-invariant control set in Gk(d), its uniqueness implies that

Ck =
⋂

[p]∈Gk(d)

cl(S[p]).

According to the above comments, for h ∈ reg(S) we have that b{k}(h) = [p0] and

Ck ⊂ NB(h)[p0] if k ∈ Θ(S). The set of transitivity of an invariant control set Ck is
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the set C0
k of the fixed points which are the attractors for elements in reg(S) (see [12]).

Specifically, we have that for any [p] ∈ C0
k , there exists a basis B(h) = {e1, . . . , ed} of

Rd and h = diag{λ1, . . . , λd} with λ1 > · · · > λd > 0 (in this basis), such that h ∈ intS

and [p] = ⟨e1, . . . , ek⟩, i.e., [p] is the attractor of h. From this fact it follows that the

set of attractors of elements in reg(S) coincides with C0
k and this set is dense in Ck.

Hence reg(S) is dense in intS and Ck is formed, in some sense, by attractors for these

regular elements. This is a kind of converse to the fact that [p] ∈ Ck if [p] is the attractor

of a element h ∈ reg(S). Therefore Ck is contained in the open Bruhat component

corresponding to B(h). Another interesting result in this context is that Ck = Gk(d) for

some k if and only if S is transitive on Gk(d). On the other hand, we have that if S is

a proper semigroup of Sl(Rd), then Ck ̸= Gk(d) for any k ∈ {1, . . . , d − 1} and S is not

transitive on Gk(d) (see [14], [15] and [16] for more details).

We finish this section recalling some necessary facts about tensorial product and

Grassmanianns.

For k ∈ {1, . . . , d}, denote by
∧k Rd the k-fold exterior product of Rd and let Fk(d)

be the set of all k multi-index I = {i1, . . . , ik} ⊂ {1, . . . , d} with 1 ≤ i1 < · · · < ik ≤ d.

It is well known that if we fix a basis B = {e1, . . . , ed}, then {eI := ei1 ∧ · · · ∧ eik ; I =

{i1, . . . , ik} ∈ Fk(d)} is a basis of
∧k Rd. Along the text, we use the notation D to

designate the set of all decomposable elements of
∧k Rd, that is, the set of elements

that can be written as u1 ∧ · · · ∧ uk with ui ∈ Rd.

The manifoldGk(d), k ∈ {1, . . . , d−1}, can be seen as a compact submanifold of the

projective space P
(∧k Rd

)
of
∧k Rd via Plücker embedding φ : Gk(d) → P

(∧k Rd
)

,

φ([p]) = [u1∧· · ·∧uk], where p = [u1 . . . uk] is a d×k matrix and [u1∧· · ·∧uk] ∈ P
(∧k Rd

)
denotes the class of all non-zero multiples of u1 ∧ · · · ∧ uk ∈

∧k Rd.

Identifying the Grassmaniann Gk(d) as a subset of P
(∧k Rd

)
, we can write the

action ρk of Sl(Rd) on Gk(d) as

ρk(g, [u1 ∧ · · · ∧ uk]) = [gu1 ∧ · · · ∧ guk]

and denote ρk(g, [p]) simply by g[p] .

In the next sections π :
(∧k Rd

)
\{0} → P

(∧k Rd
)

represents the canonical projec-

tion.



4.2 Cones in k-fold exterior product 92

4.2 Cones in k-fold exterior product

From now on we consider a connected semigroup S ⊂ Sl(Rd) with nonempty interior.

In this work a cone means a closed convex cone in a finite dimensional vector space V

and if not otherwise specified the cones are proper and non-trivial. Remember that a

cone W is pointed if W ∩ −W = {0} and generating if intW ̸= ∅. Our main interest is

to study the S-invariance of this kind of cones in
∧k Rd, with 1 ≤ k ≤ d− 1.

In this section we present some technical and useful results about cones. In partic-

ular, we show that any S-invariant cone W ⊂
∧k Rd contains a decomposable element

and it is pointed and generating (see the following Propositions 4.2.4 and 4.2.5). To

obtain these results we need some lemmas.

Lemma 4.2.1. Let F : V1 → V2 be an analytic map where V1 and V2 are finite dimensional

vector spaces. Assume that for a nonempty open set U ⊂ V1 there is a subspace V ⊂ V2 such

that F (U) ⊂ V . Then F (V1) ⊂ V .

Proof. The canonical projection p : V2 → V2/V is linear and then analytic. Therefore,

p ◦ F is an analytic function, and p ◦ F (U) = 0 + V , since p(x) ∈ V for all x ∈ U .

Therefore, p◦F (x) = 0+V , for every x ∈ V1, because the unique analytic map between

finite dimensional vector spaces which vanishes on an open subset of the domain is

the null map. Hence, F (x) ∈ V , for all x ∈ V1.

Lemma 4.2.2. Let V be a d-dimensional vector space and take the cone W ⊂ V . Then W is

generating if, and only if, W is not contained in any proper subspace of V .

Proof. If W has nonempty interior, then W is not contained in a proper subspace of V .

For the converse, observe that convex cones spanned by any basis of V have nonempty

interior. In fact, let {e1, . . . , ed} be a basis of V . The convex cone spanned by this basis

is the set {
d∑

i=1

αiei; α1, . . . , αd ≥ 0

}
.

Then the interior of this set is nonempty. Now, assuming that W is not contained in a

proper subspace of V , we have that W contains a basis B. Since W is a convex cone it

follows that W also contains the convex cone spanned by B. Therefore, intW ̸= ∅.
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Lemma 4.2.3. If U is open in the set of decomposable elements D (in the relative topology),

then U contains a basis of
∧k Rd.

Proof. First note that we can write the set of decomposable elements as the image of a

polynomial function. In fact, letF : (Rd)k →
∧k Rd be the map given byF (u1, u2, · · · , uk) =

u1 ∧u2 ∧ · · · ∧uk. Clearly, F ((Rd)k) = D. On the other hand, F is polynomial due to the

multi-linearity of the wedges, hence it is analytic.

Since F is continuous, the set F−1(U) is open in (Rd)k. In fact, since U is open in D,

there is an open U ′ ⊂
∧k Rd with U = U ′ ∩D. So F−1(U) = F−1(U ′) ∩ (Rd)k = F−1(U ′).

Now, suppose that U does not contain a basis of
∧k Rd, then S is contained in a

proper subspace Z, so F (F−1(U)) ⊂ U ⊂ Z, and by Lemma 4.2.1, F ((Rd)k) ⊂ Z. Hence

D is contained in a proper subspace of
∧k Rd. This is a contradiction, because D spans∧k Rd. Therefore U contains a basis of
∧k Rd.

In the next two propositions we consider the representation δ : Sl(Rd)→ Gl(
∧k Rd)

where

δ(g)(u1 ∧ · · · ∧ uk) := gu1 ∧ · · · ∧ guk.

To abbreviate, we denote δ(g) simply by g.

Now we can prove that an invariant cone contains a decomposable element.

Proposition 4.2.4. Take S ⊂ Sl(Rd) a semigroup with nonempty interior. Let {0} ≠ W ⊂∧k Rd be an S-invariant cone. Then W intercepts a non-null decomposable element of
∧k Rd.

Proof. Take h ∈ reg(S) and consider as before the basis B = {e1, · · · , ed} of Rd such that

h = diag(λ1, · · · , λd) with λ1 > · · · > λd > 0. Note that for I = {i1, . . . , ik} ∈ Fk(d), the

vectors eI = ei1 ∧ · · · ∧ eik ∈
∧k Rd are eigenvectors of h, with eigenvalues λi1 · · ·λik .

Moreover, they form a basis of
∧k Rd.

Define the following order relation onFk(d): given I = {i1, . . . , ik} and J = {j1, . . . , jk}

in Fk(d),

I ≺ J if λi1 · · ·λik < λj1 · · ·λjk .

If necessary, we take a perturbation of h = diag(λ1, . . . , λd) ∈ intS such that ≺

become a total order. Consider 0 ̸= v ∈ W with v =
∑

I∈Fk(d)
αIeI and define

J0 = {j1, . . . , jk} = max{I ∈ Fk(d); αI ̸= 0}.
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As W is S-invariant, we have that W is invariant under h. Hence,

(
hm(v)

(λj1 · · ·λjk)m

)
m∈N

is a sequence in W and

hm(v)

(λj1 · · ·λjk)m
=

∑
I∈Fk(d)

αI
hm(eI)

(λj1 · · ·λjk)m
=

∑
I∈Fk(d)

αI
(λi1 · · ·λik)m

(λj1 · · ·λjk)m
eI ,

for allm ∈ N. Note that if I = {i1, · · · , ik} /∈ {I ∈ Fk(d); αI ̸= 0}, then αI
(λi1 · · ·λik)m

(λj1 · · ·λjk)m
=

0, for all m ∈ N. Moreover λj1 · · ·λjk > λi1 · · ·λik for all {i1, . . . , ik} in {I ∈ Fk(d); αI ̸=

0}\{J0}. Hence,

lim
m→∞

(λi1 · · ·λik)m

(λj1 · · ·λjk)m
= 0.

Therefore

lim
m→∞

hm(v)

(λj1 · · ·λjk)m
= lim

m→∞

∑
I∈Fk(d)

αI
(λi1 · · ·λik)m

(λj1 · · ·λjk)m
eI = αJ0eJ0

The closeness of W implies that the decomposable element αJ0eJ0 belongs to W ,

and moreover, this element is non-null.

Hence we have the main result of this section.

Proposition 4.2.5. Let S ⊂ Sl(Rd) be a semigroup with non empty interior. If {0} ≠ W ⊂∧k Rd is a S-invariant cone, then W is pointed and generating.

Proof. First recall that the representation of Sl(Rd) on
∧k Rd is irreducible.

Now, defineH = W ∩−W . ThenH is an S-invariant vector subspace. We have also

that H is S−1-invariant, because if g ∈ S, then gH ⊂ H . Since g is invertible, gH is a

subspace of H with dim gH = dimH , i.e., gH = H . Consequently, H = g−1H . The fact

that intS ̸= ∅ implies that Sl(Rd) is generated by S ∪ S−1. Hence H is Sl(Rd)-invariant,

now knowing that W is proper and Sl(Rd) is irreducible we have that H = {0}. Hence

W is pointed.

Finally, assume that intW = ∅. By Lemma 4.2.2, W ∪ −W is contained in a proper

subspace V of
∧k Rd. Consider a decomposable element x ∈ W and take ρqk : Sl(Rd)→

Gk(d) the open map ρqk(g) = [gq] where [q] := φ−1(π(x)) and φ is the Plücker embedding
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defined in the second section. Then φ(ρqk(intS)) is open in φ(Gk(d)), that is, there exists

an open set B ⊂ P
(∧k Rd

)
such that

φ(ρqk(intS)) = B ∩ φ(Gk(d)).

Knowing that

π−1(φ(ϕ(intS))) = π−1(B ∩ φ(Gk(d))) = π−1(B) ∩ D,

we have that π−1(φ(ϕ(intS))) is open in D. By Lemma 4.2.3, π−1(φ(ϕ(intS))) contains a

basis of
∧k Rd. Note also that

π−1(φ(ϕ(intS))) = π−1(φ((intS)[q])) = π−1(π((intS)x)) = π−1((intS)π(x)).

So, if y ∈ π−1(φ(ϕ(intS))), then π(y) ∈ (intS)π(x), hence there is g ∈ intS with

π(y) = gπ(x) = π(gx), that is, y = αgx for some α ̸= 0. If α > 0, then y ∈ αSx ⊂ αW =

W and if α < 0, then y ∈ αSx ⊂ αW = −W . Anyway y ∈ W ∪ −W and we conclude

that π−1(φ(ϕ(intS))) ⊂ W ∪ −W . But it is a contradiction, because π−1(φ(ϕ(intS))) is

contained in the proper subspace V of
∧k Rd and contains a basis of

∧k Rd. Therefore,

intW ̸= ∅.

4.3 Cones, flag type and controllability

In this section we prove that there exists an S-invariant cone in
∧k Rd if and only if

the flag type of S contains k. Consequently we have the main result of this section,

Theorem 4.3.5, that gives a necessary and sufficient condition for the equality S =

Sl(Rd) in terms of the existence of S-invariant cones in the spaces
∧k Rd, k ∈ {1, . . . , d−

1}.

Theorem 4.3.1. Let S ⊂ Sl(Rd) be a connected semigroup with flag type given by Θ(S). If

k ∈ Θ(S), then there exists an S-invariant cone {0} ≠ W ⊂
∧k Rd.

Proof. Take h ∈ reg(S) and consider B(h) = {e1, . . . , ed} the special basis of Rd. We saw
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in the second section that b{k}(h) = (span{e1, . . . , ek}) and the orbit

NB(h)b{k}(h) =


 Ik

X

 ; X ∈ R(d−k)×k


contains Ck. Note that φ(NB(h)b{k}(h)) ⊂ π(M), where M is the affine subspace

M =
{
(1, x2, · · · , x(dk)); x2, · · · , x(dk) ∈ R

}
⊂

k∧
Rd

in the basis {eI ; I ∈ Fk(d)}. Since the invariant control set Ck ⊂ Gk(d) is contained in

NB(h)b{k}(h), we have

φ(Ck) ⊂ φ(NB(h)b{k}(h)) ⊂ π(M).

Define M1 := π−1(φ(Ck)) ∩M . Let W be the cone generated by M1, W is clearly

non-null.

Now, we show that W is S-invariant. Since Ck is S-invariant, it follows that φ(Ck)

is S-invariant. We claim that (R\{0})M1 is S-invariant. In fact, given α ∈ R\{0},

u1 ∧ · · · ∧ uk ∈M1 and g ∈ S, we have that π(g(α u1 ∧ · · · ∧ uk)) = π(g(u1 ∧ · · · ∧ uk)) is

contained in π(gM1) = gπ(M1) = gφ(Ck) ⊂ φ(Ck), due to the equality π(M1) = φ(Ck)

and the S-invariance of φ(Ck). Hence knowing that π|M is injective, we conclude the

claim. As S is connected this implies that Ck, φ(Ck) and M1 are connected.

Furthermore, since for every x ∈
(∧k Rd

)
\{0} the mapping g ∈ S 7→ gx ∈

∧k Rd is

continuous, we conclude that S leaves invariant the connected components of (R\{0})M1.

As (R+)M1 is one of these components, (R+)M1 is invariant, implying that its convex

closure W is S-invariant.

Remark 4.3.2. Our result generalizes Theorem 4.2 in [5] and also improves its hypotheses in

the sense that we do not need to have the identity in clS. In [5] the authors assume 1 ∈ S to

guarantee that S leaves invariant the connected components of (R\{0})M1, but we can show

that this is not necessary. In fact, let g ∈ S, then g leaves (R\{0})M1 invariant. So g is a

bijection between the connected components of (R\{0})M1. Denote by M+
1 = (R+)M1 and

M−
1 = (R−)M1 these connected components. Suppose that there is an element g ∈ S which

does not leave M+
1 invariant. Then g(M+

1 ) =M−
1 and g(M−

1 ) =M+
1 . Hence we have another

element in S, g2, that leaves invariant the components, but this contradicts the connectedness



4.3 Cones, flag type and controllability 97

of S.

We also note that by Proposition 4.2.5, the cone W , in the above theorem is pointed

and generating.

The following results prove that the existence of a pointed invariant cone in
∧k Rd

implies that the flag type of the semigroup contains k.

Lemma 4.3.3. Assume that k /∈ Θ(S). Let Ck be the invariant control set for the action of S

on Gk(d). Then there is a two-dimensional subspace V ⊂
∧k Rd such that π(V ) ⊂ φ(Ck).

Proof. Denote by πk : F → Gk(d) the natural projection and consider [p] ∈ Ck. Let f

be an element of the invariant control set C of the full flag F with πk(f) = [p]. Such

element exists because Ck = πk(C). Let Θ(S) = {r1, . . . , rn} be the flag type of S

and observe that π−1
Θ(S)(πΘ(S)(f)) is a subset of C, where πΘ(S) : F → FΘ(S) . There-

fore, πk(π−1
Θ(S)(πΘ(S)(f))) ⊂ Ck. Since k /∈ Θ(S) then πΘ(S)(f) = (V1 ⊂ · · · ⊂ Vn) with

dimVi = ri, 1 ≤ i ≤ n. We have the following cases:

Case 1: Assume that r1 < k < rn. In this case, there exists l ∈ {1, . . . , n − 1} such

that the elements of πk(π−1
Θ(S)(πΘ(S)(f))) are the k-subspaces that contain Vl and are con-

tained in Vl+1. Let {v1, · · · , vrl} be a basis of Vl, and complete it to an ordered basis

{v1, · · · , vrl , vrl+1, · · · , vrl+1
} of Vl+1. Since rl < k and rl+1 > k, consider the element vk

in this basis of Vl+1 and, moreover, there is a basic element vj with k < j ≤ rl+1. In this

way, define the subspace

V = {v1 ∧ · · · ∧ vrl ∧ · · · ∧ vk−1 ∧ (αvk + βvj); α, β ∈ R}.

Case 2: Now, suppose that k < r1. Here, the elements of πk(π−1
Θ(S)(πΘ(S)(f))) are the

k-subspaces contained in V1. Since k ≥ 1, then r1 ≥ 2. Hence, given an ordered basis

{v1, · · · , vr1} of V1, we can find vk, vj ∈ {v1, · · · , vr1} where j satisfies k < j ≤ r1.

Consider the subspace

V = {v1 ∧ · · · ∧ vk−1 ∧ (αvk + βvj); α, β ∈ R}. (4.3-2)

Case 3: Finally, assume k > rn. Hence, πk(π−1
Θ(S)(πΘ(S)(f))) is the set formed by the
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k-subspaces which contains Vn. Since k ≤ d− 1, we can consider a basis {v1, . . . , vrn} of

Vrn and complete it to obtain the ordered basis {v1, . . . , vrn , vrn+1, . . . , vd} of Rd. In this

case, we can also take vk and vj in this basis, with k < j ≤ d and consider the subspace

defined as in (4.3-2).

In the three cases, the subspace V ⊂
∧k Rd is two-dimensional and satisfies

π(V ) ⊂ φ(πk(π
−1
Θ(S)(πΘ(S)(f)))) ⊂ φ(Ck).

The following theorem is a reciprocal of Theorem 4.3.1.

Theorem 4.3.4. If {0} ≠ W ⊂
∧k Rd is an S-invariant cone, then k ∈ Θ(S).

Proof. Assume that k /∈ Θ(S) and denote by L the intersection of W with the set D of

the decomposable elements of
∧k Rd. By Proposition 4.2.4 we have that L is nonempty.

Moreover, L is S-invariant, since the set of decomposable elements is also S-invariant.

Therefore, φ−1(π(L)) is also invariant. As W is a closed set then L is closed in D and

hence φ−1(π(L)) is a closed set in Gk(d). Since Gk(d) is compact, φ−1(π(L)) is also

compact, then there is an invariant control set contained in φ−1(π(L)). But there is

only one invariant control set Ck ⊂ Gk(d) implying that Ck ⊂ φ−1(π(L)) and hence

π−1(φ(Ck)) ⊂ L ⊂ W . As proved in Lemma 4.3.3, there is a two-dimensional subspace

V such that π(V ) ⊂ φ(Ck). But this means that V ⊂ π−1(φ(Ck)) ⊂ W , which is a

contradiction because W is pointed (see Proposition 4.2.5).

Recall that if S ⊂ Sl(Rd) is a nonempty semigroup, then S is transitive on Rd\{0} if

and only if S = Sl(Rd) (see [5]). In this context, the next theorem gives a necessary and

sufficient condition in terms of the existence of invariant cones.

Theorem 4.3.5. Let S ⊂ Sl(Rd) be a connected semigroup with nonempty interior. Then

S = Sl(Rd) if and only if there are no S-invariant cones in
∧k Rd, for all k ∈ {1, . . . , d− 1}.

Proof. Let W ⊂
∧k Rd be a proper S-invariant cone, for some k ∈ {1, . . . , d − 1}. Note

that W does not contain D, otherwise the convexity of W would imply that the convex

closure of D,
∧k Rd, would be contained in W , which would contradicts the fact that

W is proper.
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By Proposition 4.2.4 we can consider an element v1 ∈ W ∩ D. Take v2 ∈ D\W .

If S = Sl(Rd) and knowing that D is S-invariant then there exists g ∈ S such that

gv1 = v2 /∈ W , but this contradicts the S-invariance of W . Hence S ̸= Sl(Rd).

On the other hand, assume that S ⊂ Sl(Rd) is proper. Then Θ(S) ̸= ∅, hence there

exists k ∈ Θ(S), for some k ∈ {1, . . . , d − 1}. Therefore, Theorem 4.3.1 implies the

existence of a such cone.

Remark 4.3.6. This theorem complement and improve Section 7 of [5].

The next example shows that, as we commented before, the connectedness of S is

fundamental in the previous results.

Example 4.3.7. Let S+ ⊂ Sl(R2) be the set of matrices with positive entries. It is not difficult

to show that that S+ is a proper semigroup with nonempty interior in Sl(R2), the positive

orthant Q+ = {(a, b) ∈ R;a, b ≥ 0} is S+-invariant and S+ is a open set. Now take the

following proper semigroup

S = S+ ∪ (−S+) = (−1)ZS+ = {(−1)kA; k ∈ Z, A ∈ S+}.

Note that S has nonempty interior. Moreover, S is not transitive on R2 because it leaves

invariant the double cone Q+ ∪ −Q+ = (−1)NQ+:

S((−1)NQ+) = (−1)NS+(−1)NQ+ = (−1)N+NS+Q+ = (−1)NQ+.

However, S does not leave invariant proper cones inR2 =
∧1R2. In fact, we have that−I ∈ S,

therefore, if C is a proper S invariant cone then −I(C) = −C ⊂ C. This implies that C is a

subspace, which is a contradiction.

As a consequence of the above results, we get a necessary and sufficient condition

for controllability of

ẋ = Ax+ uBx, x ∈ Rd \ {0}, u ∈ R,

with A,B ∈ sl(Rd).

Recall that the system semigroup

S = {et1(A+u1B) · · · etn(A+unB); t1, . . . , tn ≥ 0, u1, . . . , un ∈ R, n ∈ N}
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is a semigroup of Sl(Rd). Moreover, if the Lie algebra, generated by A and B, coincides

with sl(Rd), then intS ̸= ∅. Furthermore, S is path connected. It is well know that this

system is controllable if, and only if, S = Sl(Rd) (see e.g. [5]). Hence, as a result of

Theorem 4.3.5 we have the necessary and sufficient condition for controllability of this

bilinear system.

Theorem 4.3.8. The above system is controllable if and only if it does not leave invariant a

cone in
∧k Rd, for all k ∈ {1, . . . , d− 1}.

4.4 Flag type and invariance of convex sets

In this section, we generalize the previous one. Or rather, instead of proper cones, we

study the existence of proper convex sets in
∧k R which are invariant by the action of

a semigroup S ⊂ Sl(Rd). We also relate the existence of this convex sets with the flag

type Θ(S) of S.

Initially, given h ∈ reg(S), take as before the basis B(h) = {e1, . . . , ed} of Rd. Since

1 = det(h) = λ1 · · ·λd, then for all k ∈ {1, . . . , d− 1}, we can prove that λ1 · · ·λk > 1.

The following lemma gives an expression for the closed convex cone generated by

a convex set in
∧k Rd.

Lemma 4.4.1. If the set K ⊂
∧k Rd is convex, then the closed convex cone W generated by K

is

W := cl(
⋃
α>0

αK).

Proof. Let {Wl}l∈Λ be the family of all closed cones that contains K and consider V :=⋂
l∈Λ

Wl the closed convex cone generated by K.

Note that W is a closed cone which contains K. To show that W is convex, take

x, y ∈ W . There are sequences (γnxn), (δnyn) in
⋃
α>0

αK with γn, δn > 0 and xn, yn ∈ K

(for all n ∈ N) converging to x and y respectively. Take t ∈ [0, 1] and define

zn =

(
(1− t)γn

(1− t)γn + tδn

)
xn +

(
tδn

(1− t)γn + tδn

)
yn, n ∈ N.

Note that (zn) is a sequence in K, then (((1− t)γn + tδn) zn) is a sequence in
⋃
α>0

αK,

since (1 − t)γn + tδn > 0. But ((1− t)γn + tδn) zn = (1 − t)γnxn + tδnyn converges to
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(1− t)x+ ty, hence (1− t)x+ ty ∈ W . Therefore V ⊂ W .

On the other hand, for each γ > 0 we have γK ⊂ Wl, for all l ∈ Λ, then
⋃
γ>0

γK ⊂ Wl,

for all l ∈ Λ. Hence the closeness of each Wl implies that W ⊂ Wl, for all l ∈ Λ, so

W ⊂ V .

Proposition 4.4.2. Let K ⊂
∧k Rd be a proper S-invariant convex set. Then the closed cone

generated by K is S-invariant.

Proof. Denote by W the closed cone generated by K. Since K is S-invariant, for each

g ∈ S it holds that gK ⊂ K. Hence

gW = g

(
cl(
⋃
α>0

αK)

)
⊂ cl(g

(⋃
α>0

αK

)
) = cl(

⋃
α>0

αgK) ⊂ cl(
⋃
α>0

αK) = W,

that is, W is S-invariant.

Proposition 4.4.3. If K ⊂
∧k Rd is a proper S-invariant convex set, then 0 /∈ intK.

Proof. For each h ∈ reg(S) denote by bk(h) the attractor of h inGk. The set of transitivity

of Ck, C0
k , satisfies

C0
k = {bk(h);h ∈ reg(S)},

and has nonempty interior. In particular, there is an open set V ⊂ C0
k = {bk(h);h ∈

reg(S)}. As a consequence, ϕ(V ) is an open set in D, and therefore, by Lemma 4.2.3,

π−1(ϕ(V )) contains a basis {b1, b2, . . . , bn} of the exterior space. Since bi ∈ π−1(ϕ(V ))

and V is a subset of C0
k = {bk(h);h ∈ reg(S)}, then, for each bi exists hi ∈ reg(S) such

that bi ∈ π−1(ϕ(bk(hi))) or, equivalently, there is a basis {e1(hi), e2(hi), . . . , ed(hi)} of

Rd where hi is written as diag(λ1i, λ2i, . . . , λdi) and bi = e1(hi) ∧ e2(hi) ∧ · · · ∧ ek(hi) =

eI(hi) with I = {1, . . . , k}. So, if we suppose that 0 ∈ intK, then there are α ̸= 0 and

h1, . . . , hr ∈ reg(S) with r =
(
d
k

)
, such that αeI(hi) is a basis of

∧k Rd with ±αeI(hi)

contained in intK, i = 1, . . . , r.

But for all m ∈ N and i ∈ {1, . . . , r}we have hmi (±αeI(hi)) ∈ K due to S-invariance

of K. Moreover,

∥hmi (±αeI(hi))∥ = |α|(λ1i · · ·λki)m∥eI(hi)∥ → +∞,

then the convexity of K implies that K =
∧k Rd.
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The above proposition has the following consequence.

Corollary 4.4.4. Let K ⊂
∧k Rd be an S-invariant convex set and denote by W the closed

cone generated by K. The following statements are equivalents:

i) W is proper;

ii) K is proper.

iii) 0 /∈ intK.

Proof. The implication (i)⇒ (ii) holds because K ⊂ W . Moreover, (ii)⇒ (iii) follows

by Proposition 4.4.3. Finally, to prove that (iii) ⇒ (i) we first note that if W =
∧k Rd

then intK ̸= ∅. In fact, if intK = ∅ then K is contained in a proper affine subspace

V + u0, where V ⊂
∧k Rd is a proper vector subspace and u0 ∈

∧k Rd. Hence

k∧
Rd = W = cl(

⋃
α>0

αK) ⊂ cl(
⋃
α>0

α(V + u0)) = cl(
⋃
α>0

(V + αu0))

= V + [0,+∞)u0 ̸=
k∧
Rd.

which is a contradiction. Hence, given the open set −intK, there are α > 0 and k ∈ K

with αk ∈ −intK, that is, −αk ∈ intK. Since K is convex, the line [−αk, k) := {(t −

1)αk + tk; t ∈ [0, 1)} is contained in intK, therefore 0 ∈ intK.

The next result presents a synthesis of this section, the relation among invariant

convex set, invariant cone and flag type.

Theorem 4.4.5. Let S ⊂ Sl(Rd) a semigroup with nonempty interior. Then the following

statements are equivalents:

i) There exists an S-invariant proper convex set in
∧k Rd;

ii) There exists an S-invariant proper closed cone in
∧k Rd;

iii) k ∈ Θ(S).

Proof. By Proposition 4.4.2 and Corollary 4.4.4 we have that (i) ⇒ (ii). By Theorem

4.3.4 it follows that (ii) implies (iii). Moreover, since a cone is a convex set, the impli-

cation (iii)⇒ (i) follows by Theorem 4.3.1.
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4.5 Examples

In order to present examples to illustrate our results, we create a computational imple-

mentation in Julia Language [4] called LieAlgebraRankCondition.jl1. The basic

idea of this implementation is the following: given the bilinear control system

ẋ = Ax+ uBx, x ∈ R4 \ {0}, u ∈ R and A,B ∈ sl(R4)

put the Lie brackets in a convenient way and analyse all the possibilities until get, if

possible, a linearly independent (L.I.) set for sl(R4). In the following we describe a

conceptual algorithm.

1Available in https://github.com/evcastelani/LieAlgebraRankCondition.jl

https://github.com/evcastelani/LieAlgebraRankCondition.jl
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Algorithm 1: Lie Algebra Rank Condition Algorithm.
Data: A: Array, B: Array, dim: dimension of sl(R4)

Result: True: a set of L. I. arrays were found; False: Does not exists an L. I.

set of arrays.

C ← {A,B, [A,B]};

if C is L. I. then

k ← 3;

else

return False;

end

while k ≤ dim do

j ← k − 1;

Ctrial ← Cj ;

while (C ∪ [Ctrial, Ck] is not L.I) and (j > 3) do

j ← j − 1 ;

Ctrial ← Cj ;

end

if j=3 then

remove Ck from C ;

k ← k − 1;

else

add [Ctrial, Ck] to C;

k ← k + 1;

end

if k=3 then

return False;

end

end

return True;

Remark 4.5.1. The parameter dim can be changed in order to find solutions for higher order

spaces.
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Example 4.5.2. Consider the bilinear system

(Σ) ẋ = Ax+ uBx, with x ∈ R4 \ {0}, u ∈ R,

A =


0 2 0 −1

2 0 2 0

0 2 0 2

−1 0 2 0

 and B = diag(4, 1,−2,−3) ∈ sl(R4).

The matrix A has the distinct eigenvalues, 3, 2,−2,−3, with the following eigenvectors

v1 = (1, 2, 2, 1), v2 = (−2,−1, 1, 2), v3 = (2,−1,−1, 2) and v4 = (−1, 2,−2, 1), respectively.

Let S be the semigroup of (Σ), that is,

S = {et1(A+u1B) · · · etk(A+unB); t1, . . . , tn ≥ 0, n ∈ N}.

Using the implementation of Algorithm 1, we can show that this system satisfies the Lie algebra

rank condition, hence S has nonempty interior in Sl(R4). Moreover, S is a proper semigroup.

In fact, by [15, Proposition 2], we have

A+ uB ∈ L(S2) = {X ∈ sl(R4); exp(X) ∈ S2},

where S2 = {g ∈ Sl(R4); gO2 ⊂ O2} is the the compression semigroup of the positive orthant

O2 =

 ∑
I={i1<i2}⊂{1,2,3,4}

αIeI ; αI ≥ 0

 ⊂ ∧2R4. This semigroup coincides with the set of

all matrix in Sl(R4) such that the minors of order 2 have non-negative determinant. Note that

S ⊂ S2. Since S2 leaves invariant the cone O2, then SO2 ⊂ O2. Hence (Σ) is not controllable

and therefore S is proper, in particular S leaves invariant the positive orthant of
∧2R4.

On the other hand, neither±A nor±(A+uB) leave invariant an orthant of R4. In fact, by

[10, Lemma 1], a matrix X = (xij) leaves invariant the orthant with signs (σ1, . . . , σd) if and

only if σiσjxij > 0. Applying this condition to ±A, ±(A+ uB), we get the contradictory fact

that σ1σ4 must be simultaneously 1 and −1, so that there are no invariant orthants in R4 =∧1R4. The system (Σ) is a counter-example for the following conjecture proposed by Sachkov

in [10]. Consider a bilinear control system with A symmetric and B = diag(b1, . . . , bn) where

bi ̸= bj for i ̸= j. Is it true that if this system has no invariant orthants and everywhere satisfies

the necessary Lie algebra rank controllability condition, then it is controllable in Rd \ {0}?
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Now we prove that, although (Σ) is not controllable, there are no S-invariant cones in

R4 =
∧1R4 neither in

∧3R4. Suppose that W ⊂ R4 is an S-invariant cone. Then W has

nonempty interior and it is not contained in the plane generated by {e2, e3, e4}. Therefore there

is a vector w = (w1, w2, w3, w4) ∈ W such that w1 ̸= 0. Since etB ∈ cl(S) for all t ∈ R, then if

w1 > 0 we have that

lim
t→+∞

etBw

∥etBw∥
= e1 ∈ W.

If w1 < 0 then

lim
t→+∞

etBw

∥etBw∥
= −e1 ∈ W.

Without loss of generality, assume that e1 ∈ W . Knowing that v1 is the attractor eigenvalue of

A and considering the basis {v1, v2, v3, v4}, a similar argument assures that either v1 ∈ V or

−v1 ∈ V .

Let H := {(x1, x2, x3, x4) ∈ R4 : x4 < 0}, then, for all x ∈ H ,

lim
t→+∞

et(−B)x

||et(−B)x||
= −e4.

In particular, note that if W ∩ H ̸= ∅, then −e4 ∈ W . Now we show that W ∩ H ̸= ∅.

Since the inner product between Ae1 and e4 is negative, then the curve t 7→ etAe1 intersects H

for t > 0. By S-invariance and knowing that e1 ∈ W , we have eR+Ae1 ⊂ W , thenW ∩H ̸= ∅.

As stated early, either v1 ∈ W or −v1 ∈ W . As v1 has a positive fourth coordinate, then

lim
t→+∞

et(−B)v1
||et(−B)v1||

= e4,

and as −v1 has a negative first coordinate, we have

lim
t→+∞

etB(−v1)
||etB(−v1)||

= −e1.

Hence if v1 ∈ W then e4 ∈ W . But −e4 is also in W , then W is not pointed. On the other

hand, if −v1 ∈ W , then −e1 ∈ W . Analogously, since e1 is also in W , then W is not pointed

also in his case. Anyway W is not pointed, but this contradicts Proposition 4.2.5.

Since W is arbitrary, we conclude that (Σ) does not have invariant cones in R4 =
∧1R.

Now in the case of
∧3R4, we recall that S has invariant cones in

∧3R4 if, and only if, S−1

has invariant cones in R4, and the linear isomorphism from R4 to
∧3R4 (that preserves basis)
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is also a one to one correspondence between the respective invariant cones (see e.g. [15]).

Therefore, it is enough to prove that S−1 does not leave invariant cones in R4. Since S

is generated by the exponential of the elements of {A + uB; u ∈ R} ⊂ sl(R4), then S−1 is

generated by the exponential of the elements −A + uB with u ∈ R}. Then S−1 is also the

semigroup of the bilinear control system ẋ = −Ax+ uBx with x ∈ R4 \ {0} and u ∈ R.

Let W ̸= {0} be an S−1-invariant cone. Note that S−1 has nonempty interior in Sl(R4).

Therefore, e1 ∈ W or −e1 ∈ W . Without loss of generality, we assume e1 ∈ W . Since

the highest eigenvalue of −A is 3 and the corresponding eigenvector is v4, then v4 ∈ W or

−v4 ∈ W . Furthermore, the inner product between −Ae1 and e4 is positive, and, therefore,

e4 ∈ W . If v4 ∈ W , then lim
t→+∞

etBv4
||etBv4||

= −e1 ∈ W and W is not pointed, because e1,−e1 ∈

W . Otherwise, if −v4 ∈ W , then lim
t→+∞

et(−B)(−v4)
||et(−B)(−v4)||

= −e4 and W is still not pointed,

because e4,−e4 ∈ W . Since W is not pointed in both cases, by Proposition 4.2.5 we have a

contradiction. We conclude that the proper semigroup S does not leave invariant a proper cone

in
∧1R4 neither in

∧3R4 but S has an invariant cone in
∧2R4 (in fact, we showed that it

leaves invariant the positive orthant of that space). Then by Theorem 4.3.5, the system (Σ) is

not controllable. Moreover, Theorem 4.3.4 implies that S has parabolic type Θ(S) = {2}, in

other words, FΘ(S) = G2(4).

Example 4.5.3. Consider the above bilinear control system, but with

A :=


1 1 0 0

−1 1 0 0

0 0 −1 1
2

0 0 −1
2
−1

 , B :=


2 0 0 0

0 −3
2
− 1

10
0

0 1
10

−3
2

0

0 0 0 1


and denote the system semigroup by S. Using again the implementation of Algorithm 1, we

can see that S satisfies the Lie algebra rank condition, so intS ̸= ∅. Now we show that S does

not have invariant cones in
∧1R4,

∧2R4 or
∧3R4 and therefore S = Sl(R4).

First note that

e
π
2
A =


0 d 0 0

−d 0 0 0

0 0 1
d

√
2
2

1
d

√
2
2

0 0 −1
d

√
2
2

1
d

√
2
2
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with e
π
2 = d.

Now we compute e
π
2
A in the canonical basis of

∧3R4.

e
π
2
A(e1 ∧ e2 ∧ e3) = d

√
2

2
e1 ∧ e2 ∧ e3 − d

√
2

2
e1 ∧ e2 ∧ e4,

e
π
2
A(e1 ∧ e2 ∧ e4) = d

√
2

2
e1 ∧ e2 ∧ e3 + d

√
2

2
e1 ∧ e2 ∧ e4,

e
π
2
A(e1 ∧ e3 ∧ e4) = −

1

d
e2 ∧ e3 ∧ e4

and

e
π
2
A(e2 ∧ e3 ∧ e4) =

1

d
e1 ∧ e3 ∧ e4.

Then e
π
2
A can be written, with respect to the canonical basis of

∧3R4, as


d
√
2
2

d
√
2
2

0 0

−d
√
2
2

d
√
2
2

0 0

0 0 0 1
d

0 0 −1
d

0

 =

 dI 0

0 1
d
I

 R1 0

0 R2



with R1, R2 rotations by angles different from 0 and π.

In the next lemma we prove that the cones in R4, which are invariant by above matrix, are

subspaces.

Lemma 4.5.4. Let T ∈ Sl(R4) be the matrix

T =

 dI 0

0 1
d
I

 R1 0

0 R2


where R1, R2 ∈ SO(2,R) \ {I,−I}, I is (2 × 2)-identity matrix and d ∈ R \ {0}. If W is a

T -invariant cone in R4 then W is a subspace.

Proof. Note that ⟨e1, e2⟩ and ⟨e3, e4⟩ are T -invariant spaces, and the restrictions of T to

these spaces are αR where α > 0 and R is the rotation different from I and −I . The

only cones in a two-dimensional space that are invariant by these maps are (0, 0) or

the whole space, hence if W ⊂ ⟨e1, e2⟩ then W = {0} or W = ⟨e1, e2⟩. If W ⊂ ⟨e3, e4⟩

then W = {0} or W = ⟨e3, e4⟩. Suppose that W is not contained in these spaces. Then

there exists v ∈ W such that v ̸= ⟨e1, e2⟩ and v ̸= ⟨e3, e4⟩. As R4 is a direct sum of these
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two spaces, then v has the unique decomposition v = u + w, with 0 ̸= u ∈ ⟨e1, e2⟩ and

0 ̸= w ∈ ⟨e3, e4⟩. Knowing the eigenvalues of the restriction ofA to ⟨e1, e2⟩we can show

that

∥T nu∥ = ∥dRn
1u∥ → +∞ and ∥T nw| = ∥(1/d)Rn

2w∥ → 0.

In particular, the distance of Tnv
∥Tnv∥ to ⟨e1, e2⟩ converges to zero, this sequence is con-

tained in a compact set and has a subsequence that converges to p. Note that p ∈ ⟨e1, e2⟩

and ∥p∥ = 1. As W is a T -invariant cone then p ∈ cl(W ) = W .

We have also that W ∩ ⟨e1, e2⟩ is a T -invariant cone which contains p. Then W ∩

⟨e1, e2⟩ = ⟨e1, e2⟩ and so ⟨e1, e2⟩ ⊂ W . It implies that −u ∈ W , then w = v + (−u) ∈ W

and therefore W has a non-null element of ⟨e3, e4⟩. In a similar way we can see that

⟨e3, e4⟩ ⊂ W . Hence W contains ⟨e1, e2⟩ and ⟨e3, e4⟩, that is, W = R4. In all cases, W is a

subspace of R4.

By the above lemma, any e
π
2
A-invariant cone in

∧1R4 or in
∧3R4, is a subspace. Therefore

there are no S-invariant cones in
∧1R4 neither in

∧3R4.

Now it remains to prove that in
∧2R4 there are no S-invariant cones. First note that the

following submatrix of B,

B2 =

 −3
2
− 1

10

1
10

−3
2


satisfies lim

t→+∞
etB2 = 0 implying that lim

t→+∞
etBv = 0 for all v ∈ ⟨e2, e3⟩. Moreover etBe1 =

e2te1 and etBe4 = ete4.

Note that when t→ +∞ we have that

etB(e1 ∧ e4)
e2tet

=
e2te1 ∧ ete4

e2tet
= e1 ∧ e4 → e1 ∧ e4

and moreover
etB(ei ∧ ej)

e2tet
→ 0 for (i, j) ̸= (1, 4).

Hence, for any vector v ∈
∧2R4 we have

v = α1e1 ∧ e4 + α2e1 ∧ e2 + α3e1 ∧ e3 + α4e4 ∧ e2 + α5e4 ∧ e3 + α6e2 ∧ e3, (4.5-3)

for some v1, . . . , v4 ∈ R and we have lim
t→+∞

etB(v)

e2tet
= α1e1 ∧ e4. Now, suppose that exists an
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S-invariant cone W . Then, there is v ∈ W of the form (4.5-3) such that

lim
t→+∞

etB(v)

e2tet
= αe1 ∧ e4

with α ̸= 0, because intW ̸= ∅.

As αe1 ∧ e4 ∈ W and

e2πA =


d4 0 0 0

0 d4 0 0

0 0 − 1
d4

0

0 0 0 − 1
d4


we have that e2πA(αe1 ∧ e4) = αe1 ∧−e4 = −αe1 ∧ e4. As W is invariant by the e2πA-action,

then−αe1∧e4 ∈ W , hence any straight line generated by αe1∧e4 is contained inW , that is,W

is not pointed. Consequently,
∧2R4 does not have S-invariant cones. Therefore, by Theorem

4.3.5, S = Sl(R4), that is, the system is controllable.
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