
UNIVERSIDADE ESTADUAL DE MARINGÁ

CENTRO DE CIÊNCIAS EXATAS
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para me ajudar no que fosse necessário.

A todos os meus colegas e amigos, pelo companheirismo e amizade que me concederam

ao longo de toda a minha vida.
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Resumo

Nessa dissertação, são apresentados os métodos de Newton e de Broyden com o objetivo de

estudar a sua utilização na resolução de problemas de programação linear. Nesse sentido,

primeiramente a versão padrão de um método de pontos interiores (IPM) primal-dual é

introduzida, a qual usa o método de Newton como base para a sua operação. Em seguida,

é estudado um IPM com aproximação quasi-Newton proposto recentemente, e é apresen-

tado um resultado original desta pesquisa: a convergência local linear desse método sob

algumas fortes hipóteses. Posteriormente, é estudado um sistema de equações não-suaves

equivalente às condições de Karush-Kuhn-Tucker (KKT) de um problema de programação

linear. São aplicadas variantes não-suaves dos métodos de Newton e de Broyden para re-

solver tal sistema e são observados os resultados sobre sua convergência. Com a finalidade

de obter propriedades de convergência global em relação à resolução desse sistema, é es-

tudado um algoritmo que utiliza métodos locais em sua operação. Considerando um

problema de programação linear espećıfico, são aplicadas duas versões desse algoritmo:

uma utilizando o método de Newton e a outra utilizando o método de Broyden. A análise

dos experimentos numéricos realizados sugere resultados teóricos relacionados à operação

desse algoritmo e resulta em uma modificação com melhor desempenho de convergência

global no problema selecionado.

Palavras-chave: Método de Newton; Método de Broyden; Métodos de pontos iteri-

ores; Equações não-suaves.



Abstract

In this dissertation, Newton’s and Broyden’s methods are presented with the aim of study-

ing their use in solving linear programming problems. To this end, first the standard

version of a primal-dual interior point method (IPM) is introduced, which uses Newton’s

method as the basis for its operation. Next, a recently proposed IPM with quasi-Newton

approach is studied, and an original result of this research is presented: the linear local

convergence of this method under some strong assumptions. Subsequently, a system of

nonsmooth equations equivalent to the Karush-Kuhn-Tucker (KKT) conditions of a linear

programming problem is studied. Nonsmooth variants of Newton’s and Broyden’s meth-

ods are applied to solve such system and results on its convergence are observed. In order

to obtain global convergence properties with respect to solving this system, it is studied

an algorithm that uses local methods in its operation. By considering a specific linear

programming problem, two versions of this algorithm are applied: one using Newton’s

method and the other using Broyden’s method. The analysis of the numerical experi-

ments suggests theoretical results related to the operation of this algorithm and results

in a modification with better global convergence performance on the selected problem.

Keywords: Newton’s method; Broyden’s method; Interior point methods; Nons-

mooth equations.
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Introduction

Consider the task of solving a linear programming problem in the form

min cTx

s.t. Ax = b

x ≥ 0,

(1)

where c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n and m < n . In [17, Section 12.6 and 13.1] it is

shown that this task is equivalent to solving the Karush-Kuhn-Tucker (KKT) conditions

of this problem, which can be written as

ATλ+ z = c

Ax = b

XZe = 0

(x, z) ≥ 0,

where λ ∈ Rm, z ∈ Rn, e ∈ Rn is a vector with all coordinates equal to 1 and X,Z ∈ Rn×n

are diagonal matrices with the main diagonal containing the vectors x and z, respectively.

Therefore, it is possible to formulate a function F : RN → RN such that solving problem

(1) can be visualized as the task of finding x∗ ∈ RN such that F (x∗) = 0 while the

condition (x, z) ≥ 0 is guaranteed. Newton’s and Broyden’s methods are well-known

methods to solve a problem in this form when F is continuously differentiable [17, Chapter

11]. Therefore, there are applications of these methods in this sense, such as the creation

of Newton-type methods in [5].

A well-known class of methods to solve problem (1) is the interior point methods

(IPMs). As it is discussed in [7, 13, 22], it is characterized by using one iteration of

Newton’s method in order to approximate a solution of the system

ATλ+ z = c

Ax = b

XZe = µe

(x, z) ≥ 0

(2)

at each iteration, where µ is a positive constant. Throughout the iterations, these methods

brings µ to 0, consequently system (2) becomes more and more similar to the KKT
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conditions of problem (1), and then the iterates of the IPMs approach a solution of these

conditions, which provide a solution of the problem. At each iteration k, these methods

need to solve the linear system 0 AT In

A 0 0

Zk 0 Xk


 ∆xk

∆λk

∆zk

 =

 c− ATλk − zk
b− Axk

σkµke−XkZke


to obtain the Newton step (∆xk,∆λk,∆zk), where In is the identity matrix and σk ∈ (0, 1)

is a chosen parameter value. However, this can be an expensive task if, for example, the

system dimension is large and the Cholesky decomposition, normally used for this type of

computation, destroys the sparsity structure of the coefficient matrix. Therefore, Gondzio

and Sobral [8] developed an IPM with quasi-Newton approach, which have a strategy to

reduce the cost of obtaining the step at each iteration. In this sense, one goal of this work

is to study this method and obtain a result about its local convergence.

Throughout the iterations of a primal-dual IPM, a step length is used to guarantee

that the variables x and z of the iterates are kept positive at every iteration, while

Newton’s method approaches to the solution of the three equalities of system (2). This

operation can generate difficulties in the proof of some general results. It is possible to

study the application of Newton’s and Broyden’s methods to solve linear programming

problems through another angle, without the necessity of dealing with nonnegativity

constraints. This is possible through a system of nonsmooth equations equivalent to the

KKT conditions of problem (1), as showed in [19, 20], which in this case can be described

as
ATλ+ z = c

Ax = b

min{x1, z1} = 0
...

min{xn, zn} = 0.

(3)

More details about this system can be seen in Section 3.1 of Chapter 3 of this work.

In the sequence, also in Chapter 3, computational experiments and theoretical studies

are performed to analyze whether convergence results are valid. Several situations are

considered: by varying the method used, the conditions to which the initial iterate was

subjected, and the conditions related to the initial approximation B0 of the Jacobian

matrix applied to the initial iterate, when the Broyden method is used.

The application of nonsmooth variants of Newton’s and Broyden’s methods in order

to solve the system of nonsmooth equations (3) does not have good global convergence

results. When developing this dissertation, two algorithms were found that had global

convergence properties: the one proposed by Ito and Kunisch [9] and the one developed by



Gomes-Ruggiero, Mart́ınez and Santos [6]. The algorithm presented in [9], however, have

its global convergence results conditioned to satisfying a certain set of conditions that a

general linear programming problem does not satisfy, what prevented the algorithm of

being applied. On the other hand, the global convergence properties of the algorithm

developed in [6] did not depend on rigorous assumptions, and therefore it can be used.

The algorithm developed by Gomes-Ruggiero, Mart́ınez and Santos [6] matches a local

method (such as Newton’s or Broyden’s methods), which have good performance near to

a solution of the objective function, with another algorithm developed in [6], which has

the property that, if it does not stop (in general at some stationary point of the merit

function considered) then it converges to the solution of (3).

In this work, two versions of this algorithm are studied: one using Newton’s method

and the other using Broyden’s method. The possibility of extending known convergence

results of such methods to the algorithm [6] was observed. Numerical experiments in

a single linear programming problem were executed, which suggested theoretical results

capable of describing the behavior of the algorithm in certain situations. Moreover, it was

also possible to note that the sequence of iterates generated in the experiments always

approached some stationary point of the merit function considered, which was in general

found close to the solution of (3). By considering this fact, it was possible to elaborate

a proposal for modifying the algorithm, which basically consists of applying the pure

Broyden’s method in the final iterate obtained from the algorithm developed by [6]. The

results obtaining through this modification indicate an improvement in the performance

of the algorithm with respect to global convergence, which possibly will also be effective

in any linear programming problem where most of the stationary points of the merit

function are close to the solution of system (3).

This work is organized as follows. An introduction about Newton’s and Broyden’s

methods is given in Chapter 1. The IPM with quasi-Newton approach and its respective

result about local convergence is showed in Chapter 2. In Chapter 3, the nonsmooth equa-

tions equivalent to the KKT conditions of problem (1) are formulated and it is presented

some results about local and global convergence of Newton’s and Broyden’s methods

applied in this system. Finally, the algorithm developed in [6] was applied in the non-

smooth equations and a proposal for its modification was elaborated with the objective

of improve the convergence to the optimal point while taking advantage of its global

convergence properties for non-optimal points.



Chapter 1

Newton’s and Broyden’s methods for

nonlinear equations

In this chapter, we introduce Newton’s and Broyden’s methods for systems of nonlinear

equations, as well as results about the local convergence of both. The main references

of this part are Dennis and Schnabel [3] and Nocedal and Wright [17]. Throughout this

chapter, we consider ‖ · ‖ as any vector norm, unless we say otherwise.

1.1 Newton’s method

Solving a system of nonlinear equations can be described as the problem of, given F :

Rn → Rn continuously differentiable in Rn, finding x∗ ∈ Rn such that

F (x∗) = 0. (1.1)

Newton’s method is one of the most used methods to solve this problem. It is characterized

by use the Jacobian matrix at each iteration, which is defined in Definition 1.1.

Definition 1.1. Given f : Rn → Rm and defining, for each j ∈ {1, ...,m}, the function

fj : Rn → R such that f(x) = (f1(x), ..., fm(x)) for all x ∈ Rn, the Jacobian matrix of f

at the point a ∈ Rn is defined as

J(a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) . . . ∂f2
∂xn

(a)
...

...
. . .

...
∂fm
∂x1

(a) ∂fm
∂x2

(a) . . . ∂fm
∂xn

(a)

 ,

where
∂fj
∂xi

(a) is the partial derivative of function fj with respect to xi at the point a ∈ Rn.

The operation of Newton’s method is based on Lemmas 1.3 and 1.4. The second one,

in particular, uses the concept of Lipschitz continuous function, presented in Definition

1.2.
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Definition 1.2. Suppose that ‖ · ‖1 and ‖ · ‖2 are norms in Rm and Rn, respectively. A

function f : Rn → Rm is said to be Lispchitz continuous at x ∈ Rn if there are L > 0 and

an open set D ⊂ Rn containing x such that

‖f(x)− f(y)‖1 ≤ L‖x− y‖2 (1.2)

for all y ∈ D. If (1.2) holds for each x ∈ D, then f is Lipschitz continuous in D.

We can observe that, since it is possible define matrix norms, Definition 1.2 can be

extended to functions f which have its domain or counter-domain being a matrix space,

such as for example Rn×n.

Lemma 1.3. Let F : Rn → Rn be continuously differentiable in some open convex set

D ⊂ Rn. Given x, x+ p ∈ D

F (x+ p)− F (x) =

∫ 1

0

J(x+ tp)p dt (1.3)

Proof. The proof can be found in Lemma 4.1.9 of [3].

Lemma 1.4. Suppose that F : Rn → Rn is continuously differentiable in some open

convex set D ⊂ Rn, x ∈ D and the Jacobian J : Rn → Rn×n is Lipschitz continuous at x

in the neighborhood D with constant L > 0. Then, for any x+ p ∈ D,

‖F (x+ p)− F (x)− J(x)p‖ ≤ L

2
‖p‖2.

Proof. The proof can be found in Lemma 4.1.12 of [3].

If the hypotheses are satisfied, lemmas 1.3 and 1.4 allow us to describe J(x)p as an

approximation for the right-hand side of equation (1.3) for p with sufficiently small value

of its norm. Therefore, we can describe a linear model M : Rn → Rn as

M(x+ p) = F (x) + J(x)p (1.4)

that will approximate the function F at point x, that is, the closer p is to null vector, the

better will be the approximation of function F by linear model M .

Letting xk be the current iterate, Newton’s method is characterized by approximating

function F at xk by a linear model Mk : Rn → Rn in the form of (1.4) and select

xk+1 = xk + pk

where pk is such that Mk(xk + pk) = 0, which implies

pk = −J(xk)
−1F (xk) (1.5)
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whenever J(xk)
−1 exists, by equation (1.4).

We describe Newton’s method for nonlinear equations by Algorithm 1.5.

Algorithm 1.5. (Newton’s method for nonlinear equations).

Given x0;

for k = 0, 1, 2, ...

Step 1: Compute the vector pk with the equation (1.5);

Step 2: xk+1 ← xk + pk;

end(for)

As we show below, in Theorem 1.8, Newton’s method have quadratic local conver-

gence to the solution x∗ of problem (1.1) under some hypotheses. The concept of local

convergence is related to how close the first iterate x0 should be to x∗ to guarantee that

the sequence of iterates {xk} generated by the algorithm will approach this solution. On

the other hand, the quadratic convergence is a concept related to how fast the iterates

of the algorithm will approach the solution x∗. In the following, we will formally define

these terms.

Definition 1.6. Suppose that x∗ ∈ Rn is a solution of problem (1.1). An algorithm is

said to be local convergent to x∗ if there is δ > 0 such that the occurrence of ‖x0−x∗‖ < δ

implies that the sequence {xk} generated by the algorithm converges to x∗.

Definition 1.7. Suppose that x∗ ∈ Rn is a solution of problem (1.1). An algorithm is

said to be quadratically convergent to x∗ when, being {xk} the sequence generated by the

algorithm, there are k0 ∈ N and c > 0 such that, if k > k0 then

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2.

Theorem 1.8. Suppose that J(x∗) is nonsingular, F : Rn → Rn is continuously differ-

entiable and J : Rn → Rn×n is Lipschitz continuous, both in an open convex set D ⊂ Rn

that contains x∗. There exists ε > 0 such that, if ‖x0− x∗‖ ≤ ε, then the sequence defined

by

xk+1 = xk − J(xk)
−1F (xk),

which is generated by Algorithm 1.5, is well defined and converges quadratically to x∗.

Proof. This result is a particular case of Theorem 5.2.1 of [3].

1.2 Broyden’s method

Newton’s method is known to be good, but can be expensive. In general, this occurs

because of the necessity of computing matrix J(xk) and solve (1.5) to obtain pk at each
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iteration k. By this reason, there are the quasi-Newton methods, which are character-

ized by computing an approximation Bk for J(xk) that makes less expensive the task of

obtaining pk at each iteration k. This class of methods are described by Algorithm 1.9.

Algorithm 1.9. (Quasi-Newton method for nonlinear equations).

Given x0 and B0;

for k = 0, 1, 2, ...

Step 1: Compute vector pk = −B−1k F (xk);

Step 2: xk+1 ← xk + pk;

Step 3: Obtain Bk+1;

end(for)

As we can see, at each iteration k, quasi-Newton and Newton’s methods use the same

strategy to find the next iterate. The only difference is that quasi-Newton methods build

a linear model Mk : Rn → Rn defined by

Mk(xk + p) = F (xk) +Bkp, (1.6)

which uses Bk as the coefficient matrix, rather than J(xk).

There is a particular class of quasi-Newton methods called secant methods. This group

is characterized by satisfying the secant equation at each iteration k, which is defined

by

Bk+1sk = yk, (1.7)

where sk = xk+1− xk and yk = F (xk+1)−F (xk). In this case, using the definition of Mk,

Mk(xk) = Bk0 + F (xk) = F (xk).

Moreover, by the secant equation we have

xk−1 = xk +B−1k (F (xk−1)− F (xk)),

which implies

Mk(xk−1) = Mk(xk+B
−1
k (F (xk−1)−F (xk))) = F (xk)+BkB

−1
k (F (xk−1)−F (xk)) = F (xk−1).

Therefore, we conclude that Mk interpolates F at points xk and xk−1, that is, the graph

of Mk is secant to the graph of F at theses points.

When we consider the problem of finding x∗ ∈ R such that F (x∗) = 0 for scalar

functions F : R → R, an interesting comparison between Newton’s and secant methods

can be made in a geometric point of view. In Newton’s method, given xk, the intersection

between x axis and the tangent to the graph of F at the point xk will be the next iterate

xk+1, as we can see in Figure 1.1.
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Figure 1.1: One step of Newton’s method.

In secant methods, on the other hand, at each iteration k the next iterate xk+1 will be

obtained from the intersection between x axis and the linear model that interpolates the

graph of F at points (xk−1, F (xk−1)) and (xk, F (xk)). This fact is illustrated in Figure

1.2.

Figure 1.2: One step of secant method.

Going further, there is still a particular class of secant methods which, for all k ∈ N,

uses Bk to obtain Bk+1 through the equation

Bk+1 = Bk +
(yk −Bksk)w

T
k

wTk sk
, (1.8)

where wk ∈ Rn and wTk sk 6= 0. These methods are guaranteed secant methods because,
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for any k ∈ N,

Bk+1sk =

[
Bk +

(yk −Bksk)w
T
k

wTk sk

]
sk = Bksk + (yk −Bksk) = yk,

and then all the matrices of the sequence {Bk} generated by (1.8) satisfy the secant

equation.

In this work, we use extensively a particular method that satisfies (1.8) with wk = sk.

It is called Broyden’s method and is described by Algorithm 1.10.

Algorithm 1.10. (Broyden’s method).

Given x0 and B0;

for k = 0, 1, 2, ...

Step 1: Compute the vector pk = −B−1k F (xk);

Step 2: xk+1 ← xk + pk;

Step 3: sk ← xk+1 − xk;
Step 4: yk ← F (xk+1)− F (xk);

Step 5: Bk+1 ← Bk +
(yk−Bksk)s

T
k

sTk sk
;

end(for)

In the sequence, it is showed Definition 1.11 and 1.12. The first one concerns a

characterization of how fast the sequence {xk} generated by an algorithm converges to

the point x∗. On the other side, given some matrix C ∈ Rn×n and norm ‖ · ‖ of Rn,

Definition 1.12 shows a measure related to C that represents the largest distortion that C

can cause in a vector x 6= 0 with respect to the norm ‖ · ‖. These definitions are necessary

for the Theorem 1.13, which guarantees the superlinear local convergence of Broyden’s

method.

Definition 1.11. Suppose that x∗ ∈ Rn is a solution of problem (1.1). An algorithm is

said to be superlinearly convergent to x∗ when, being {xk} the sequence generated by the

algorithm, there is a sequence {rk} of positive scalars converging to 0 such that

‖xk+1 − x∗‖ ≤ rk‖xk − x∗‖

for all k ∈ N.

Definition 1.12. A matrix norm ‖ · ‖ in Rn×n is induced by a vector norm ‖ · ‖ of Rn

when, given any matrix C ∈ Rn×n,

‖C‖ = sup
x 6=0,x∈Rn

{
‖Cx‖
‖x‖

}
.
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Theorem 1.13. Let us denote ‖ · ‖2 as the Euclidian vector norm and its induced matrix

norm. Suppose that F : Rn → Rn is continuously differentiable and J : Rn → Rn×n is

Lipschitz continuous, both in a open convex set D ⊂ Rn that contains x∗, where J(x∗) is

nonsingular. There are ε, δ > 0 such that, if

‖x0 − x∗‖2 ≤ ε and ‖B0 − J(x∗)‖2 ≤ δ

then the sequence {xk} generated by Broyden’s method is well defined and converges su-

perlinearly to x∗.

Proof. The proof follows by Theorem 8.2.2 of [3].



Chapter 2

Interior point methods

As described by Gondzio [7], since the 1940s, linear programming problems have attracted

a lot of attention in the field of Optimization. One of the first methods that emerged

aiming to solve this type of problem was the Simplex method (see Chapter 13 of [17]).

A negative characteristic of this method is that it is not polynomial, that is, it does not

occur that the number of iterations of the algorithm will always be related to a polynomial

whose dimension is the domain of the objective function. This fact can be observed in

Klee and Minty [12], which shows a problem of dimension n such that the Simplex method

requires 2n iterations to finds the solution. Thus, it is possible to find problems where

Simplex would be a very expensive method to solve. However, in practice, the Simplex

generally proved to be a very effective method, then was widely used for many years and

still remains in use.

Considering this Simplex drawback, researchers searched for a long time to elaborate

a polynomial method to solve linear programming problems. In this sense, the first two

polynomial algorithms for solving these problems was developed by Dikin [4], in 1967,

and Khachiyan [11], in the late 1970s. In particular, the second one sought to build a

sequence of ellipsoids, so that the respective centers of each one constituted a sequence

which approach a solution of the problem. Despite being polynomial, this method did not

prove to be efficient in practice. Because of this, in the middle of 1980s, Karmarkar [10]

devised a refinement of this algorithm, which added some geometric strategies in order to

retain its polynomiality while improving its performance in practice.

After obtaining these promising results in the sense of obtaining an efficient and poly-

nomial algorithm for solving linear programming problems, a large part of the field of

Optimization started to seek for developing strategies with the purpose of elaborating

algorithms that fit these characteristics. This gave rise to the class of methods currently

known as interior point methods.

In this chapter, we present the interior point methods, which are popular methods to

solve linear programming problems, since it is polynomial and generally quite efficient in

practice. In Section 2.1, we show a standard primal-dual version of the method, which
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uses as a basis the Newton’s method, and prove some related properties. In Section 2.2,

we present an alternative version of the method, which uses a quasi-Newton approach,

and obtain a result about its local convergence. The main references of this chapter are

[3, 8, 17, 22].

2.1 Primal-dual IPM for linear programming

In order to define the general problem used in this work, we first need Definition 2.1.

Definition 2.1. The column rank of a matrix A ∈ Rm×n is the maximum number of

linearly independent columns in the matrix A. Analogously, the row rank is the maximum

number of linearly independent rows in this matrix. The matrix A have full column rank

if all its columns are linearly independent vectors. In the same way, A is said to be a

matrix with full row rank if all its rows are linearly independent vectors.

The linear programming problem considered in this work is

min cTx

s.t. Ax = b

x ≥ 0,

(2.1)

where c, x ∈ Rn, b ∈ Rm, m < n and A ∈ Rm×n is a matrix with full row rank. The KKT

conditions of this problem can be written as

ATλ+ z = c

Ax = b

XZe = 0

(x, z) ≥ 0

(2.2)

where λ ∈ Rm, z ∈ Rn are the Lagrange multipliers, e ∈ Rn is a vector with all coordinates

equal to 1 and X,Z ∈ Rn×n are diagonal matrices with the main diagonal containing the

vectors x and z, respectively.

From now on, let us denote the solution of (2.1) as x∗, the vector (x, λ, z) ∈ RN as w,

where N = 2n + m, the solution of (2.2) as w∗ = (x∗, λ∗, z∗), and the Euclidian vector

norm and its induced matrix norm as ‖ · ‖, unless we say otherwise. In the sequence, we

present some necessary definitions for the next results.

Definition 2.2. A function f : Rn → R is said to be convex if, given any x, y ∈ Rn and

t ∈ [0, 1], it occurs

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

If this inequality holds strictly, f is said a strict convex function.
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Definition 2.3. Given a function f : Rn → Rm, the problem

min f(x)

s.t. x ∈ K
(2.3)

is said to be a convex programming problem if f is a convex function and K is a convex

set. When f is a strict convex function, the problem can also be called a strict convex

programming problem.

Lemma 2.4 relates problem (2.1) with conditions (2.2).

Lemma 2.4. A vector x∗ ∈ Rn solves (2.1) if and only if there are z∗ ∈ Rn and λ∗ ∈ Rm

such that x∗, λ∗ and z∗ satisfy (2.2).

Proof. As we can see in [17, Section 12.6], the first order necessary optimality conditions

hold in problem (2.1), since the constraints are linear.

Let us prove that problem (2.1) is a convex programming problem. In fact, we can

see that, given any y, y′ ∈ Rn and t ∈ [0, 1],

cT ((1− t)y + ty′) = (1− t)cTy + tcTy′,

then the function cTx is convex. Moreover, given y = (y1, ..., yn) and y′ = (y′1, ..., y
′
n)

vectors contained in the feasible set of problem (2.1), we have Ay = b and Ay′ = b, while

yj, y
′
j ≥ 0 for all j ∈ {1, ..., n}. Given any vector z contained in the segment between y

and y′, there is t ∈ [0, 1] such that z = ty + (1 − t)y′. Therefore, for any j ∈ {1, ..., n}
occurs zj = tyj + (1− t)y′j ≥ 0, while

Az = A(ty + (1− t)y′) = tAy + (1− t)Ay′ = tb+ (1− t)b = b,

which implies that z is in the feasible set of the (2.1) also. From this, we have that all the

segment between y and y′ is contained in this feasible set, and then it is convex, which

guarantees that (2.1) is a convex programming problem.

In [17, Section 13.1] we can observe that the first order sufficient optimality conditions

hold if problem (2.1) is a convex programming problem, which finishes the proof.

Given a constant µ > 0, consider the problem

min cTx− µ
n∑
j=1

ln xj

s.t. Ax = b

. (2.4)
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By considering a new variable z = µX−1e, the KKT conditions of (2.4) can be described

as
ATλ+ z = c

Ax = b

XZe = µe

(x, z) ≥ 0.

(2.5)

In order to associate problem (2.4) with conditions (2.5), we have Lemma 2.5.

Lemma 2.5. A vector x∗ ∈ Rn solves problem (2.4) if and only if there are λ∗ ∈ Rm and

z∗ ∈ Rn such that x∗, λ∗ and z∗ satisfy (2.5).

Proof. The first order necessary optimality conditions hold in problem (2.4) because the

constraints are linear, as showed in [17, Section 12.6].

On the other hand, for the first order sufficient optimality conditions, by defining the

Lagrangian function L : Rn × Rm → R of problem (2.4) as

L(x, λ) = cTx− µ
n∑
j=1

lnxj −
m∑
i=1

[λi(A
T
i·x− bi)],

where Ai· is the i-th row vector of A, we obtain its Hessian with respect the x variables

at vector (x∗, λ∗) ∈ Rn+m, ∇2
xxL(x∗, λ∗), as

∇2
xxL(x∗, λ∗) = µ


1
x∗21

0 · · · 0

0 1
x∗22
· · · 0

...
...

. . .
...

0 0 · · · 1
x∗2n

 .
As x∗i > 0 for all i ∈ {1, ..., n}, ∇2

xxL(x∗, λ∗) is positive definite, and then the statement

follows by Theorem 12.6 of [17].

Let us define the primal-dual strictly feasible set F0 as

F0 = {w ∈ RN ;Ax = b, ATλ+ z = c, (x, z) > 0}. (2.6)

The system (2.5) is frequently used by IPMs. Therefore, Lemma 2.6, which is a speci-

fication of Theorem 17.2 of [21] for our case, implies that a necessary condition to the

application of IPMs is F0 6= ∅, since this guarantees the existence of solution for (2.5).

Lemma 2.6. Given any µ > 0, system (2.5) has a unique solution if and only if F0 6= ∅.

Proof. If system (2.5) have a unique solution (x∗, λ∗, z∗) ∈ RN , then Ax∗ = b, ATλ∗+z∗ =

c, (x∗, z∗) ≥ 0 and x∗i z
∗
i = µ > 0 for all i ∈ {1, ..., n}. The last two conditions imply

(x∗, z∗) > 0, therefore (x∗, λ∗, z∗) ∈ F0 and then we have F0 6= ∅.
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Suppose now that F0 6= ∅, then there is (x̄, λ̄, z̄) ∈ F0. Let us consider any µ > 0

and the function fµ : W → R, where W = {x = (x1, ..., xn) ∈ Rn;xj > 0 ∀ j ∈ {1, ..., n}}
defined by

fµ(x) = cTx− µ
n∑
j=1

ln xj.

Observe that this function is a sum between a strictly convex function and a linear func-

tion, which we saw is convex in the proof of Lemma 2.4. This fact implies that fµ is also

strictly convex, and therefore the set {x ∈ Rn; fµ(x) ≤ d} is bounded for any d ∈ R. By

this fact, the inverse image of (−∞, fµ(x̄)] under fµ, which is

f−1µ ((−∞, fµ(x̄)]) = {x ∈ Rn; fµ(x) ≤ fµ(x̄)},

is a bounded set. Let us prove that it is also closed.

The function fµ is a sum between continuous functions, thus is continuous. Therefore,

since the set (−∞, fµ(x̄)] is closed in R, it occurs that f−1µ ((−∞, fµ(x̄)]) is closed in

W , which is the domain of this function. If there is x′ = (x′1, ..., x
′
n) in the closure of

f−1µ ((−∞, fµ(x̄)]) such that x′ /∈ W then there would be i ∈ {1, ..., n} where x′i = 0. In

this case, there would be a sequence {yj} of vectors yj = (yj1, ..., yjn) ∈ f−1µ ((−∞, fµ(x̄)])

convergent to x′, which implies that {yji} → 0 as j → ∞ and then {ln yji} → −∞
while the sequence {ln yjk} is bounded above for all k ∈ {1, ..., n} such that k 6= i, since

f−1µ ((−∞, fµ(x̄)]) is bounded. Therefore, {fµ(yj)} → ∞ and then the sequence {yj} is

not contained in f−1µ ((−∞, fµ(x̄)]), which is a contradiction. This fact implies that the

closure of f−1µ ((−∞, fµ(x̄)]) is contained in W , and therefore this set is closed in Rn.

Consider the set

A = {x ∈ Rn;Ax = b, x ≥ 0, fµ(x) ≤ fµ(x̄)},

then A 6= ∅, since x̄ ∈ A. Let us prove that A is a compact set.

We can write

A = {x ∈ Rn;Ax = b} ∩ {x ∈ Rn;x ≥ 0} ∩ {x ∈ Rn; fµ(x) ≤ fµ(x̄)}. (2.7)

This set is closed because it is a finite intersection between closed sets: a linear space, a

half space and a closed set by the previous paragraph. It is bounded, since A ⊂ {x ∈
Rn; fµ(x) ≤ fµ(x̄)} also by the previous paragraph. Therefore, A is compact.

Let us consider fµ|A : A → R as the restriction of the function fµ to the compact set

A. As fµ|A is a continuous function with compact domain, there is x∗ ∈ A such that

fµ(x∗) ≤ fµ(x) for all x ∈ A. We can see that, as x∗ ∈ A, it occurs Ax∗ = b, which

implies that x∗ is feasible for problem (2.4). Given any x ∈ Rn feasible for (2.4), we have

two possibilities: x ∈ A or not. If x ∈ A then fµ(x) ≥ fµ(x∗) by the fact that x∗ is a
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minimizer of fµ|A. If not, then either the function fµ is not well defined at point x, which

means that xi ≤ 0 for some i ∈ {1, ..., n}, or it is well defined and fµ(x) > fµ(x̄) ≥ fµ(x∗).

Therefore, x∗ is a solution for problem (2.4) and then, by Lemma 2.5, there are λ∗ ∈ Rm

and z∗ ∈ Rn such that x∗, λ∗ and z∗ satisfy system (2.5), which finishes the proof of the

solution’s existence.

For the proof of uniqueness, assume that x∗, λ∗ and z∗ satisfy system (2.5). By Lemma

2.5, x∗ is a solution of problem (2.4), which is a strict convex programming problem.

Therefore, from [15, Theorem 3.1.17], this problem have at most one solution, which

implies that x∗ is unique and so is z∗ as well, since z∗ = µX∗−1e is satisfied. Finally, by

system (2.5), we have ATλ∗ + z∗ = c. As A have full row rank, then AT is a injective

function, which guarantees the uniqueness of λ∗ and finishes the proof.

From Lemma 2.6, being R+ the set of positive scalars, we can define a function h :

R+ → RN which relates each µ > 0 with the vector (xµ, λµ, zµ) that satisfies system (2.5)

for this respective scalar. The image of this function is called central path. In Lemma

2.8 will be showed an important property about this function. However, for its proof, we

need of Lemma 2.7.

Lemma 2.7. Suppose that  0 AT In

A 0 0

Z 0 X


is a matrix where A ∈ Rm×n have full row rank, In ∈ Rn×n is the identity matrix and

Z,X ∈ Rn×n are diagonal matrices where the elements of its main diagonals, denoted by

zi and xi respectively, are all strictly positive. Then, this matrix is nonsingular.

Proof. To prove the nonsingularity of this matrix, it is sufficient we guarantee that, given

any vector (u, v, w) ∈ RN such that u,w ∈ Rn and v ∈ Rm, if 0 AT In

A 0 0

Z 0 X


 u

v

w

 =

 0

0

0

 (2.8)

then u, v and w are null vectors.

In fact, by (2.8) we have

ATv + w = 0

Au = 0

Zu+Xw = 0.

(2.9)

Through the last equation of system (2.9),

ziui + xiwi = 0 (2.10)
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for all i ∈ {1, ..., n}. Observe that, by the first equation of (2.9),

uT (ATv + w) = uT0 = 0,

which implies

(Au)Tv + uTw = 0

and then

uTw = 0, (2.11)

through the second equation of (2.9).

We can see that (2.11) is equivalent to

n∑
i=1

uiwi = 0, (2.12)

which through (2.10) implies that

−
n∑
i=1

(
zi
xi

)
u2i = 0. (2.13)

By (2.13), since xi, zi > 0 for all i ∈ {1, ..., n}, it must occur u = 0. Analogously, by

applying (2.10) in (2.12), we have

−
n∑
i=1

(
xi
zi

)
w2
i = 0,

which implies that w = 0.

Finally, ATv + w = 0 implies ATv = 0. Since A have full row rank, then AT have full

column rank, which implies v = 0 and finishes the proof.

Lemma 2.8. The function h : R+ → RN defined such that, for each µ > 0, h(µ) =

(xµ, λµ, zµ) which satisfy system (2.5), is continuous.

Proof. Let us define G : Ω ⊂ R×RN → RN where Ω = {(µ, (x, λ, z)) ∈ R×RN ;µ, x, z >

0} and

G(µ, (x, λ, z)) =

 ATλ+ z − c
Ax− b

XZe− µe

 .
Observe that G is continuously differentiable in Ω and that Ω is an open set, since it is

a finite product between open sets. Let us consider any µ0 > 0. By Lemma 2.6, there



2.1 Primal-dual IPM for linear programming 24

is (xµ0 , λµ0 , zµ0) ∈ RN which satisfies system (2.5) for this scalar, which implies that

(µ0, (xµ0 , λµ0 , zµ0)) ∈ Ω and G(µ0, (xµ0 , λµ0 , zµ0)) = 0. The Jacobian of G at this point is

JG(µ0, (xµ0 , λµ0 , zµ0)) =

 0 0 AT In

0 A 0 0

−e Zµ0 0 Xµ0

 ,
where In ∈ Rn×n is the identity matrix. As A have full row rank, by Lemma 2.7 the

matrix  0 AT In

A 0 0

Zµ0 0 Xµ0


is nonsingular. Therefore, by the Implicit Function Theorem, which can be found at [14,

Theorem 6, Chapter 6], there are an open set V ⊂ R containing µ0 and an open set U ⊂ Ω

containing (µ0, (xµ0 , λµ0 , zµ0)) such that there is a differentiable function g : V → RN

where g(µ0)=(xµ0 , λµ0 , zµ0) and for all µ ∈ V occurs (µ, g(µ)) ∈ U and G(µ, g(µ)) = 0.

Therefore, given any µ ∈ V , g(µ) satisfies system (2.5) for this scalar. However, by

Lemma 2.6, this solution is unique, which implies g(µ) = h(µ) for all µ ∈ V , and then

g = h|V .

As µ0 ∈ V , h|V is continuous and V is an open set, then h is continuous at µ0.

Therefore, by the arbitrary choice of µ0, we obtain that h is continuous.

By the continuity of the central path, as µ tends to zero, the solution of problem (2.4)

becomes each time more similar to the solution of problem (2.1). The standard version

of the IPMs works through this strategy. At each iteration, given µ > 0, one iteration

of Newton’s method is executed to solve system (2.5) in order to approximate the iterate

to the solution of subproblem (2.4) using σµ instead of µ, where σ ∈ (0, 1). Therefore,

throughout the iterations, the IPMs brings µ to 0 and leads the iterates to a solution of

(2.1).

As showed in [17, Chapter 14], a standard primal-dual IPM for solving (2.1) is de-

scribed by Algorithm 2.9.

Algorithm 2.9. (Standard primal-dual IPM for solving (2.1)).

Given (x0, λ0, z0) such that (x0, z0) > 0;

for k = 0, 1, 2, ...

Step 1: Compute

µk =
xTk zk
n

(2.14)

and choose σk ∈ (0, 1);
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Step 2: Compute the Newton’s direction by solving the linear system 0 AT In

A 0 0

Zk 0 Xk


 ∆xk

∆λk

∆zk

 =

 c− ATλk − zk
b− Axk

σkµke−XkZke

 ; (2.15)

Step 3: wk+1 ← wk + αk(∆xk,∆λk,∆zk), where αk ∈ (0, 1] is such that

(xk+1, zk+1) > 0;

end(for)

The information that Lemma 2.8 sends to us provides an important geometric notion

about the way that this primal-dual IPM works, by considering the strategy that we

commented above. At each iteration k, we have a value µk > 0, which is computed

through (2.14), and then it is a good measure of how close the current iterate wk is to

satisfying the condition XkZke = 0. Through the iteration of Newton’s method that

is realized, the new iterate approximates a solution of subproblem (2.4) using σkµk as

the constant µ of its general form. By the fact that σk ∈ (0, 1), the solution of this

subproblem is a point of the central path closer to the solution w∗ than the point of

central path correspondent to µk. Thus, wk+1 will be closer to the solution w∗ than

wk and then, through (2.14), µk+1 will be closer to 0 than µk. Therefore, throughout

the iterations, the method generates iterates that follows the central path and, as the

sequence {µk} tends to zero, go towards the solution of problem (2.1).

In the literature about IPMs, there are two variables which can be called as “centrality

parameter”: the σ and the µ. Some authors, like for example Gondzio [7], call σ as

being the centrality parameter because, by the way that the standard primal-dual IPM

works, we can control the proximity between the next iterate wk+1 and the central path

through this value. If σ is close to 0, then the Newton step of the IPM will place more

importance on generating a new iterate wk+1 with a relevant proximity to the solution

w∗ than generating one close to the central path, which is a risky step in relation to

the necessity of (xk+1, zk+1) > 0. Analogously, if σ is close to 1, then the objective will

be to generate wk+1 close to the central path, even if no relevant approximation to the

solution is obtained in this iteration, which promotes security in relation to the condition

(xk+1, zk+1) > 0. On the other hand, authors like Wright [22] consider µ as the centrality

parameter by the fact that this variable parametrizes the central path.
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2.2 IPM with quasi-Newton approach

Let us define the function F : RN → RN by

F (w) =

 ATλ+ z − c
Ax− b
XZe

 . (2.16)

Finding a solution for (2.2), and therefore for (2.1), by Lemma 2.4 is equivalent to find

w∗ ∈ RN such that F (w∗) = 0 and (x∗, z∗) ≥ 0. Therefore, we can see the standard version

of primal-dual IPM as a method with this objective. In this case, at each iteration k,

solving equation (2.15) is equivalent to computing the Newton’s direction for the system

F (wk) =

 0

0

σkµke


with µk > 0 and σk ∈ (0, 1). The coefficient matrix of (2.15) can be denoted as J(wk) for

all k ∈ N, since it coincides with the Jacobian of the function F at wk.

One of the most expensive steps of the standard primal-dual IPM is solving system

(2.15). Therefore, in [8] it was elaborated a method that, at each iteration k, uses a

Broyden approach Bk of the matrix J(wk), with the goal that the computation of the

direction through equation

Bk

 ∆xk

∆λk

∆zk

 =

 c− ATλk − zk
b− Axk

σkµke−XkZke

 (2.17)

is less expensive than with (2.15).

Our goal in this section is to understand some local properties of Newton and quasi-

Newton IPMs under the framework of algorithms for systems of nonlinear equations [3, 15].

To do this, we first need to define some concepts.

Definition 2.10. An algorithm is said to be linearly convergent to w∗ when, being {wk}
the sequence generated by the algorithm, there are k0 ∈ N and r ∈ (0, 1) such that, if

k > k0 then

‖wk+1 − w∗‖ ≤ r‖wk − w∗‖.

An IPM is said to be feasible if all the iterates wk are in the set F0 defined in

(2.6). In Lemma 2.11, Lemma 2.12 and Theorem 2.15 we built a result about the linear

local convergence of the feasible IPM with quasi-Newton approach, which solves at each

iteration k the equation (2.17) instead of (2.15), where Bk is the Broyden approach of
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matrix J(wk). In this analysis, the function F considered is defined by (2.16) and J is its

respective Jacobian, which coincides with the coefficient matrix of (2.15) when applied at

wk.

Lemma 2.11. If x = (x1, ..., xn) and z = (z1, ..., zn) are vectors in Rn satisfying x, z > 0

and µ = xT z
n

, then ‖µe‖ ≤ ‖XZe‖.

Proof. Firstly, let us prove that

n

n∑
i=1

x2i z
2
i ≥

(
n∑
i=1

xizi

)2

. (2.18)

Observe that

0 ≤

[
n∑
i=2

(x1z1 − xizi)2
]

+

[
n∑
i=3

(x2z2 − xizi)2
]

+ ...+ [(xn−1zn−1 − xnzn)2] =[
n∑
i=2

x21z
2
1 + x2i z

2
i − 2x1z1xizi

]
+

[
n∑
i=3

x22z
2
2 + x2i z

2
i − 2x2z2xizi

]
+ ...+

[
x2n−1z

2
n−1 + x2nz

2
n − 2xn−1zn−1xnzn

]
=

(n− 1)

(
n∑
i=1

x2i z
2
i

)
− 2

[(
n∑
i=2

x1z1xizi

)
+

(
n∑
i=3

x2z2xizi

)
+ ...+ (xn−1zn−1xnzn)

]
.

Therefore,

(n− 1)

(
n∑
i=1

x2i z
2
i

)
≥ 2

[(
n∑
i=2

x1z1xizi

)
+

(
n∑
i=3

x2z2xizi

)
+ ...+ (xn−1zn−1xnzn)

]
,

which implies that

n
n∑
i=1

x2i z
2
i ≥

2

[(
n∑
i=2

x1z1xizi

)
+

(
n∑
i=3

x2z2xizi

)
+ ...+ (xn−1zn−1xnzn)

]
+

(
n∑
i=1

x2i z
2
i

)
=(

n∑
i=1

xizi

)2

,

as we wanted.

By (2.18), it occurs that

n∑
i=1

x2i z
2
i ≥

(
∑n

i=1 xizi)
2

n
≥ 0,
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therefore √√√√ n∑
i=1

x2i z
2
i ≥

(
∑n

i=1 xizi)√
n

=
(
∑n

i=1 xizi)

n

√
n. (2.19)

Since

‖XZe‖ =

√√√√ n∑
i=1

x2i z
2
i

and

‖µe‖ = µ
√
n =

(
∑n

i=1 xizi)

n

√
n,

by (2.19) we have that ‖XZe‖ ≥ ‖µe‖, which finishes the proof.

Lemma 2.12. Consider a matrix B ∈ RN×N . Given r ∈ (0, 1), there exist ε1, δ1 > 0

and ᾱ, σ̄ ∈ (0, 1) such that, if ‖w − w∗‖ ≤ ε1, ‖B − J(w∗)‖ ≤ δ1, J(w∗) is nonsingular,

µ = xT z
n

and α ∈ (ᾱ, 1), then

w̄ = w − αB−1

F (w)−

 0

0

σ̄µe




is well defined and

‖w̄ − w∗‖ ≤ r‖w − w∗‖.

Proof. Consider r ∈ (0, 1) and β : RN → R defined by β(w) = ‖F (w)− J(w∗)(w − w∗)‖.
Observe that we have

lim
w→w∗

β(w)

‖w − w∗‖
= 0

by the fact that F is differentiable. Consider also δ1, σ̄ and ε1 sufficiently close to 0 where

δ1 ≤ 1
2‖J(w∗)−1‖ and ᾱ sufficiently close to 1 such that

δ1 + ᾱ(1 + σ̄) sup
‖w−w∗‖≤ε1

β(w)

‖w − w∗‖
+ (1 + (σ̄ − 1)ᾱ)‖J(w∗)‖ ≤ r

2‖J(w∗)−1‖
(2.20)

and

sup
‖w−w∗‖≤ε1

β(w)

‖w − w∗‖
≤ −‖J(w∗)‖(σ̄ − 1)

1 + σ̄
(2.21)

hold.

If all the hypotheses are satisfied, then ‖B − J(w∗)‖ ≤ 1
2‖J(w∗)−1‖ , which implies

‖J(w∗)−1(B − J(w∗))‖ ≤ ‖J(w∗)−1‖‖(B − J(w∗))‖ ≤ ‖J(w∗)−1‖ 1

2‖J(w∗)−1‖
≤ 1

2
< 1.
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From this, by Theorem 3.1.4 of [3], B is nonsingular, therefore w̄ is well defined and

‖B−1‖ ≤ ‖J(w∗)−1‖
1− ‖J(w∗)−1(B − J(w∗))‖

≤ 2‖J(w∗)−1‖. (2.22)

Let us define Σ =

 0

0

σ̄µe

, then

‖w̄ − w∗‖ = ‖w − αB−1(F (w)− Σ)− w∗‖ =

‖w − αB−1F (w) + αB−1Σ− w∗ −B−1J(w∗)(w − w∗) +B−1J(w∗)(w − w∗)‖ ≤
‖w − w∗ −B−1J(w∗)(w − w∗)‖+ ‖B−1(−αF (w) + J(w∗)(w − w∗) + αΣ)‖.

(2.23)

For the first term on the right-hand side,

‖w − w∗ −B−1J(w∗)(w − w∗)‖ = ‖B−1(B(w − w∗)− J(w∗)(w − w∗))‖ ≤
‖B−1‖‖B − J(w∗)‖‖w − w∗‖ ≤ 2‖J(w∗)−1‖δ1‖w − w∗‖.

(2.24)

By Lemma 2.11,

‖Σ‖ = ‖σ̄µe‖ = σ̄‖µe‖ ≤ σ̄‖XZe‖ = σ̄‖XZe− [J(w∗)]3(w − w∗) + [J(w∗)]3(w − w∗)‖

where [J(w∗)]3 is the third row block of J(w∗). From this,

‖Σ‖ ≤
σ̄(‖XZe− [J(w∗)]3(w − w∗)‖+ ‖[J(w∗)]3(w − w∗)‖) ≤

σ̄(β(w) + ‖J(w∗)‖‖w − w∗‖).
(2.25)

By considering the second term of (2.23), through the consistency of the norm and some

manipulation of the terms we have

‖B−1(−αF (w) + J(w∗)(w − w∗) + αΣ)‖ ≤
‖B−1‖‖ − αF (w) + J(w∗)(w − w∗) + αΣ− αJ(w∗)(w − w∗) + αJ(w∗)(w − w∗)‖ =

‖B−1‖‖ − α(F (w)− J(w∗)(w − w∗)) + (1− α)J(w∗)(w − w∗) + αΣ‖.

Through (2.22) and the triangular inequality it occurs

‖B−1‖‖ − α(F (w)− J(w∗)(w − w∗)) + (1− α)J(w∗)(w − w∗) + αΣ‖ ≤
2‖J(w∗)−1‖[α‖F (w)− J(w∗)(w − w∗)‖+ (1− α)‖J(w∗)(w − w∗)‖+ α‖Σ‖].

By the definition of β, the consistency of the norm and (2.25) we have

2‖J(w∗)−1‖[α‖F (w)− J(w∗)(w − w∗)‖+ (1− α)‖J(w∗)(w − w∗)‖+ α‖Σ‖] ≤
2‖J(w∗)−1‖[αβ(w) + (1− α)‖J(w∗)‖‖w − w∗‖+ ασ̄(β(w) + ‖J(w∗)‖‖w − w∗‖)].
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Finally, with some manipulation, we obtain

2‖J(w∗)−1‖[αβ(w) + (1− α)‖J(w∗)‖‖w − w∗‖+ ασ̄(β(w) + ‖J(w∗)‖‖w − w∗‖)] =

2‖J(w∗)−1‖[α(1 + σ̄)β(w) + (1 + (σ̄ − 1)α)‖J(w∗)‖‖w − w∗‖] =

2‖J(w∗)−1‖[α(1 + σ̄) β(w)
‖w−w∗‖ + (1 + (σ̄ − 1)α)‖J(w∗)‖]‖w − w∗‖.

From this, we have that

‖B−1(−αF (w) + J(w∗)(w − w∗) + αΣ)‖ ≤
2‖J(w∗)−1‖[α(1 + σ̄) β(w)

‖w−w∗‖ + (1 + (σ̄ − 1)α)‖J(w∗)‖]‖w − w∗‖.
(2.26)

Thus, by (2.23), (2.24) and (2.26),

‖w̄ − w∗‖ ≤
2‖J(w∗)−1‖

(
δ1 + α(1 + σ̄) β(w)

‖w−w∗‖ + (1 + (σ̄ − 1)α)‖J(w∗)‖
)
‖w − w∗‖.

(2.27)

From (2.21), if α ∈ (ᾱ, 1) then

α[(1 + σ̄) sup
‖w−w∗‖≤ε1

β(w)

‖w − w∗‖
+ ‖J(w∗)‖(σ̄ − 1)] ≤

ᾱ[(1 + σ̄) sup
‖w−w∗‖≤ε1

β(w)

‖w − w∗‖
+ ‖J(w∗)‖(σ̄ − 1)].

With some manipulation, this implies

α(1 + σ̄) sup
‖w−w∗‖≤ε1

β(w)

‖w − w∗‖
+ (1 + (σ̄ − 1)α)‖J(w∗)‖ ≤

ᾱ(1 + σ̄) sup
‖w−w∗‖≤ε1

β(w)

‖w − w∗‖
+ (1 + (σ̄ − 1)ᾱ)‖J(w∗)‖.

(2.28)

Thus, using (2.20), (2.27) and (2.28),

‖w̄ − w∗‖ ≤

2‖J(w∗)−1‖

(
δ1 + α(1 + σ̄) sup

‖w−w∗‖≤ε1

β(w)

‖w − w∗‖
+ (1 + (σ̄ − 1)α)‖J(w∗)‖

)
‖w − w∗‖ ≤

2‖J(w∗)−1‖

(
δ1 + ᾱ(1 + σ̄) sup

‖w−w∗‖≤ε1

β(w)

‖w − w∗‖
+ (1 + (σ̄ − 1)ᾱ)‖J(w∗)‖

)
‖w − w∗‖ ≤

2‖J(w∗)−1‖ r
2‖J(w∗)−1‖‖w − w

∗‖ =

r‖w − w∗‖,

which finishes the proof.

Before we show the last result about the linear local convergence of the feasible IPM

with quasi-Newton approach, we need a well-known result.
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Definition 2.13. Given a matrix C ∈ Rm×n, the Frobenius norm ‖ · ‖F is defined as

‖C‖F =

√√√√ m∑
i=1

n∑
j=1

C[i, j]2,

where C[i, j] is the element contained in i-th row and j-th column of matrix C.

Lemma 2.14. Suppose that ‖·‖ is the matrix norm induced by the Euclidian vector norm

and ‖ · ‖F is the Frobenius norm, both defined in Rn×n. Given any matrix C ∈ Rn×n, it

occurs

‖C‖2 ≤ ‖C‖F .

Proof. Let us consider the sets

D =

{
‖Cx‖2
‖x‖2

;x 6= 0

}
and E = {‖Cx‖2; ‖x‖2 = 1} .

It is clear that E ⊂ D. On the other hand, given any scalar y ∈ D,

y =
‖Cx‖2
‖x‖2

=
1

‖x‖2
‖Cx‖2 =

∥∥∥∥C ( x

‖x‖2

)∥∥∥∥
2

,

which is an element of E. Therefore, we have D ⊂ E and then D = E. This fact implies

that, through Definition 1.12,

‖C‖2 = sup
‖x‖2=1

{‖Cx‖2}. (2.29)

Let any x ∈ Rn such that ‖x‖2 = 1. By the definition of ‖ · ‖2 it occurs

‖Cx‖2 =

√√√√ n∑
i=1

(CT
i· x)2,

where Ci· is the i-th row vector of C. The Cauchy-Schwartz inequality affirms that, given

any vectors u and v in a space with an inner product, it occurs that

|uTv| ≤ ‖u‖‖v‖.

From this, we have

(CT
i· x)2 ≤ (‖Ci·‖2‖x‖2)2 = ‖Ci·‖22,

which implies

‖Cx‖2 ≤

√√√√ n∑
i=1

‖Ci·‖22 = ‖C‖F .
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Therefore,

sup
‖x‖2=1

{‖Cx‖2} ≤ ‖C‖F ,

which implies by (2.29) that

‖C‖2 ≤ ‖C‖F .

Let us denote as Hypothesis H the assumption that all the iterates wk obtained

from an IPM with quasi-Newton approach satisfy (xk, zk) > 0. We can note that, usually,

this hypothesis is not necessary, since given any k ∈ N where (xk, zk) > 0 we can choose

the step length αk sufficiently close to 0 such that (xk+1, zk+1) > 0 holds. However, in

this case, we need to use Lemma 2.12, and then it must occurs αk ∈ (ᾱ, 1) for all k ∈ N,

which does not allow us to select the value of αk as close to 0 as we want. Under this

hypothesis, Theorem 2.15 guarantees the linear local convergence of this feasible method.

About this result, it is interesting to note that it is valid for the Broyden method using

B0 = J(w0), and not for any previously selected B0 matrix. This is because, in its proof,

it is necessary to use Lemma 1 of [8], and also to use the fact that this Jacobian J is a

continuous function in order to start an induction process involving the matrices Bk.

Theorem 2.15. Let r ∈ (0, 1). There exists ε > 0 such that, if w0 is feasible, ‖w0−w∗‖ ≤
ε, B0 = J(w0), Bk is the Broyden approach of matrix J(wk) for all k ∈ N and Hypothesis

H is satisfied, then the sequence given by

wk+1 = wk − αkB−1k

F (wk)−

 0

0

σ̄µke


 , (2.30)

where αk ∈ (ᾱ, 1) for all k ∈ N considering ᾱ and σ̄ provided by Lemma 2.12, is well

defined and converges linearly to w∗.

Proof. Given r ∈ (0, 1), let us consider ᾱ, σ̄, ε1, δ1 > 0 obtained from Lemma 2.12 and

δ > 0 such that δ < δ1. Observe that the Jacobian J : RN → RN×N is Lipschitz

continuous in all RN . In fact, given any w = (x, λ, z) and w′ = (x′, λ′, z′) in RN we have

that

‖J(w)− J(w′)‖ =

∥∥∥∥∥∥∥
 0 AT In

A 0 0

Z 0 X

−
 0 AT In

A 0 0

Z ′ 0 X ′


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
 0 0 0

0 0 0

Z − Z ′ 0 X −X ′


∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥
 0 0 0

0 0 0

Z − Z ′ 0 X −X ′


∥∥∥∥∥∥∥
F

=
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‖(x− x′, 0, z − z′)‖ ≤ ‖(x− x′, λ− λ′, z − z′)‖ = ‖w − w′‖,

where ‖ · ‖F is the Frobenius norm.

As J is continuous, it is possible to obtain ε2 > 0 sufficiently close to 0 such that

‖w0 − w∗‖ < ε2 implies ‖B0 − J(w∗)‖ = ‖J(w0)− J(x∗)‖ ≤ δ and, at the same time, the

ε defined as ε = min{ε1, ε2} is close enough to 0 so that δ + 1
2
ε1+r
1−r ≤ δ1 is satisfied.

Let us prove by induction that

‖wk − w∗‖ ≤ ε and ‖Bk − J(w∗)‖ ≤ δ1 ∀ k ∈ N, (2.31)

where the sequence {wk} is generated by (2.30).

From the hypotheses, there are w0 feasible and B0 = J(w0) such that

‖w0 − w∗‖ ≤ ε and ‖B0 − J(w∗)‖ ≤ δ.

Suppose, as induction hypothesis, that we have k ∈ N such that

‖wp − w∗‖ ≤ ε and ‖Bp − J(w∗)‖ ≤ δ1

for all p ≤ k. By Lemma 2.12,

‖wk+1 − w∗‖ ≤ r‖wk − w∗‖ ≤ rε ≤ ε.

Let us prove with another induction process that

‖Bk+1 − J(w∗)‖ ≤ ‖B0 − J(w∗)‖+
1

2
(1 + r)‖w0 − w∗‖

(
k∑
j=0

rj

)
. (2.32)

In fact, by Lemma 8.2.1 of [3] we have

‖B1 − J(w∗)‖ ≤ ‖B0 − J(w∗)‖+
1

2
(1 + r)‖w0 − w∗‖,

which completes the first step of the process. Suppose, as induction hypothesis, that given

p such that 1 ≤ p ≤ k it occurs

‖Bp − J(w∗)‖ ≤ ‖B0 − J(w∗)‖+
1

2
(1 + r)‖w0 − w∗‖

(
p−1∑
j=0

rj

)
.

Therefore, by Lemma 8.2.1 of [3]

‖Bp+1 − J(w∗)‖ ≤ ‖Bp − J(w∗)‖+
1

2
(‖wp+1 − w∗‖+ ‖wp − w∗‖),
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which implies, by the induction hypothesis, that

‖Bp+1 − J(w∗)‖ ≤

‖B0 − J(w∗)‖+ 1
2
(1 + r)‖w0 − w∗‖

(
p−1∑
j=0

rj

)
+ 1

2
(‖wp+1 − w∗‖+ ‖wp − w∗‖) ≤

‖B0 − J(w∗)‖+ 1
2
(1 + r)‖w0 − w∗‖

(
p−1∑
j=0

rj

)
+ 1

2
(1 + r)‖wp − w∗‖ ≤

‖B0 − J(w∗)‖+ 1
2
(1 + r)‖w0 − w∗‖

(
p−1∑
j=0

rj

)
+ 1

2
(1 + r)rp‖w0 − w∗‖ =

‖B0 − J(w∗)‖+ 1
2
(1 + r)‖w0 − w∗‖

(
p∑
j=0

rj

)
,

which completes the last step of the process and then proves the veracity of (2.32). With

this, it occurs

‖Bk+1 − J(w∗)‖ ≤ ‖B0 − J(w∗)‖+
1

2
(1 + r)‖w0 − w∗‖

(
∞∑
j=0

rj

)
≤ δ +

1

2
ε
1 + r

1− r
≤ δ1,

which finishes the induction and proves (2.31). Thus, by Lemma 2.12 we have

‖wk+1 − w∗‖ ≤ r‖wk − w∗‖ ∀ k ∈ N.

Let us prove that if wk = (xk, λk, zk) is feasible, then wk+1 = (xk+1, λk+1, zk+1) is also

feasible. In fact, since wk is feasible, it occurs

ATλk + zk = c

and

Axk = b.

Since the Jacobian matrix at some point wk is the coefficient matrix of (2.15), that is

J(wk) =

 0 AT In

A 0 0

Zk 0 Xk

 , (2.33)

we can see that the first two row blocks of this matrix are constant for all k ∈ N, and then

it coincides with these blocks in matrix B0, which is equals to J(w0) by hypothesis. One

of the results provided by Lemma 1 of [8] is that, if Bk+1 is obtained through a Broyden’s

update (1.8) of Bk and the first two row blocks of Bk coincide with those present in (2.33),

then the first two row blocks of Bk+1 will also coincide. Therefore, since B0 = J(w0), we
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have that all the matrices Bk obtained from Broyden’s method in this case have the first

two row blocks equal to those present in (2.33).

If we denote  ∆xk

∆λk

∆zk

 = −B−1k

F (wk)−

 0

0

σ̄µke


 ,

by (2.30) we have wk+1 = wk+αk(∆xk,∆λk,∆zk), in the same way as Step 3 of Algorithm

2.9. By considering the fact that Bk have the first two row blocks equal to those of

Jacobian matrix (2.33), it occurs

AT∆λk + ∆zk = c− ATλk − zk = 0

and

A∆xk = b− Axk = 0.

Therefore,

ATλk+1 + zk+1 = AT (λk + ∆λk) + (zk + ∆zk) = (ATλk + zk) + (AT∆λk + ∆zk) = c

and

Axk+1 = A(xk + ∆xk) = Axk + A∆xk = b.

Through Hypothesis H, we have (xk+1, zk+1) > 0, which implies that wk+1 is feasible, as

we wanted.

By considering the last affirmation proved, we obtain that the feasibility of w0 guar-

antee this condition for all the sequence {wk}, which finishes the proof.

We can observe that the result built through Lemma 2.12 and Theorem 2.15 requires

αk sufficiently close to 1 for all k ∈ N and σ̄ sufficiently close to 0. This goes against

the conditions normally used in analogous results about interior point methods, which

normally require σk sufficiently close to 1 and αk sufficiently close to 0 as k → ∞. This

first hypothesis aims to approximate the central path of the iterates along the iterations,

while the second one aims precisely to use this measure to guarantee the positivity of

vectors xk and zk at each iteration k, which avoids the use of Hypothesis H.

It is clear that the necessity of using Hypothesis H to build this convergence result

restricts its relevance with respect to applicability. Being necessary the use of this hy-

pothesis, this result may be relevant in an application situation where, for some reason,

we can guarantee that positivity will always hold for all iterates, and therefore we don’t

need to worry about it.

One possible way to construct a similar result while avoiding the use of the Hypothesis

H might be to use strategies related to the concept of central path neighborhoods, which

is a common assumption in interior points methods (see [17, Chapter 14]), which was not

considered in the present work.



Chapter 3

Nonsmooth equations in linear

programming

In this chapter, we apply nonsmooth variants of Newton’s and Broyden’s methods to

solve a system of nonsmooth equations equivalent to the KKT conditions of a linear

programming problem, in order to study their local and global convergence properties.

The main references of this chapter are Gomes-Ruggiero, Mart́ınez and Santos [6] and Qi

and Jiang [20].

The work developed by Gomes-Ruggiero, Mart́ınez and Santos [6] presents an algo-

rithm that aims to solve a system of nonlinear equations without hypotheses about its

differentiability. This algorithm uses local methods in its operation and has attractive

properties about global convergence. On the other hand, Qi and Jiang [20] show defini-

tions of systems of nonsmooth equations equivalent to the KKT conditions of nonlinearly

constrained programming problems and promote a very interesting study, relating char-

acteristics of the problem with properties of these systems, such as differentiability, for

example.

3.1 Nonsmooth equations

Qi and Jiang [20] considered the nonlinearly constrained programming problem (3.1)

min f(x)

s.t. h(x) = 0

g(x) ≤ 0,

(3.1)
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where f : Rn → R, g : Rn → Rp and h : Rn → Rq are continuously differentiable

functions. The KKT conditions of this problem can be written as

∇f(x) +

p∑
j=1

uj∇gj(x) +

q∑
j=1

vj∇hj(x) = 0

u ≥ 0

g(x) ≤ 0

uTg(x) = 0

h(x) = 0.

(3.2)

In their work, it is showed some alternative formulations for conditions (3.2), like for exam-

ple the well-known Burmeister-Fischer formulation. The system of nonsmooth equations

which will be used in this work is the one developed in Pang [18], which is described in

(3.3):

∇f(x) +

p∑
j=1

uj∇gj(x) +

q∑
j=1

vj∇hj(x) = 0

h(x) = 0

min{u1,−g1(x)} = 0
...

min{up,−gp(x)} = 0.

(3.3)

If we define in (3.1) the function f : Rn → R as f(x) = cTx, g : Rn → Rn as

g(x) = −x and h : Rn → Rm as h(x) = Ax − b, given any x ∈ Rn, the gradient of f

at x is ∇f(x) = c, the Jacobian of g at this point is Jg(x) = −In, where In ∈ Rn×n is

the identity matrix, and the Jacobian of h at x is Jh(x) = A. Therefore, the derivatives

f ′, g′ and h′ of all these functions are constant, and then continuous. This fact implies

that f, g and h are continuously differentiable functions, and then (2.1) is a problem

with form (3.1). Moreover, by defining u = z and v = −λ, we obtain that the KKT

conditions (3.2) coincide with those shown in (2.2). Therefore, the KKT conditions (2.2)

of a linear programming problem (2.1) can be write equivalently as the following system

of nonsmooth equations:

ATλ+ z = c

Ax = b

min{x1, z1} = 0
...

min{xn, zn} = 0.

(3.4)

Thus, from Lemma 2.4, x∗ ∈ Rn solves the linear programming problem (2.1) if and only

if there are λ∗ ∈ Rm and z∗ ∈ Rn such that x∗, λ∗ and z∗ satisfy conditions (3.4).
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Let us now consider function F : RN → RN , where N = 2n + m with n and m from

(2.1), defined by

F (w) =


ATλ+ z − c
Ax− b

min{x1, z1}
...

min{xn, zn}

 . (3.5)

Finding a solution of (3.4), and therefore a solution of problem (2.1), is equivalent to find

w∗ ∈ RN that satisfies equation

F (w) = 0. (3.6)

A function f : Rn → Rm is said to be nonsmooth if there is x ∈ Rn such that the

derivative of f at this point does not exist, and then neither the Jacobian. However,

sometimes when methods are applied in order to find a x ∈ Rn such that f(x) = 0, as for

example in Newton-based algorithms, it can be helpful to use all the available information

about the derivative of this function on a neighborhood of this point. To that end, there

exists the concept of generalized derivatives in the sense of Clarke [2], which is defined as

∂f(x) = the convex hull of ∂Bf(x)

where

∂Bf(x) =

{
lim

xi→x, xi∈Df

Jf(xi)

}
(3.7)

with Jf(xi) being the Jacobian matrix of f at xi and Df being the set of points at which

f is differentiable. In this sense, for example, if we consider f : R2 → R defined by

f(x1, x2) = min{x1, x2},

we obtain that this function is nonsmooth, since the derivative of f does not exist at

every point (x1, x2) ∈ R2 such that x1 = x2. Moreover, by considering the concept of

generalized derivatives at the point (0, 0) ∈ R2, we have

∂Bf(0, 0) =
{[

0 1
]
,
[

1 0
]}

,

which implies

∂f(0, 0) =
{

(1− t)
[

0 1
]

+ t
[

1 0
]

; t ∈ [0, 1]
}

and then

∂f(0, 0) =
{[

t 1− t
]

; t ∈ [0, 1]
}
.

Through the definition of generalized derivative, it is possible also to define semismooth

functions. However, before we show this concept, we need to define what is a locally

Lipschitzian function.
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Definition 3.1. A function f : Rn → Rm is said to be locally Lipschitzian if, given any

x ∈ Rn, there is δ > 0 such that the restriction of function f to the open ball centered in

x with radius equals to δ is a Lipschitz continuous function.

Definition 3.2. A locally Lipschitzian function f : Rn → Rm is said to be semismooth at

x ∈ Rn if

lim
V ∈ ∂f(x+ td′)

d′ → d, t→ 0+

{V d′} (3.8)

exists for any d ∈ Rn.

If f is a semismooth function at x, then f is directionally differentiable at x, being

the directional derivative f ′(x; d) equals to the limit (3.8). Going further, a semismooth

function f can also be strongly semismooth, if it obeys Definition 3.3.

Definition 3.3. Suppose f : Rn → Rm is semismooth at x ∈ Rn. f is called strongly

semismooth at x if given any V ∈ ∂f(x+ d) with d→ 0,

V d− f ′(x; d) = o(‖d‖2),

where f ′(x; d) is the directional derivative of f at x in relation to the direcion d.

The linear programming problem (2.1) can be seen as a particular case of some well-

known classes of optimization problems. The properties of these problems can help us

identify important characteristics about the function F defined in (3.5). Let us look at

some of them.

Definition 3.4. Given a function f : Rn → Rn and a closed convex set C in Rn, a

variational inequality problem is defined as the task of

find x ∈ C such that

f(x)T (y − x) ≥ 0 for all y ∈ C.
(3.9)

Note that, defining f(x) = c for all x ∈ Rn and C = {x ∈ Rn;x ≥ 0, Ax = b}, we

obtain that problem (2.1) is a variational inequality problem.

Definition 3.5. Consider the problem (3.1). If f, g and h are twice continuously dif-

ferentiable and ∇2f,∇2g and ∇2h are locally Lipschitzian, then (3.1) is called an LC2

problem. Moreover, if f, g and h are not necessarily twice continuously differentiable but

their derivatives are semismooth, then (3.1) is called an SC1 problem.

We have already seen that if we define in (3.1) the function f : Rn → R as f(x) = cTx,

g : Rn → Rn as g(x) = −x and h : Rn → Rm as h(x) = Ax − b, then (2.1) is a problem
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with form (3.1). But note also that, since f ′, g′ and h′ are constant in this case, they are

smooth, and then problem (2.1) can be classified as an SC1 problem. Moreover, ∇2f,∇2g

and ∇2h are null, then they are locally Lipschitzians, and therefore (2.1) is also an LC2

problem.

Theorem 3.6 relates the concepts of SC1 problem and LC2 problem with semismooth-

ness and strongly semismoothness of its system of nonsmooth equations.

Theorem 3.6. If (3.1) is an SC1 problem, then the function F defined as the nonsmooth

version (3.3) of its KKT conditions is a semismooth function. If (3.1) is an LC2 problem,

then F is a strongly semismooth function.

Proof. The proof is a direct application of Theorem 3.2 of [20] to (3.1).

Through Theorem 3.6, we guarantee that function F defined in (3.5) is strongly semis-

mooth and then, in particular, is also locally Lipschitzian. We can also obtain a result

about the differentiability of this function F in some points of its domain. This result

involves the concept of strong Fréchet differentiability, which is presented in Definition

3.7.

Definition 3.7. A function f : Rn → Rm is strongly Fréchet differentiable at x ∈ Rn if

f is differentiable at this point and

lim
(x1, x2)→ (x, x)

x1 6= x2

f(x1)− f(x2)− f ′(x)(x1 − x2)
‖x1 − x2‖

= 0

holds.

By adapting item (a) of Theorem 3.3 in [20] and considering problem (2.1), we obtain

a result about the differentiability of function F defined by (3.5), which is showed in

Theorem 3.8.

Theorem 3.8. The function F : RN → RN given by (3.5) is differentiable, strongly

Fréchet differentiable and continuously differentiable at w = (x, λ, z) ∈ RN , where x =

(x1, ..., xn) and z = (z1, ..., zn), if and only if xi 6= zi for all i ∈ {1, ..., n}.

Proof. The proof is a direct application of Theorem 3.3 of [20] to (3.1).

Observe that the function F defined in (3.5) is continuous, but as we see in Theorem

3.8, it is only differentiable in the set G = {w ∈ RN ;xi 6= zi ∀ i ∈ {1, ..., n}}. The

Jacobian of this function, which we denote as J : G → RN×N , is defined as

J(w) =

 0 AT In

A 0 0

B 0 C


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where B ∈ Rn×n is a diagonal matrix such that each diagonal element B[i, i] is defined

by

B[i, i] =

{
0, if min{xi, zi} = zi

1, if min{xi, zi} = xi
, (3.10)

and the elements of diagonal matrix C ∈ Rn×n, analogously, are defined by

C[i, i] =

{
1, if min{xi, zi} = zi

0, if min{xi, zi} = xi
.

Given w ∈ G, for each i ∈ {1, ..., n} there are two possibilities: min{xi, zi} = xi or

min{xi, zi} = zi. Therefore, if we consider the combination between these possibilities for

each index i, we conclude that each vector of G satisfies one of 2n possible combinations.

From this, let D1, ...,D2n ⊂ G subsets such that each one contains the vectors that satisfies

one specific combination of the 2n possible. With this definition, we observe the following

properties:

1. Dj 6= ∅ for all j ∈ {1, ..., 2n}, since we can find a vector of G that satisfy any

possible combination;

2. Di ∩ Dj = ∅ if i 6= j, because is not possible that w ∈ G to satisfy two different

combinations;

3. G =
2n⋃
j=1

Dj, since every element of G satisfy some possible combination.

Lemma 3.9 shows two more relevant properties satisfied by sets Dj for all j ∈ {1, ..., 2n}.

Lemma 3.9. Dj ⊂ G is an open convex set for any j ∈ {1, ..., 2n}.

Proof. Firstly, let us prove that Dj is an open set. Consider any w = (x, λ, z) ∈ Dj and

ε > 0 such that ε < min

{
|xi − zi|

2
; i ∈ {1, ..., n}

}
, which is possible since w ∈ G. Suppose

that w′ = (x′, λ′, z′) is a vector contained in the open ball B(w, ε), with center being w

and radius equal to ε. Consider any i ∈ {1, ..., n}, observe that |x′i − xi| ≤ ‖w′ − w‖ <

ε <
|xi − zi|

2
, which implies that

xi −
|xi − zi|

2
< x′i < xi +

|xi − zi|
2

. (3.11)

Analogously, we have

zi −
|xi − zi|

2
< z′i < zi +

|xi − zi|
2

. (3.12)
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From this, if min{xi, zi} = xi then zi > xi, and therefore

zi −
|xi − zi|

2
=
xi + zi

2
= xi +

|xi − zi|
2

,

which implies by (3.11) and (3.12) that z′i > x′i and thus, min{x′i, z′i} = x′i. On the other

hand, if min{xi, zi} = zi then xi > zi, therefore

xi −
|xi − zi|

2
=
xi + zi

2
= zi +

|xi − zi|
2

and thus, by (3.11) and (3.12), we have x′i > z′i, which implies min{x′i, z′i} = z′i. With

this, we have w′ ∈ Dj, consequently B(w, ε) ⊂ Dj, and then Dj is an open set.

Let us prove that Dj is a convex set. Consider w′ = (x′, λ′, z′), w′′ = (x′′, λ′′, z′′) ∈ Dj
and the set

[w′, w′′] = {tw′ + (1− t)w′′; t ∈ [0, 1]}.

If w = (x, λ, z) ∈ [w′, w′′] then

xi = tx′i + (1− t)x′′i and zi = tz′i + (1− t)z′′i (3.13)

for all i ∈ {1, ..., n} and some t ∈ [0, 1]. From this, given an index i, we have two

possibilities:

min{x′i, z′i} = x′i and min{x′′i , z′′i } = x′′i ,

or

min{x′i, z′i} = z′i and min{x′′i , z′′i } = z′′i .

If the first one occurs, then z′i > x′i and z′′i > x′′i , which implies by (3.13) that zi > xi, and

then min{xi, zi} = xi. Analogously, if the second one occurs, then x′i > z′i and x′′i > z′′i ,

so by (3.13) we have xi > zi, and thus min{xi, zi} = zi. Therefore, w ∈ Dj, which implies

[w′, w′′] ⊂ Dj and finishes the proof.

Observe that at any given set Dj it occurs that min{xi, zi} is equal to xi or is equal

to zi throughout all the set and for all i ∈ {1, .., n}, therefore the Jacobian J is constant

at Dj, which is denoted as Jj. Moreover, as the function F is defined by (3.5), we obtain

that the restriction of the function F to the set Dj is linear, then defining a function

Fj : RN → RN by

Fj(w) = Jjw +

 −c−b
0

 , (3.14)

we have that the restriction of functions F and Fj to the set Dj coincides.
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3.2 Convergence of Newton’s and Broyden’s meth-

ods

During our research, no studies were found in the literature regarding the application of

Newton’s and Broyden’s methods to solve linear programming problems through systems

of nonsmooth equations. Therefore, this study was conducted and, in this section, results

related to the application of these methods are presented in order to solve the system

ATλ+ z = c

Ax = b

min{x1, z1} = 0
...

min{xn, zn} = 0,

(3.15)

and therefore the linear programming problem (2.1). Although this study was not com-

plex, it was possible to obtain interesting results through it, such as an instantaneous

local convergence result for Newton’s method, for example. Throughout this section, the

function F considered is the one obtained through (3.5). If the derivatives of F are needed

at wk where F is not differentiable, we take some V ∈ ∂BF (wk), which is defined in (3.7).

Theorem 3.10. If J(w∗) is nonsingular and there is j ∈ {1, ..., 2n} such that w0, w
∗ ∈ Dj,

then Newton’s method finds w∗ in one iteration.

Proof. By hypothesis, w0, w
∗ ∈ Dj, then Jj = J(w∗) = J(w0) and therefore, by (3.14),

we have

F (w0) = Fj(w0) = J(w∗)w0 +

 −c−b
0

 .
Through the application of Newton’s method, we have that

w1 = w0 − J(w0)
−1F (w0) = w0 − J(w∗)−1

J(w∗)w0 +

 −c−b
0


 ,

which implies

w1 + J(w∗)−1

 −c−b
0

 = 0.

By considering the function Fj defined in (3.14), it occurs Fj(w1) = 0, but Fj(w
∗) = 0

and, since J(w∗) is nonsingular, Fj is injective. Therefore, w1 = w∗, which finishes the

proof.
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As a consequence of Theorem 3.10, we obtain the local convergence of Newton’s

method to solve the nonsmooth equations (3.4) in Corollary 3.11.

Corollary 3.11. If J(w∗) is nonsingular, then there is ε > 0 such that, if ‖w0−w∗‖ < ε,

Newton’s method finds w∗ in one iteration.

Proof. By hypothesis J(w∗) is nonsingular, then w∗ ∈ G and therefore there is j ∈
{1, ..., 2n} such that w∗ ∈ Dj. By Lemma 3.9, Dj is an open set, then there is ε > 0 such

that B(w∗, ε) ⊂ Dj. From this, if ‖w0−w∗‖ < ε then w0 ∈ Dj, and therefore by Theorem

3.10, Newton’s method converges in one iteration.

We observe that if we use Broyden’s method with B0 = J(w0) in order to find w∗ ∈ RN

such that F (w∗) = 0, the results of Theorem 3.10 and Corollary 3.11 remain valid,

since the first iteration of this method is equal to the first iteration of Newton’s method.

Theorem 3.12 shows a result about the convergence of Broyden’s method when one does

not necessarily defines B0 = J(w0).

Theorem 3.12. Suppose that J(w∗) is nonsingular. There are ε, δ > 0 such that, if

‖w0 − w∗‖ ≤ ε and ‖B0 − J(w∗)‖ ≤ δ

then the sequence {wk} generated by Broyden’s method is well defined and converges su-

perlinearly to w∗.

Proof. By hypothesis J(w∗) is nonsingular, then w∗ ∈ G, and therefore there is j ∈
{1, ..., 2n} such that w∗ ∈ Dj. We already show that F is linear and the Jacobian J

is constant in Dj, therefore this functions are continuously differentiable and Lipschitz

continuous in this set, respectively. From Lemma 3.9, we have that the set Dj is open

and convex. The result follows by Theorem 1.13.

The best property that an algorithm can have about its convergence guarantee is

global convergence. This concept is defined in the Definition 3.13.

Definition 3.13. An algorithm is said to be globally convergent to w∗ if, given any w0 ∈
RN , the sequence {wk} generated converges to w∗.

By considering just the hypothesis of J(w∗) being nonsingular, unfortunately we can

show that there is no result about the global convergence of Newton’s method and Broy-

den’s method with B0 = J(w0) to solve the nonsmooth equations (3.4). This occurs

because, given any problem in form (2.1), the matrix A is not full column rank. There-

fore, if we consider a starting point for these methods w0 = (x, λ, z) ∈ G such that

min{xi, zi} = zi for all i ∈ {1, ..., n}, then the matrix B defined by (3.10) is null, which

implies that the matrix J(w0) is singular, and then these methods are not well defined.
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In order to verify the veracity of another results about convergence of Newton’s and

Broyden’s methods to solve the nonsmooth equations (3.4), we perform numerical ex-

periments using the Julia language [1]. In these experiments, many linear programming

problems were considered, however, we will show results about a specific one. This prob-

lem is
min x1 + x2

s.t. x1 + x2 ≤ 10

x1 ≥ 2

x1, x2 ≥ 0,

(3.16)

which had as feasible set a rectangular triangle with vertices at points (2, 0), (2, 8) and

(10, 0), being the point (2, 0) the solution of the problem, as shows Figure 3.1.

Figure 3.1: Feasible set of problem 3.16.

Through the addition of slack variables x3 and x4, this problem can be transformed to

the form (2.1) with

c =


1

1

0

0

 , A =

[
1 1 1 0

−1 0 0 1

]
, and b =

[
10

−2

]
.

and then the solution becomes the vector w∗ = (x∗, λ∗, z∗) ∈ R10 with

x∗ = (2, 0, 8, 0), λ∗ = (0,−1) and z∗ = (0, 1, 0, 1). (3.17)

Firstly, we applied Broyden’s method with B0 = I10 and a starting point w0 =

(x0, λ0, z0) ∈ R10 such that

x0 = (1000, 300, 1000, 300), λ0 = (300, 600) and z0 = (300, 1000, 300, 1000).
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Therefore, we have that w0 is far from w∗, however there is j ∈ {1, ..., 16} such that

w0, w
∗ ∈ Dj. The algorithm makes 5928 iterations and then stops due to finding a

singular matrix Bk. The last wk = (xk, λk, zk) generated by the method was

xk = (−49.111, 21.779, 35.307,−45.726), λk = (−6.014e19,−1.336e19) and

zk = (4.677e19, 6.014e19, 6.014e19, 1.336e19),

which indicates that the method is diverging. The failure of this experiment proves that

is not true the following two results:

• If J(w∗) is nonsingular, w0, w
∗ ∈ Dj for some j ∈ {1, ..., 2n} and B0 is any nonsingu-

lar matrix of RN×N , then Broyden’s method generates a sequence {wk} convergent

to w∗;

• If J(w∗) is nonsingular, w0 is any vector of RN and B0 is any nonsingular matrix of

RN×N , then Broyden’s method generates a sequence {wk} convergent to w∗.

We already see, through Theorem 3.10, that if J(w∗) is nonsingular and there is

j ∈ {1, ..., 2n} such that w0, w
∗ ∈ Dj, then Broyden’s method with B0 = J(w0) finds w∗

in one iteration. Therefore, is valid think about if at least the occurrence of convergence

remains if we apply this method in a linear programming problem having the matrix B0

close to J(w∗), but not necessarily equals to it. In order to verify this, we use Broyden’s

Method in problem (3.16) with a starting point w0 = (x0, λ0, z0) ∈ R10 such that

x0 = (1000, 500, 1000, 500), λ0 = (10, 100) and z0 = (500, 1000, 500, 1000),

which is in the same set Dj than the solution w∗. We know from (3.17) that

J(w∗) =

 0 AT In

A 0 0

B 0 C


with

B =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 and C =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 .
Therefore, we make numerical experiments considering

B0 =

 0 AT In

A 0 0

B′ 0 C ′


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whereB′ ∈ R4×4 is different ofB only in the elementsB′[1, 1] andB′[3, 3], and analogously,

C ′ ∈ R4×4 is different of C only in C ′[2, 2] and C ′[4, 4].

First, we execute experiments considering B′[1, 1], B′[3, 3], C ′[2, 2] and C ′[4, 4] with

values around 10−1 and 10−2. In such cases, the algorithm either stopped because it found

a matrix Bk singular, or worked for 10000 iterations without finding the solution, which

is the maximum number of iterations allowed, and therefore did not converge to w∗. In

the sequence, we selected B′[1, 1], B′[3, 3], C ′[2, 2] and C ′[4, 4] taking values around 10−3

and 10−4. In this situation, the algorithm converged to w∗ and more: we observed that

the smaller is the values of the elements of matrices B′ and C ′ which we selected, the

smaller is the number of iterations used for obtain the convergence. Thus, these numerical

experiments make us believe that the result we are checking is true. Unfortunately, we

could not obtain a proof for this result yet, but it is formalized next as Conjecture 3.14.

Conjecture 3.14. Suppose that J(w∗) is nonsingular and w0, w
∗ ∈ Dj for some j ∈

{1, ..., 16}. There exists δ > 0 such that, if ‖B0 − J(w∗)‖ < δ then Broyden’s method

converges to w∗. The closer B0 is to J(w∗), the smaller is the number of iterations used

to obtain the convergence.

We also applied Broyden’s method in problem 3.16 with B0 = J(w∗) and the starting

point w0 = (x0, λ0, z0) ∈ R10 being

x0 = (1000, 1000, 1000, 1000), λ0 = (1000, 1000) and z0 = (500, 500, 500, 500).

The method worked for 450 iterations and then stopped because a singular matrix Bk

was found. Therefore, in this experiment the algorithm did not converge to w∗, and the

failure of this test proves that is not true the following result:

Suppose that J(w∗) is nonsingular. Given any w0 ∈ RN , there is δ > 0 such that, if

‖B0 − J(w∗)‖ < δ, then Broyden’s method converges to w∗.

Finally, we wanted to verify the validity of the result:

Suppose that J(w∗) is nonsingular. Given any matrix B0 ∈ RN×N nonsingular, there is

δ > 0 such that, if ‖w0 − w∗‖ < δ, then Broyden’s method converges to w∗.

Note that we can not prove the non-validity of this result through a counter-example,

since if we consider w0 = w∗ the algorithm will converges to w∗, and if we obtain the

failure of some numerical experiment using a starting point w0 different of the solution

w∗, it is always possible to make another test with the starting point w0 closer to the

solution. Unfortunately, we have not obtained a proof about the validity of this result.

Therefore, we executed numerical experiments in order to observe if it seems to be valid

or not.
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Broyden’s method was applied in problem (3.16) with B0 ∈ R10×10 being a diagonal

matrix where, for all j ∈ {1, ..., 10}, B[j, j] = 40 · j. In all experiments, we considered

w0 = (x0, λ0, z0) ∈ R10 with

x0 = (2, 0, ψ, 0), λ0 = (0,−1) and z0 = (0, 1, 0, 1),

where ψ > 0, and then the closer ψ is to 8, the closer w0 is to w∗. It was made four tests,

which have ψ equals to 7, 7.9, 7.99 and 7.999999, respectively. In all these experiments,

the algorithm stops at the first iteration by the same reason: the matrix B1 ∈ R10×10

is singular. Therefore, with these results, the statement considered does not seem to be

true.

Table 3.1 summarizes the results obtained in this section. In it, “T” means that the

considered statement is true, “F” means that it is false and “?” means that we do not

obtained a conclusion about the validity of the claim.

Newton’s

Method

Broyden’s

Method,

B0 = J(w0)

Broyden’s

Method,

B0 close enough

of J(w∗)

Broyden’s

Method,

any B0

nonsingular

w0 close enough

of w∗
T T T ?

∃ j ∈ {1, ..., 2n}
such that

w0, w
∗ ∈ Dj

T T ? F

any w0 ∈ RN F F F F

Table 3.1: Results obtained from the application of Newton’s and Broyden’s methods in

linear programming problems through nonsmooth equations.

3.3 Global convergence

As we can see in Table 3.1, the pure application of Newton’s and Broyden’s method in

order to solve problem (3.6) does not have global convergence good results. Therefore,
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in order to obtain an algorithm with a behavior at least closer to the global convergence

when applied to this situation, we studied the algorithms presented by Gomes-Ruggiero,

Mart́ınez and Santos [6] and Ito and Kunisch [9].

Given a function f : Rn → Rn, Ito and Kunisch [9] showed a semismooth Newton

method which has a global convergence result to a point x∗ ∈ Rn such that f(x∗) = 0 if

this function f satisfies some hypotheses. One of the conditions is that the set

S = {x ∈ Rn; ‖f(x)‖ ≤ ‖f(x0)‖} (3.18)

needs to be bounded, where x0 is the first iterate of the semismooth Newton method.

For our purposes, we are interested in the application of this semismooth Newton

method for solve problem (3.6). However, we can obtain an example of problem like (3.6)

where condition (3.18) does not holds. This fact proves that the method considered by [9]

does not have its global convergence guaranteed when it is applied to a general problem

with the form (3.6). In fact, consider the problem (2.1) where

c = (1, 1), A = [ 1 1 ] and b = 2.

In this case, n = 2 and m = 1, which implies N = 5 and then the domain and counter-

domain of F is the set R5, which have vectors with the form w = (x, λ, z) where x, z ∈ R2

and λ ∈ R. Consider the sequence {w′k} in R5 where, for each k ∈ N, w′k = (x′k, λ
′
k, z
′
k)

with

x′k = (1, 1), λ′k = 1− k and z′k = (k, k)

and select, as starting point of the method, the vector w0 = (x0, λ0, z0) with x0 = z0 =

(1, 1) and λ0 = 1. Therefore, given any k ∈ N,

‖F (w′k)‖ =

∥∥∥∥∥∥∥∥∥


ATλ′k + z′k − c

Ax′k − b
min{1, k}
min{1, k}


∥∥∥∥∥∥∥∥∥ . (3.19)

Observe that

ATλ′k + z′k − c =

[
1

1

]
(1− k) +

[
k

k

]
−

[
1

1

]
=

[
0

0

]
,

Ax′k − b =
[

1 1
] [ 1

1

]
− b = Ax0 − b

and

min{1, k} = 1 = min{1, 1}.
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Thus, since ‖ · ‖ is the Euclidian norm, by (3.19) it occurs

‖F (w′k)‖ =

∥∥∥∥∥∥∥∥∥∥∥∥


0

0

Ax0 − b
min{1, k}
min{1, k}



∥∥∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥


ATλ0 + z0 − c

Ax0 − b
min{1, 1}
min{1, 1}


∥∥∥∥∥∥∥∥∥ = ‖F (w0)‖,

which implies that, in this case, w′k ∈ S for all k ∈ N. Therefore, since {w′k} is not a

bounded sequence, the set S is not bounded also, as we wanted.

Differently from Ito and Kunisch [9], in Gomes-Ruggiero, Mart́ınez and Santos [6] it

is presented a general algorithm for global convergence, which has the objective of, given

a function f : Ω ⊂ Rn → Rn, find a point x∗ which satisfies

f(x) = 0 (3.20)

without making smoothness assumptions about this function. The algorithm developed in

[6] has relevant characteristics about global convergence, and the problem (3.20) is quite

general. These facts motivated us to study the algorithm in depth and perform numerical

experiments in order to observe how it works.

The algorithm developed in [6] is based on a monotone reduction of the merit function

g : Rn → R defined by

g(x) =
1

2
‖f(x)‖2.

It is described by Algorithm 3.15.

Algorithm 3.15.

Consider α0 = 1, m0 = 1 and select σ ∈ (0, 1), a ∈ (0, 1), η ∈ (0, 1
2
] and x0 ∈ Rn;

for k = 0, 1, 2, ...

Step 1: Choose dk ∈ Rn such that

g(xk + αkdk)− g(xk)

αk
≤ −σg(xk) (3.21)

whenever

αk ≤
a

mk

. (3.22)

If this choice is not possible, stop (in this case, we say that the algorithm breaks

down);

Step 2: If

g(xk + αkdk) < g(xk)

holds, define xk+1 = xk + αkdk. Otherwise, define xk+1 = xk;



3.3 Global convergence 51

Step 3: If

g(xk+1) ≤ (1− σαk)g(xk) (3.23)

holds, define αk+1 = 1 and mk+1 = mk + 1. Otherwise, choose

αk+1 ∈ [ηαk, (1− η)αk]

and define mk+1 = mk;

end(for)

We can observe that the closer constant σ is to 1, the more difficult it will be for the

inequalities (3.21) and (3.23) to be satisfied. Moreover, the smaller the a we previously

chose, the more difficult it is to satisfy (3.22) and, consequently, we have to check (3.21)

less frequently.

Through Step 2, the basic idea of Algorithm 3.15 is only accept as a new iterate the

point xk + αkdk if it produces a decrease in merit function g. This fact guarantee the

monotone decreasing of this function throughout the iterations. We can see also that the

inequality (3.22) works like a tolerance for the sufficient decrease of g, through inequality

(3.21). If for several consecutive iterations (3.21) is false, then in all these iterations

(3.23) did not occur, which made αk becomes smaller, while mk remains the same value.

Therefore, since the value a is previously defined, (3.22) gets closer and closer to being

satisfied, until it is, and then in this iteration either (3.21) is valid or the algorithm

breaks down. However, it is valid to mention that in this situation, since αk tends to 0,

inequality (3.21) becomes easier to be satisfied. Then, if at some iteration the algorithm

breaks down, probably the strategy used for the search direction dk at Step 1 was not

able to choose a vector with ‖dk‖ large enough for xk + αkdk to be in a neighborhood of

the solution, where there are points such that the image in relation to g is smaller than

g(xk). This implies that, in all the directions possible to choose, this method was unable

to find dk such that g(xk + αkdk) is not even slightly smaller than g(xk). Therefore, the

algorithm breaking down strongly indicates that the current iterate xk is a local minimum

of g.

It is developed in [6] a theoretical study about Algorithm 3.15 in order to guarantee

its convergence results. As the main result in this sense, we have Theorem 3.16.

Theorem 3.16. If Algorithm 3.15 does not break down, the sequence {xk} generated by

this algorithm is such that

lim
k→∞

g(xk) = 0.

Proof. The proof of this result can be found in Theorem 2.4 of [6].
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There are several forms to implement Algorithm 3.15, which depend directly of the

strategy used for choose the direction dk at Step 1. In this work, analogously to [6], we

will use a point sk replacing αkdk, which is an approximate minimizer of function

min 1
2
‖Vks+ f(xk)‖2

s.t. ‖s‖∞ ≤ ∆
, (3.24)

where xk is the current iterate of the algorithm and Vk ∈ ∂Bf(xk). We will apply this

method in function F defined in (3.5), which we have already seen that is semismooth,

and then it is differentiable “almost everywhere”. Therefore, through this choice of Vk, we

can guarantee that the sk computed at each iteration k will be the point which minimizes

the merit function associated with the linear model of f around xk in relation to Vk

subject to a square region with measure of side equals to ∆. Consequently, the task of

solving problem (3.24) brings a “Newton’s method strategy” for the algorithm, which can

improve its operation.

In the implementation of Algorithm 3.15, since sk is a solution of problem (3.24), we

opt for use it instead of αksk, after all, since αk ∈ (0, 1), ‖αksk‖ ≤ ‖sk‖ ≤ ∆, and then

αksk might not be a solution of (3.24). From this, if we use αksk, it will not be the best

point in relation with the “Newton’s method strategy”. Moreover, we can observe that, at

each iteration k of Algorithm 3.15, αk is previously computed, and then have no relation

with the selection of direction dk. Therefore, the use of αkdk in Algorithm 3.15 is to, in

the case where (3.21) is not satisfied in successive iterations, bring direction αkdk closer

and closer to the current iterate xk, in order to identify an eventual local minimum of g

and then breaks down the algorithm on it. In this sense, to ensure this characteristic in

the implementation of the algorithm, we will use a progressive reduction of ∆ in such a

situation. The implementation is described in Algorithm 3.17, and was also taken from

[6].

Algorithm 3.17.

Consider m0 = 1, α0 = 1 and given σ ∈ (0, 1), η ∈ (0, 1
2
], a ∈ (0, 1), x0 ∈ Rn and

M > 0 such that ∆0 = M ;

for k = 0, 1, 2, ...

Step 1: Compute sk as an approximate solution of

min 1
2
‖Vks+ f(xk)‖2

s.t. ‖s‖∞ ≤ ∆k

(3.25)

where Vk ∈ ∂Bf(xk);

Step 2: If

αk ≤
a

mk
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but
g(xk + sk)− g(xk)

αk
≤ −σg(xk) (3.26)

does not hold, stop (the algorithm breaks down);

Step 3: If

g(xk + sk) < g(xk)

holds, define xk+1 = xk + sk. Otherwise, define xk+1 = xk;

Step 4: If

g(xk+1) ≤ (1− σαk)g(xk)

holds, define αk+1 = 1 and mk+1 = mk + 1. Otherwise, choose

αk+1 ∈ [ηαk, (1− η)αk]

and define mk+1 = mk;

Step 5: If αk+1 = 1, define ∆k+1 = M . Otherwise, define

∆k+1 =
‖sk‖∞

2
;

end(for)

The application of local methods, such as Newton’s and Broyden’s methods, has dif-

ferences in relation to the application of Algorithm 3.15 in order to solve problem (3.20).

Although the iterations of local methods do not usually generate a monotone decreasing

of merit function g, when the starting point x0 is close to the solution x∗ of the problem

(3.20), these methods in general work very well. On the other hand, Algorithm 3.15 have

no restrictions about the starting point x0, but it usually only converges to a stationary

point of the merit function g. Therefore, by considering the characteristics of each type

of method, Gomes-Ruggiero, Mart́ınez and Santos [6] built an algorithm which matches

iterations of local methods with iterations of global Algorithm 3.17, in order to try enjoy

the benefits of each one. This algorithm is described in Algorithm 3.18. To facilitate its

presentation, let us define, for any k ∈ N,

πk = Argmin{g(x0), ..., g(xk)}

and g(πk) = g(x0) if k < 0. About the nomenclature adopted, let us call of “ordinary

iteration” the iterations executed by local methods, and of “special iteration” the one

executed by Algorithm 3.17.

Algorithm 3.18.
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Consider FLAG = 1, m0 = 1, α0 = 1 and given σ ∈ (0, 1), η ∈ (0, 1
2
], a ∈ (0, 1),

M > 0 such that ∆0 = M , q ∈ N ∪ {0}, γ ∈ (0, 1), x0 ∈ Rn and B0 (if the local method

chosen is Broyden’s method);

for k = 0, 1, 2, ...

Step 1: If FLAG = 1, obtain xk+1 through an ordinary iteration. Else,

obtain xk+1 using the special iteration;

Step 2: If

g(xk+1) ≤ γg(πk−q) (3.27)

set FLAG← 1. Else, re-define xk+1 ← πk+1 and FLAG← −1;

end(for)

In this algorithm, we can note that M works as a standard trust region for problem

(3.24). While it is produced special iterations where (3.26) is valid, and therefore the

algorithm is succeeding in decreasing function g, the trust region remains a box with

side length equals to M . However, if the algorithm begins to produce successive special

iterations where (3.26) does not occur, the box is reduced until it breaks down, probably

close to a stationary point of g, or it makes a iteration with sufficiently decrease of g.

We can observe that, in this algorithm, the variable FLAG indicates a satisfactory

decrease of g at the iteration. If it occurs, we make an ordinary iteration, if it does not,

we make a special iteration. In the operation, q and γ work as “tolerance variables”. The

greater is q, the greater is the number of iterations that we allow to not produce sufficient

decrease of g. Moreover, the more γ is close to 1, the more relaxed is condition (3.27),

the sufficient decrease condition.

For Algorithm 3.18, we have also a result analogous to Theorem 3.16. If this algo-

rithm does not break down, there are two possibilities: it makes infinitely many ordinary

iterations, or infinitely many special iterations. If the first one occurs, (3.27) was valid

infinitely many times, which implies that there is a subsequence {xkr} of {xk} such that

lim
r→∞

g(xkr) = 0.

On the other hand, if the second one occurs, then this algorithm enjoy the convergence

results proved in [6] for Algorithm 3.15, in particular Theorem 3.16, showed in this work.

Our interest in this work is to apply Algorithm 3.18 in function F : RN → RN defined

in (3.5), in order to solve problem (3.6) and, consequently, the linear programming problem

(2.1). We will use 2 different versions of this algorithm: the first one using Newton’s

method and the second one using Broyden’s method. From now on, the merit function

considered is g : RN → R where

g(w) =
1

2
‖F (w)‖2.
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In first place, it is important to emphasize that, in this case, there are 2 convergence

result for Algorithm 3.18 with Newton’s method, which can be described as corollaries of

Theorem 3.10.

Corollary 3.19. If J(w∗) is nonsingular and there is j ∈ {1, ..., 2n} such that w0, w
∗ ∈ Dj,

then Algorithm 3.18 with Newton’s method finds w∗ in one iteration.

Proof. Since Algorithm 3.18 starts with FLAG = 1, the first iteration will provide w1

through the Newton’s method. However, from Theorem 3.10, w1 = w∗.

Corollary 3.20. If J(w∗) is nonsingular, there is ε > 0 such that, if ‖w0 − w∗‖ < ε,

Algorithm 3.18 with Newton’s method finds w∗ in one iteration.

Proof. Since Algorithm 3.18 starts with FLAG = 1, the first iteration will provide w1

through the Newton’s method. Therefore, by considering the ε > 0 provided by Corollary

3.11, the result follows.

On the other hand, Theorem 3.12, which guarantees a local convergence result for

Broyden’s method when it is applied to solve problem (3.6), can not be generalized for

Algorithm 3.18 with Broyden’s method. This occurs because, in a situation where the

hypotheses of Theorem 3.12 are satisfied, we can not guarantee that this convergence

will occur in only one iteration, neither that inequality (3.27) will be satisfied at each

iteration. Therefore, it is possible that Algorithm 3.18 makes a special iteration at some

moment, acquiring a different behavior in relation to the pure Broyden’s method.

For the application of Algorithm 3.18, it was considered the same parameters than in

[6], which are σ = 10−4, η = 0.5, a = 10−5, q = 5 and γ = 0.9, except the M , which in [6]

is 103 and we consider it to be 104 in order to verify the operation of the algorithm with

initial points w0 far from the solution w∗. We consider problem (3.16) in order to observe

the convergence characteristics of this algorithm in this case.

Since this problem has n = 4, its set G can be written as a union between sets

D1, ...,D16. By considering x = (x1, x2, x3, x4) and z = (z1, z2, z3, z4), let us define each of

these sets with the form [a1, a2, a3, a4], where for each i ∈ {1, 2, 3, 4}, if xi < zi then ai = 1,

otherwise, if zi < xi then ai = 0. The problem considered has a small drawback: most

of the sets Dj have singular associated Jacobian, which makes the version of Algorithm

3.18 with the Newton’s method frequently stop. Therefore, for the experiments it was

made a small modification on the algorithm. The ordinary iterations are executed only

if FLAG = 1 and J(wk) (or the matrix Bk, for the version with Broyden’s method) is

nonsingular. Otherwise, a special iteration is made. With this, we guarantee that the

algorithm never stops by singularity, and then will always converges or breaks down.

Algorithm 3.18 with Broyden’s method used in [6] have 2 characteristics. The first

one is that the matrix B0 is selected as being J(w0), and the second one is that every
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cycle of ordinary iterations starts with a Newton’s iteration. That is, if iteration k − 1

is special and iteration k is ordinary, then matrix Bk used on it is equal to J(wk). In

our implementation, considering the fact mentioned above, where most of sets Dj have

its respective Jacobian matrix being singular, it was opted to make a modification in the

first characteristic: instead of use B0 = J(w0), it was opted to consider B0 = IN , which is

the identity matrix. That choice comes from the fact that, through previous experiments

applying the pure Broyden’s method in order to solve problem (3.16) through (3.6), the

choice of B0 = IN implies a good behavior for this method, mainly when the starting

point w0 is near the solution w∗, with convergence occurring in most experiments.

For each version of Algorithm 3.18, 16 numerical experiments were run through Julia

language, each one with a starting point in a different set Dj. The subproblem (3.25) has

always been solved using the package Optim.jl [16]. Table 3.2 shows the starting points

considered for both algorithms (denoted by w0) and the respective sets Dj which contains

each one.

Test Nº w0 Dj

1

x0 = (1000, 1200, 1400, 1600)

λ0 = (1000, 500)

z0 = (2000, 2100, 3000, 2500)

[1,1,1,1]

2

x0 = (2.35, 3.4, 2.2, 1.1)

λ0 = (0.75, 2)

z0 = (2.5, 3.5, 2.7, 1)

[1,1,1,0]

3

x0 = (3.1, 2.22, 1.3, 6.2)

λ0 = (1.3, 0.7)

z0 = (4.2, 3, 1.2, 6.5)

[1,1,0,1]

4

x0 = (1300, 6400, 5500, 4200)

λ0 = (3000, 3000)

z0 = (2000, 3000, 6100, 4800)

[1,0,1,1]

5

x0 = (1235, 1700, 500, 950)

λ0 = (300, 3000)

z0 = (1000, 2300, 700, 1150)

[0,1,1,1]

6

x0 = (1333, 5300, 4200, 2100)

λ0 = (720, 640)

z0 = (1500, 6000, 2200, 1800)

[1,1,0,0]

7

x0 = (2.3, 2.7, 2.5, 5)

λ0 = (1.3, 1.2)

z0 = (3.5, 2.5, 4, 3.2)

[1,0,1,0]
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Test Nº w0 Dj

8

x0 = (720, 980, 1040, 3129)

λ0 = (720, 730)

z0 = (700, 1000, 1200, 3000)

[0,1,1,0]

9

x0 = (1200, 700, 850, 1500)

λ0 = (500, 600)

z0 = (1500, 600, 800, 1700)

[1,0,0,1]

10

x0 = (1.2, 4, 3.6, 2)

λ0 = (0.5, 0.8)

z0 = (1, 5, 3, 3)

[0,1,0,1]

11

x0 = (14, 22, 37, 20)

λ0 = (10, 20)

z0 = (10, 20, 40, 22)

[0,0,1,1]

12

x0 = (3.3, 2, 2.9, 4.1)

λ0 = (2.2, 2.2)

z0 = (3.5, 1.9, 1.8, 3.7)

[1,0,0,0]

13

x0 = (2300, 2717, 3520, 1861)

λ0 = (3274, 1000)

z0 = (1718, 3251, 3111, 1223)

[0,1,0,0]

14

x0 = (0.42, 0.57, 0.88, 1.2)

λ0 = (1.5, 3)

z0 = (0.4, 0.52, 1, 1.18)

[0,0,1,0]

15

x0 = (32, 37, 35, 25)

λ0 = (27, 11)

z0 = (15, 18, 21, 31)

[0,0,0,1]

16

x0 = (3000, 4215, 3817, 2914)

λ0 = (501, 502)

z0 = (1500, 1718, 1936, 2100)

[0,0,0,0]

Table 3.2: Starting information for Algorithm 3.18.



3.3 Global convergence 58

In Table 3.3 and Table 3.4 we show the results obtained through the application of

Algorithm 3.18 with Newton’s and Broyden’s methods, respectively. In these tables,

“its(o,s)” represent the number of iterations, followed by a specification on how many

iterations were ordinary and how many were special. The column “t” indicates the time

used by the experiment in seconds. The number of times the new iterate wk+1 generated

by the test was in a different set Dj than the previous iterate wk is denoted by “Nº c”.

The column “Final Dj” shows the set Dj which contains the last iterate obtained through

the experiment. The symbol “g(wf )” represents the image of g applied in the last iterate

obtained. In this same sense, “‖∇g(wf )‖∞” is the norm ‖ · ‖∞ applied in gradient vector

of g in relation to the final iterate obtained. Finally, the column “Reason” contains the

reason for stopping the algorithm, where “B” means that the algorithm breaks down and

“C” means that occurs the convergence to the solution w∗ of the nonsmooth equations

related to problem (3.16).

Test Nº its (o,s) t Nº c Final Dj g(wf ) ‖∇g(wf )‖∞ Reason

1 20 (0,20) 0.37 0 [1,1,1,1] 12.54 8.41e-9 B

2 22 (0,22) 0.31 1 [0,0,0,0] 0.15 1.21e-10 B

3 2 (1,1) 0.21 1 [0,1,0,1] 0 0 C

4 25 (1,24) 0.39 4 [0,0,0,1] 0.12 8.41e-10 B

5 20 (0,20) 0.26 0 [0,1,1,1] 6.4 1.02e-9 B

6 21 (1,20) 0.29 1 [1,1,0,1] 0.66 2.5e-10 B

7 24 (2,22) 0.32 3 [0,0,0,1] 0.12 7.49e-9 B

8 21 (1,20) 0.26 1 [0,1,0,0] 0.08 1.77e-15 B

9 23 (1,22) 0.28 2 [1,1,0,1] 0.66 2.5e-10 B

10 1 (1,0) 0.01 0 [0,1,0,1] 9.86e-32 4.44e-16 C

11 21 (1,20) 0.35 1 [0,0,0,1] 0.12 7.49e-9 B

12 23 (0,23) 0.27 2 [0,0,0,1] 0.12 7.5e-9 B

13 23 (1,22) 0.4 2 [0,1,0,0] 0.08 1.77e-15 B

14 22 (0,22) 0.26 1 [0,0,0,0] 0.15 9.73e-9 B

15 20 (0,20) 0.25 0 [0,0,0,1] 0.12 2.09e-10 B

16 23 (1,22) 0.4 2 [0,1,0,0] 0.08 1.77e-15 B

Table 3.3: Results of Algorithm 3.18 with Newton’s method.
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Test Nº its (o,s) t Nº c Final Dj g(wf ) ‖∇g(wf )‖∞ Reason

1 21 (1,20) 0.36 0 [1,1,1,1] 12.54 5.37e-9 B

2 23 (1,22) 0.35 1 [0,0,0,0] 0.15 1.21e-10 B

3 3 (2,1) 0.03 1 [0,1,0,1] 0 0 C

4 24 (2,22) 0.72 1 [1,1,1,0] 12.5 1.47e-9 B

5 21 (1,20) 0.52 0 [0,1,1,1] 6.4 1.02e-9 B

6 23 (1,22) 0.29 1 [1,1,0,1] 0.66 2.5e-10 B

7 26 (3,23) 0.37 3 [0,0,0,1] 0.12 7.49e-9 B

8 31 (8,23) 0.43 9 [0,1,0,0] 0.08 2.66e-15 B

9 22 (2,20) 0.27 1 [1,1,1,1] 12.54 1.22e-9 B

10 2 (1,1) 0.02 0 [0,1,0,1] 1.72e-17 1.79e-9 C

11 23 (1,22) 0.29 1 [0,0,0,1] 0.12 7.49e-9 B

12 24 (1,23) 0.29 2 [0,0,0,1] 0.12 7.5e-9 B

13 21 (1,20) 0.26 1 [1,1,1,1] 12.54 3.5e-9 B

14 23 (1,22) 0.31 1 [0,0,0,0] 0.15 9.73e-9 B

15 21 (1,20) 0.26 0 [0,0,0,1] 0.12 2.09e-10 B

16 25 (3,22) 0.3 2 [0,1,0,0] 0.08 8.32e-17 B

Table 3.4: Results of Algorithm 3.18 with Broyden’s method.

Through the above tables, basically we observe that occurs a small difference between

the results obtained from Algorithm 3.18 with Newton’s method and with Broyden’s

method, and the convergence occurs at exactly the same 2 starting points for both algo-

rithms. Doing a little deeper analysis, it is possible to perceive a small advantage for the

algorithm with Newton’s method in the sense of number of iterations required to obtain

the result, since in all tests except 4, 9 and 13 the number of iterations used by this al-

gorithm was smaller then the number of iterations used by the algorithm with Broyden’s

method. This is expected, since the use of the true Jacobian is more expensive than low

rank updates.

We observe that in all experiments the algorithm converges to a stationary point of

function g. Actually, the usual behavior of both algorithms in numerical experiments

is to, at the beginning of the test, generate iterates wk that are not all contained in the

same set Dj. Then, one iterate wk falls in a certain set Di, and then only promotes special

iterations on it, generating iterates contained in this set Di until it finds the stationary

point of this set, which makes the algorithm breaks down. However, there are tests where

all the iterates generated by the algorithm are contained in the same set Dj, and then it

converges to a local minimum on this set. This occurs in tests 1, 5, 10 and 15 for both

algorithms. This fact indicates that if some point is favorable for the not occurrence of
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a change in the set Dj which contains the iterates, the local method used in Algorithm

3.18 will not be effective in the sense of modify this characteristic.

The next results can be useful in order to guarantee situations where the Algorithm

3.18 will promote at least one change in the sets Dj which contains the iterates throughout

its operation. The main idea is that stationarity can not occur in sets Dj where Jj is

nonsingular, unless we have the solution of the original problem.

Lemma 3.21. Suppose that J(w∗) is nonsingular, Dj is a set such that its respective

Jacobian matrix Jj is nonsingular, and w∗ /∈ Dj. There is no w ∈ Dj such that ∇g(w) = 0.

In particular, this set have no local minimums of g.

Proof. Suppose that there is w ∈ Dj such that ∇g(w) = 0. By the definition of g,

∇g(w) = F (w)TJ(w) = 0,

which implies

J(w)TF (w) = 0. (3.28)

Since w ∈ Dj, J(w) = Jj. By hypothesis, Jj is nonsingular, which implies JTj nonsingular,

and then J(w)T also is. From this, through (3.28) we have F (w) = 0. Therefore, w = w∗,

which contradicts the fact that w∗ /∈ Dj.

Lemma 3.22. Suppose that J(w∗) is nonsingular, Dj is a set such that its respective

Jacobian matrix Jj is nonsingular, and w∗ /∈ Dj. If wk ∈ Dj and wk+1 is generated

through Newton’s iteration, then wk+1 /∈ Dj.

Proof. By Newton’s method,

wk+1 = wk − J(wk)
−1F (wk). (3.29)

Since wk ∈ Dj, J(wk) = Jj. We have already seen in the end of Section 3.1 of Chapter 3

that, being Fj : RN → RN a function defined as in (3.14), F and Fj coincide in set Dj.
Therefore, from (3.29),

wk+1 = wk − J−1j Fj(wk) = wk − J−1j

Jjwk +

 −c−b
0


 ,

which implies that

wk+1 + J−1j

 −c−b
0

 = 0,
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and then

Fj(wk+1) = Jjwk+1 +

 −c−b
0

 = 0.

If occurs wk+1 ∈ Dj, then F (wk+1) = Fj(wk+1) = 0, which implies wk+1 = w∗ and then

w∗ ∈ Dj, which is a contradiction. Therefore, wk+1 /∈ Dj, as we wanted.

Since all the numerical experiments realized converges to a stationary point of g, by

Lemma 3.21 occurs that, if the current iterate wk of the Algorithm 3.18 is in a set Dj
which its respective Jacobian matrix Jj is nonsingular and w∗ /∈ Dj, then, in the sequence

of its operation, the algorithm will make at least one change in the sets Dj which contains

its iterates. On the other hand, the application of Lemma 3.22 in this sense is clear: if,

in some iteration of the algorithm, we have wk in a set Dj which satisfy the hypotheses

of this lemma and the next iterate wk+1 is obtained through a Newton’s iteration, then

will occurs more one change in the sets Dj which contains its iterates.

The convergence occurs in tests 3 and 10. In test number 10, convergence was expected,

mainly in Algorithm 3.18 with Newton’s method, since in this experiment the starting

point w0 is in the same set Dj than the solution w∗. However, it is not clear the reason of

convergence in test number 3. It was made an extra test, for both algorithms, with the

starting point w0 = (x0, λ0, z0) where

x0 = (1000, 1000, 2000, 1000), λ0 = (1500, 1000)

and

z0 = (2000, 2000, 1000, 2000),

which is a point in the same set Dj than the one considered in test 3, but with highest

values in its coordinates. In this case, the test of Algorithm 3.18 with Newton’s method

used 23 iterations, while the one of Algorithm 3.18 with Broyden’s method used 21 it-

erations. Both algorithms break down in a stationary point and do not converge to the

solution. The experiment shows that convergence does not occur by some characteristic

associated with the set Dj that contains the starting point w0.

As we commented before, the pure Broyden’s method with B0 = IN have a good

behavior to find the solution w∗ of problem (3.6), at least when considering problem

(3.16), mainly when w0 is near the solution. In Algorithm 3.18 with Broyden’s method

we used B0 = IN and tested some starting points near the solution of the problem, in

tests 2, 3, 7, 10, 12 and 14. In these tests, the convergence to the solution did not occur.

This is possible because, as commented in [6], quasi-Newton methods usually have a good

behavior to find the solution when the iterates is near to it, but this methods are not

characterized by a monotone decrease of the merit function g throughout the iterations.
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Therefore, when Algorithm 3.18 with Broyden’s method is used, it is very possible that

inequality (3.27) does not occur at some iteration, which implies that a special iteration

is performed. That can make the algorithm lose the good performance that Broyden’s

method usually have in this situation.

By considering that Algorithm 3.18 with Newton’s and Broyden’s methods, in general

do not have a good performance to solve problem (3.16), which is not a problem relationed

with a high dimensional objective function, it is reasonable to believe that both algorithms

will not behave well when applied to large scale problems.

Algorithm 3.18 with Newton’s method and with Broyden’s method generate together

16 different final points which are not equal to the solution w∗. One interesting charac-

teristic of these points is that, in general, they are close to the solution and their image

by g is small. Therefore, by considering the fact that the pure Broyden’s method with

B0 = IN had good performance in order to solve equation (3.6) for problem (3.16) near

the solution w∗, this method was applied in each one of these 16 final points. In 8 of this

16 tests the method finds the solution w∗, always performing around 40 iterations, which

took less than 1 second.

By considering the numerical experiments of Algorithm 3.18, we propose a new al-

gorithm. The algorithm first apply Algorithm 3.18 with Newton’s or Broyden’s method

using B0 = IN . Then, if Algorithm 3.18 breaks down, we use the final point as the starting

one for a pure version of Broyden’s method with B0 = IN to solve problem (3.6). This

algorithm is described in Algorithm 3.23.

Algorithm 3.23.

Consider FLAG = 1, m0 = 1, α0 = 1 and given σ ∈ (0, 1), η ∈ (0, 1
2
], a ∈ (0, 1),

M such that ∆0 = M , q ∈ N ∪ {0}, γ ∈ (0, 1), w0 and B0 (if the local method chosen is

Broyden’s method);

for k = 0, 1, 2, ...

Step 1: If FLAG = 1, obtain wk+1 through an ordinary iteration. Else,

obtain wk+1 using a special iteration;

Step 2: If the algorithm breaks down at Step 1, apply Broyden’s method with

B0 = IN at the last iterate wk obtained and then stop;

Step 3: If

g(wk+1) ≤ γg(πk−q)

set FLAG← 1. Else, re-define wk+1 ← πk+1 and FLAG← −1;

end(for)

With the possible execution of Broyden’s method in the final iterations, Algorithm

3.23 will not necessarily converges or breaks down. Now, there are two more possibilities:
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it runs until it reaches the maximum of 10000 iterations allowed, or it stops because it has

found a singular matrix Bk in Broyden’s method. Tables 3.5 and 3.6 contain the results

obtained by applying Algorithm 3.23 using Newton’s and Broyden’s methods, respectively,

in the initial points showed in Table 3.2. In it, “S” means that the experiment stopped

because Broyden’s method found a singular Bk matrix, while “IT” means that it reached

the limit of 10000 iterations allowed.

Test Nº its (o,s) t Nº c Final Dj g(wf ) ‖∇g(wf )‖∞ Reason

1 10000 (0,20) 78.93 52 [1,1,1,1] 17.98 3.53 IT

2 52 (0,22) 0.55 11 [0,1,0,1] 1.59e-19 5.62e-10 C

3 2 (1,1) 0.05 1 [0,1,0,1] 0 0 C

4 82 (1,24) 0.9 28 [0,1,0,1] 1.33e-20 1.32e-10 C

5 24 (0,20) 0.75 1 [1,1,1,1] 7.28e17 1.49e9 S

6 52 (1,20) 0.57 9 [0,1,0,1] 2.39e-18 1.49e-9 C

7 85 (2,22) 0.91 30 [0,1,0,1] 6.37e-19 8.53e-10 C

8 1911 (1,20) 15.31 92 [1,1,1,1] 4.26e7 8706 S

9 54 (1,22) 0.58 10 [0,1,0,1] 2.39e-18 1.49e-9 C

10 1 (1,0) 0.05 0 [0,1,0,1] 9.86e-32 4.44e-16 C

11 82 (1,20) 0.74 28 [0,1,0,1] 6.37e-19 8.53e-10 C

12 64 (0,23) 0.63 17 [0,1,0,1] 2.36e-20 1.15e-10 C

13 1913 (1,22) 14.93 93 [1,1,1,1] 4.26e7 8706 S

14 76 (0,22) 0.8 33 [0,1,0,1] 4.36e-18 2.49e-9 C

15 59 (0,20) 0.69 20 [0,1,0,1] 5e-18 4.13e-9 C

16 1913 (1,22) 15.03 93 [1,1,1,1] 4.26e7 8706 S

Table 3.5: Results of Algorithm 3.23 with Newton’s method.
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Test Nº its (o,s) t Nº c Final Dj g(wf ) ‖∇g(wf )‖∞ Reason

1 616 (1,20) 4.42 6 [1,1,1,1] 18.77 4.07 S

2 53 (1,22) 0.45 11 [0,1,0,1] 1.59e-19 5.62e-10 C

3 3 (2,1) 0.02 1 [0,1,0,1] 0 0 C

4 10000 (2,22) 67.64 121 [1,1,1,1] 523283.86 1023 IT

5 25 (1,20) 6.01 1 [1,1,1,1] 7.28e17 1.49e9 S

6 54 (1,22) 0.43 9 [0,1,0,1] 2.39e-18 1.49e-9 C

7 72 (3,23) 0.57 23 [0,1,0,1] 4.32e-17 7.25e-9 C

8 78 (8,23) 0.61 31 [0,1,0,1] 4.33e-19 7.65e-10 C

9 10000 (2,20) 69.13 71 [1,1,1,1] 524305.16 1025 IT

10 2 (1,1) 0.04 0 [0,1,0,1] 1.72e-17 1.79e-9 C

11 84 (1,22) 0.63 28 [0,1,0,1] 6.13e-19 8.27e-10 C

12 65 (1,23) 0.54 17 [0,1,0,1] 2.36e-20 1.15e-10 C

13 10000 (1,20) 67.99 31 [1,1,1,1] 17.76 3.48 IT

14 77 (1,22) 0.58 33 [0,1,0,1] 4.36e-18 2.49e-9 C

15 60 (1,20) 0.45 20 [0,1,0,1] 5e-18 4.13e-9 C

16 999 (3,22) 6.21 77 [1,1,1,1] 48808.45 256 S

Table 3.6: Results of Algorithm 3.23 with Broyden’s method.

Through the analysis of these results, it is visible that we no longer have the guarantee

of convergence to the stationary point, since the last iterations of this algorithm are

usually done by the Broyden’s method. However, Algorithm 3.23 converges in 11 of

16 numerical experiments with Newton’s method, and in 10 of 16 tests with Broyden’s

method, always in less than 1 second, which indicates a very good performance of this

algorithm. Therefore, by considering this results, it is reasonable to believe that, if the

linear programming problem considered has the characteristic of having a good part of

the stationary points of merit function g close to the solution w∗ of equation (3.6), as

problem (3.16) have, then Algorithm 3.23 has good performance in relation to the global

convergence.



Conclusion

This work was devoted to the study of Newton’s and Broyden’s methods for solving

linear programming problems. Under some strong hypotheses, it was obtained a result

that guarantees the linear local convergence of the IPM with quasi-Newton approach [8].

With the goal of further understanding the behavior of Newton’s and Broyden’s meth-

ods in linear programming problems, a nonsmooth version of the KKT conditions was

considered. It was used nonsmooth versions of such methods and interesting local conver-

gence results were obtained. In particular, it was proved one-step convergence of Newton’s

and Broyden’s methods, the later with B0 = J(w0). Moreover, through computational

experiments using Julia language, it was possible to find counter-examples for results

about some types of convergence for these methods.

Seeking to obtain global convergence results about the application of Newton’s and

Broyden’s methods on nonsmooth equations, the algorithm [6] was studied. General

convergence results were presented. After numerical experiments, a study about its per-

formance was possible, and then a modification of this algorithm was proposed, seeking

to improve its performance regarding global convergence when it is applied to a system

of nonsmooth equations relative to linear problem problems. The obtained results were

promising, but more tests are necessary.
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[6] GOMES-RUGGIERO, M. A.; MARTÍNEZ, J. M.; SANTOS, S. A. Solving Nons-

mooth Equations by Means of Quasi-Newton Methods with Globalization. Recent

Advances in Nonsmooth Optimization, 121-140 (1995).

[7] GONDZIO, J. Interior point methods 25 years later. European Journal of Opera-

tional Research 218, 587-601 (2012).

[8] GONDZIO, J.; SOBRAL, F. N. C. Quasi-Newton approaches to interior point meth-

ods for quadratic problems. Computational Optimization and Applications 74, 93-

120 (2019).

[9] ITO, K.; KUNISCH, K. On a semi-smooth Newton method and its globalization.

Mathematical Programming 118, 347-370 (2009).

[10] KARMARKAR, N. K. A new polynomial-time algorithm for linear programming.

Combinatorica 4, 373-395 (1984).



REFERENCES 67

[11] KHACHIYAN, L. G. A polynomial algorithm in linear programming. Soviet Math-

ematics Doklady 20, 191-194 (1979).

[12] KLEE, V.; MINTY, G. How good is the simplex algorithm. Inequalities 3, 159-175

(1972).

[13] LESAJA, G. Introducing Interior-Point Methods for Introductory Operations Re-

search Courses and/or Linear Programming Courses. The Open Operational Re-

search Journal 3, 1-12 (2009).

[14] LIMA, E. L. Análise Real, Vol. 2 - Funções de n Variáveis. 1st ed. IMPA, Rio de
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