UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS HUMANAS, LETRAS E ARTES DEPARTAMENTO DE GEOGRAFIA PROGRAMA DE PÓS-GRADUAÇÃO EM GEOGRAFIA

DANIELA CRISTINA ROQUE

ANÁLISE CORRELATIVA DE FÁCIES E ARQUITETURA ESTRATIGRÁFICA DA BORDA SUL DA BACIA BAURU

Maringá – PR 2022

DANIELA CRISTINA ROQUE

ANÁLISE CORRELATIVA DE FÁCIES E ARQUITETURA ESTRATIGRÁFICA DA BORDA SUL DA BACIA BAURU

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Geografia do Centro de Ciências Humanas, Letras e Artes da Universidade Estadual de Maringá, como requisito à obtenção do título de mestre em Geografia. Área de concentração: Análise Ambiental.

Orientador: Prof. Dr. Edison Fortes

Maringá - PR 2022

Dados Internacionais de Catalogação-na-Publicação (CIP) (Biblioteca Central - UEM, Maringá - PR, Brasil)

R786a

Roque, Daniela Cristina Análise correlativa de fácies e arquitetura estratigráfica da borda sul da bacia Bauru / Daniela Cristina Roque. -- Maringá, PR, 2022. 135 f.: il. color., figs., tabs., maps.

Orientador: Prof. Dr. Edison Fortes.

Dissertação (Mestrado) - Universidade Estadual de Maringá, Centro de Ciências Humanas, Letras e Artes, Departamento de Geografia, Programa de Pós-Graduação em Geografia, 2022.

1. Bacia Bauru (PR). 2. Formação Goio-Erê (PR). 3. Formação Rio Paraná (PR). 4. Estratigrafia. 5. Sedimentologia. I. Fortes, Edison, orient. II. Universidade Estadual de Maringá. Centro de Ciências Humanas, Letras e Artes. Departamento de Geografia. Programa de Pós-Graduação em Geografia. III. Título.

CDD 23.ed. 918.162

ANÁLISE CORRELATIVA DE FÁCIES E ARQUITETURA ESTRATIGRÁFICA DA BORDA SUL DA BACIA BAURU

Dissertação de Mestrado apresentada a Universidade Estadual de Maringá, como requisito parcial para obtenção do grau de Mestre em Geografia, área de concentração: Análise Regional e Ambiental, linha de pesquisa Análise Ambiental.

Aprovada em 03 de agosto de 2022.

BANCA EXAMINADORA

Prof. Dr. Edison Fortes Orientador – UEM

Prof. Dr. Oscar Vicente Quinonez Fernandez Membro convidado –UNIOESTE

Prof. Dr. Lucas Cesar Frediani Sant'Ana Membro convidado – UEM

AGRADECIMENTOS

O processo de realizar essa pesquisa de mestrado foi repleta de pessoas que fizeram parte direta ou indiretamente do desenvolvimento, sem as quais não seria possível a finalização dessa etapa.

Por isso, gostaria de agradecer especialmente minha mãe, Marli, pelo apoio emocional, financeiro e estímulo. A minha irmã, Leticia e ao meu cunhado, Arthur, pelo apoio emocional, principalmente nos momentos de ansiedade. Ao meu pai, José e ao meu primo Marco pelo incentivo.

Agradecimento especial também ao professor Dr. Edison Fortes pela paciência e respeito nas dificuldades, pela parceria, sobretudo nos campos, pela orientação e indicação de textos para auxílio e disponibilidade em ajudar.

Ao Grupo de Estudos Multidisciplinar do Ambiente (GEMA), pela estrutura para a realização de parte dos procedimentos de laboratório e ao Vanderlei pela ajuda.

Aos colegas Itamar, Bronislau, Rosana e Vitor, pelas ajudas em campos, em laboratório, em processamento das amostras e em materiais referentes a pesquisa.

A estrutura disponibilizada pelo Complexo de Apoio Central à Pesquisa (COMCAP), onde foram analisadas e/ou processadas parte das amostras, com agradecimento especial às técnicas Karina e Francieli da Microscopia Eletrônica de Varredura (MEV) e a Débora da Difratometria de Raio-X (DRX).

Agradecimento também a todo corpo docente de graduação e pós graduação da UEM, especialmente a professora Dra. Susana Volkmer e o Dr. Nelson Gaparetto pela ajuda e disponibilidade.

A Mirian da secretaria, que sempre auxiliou nas dúvidas burocráticas durante o mestrado e pelo incentivo.

A demais parentes, professores, amigos e colegas que de alguma forma também foram parte desse processo.

E por fim, ao um ano de bolsa de incentivo concedida Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

(...) Ói, por dentro das águas há quadros e sonhos E coisas que sonham o mundo dos vivos Há peixes milagrosos, insetos nocivos Paisagens abertas, desertos medonhos Léguas cansativas, caminhos tristonhos Que fazem o homem se desenganar Há peixes que lutam para se salvar Daqueles que caçam num mar revoltoso E outros que devoram com gênio assombroso As vidas que caem na beira do mar (...)

Zé Ramalho

RESUMO

A pesquisa, realizada no presente trabalho, trata-se da discussão e correlação da estratigrafia da borda sul da Bacia Bauru, que se formou em depressão tectônica durante o cretáceo superior. Essa bacia, é dividida em dois grupos cronocorrelatos, sendo eles o Grupo Bauru (Formações: Vale do Rio do Peixe, Araçatuba, São José do Rio Preto, Presidente Prudente, Uberaba e Marília) e o Grupo Caiuá (Formações: Rio Paraná, Goio-Êre e Santo Anastácio), onde estão presentes afloramentos da Formação Rio Paraná e Goio-Êre, que são as formações em discussão nessa pesquisa, que estão localizados na borda sul da bacia. A parte sul da bacia, é caracterizada pelo ambiente deposicional desértico, porém recentes descobertas de fósseis na Formação Rio Paraná, que se localiza ao centro da bacia, assim como icnofósseis identificados em algumas regiões da bacia, denota a presença de umidade, mesmo que localizada em regiões restritas. Dessa forma, a identificação e discussão sobre as feições acanaladas encontradas em Tuneiras do Oeste, assim como estruturas sedimentares associados nas litofácies de Lençóis de Areia, Interduna Aquosa e Frente de Dunas indicam condições de deposição hidroplásticas com presença de umidade e material orgânico, permitindo constatar que essa parte da bacia apresentava umidade suficiente para formar corpos aquosos, do tipo lagoas em zonas interdunas e sustentar uma fauna abundante, conforme foi verificado no sítio paleontológico de Cruzeiro do Oeste.

Palavras-chave: Bacia Bauru; Formação Goio-Erê; Formação Rio Paraná; Estruturas Sedimentares.

ABSTRACT

The research carried out in the present paper is about the discussion and correlation of the stratigraphy of the southern border of the Bauru Basin, which formed in a tectonic depression during the upper cretaceous. This basin is divided in two chronocorrelated groups, the Bauru Group (Formations: Vale do Rio do Peixe, Araçatuba, São José do Rio Preto, Presidente Prudente, Uberaba and Marília) and the Caiuá Group (Formations: Rio Paraná, Goio-Êre and Santo Anastácio), where outcrops of the Rio Paraná and Goio-Êre Formation are present, which are the formations under discussion in this research, that are located at the southern edge of the basin. The southern part of the basin is characterized by a desert-like depositional environment, but recent discoveries of fossils in the Rio Paraná Formation, which is located in the center of the basin, as well as ichnofossils identified in some regions of the basin, denotes the presence of humidity, even if located in restricted regions. Thus, the identification and discussion on the channeled features found in Tuneiras do Oeste, as well as associated sedimentary structures in the Sand Lençois, Aqueous Interdune and Foreset of Dune lithofacies indicate conditions of hydroplastic deposition with the presence of humidity and organic material, allowing the verification that this part of the basin had enough humidity to form aqueous bodies, such as lagoons in interdune zones and to sustain an abundant fauna, as it was verified in the paleontological site of Cruzeiro do Oeste.

Keywords: Bauru Basin; Goio-Erê Formation; Rio Paraná Formation; Sedimentary Structures.

LISTA DE FIGURAS

Figura 1 – Mapa de localização da área de estudo19
Figura 2 – Mapa geológico simplificado da Bacia do Paraná, com a profundidade estrutural do embasamento cristalino contornado, com a região do noroeste paranaense, apresentando o maior depocentro, pela deposição dos magmas dos derrames da Serra Geral
Figura 3 – Mapa litoestratigráfico da Bacia Bauru
Figura 4 – Geologia da área de Estudo
Figura 6 – Obra de Maurílio Oliveira, mostrando possível paleoambiente e interação da fauna encontrada no afloramento de Cruzeiro do Oeste
Figura 7 – Localização de fósseis e icnofósseis encontrados no Grupo Caiuá (Bacia Bauru)
Figura 8 – Compartimentação geomorfológica da área de estudo
Figura 9 – Mapa geológico com os perfis topográficos traçados
Figura 10 – Perfil topográfico do perfil A-A'
Figura 11 – Trecho do limite entre as rochas magmáticas que estão em estado de erosão esferoidal, com os arenitos da Formação Goio-Êre, a espessura vertical desse trecho é de cerca de 5 m
Figura 12 – Contato entre derrames maciços da Formação Serra Geral e Arenitos da FormaçãoGoio-Erê
Figura 13 – A) Intrusão de arenito em falha vertical do basalto. B) Detalhe de arenito silificado pelo basalto
Figura 14 – A) Contato do basalto (Formação Serra Geral) e arenitos (Formação Goio-Êre); B) Intrusão de arenito silicificado em falha no basalto; C) erosão esferoidal do basalto
Figura 15 – Intrusão de arenito em falha de basalto em região de vale no município de Tuneiras do Oeste
Figura 16 – Interior de voçoroca em Loanda 41
Figura 17 – Perfil litoestratigráfico, com as indicações das seções e as unidades estratigráficasF
Figura 18 – Perfil estratigráfico esquemático representando o afloramento de Cruzeiro do Oeste

Figura 38 – A) fotogrametria de grão em destaque polimorfo do quartzo com superfície lisa. Acima pode-se observar grão revestido de estrutura característica de esmectita assim como em grão do lado esquerdo no topo e ao lado direito do grão em destaque. B) fotogrametria de grão localizado no centro do perfil, de morfologia tetaédrica arredondado com parte da superfície esquerda com presença de estrutura característica de esmectita e a ponta do grão com fratura ortorrômbica. A superfície apresenta-se tenuamente alterada quimicamente. 72

Figura 49 – A) Fotogrametria de grão presente na parte superior do perfil B2, sendo observado alto grau de retrabalhamento do grão no ambiente pelas marcas de desgaste mecânico. B) Fotogrametria de grão de de morfologia tetaédrica, com suas arestas arredondadas e marcas de abrasão mecânica.. 86

Figura 52 – A) Fotogrametria de grão encontrado na base do perfil B1, apresentando bom arredondamento e esfericidade, além de marcas de atuação mecânica no grão, gerando fissuras e fraturas no mesmo. B) Fotogrametria de amostra da base do perfil B1, exibe morfologia subarredondada e baixa esfericidade, com intensas marcas de abrasão mecânica em sua superfície.. 89

Figura	54 –	Gráfico	boxplot	representando	а	distribuição	granulométrica	da
litofácie	es de l	ençóis d	e areia d	la SGb				91

LISTA DE TABELAS

Tabela 1 – Coordenadas dos icnofósseis e fósseis relacionados a Bac	cia Bauru. 30
Tabela 2 – Produtos cartográficos utilizados na confecção dos mapas.	42
Tabela 3 – Amostras da seção geológica a, com suas respectivas indicadas e divisão nos perfis	litofácies 57
Tabela 4 – Amostras da seção geológica b, com suas respectivas indicadas e divisão nos perfis	litofácies 77
Tabela 5 – Paragênese e provável origem mineral da área de estudo.	

SUMÁRIO

1 INTRO	INTRODUÇÃO					
2 LOCAL	2 LOCALIZAÇÃO DA ÁREA DE ESTUDO 19					
3 CONTE	CONTEXTO GEOLÓGICO					
3.1	Caracterização das Formações	da Bacia Bauru24				
3.2	Evolução Paleoambiental					
4 CONTE	XTO GEOMORFOLÓGICO					
5 PROCE	DIMENTOS METODOLÓGICOS					
5.1	Trabalho de Gabinete					
5.2	Trabalhos de Campo					
5.3	Granulometria e Decantação					
5.4	Microscopia Eletrônica de Varre	edura (MEV) 44				
5.5	Difratometria de Raio-X (DRX)					
6 RESUL	TADOS E DISCUSSÕES					
6.1 Geológica	Correlação Litofaciológica e Es a de Cruzeiro do Oeste (SGCO)	truturas Sedimentares da Srção 46				
6.2 a de Tune	Correlação Litofaciológica e de eiras do Oeste	Estruturas da Seção Geológica 53				
6.2 a de Tune	Correlação Litofaciológica e de eiras do Oeste 6.2.1 Lençóis de Areia - SGa	Estruturas da Seção Geológica 53 59				
6.2 a de Tune	Correlação Litofaciológica e de eiras do Oeste 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa	Estruturas da Seção Geológica 53 59 62				
6.2 a de Tune	Correlação Litofaciológica e de eiras do Oeste 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa 6.2.3 Interduna Aquosa - SGa	Estruturas da Seção Geológica 53 59 62 65				
6.2 a de Tune	Correlação Litofaciológica e de eiras do Oeste 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa 6.2.3 Interduna Aquosa - SGa 6.2.4 Frente de Duna - SGa	Estruturas da Seção Geológica 53 59 62 65 71				
6.2 a de Tune 6.3 de Tuneir	Correlação Litofaciológica e de eiras do Oeste. 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa 6.2.3 Interduna Aquosa - SGa 6.2.4 Frente de Duna - SGa Correlação Litofaciológica e de l ras do Oeste.	Estruturas da Seção Geológica 53 59 62 65 71 Estruturas da Seção Geológica b 73				
6.2 a de Tune 6.3 de Tuneir	Correlação Litofaciológica e de eiras do Oeste. 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa. 6.2.3 Interduna Aquosa - SGa. 6.2.4 Frente de Duna - SGa Correlação Litofaciológica e de ras do Oeste. 6.3.1 Frente de Duna - SGb	Estruturas da Seção Geológica 53 59 62 65 71 Estruturas da Seção Geológica b 73				
6.2 a de Tune 6.3 de Tuneir	Correlação Litofaciológica e de eiras do Oeste. 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa. 6.2.3 Interduna Aquosa - SGa. 6.2.4 Frente de Duna - SGa Correlação Litofaciológica e de la fas do Oeste. 6.3.1 Frente de Duna - SGb 6.3.2 Interduna Aquosa – SGb	Estruturas da Seção Geológica 53 59 62 65 71 Estruturas da Seção Geológica b 73 79 82				
6.2 a de Tune 6.3 de Tuneir	Correlação Litofaciológica e de eiras do Oeste. 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa. 6.2.3 Interduna Aquosa - SGa. 6.2.4 Frente de Duna - SGa Correlação Litofaciológica e de ras do Oeste. 6.3.1 Frente de Duna - SGb 6.3.2 Interduna Aquosa – SGb	Estruturas da Seção Geológica 53 59 62 65 71 Estruturas da Seção Geológica b 73 79 82 88				
6.2 a de Tune 6.3 de Tuneir 6.4	Correlação Litofaciológica e de eiras do Oeste. 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa 6.2.3 Interduna Aquosa - SGa 6.2.4 Frente de Duna - SGa Correlação Litofaciológica e de ras do Oeste. 6.3.1 Frente de Duna - SGb 6.3.2 Interduna Aquosa – SGb 6.3.3 Lençóis de Areia –SGb Resultados da Difratometria de	Estruturas da Seção Geológica 53 59 62 65 71 Estruturas da Seção Geológica b 73 79 82 88 Raio-X				
6.2 a de Tune 6.3 de Tuneir 6.4 7 CONSII	Correlação Litofaciológica e de eiras do Oeste 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa 6.2.3 Interduna Aquosa - SGa 6.2.4 Frente de Duna - SGa Correlação Litofaciológica e de l ras do Oeste 6.3.1 Frente de Duna - SGb 6.3.2 Interduna Aquosa – SGb 6.3.3 Lençóis de Areia –SGb Resultados da Difratometria de DERAÇÕES FINAIS	Estruturas da Seção Geológica 53 59 62 65 71 Estruturas da Seção Geológica b 73 79 82 88 Raio-X				
6.2 a de Tune 6.3 de Tuneir 6.4 7 CONSII REFERÊN ANEXOS.	Correlação Litofaciológica e de eiras do Oeste 6.2.1 Lençóis de Areia - SGa 6.2.2 Interduna Seca - SGa 6.2.3 Interduna Aquosa - SGa 6.2.4 Frente de Duna - SGa Correlação Litofaciológica e de l ras do Oeste 6.3.1 Frente de Duna - SGb 6.3.2 Interduna Aquosa – SGb 6.3.3 Lençóis de Areia –SGb Resultados da Difratometria de DERAÇÕES FINAIS	Estruturas da Seção Geológica 53 59 62 65 71 Estruturas da Seção Geológica b 73 79 82 88 Raio-X				

ANEXO II	106
ANEXO III	112
ANEXO IV	118
ANEXO V	128
ANEXO VI	133

1 INTRODUÇÃO

A área de estudo, compreende parte do noroeste paranaense, tendo como objetivo principal a correlação entre as Formações Rio Paraná e Goio-Erê, sendo selecionados como afloramentos de referência duas seções geológicas na BR-487 em Tuneiras do Oeste, pertencentes a Formação Goio-Erê e uma seção geológica no sítio paleontológico em Cruzeiro do Oeste, pertencente a Formação Rio Paraná e localizado em uma estrada vicinal do município.

Esses afloramentos são do Grupo Caiuá (Bacia Bauru), formado no período Cretáceo, acima do derramamento basáltico da Formação Serra Geral. A Bacia Bauru é caracterizada pelo seu paleoambiente majoritariamente desértico, principalmente a região sul da bacia, onde se localizam as formações Rio Paraná e Goio-Êre, porém, com a descoberta do sítio paleontológico em Cruzeiro do Oeste, discussões a respeito do desenvolvimento desse paleoambiente, têm demonstrado a presença de maior umidade para essa região da Bacia, gerando por autores que tem estudado esses afloramentos, controvérsias sobre a Formação pertencente a esses afloramentos e fósseis (Formação Rio Paraná ou Goio-Êre).

Para contribuir aos conhecimentos acerca dessa temática, esse trabalho se dedica a estudar mais detalhadamente duas seções geológicas em Tuneiras do Oeste. Para tal contribuição, foram realizados estudos sobre a granulometria das seções, assim como a composição química dos sedimentos, visto que, esses parâmetros, juntamente com os conhecimentos paleontológicos já descobertos, auxiliam na compreensão da gênese e formações superficiais desses ambientes (NETTO, 1963). E também servirão de dados de comparação com a seção em Cruzeiro do Oeste.

Esses estudos estratigráficos, estão associados ao projeto Institucional do professor Dr. Edison Fortes, do Grupo de Estudos Multidisciplinares do Ambiente (GEMA), da Universidade Estadual de Maringá (UEM).

2 LOCALIZAÇÃO DA ÁREA DE ESTUDO

A área desse estudo, está situada no noroeste paranaense, em polígono intermediário entre o Rio Ivaí e o Rio Piquiri (Figura 1). Estando dessa forma contida na Bacia Bauru, que é uma das bacias intracratônicas da Bacia do Paraná. Sua origem advém a partir da compensação isostática causada pelo derramamento de quase 2.000 m de lava basáltica no cretáceo inferior, possuindo uma extensão com cerca de 370.000 km², e sedimentação majoritariamente arenosa de espessura atual máxima, de cerca de 300 m, tendo seu perímetro preenchido entre o Coniaciano e o Maastrichitiano (FERNANDES e COIMBRA, 2000).

Figura 1 – Mapa de localização da área de estudo.

Fonte: A autora (2022).

O sistema hidrográfico dessa região, também compõe papel importante no modelado da bacia, ao sul, a Bacia Bauru faz limite com o Rio Piquiri, no interior da bacia, se têm o rio Ivaí, como rio antecedente, que em seu canal no Terceiro Planalto Paranaense, segue lineamentos dos "morros testemunhos, mesetas e as longas cadeias de mesetas gondwânicas" (MAACK, 2017, p. 406).

A drenagem secundária dessa região, sofre com os intensos processos erosivos causando dessa forma o assoreamento dos canais, que são em grande parte de arranjo anastomosado, tal processo é decorrente do baixo gradiente regional, associado ao grande volume de detritos (JABUR e SANTOS, 1984). Esse comportamento erosivo regional pode ser verificado também pela fragilidade dos solos associados a esses arenitos, que comumente sofrem processos erosivos. Tal processo também pode ser evidenciado pela presença dos morros testemunhos, que segundo Jabur e Santos (1984), foram originados a partir da remobilização do material mesozoico durante Cretáceo Superior sob a influência do Arco de Ponta Grossa.

As seções geológicas analisadas e comparada a seção geológica de Cruzeiro do Oeste, se localiza no município de Tuneiras do Oeste, ás margens da BR-487, esses afloramentos, pertencem a Formação Goio-Êre, e se encontram dispostas em lados imediatamente opostos da rodovia.

Para identificação desses dois afloramentos, serão adotados os termos SGa (Seção Geológica a) que servirá de referência para as formações do Grupo Caiuá, visto que, sua organização faciológica, permite a correlação com os holoestratótipos e paraestratótipos desse grupo. E o SGb, (Seção Geológica b), que também foi analisado e pormenorizado suas litofácies, ambas pertencentes a formação Goio-Erê.

Já o afloramento que servirá de comparação para o SGa e SGb, será o afloramento de Cruzeiro do Oeste, que será identificada como SGCO (Seção Geológica de Cruzeiro do Oeste), este se encontra na área rural do município de Cruzeiro do Oeste e pertence a Formação Rio Paraná, onde se têm registro fossilífero.

Ambos municípios estão localizados na região noroeste do Paraná, estando Cruzeiro do Oeste a 77 km de Campo Mourão e Tuneiras a 56 Km, sendo o acesso realizado pela BR-487.

3 CONTEXTO GEOLÓGICO

A Bacia do Paraná, ao qual a Bacia Bauru está inserida, têm extensão de cerca de 1.500.000 km², apresentando forma ovalada que abrange áreas do território sul brasileiro, oeste do Paraguai, nordeste da Argentina e o norte do Uruguai (Figura 2) estando dessa forma, assentada inteiramente sobre a plataforma sul-americana, e apresentando uma sucessão sedimentarmagmática de tempo de evolução entre o Neo-Ordoviciano e o Neocretáceo (MILANI, 2004).

O embasamento dessa bacia, é constituída principalmente por rochas cristalinas pré-cambrianas, e secundariamente por rochas afossilíferas eopaleozóicas, sendo que no início da sua formação houve grande instabilidade tectônica, que foi cessando ao fim do rifteamento sul-americano e africano, porém, sua estrutura continuou evoluindo, fazendo com que gradualmente a região costeira soerguesse, que movimentos verticais em falhas tectônicas de direção NW (Curitiba-Maringá e Guapiara) e Ew (lineamento São Sebastião) acontecesse e que ocorresse a subsidência na parte sul da zona de falha Curitiba-Maringá (MINEROPAR, 2006).

Seu pacote sedimentar é constituído sumariamente por sedimentação de origem marinha a partir do neo-ordoviciano, posteriormente sedimentação de origem desértica na Era Mesozóica, interrompida por intensos derrames basálticos com a ruptura do Gondwana, que extravasaram sobre a superfície ou foram inseridos nas rochas sedimentares como diques ou soleiras. E após esse espaço flexural gerado a partir desse derramamento, assentou-se sedimentação continental Neocretácea (MILANI, 2004).

Figura 2 – Mapa geológico simplificado da Bacia do Paraná, com a profundidade estrutural do embasamento cristalino contornado, com a região do noroeste paranaense, apresentando o maior depocentro, pela deposição dos magmas dos derrames da Serra Geral.

Fonte: Milani (2004).

Esse último pacote sedimentar, gerado após a ruptura Gondwânica, possibilitou o acúmulo de sedimentos em amplas áreas, formando assim novas bacias, dentre as quais a Bacia Bauru, que possui contato predominantemente discordante erosivo com os basaltos da Formação Serra Geral, além também de interdigitamento observado por Jabur e Santos (1984), no Morro dos Três Irmãos (Terra Rica) e Morrinhos (Porto Rico).

Os sedimentos da Bacia Bauru são cronocorrelatos, de contato superior erosivo, compostos por dois Grupos: Grupo Bauru (formações: Vale do Rio do Peixe, Araçatuba, São José do Rio Preto, Presidente Prudente, Uberaba e Marília) e Grupo Caiuá (formações: Rio Paraná, Goio-êre e Santo Anastácio) (FERNANDES e COIMBRA, 1996; FERNANDES, 2004).

A partir desse ponto, é importante destacar que a proposta de arranjo litoestratigráfico da Bacia Bauru adotada nesse trabalho, é a de Fernandes (2004) (Figura 3), que estabelece o Grupo Bauru, com as formações supracitadas e o Caiuá, no qual está inserido a área do presente trabalho.

Figura 3 – Mapa litoestratigráfico da Bacia Bauru.

Fonte: Adaptado de Fernandes (2004).

Os estudos sobre a Bacia Bauru, têm sido apresentadas desde 1905 com o reconhecimento e descrição de Gonzaga de Campos no oeste do Estado de São Paulo (1905, apud BATEZELLI, 2003), e no noroeste Paranaense desde 1930 com a descrição de Washburne (1930, apud JABUR, 1984). Posteriormente, foram realizados estudos com base no posicionamento das unidades geológicos, estratigráfico assim como, os ambientes deposicionais. Sobre o último aspecto, diversas propostas foram feitas, sendo atribuídos por alguns autores ambiente de deposição eólico (FERNANDES e COIMBRA, 2000), deltaica (LANDIM e FÚVARO, 1971) e também origem mista (FREITAS, 1973). Atualmente se têm certo consenso em atribuir condições de deposição eólica na parte central da bacia e em suas bordas condição ligeiramente mais úmidas.

Porém a escassez de registro fossilífero nas formações Rio Paraná e Goio-Erê, ao mesmo tempo que corroboram a hipótese de ambiente desértico, tem causado por outro lado dificuldade na caracterização desses ambientes pelos registros fossilíferos de pterossauros e dinossauros, na porção sul da bacia em trabalhos publicados recentemente, (MANZIG et al., 2014; KELLNER et al., 2019; LANGER et al., 2019; Souza et al., 2021) trazendo a discussão sobre a formação ao qual esses ambientes deposicionais se encontram (Rio Paraná ou Goio-Êre). Essa discussão é decorrente da proximidade das duas formações, assim como, a semelhança dos constituintes minerais e texturais, das unidades litoestratigráficas. A arquitetura das unidades litofaciológicas, bem como a presença mais abundante de carbonatos nas bordas da bacia, sugerem uma maior umidade nessas regiões, porém nas fácies fossilíferas, esse material é praticamente ausente.

3.1 Caracterização das Formações da Bacia Bauru

A Bacia Bauru é dividida em Grupo Bauru e Grupo Caiuá, o primeiro respectivamente divide-se em Formação Vale do Rio do Peixe, Formação Araçatuba, Formação São José do Rio Preto, Formação Presidente Prudente, Formação Uberaba e Formação Marília. Já o segundo grupo divide-se em

Formação Rio Paraná, Formação Goio-Erê e Formação Santo Anastácio (FERNANDES, 2004).

No contexto do Grupo Bauru, a formação Rio do Peixe, abrange maior parte da bacia e seu contexto deposicional é essencialmente eólico, com estratos de arenitos com intercalação de siltitos ou lamitos arenosos, possivelmente de origem em depressões que acumulavam umidade em tempos de elevação do nível freático, tendo como tipo predominante de deposição, planícies de lençóis de areia. Já a Formação Araçatuba, têm predominância de deposição de ambiente pantanoso, com águas rasas e de pouca agitação e expansão. A Formação Uberaba, teve seu ambiente deposicional em um sistema fluvial entrelaçado. A Formação Marília se divide em três membros, sendo todos eles, guardadas as especificidades, de legues aluviais distais, tendo dois dos membros (Serra da Galga e Ponte Alta), ambiente deposicional fluvial entrelaçado e o terceiro membro (Echaporã), planícies de Lençóis de Areia. A Formação São José do Rio Preto, também apresenta ambiente deposicional, como fluvial entrelaçado. E por fim a Formação Presidente Prudente, com ambiente deposicional fluvial meandrante arenoso, com pouca sinuosidade e canais rasos (FERNANDES e COIMBRA, 2000).

Segundo Batezelli (2010, Batezelli et al, 2005), a sedimentação do Grupo Bauru, é caracterizada por prevalência de rios entrelaçados de baixa sinuosidade, que compartilhavam espaços com depósitos *playa lake* no início da evolução da bacia, que acabou colmatando o nível de base, após sedimentos advindos do norte e do nordeste, com o soerguimento do Alto do Parnaíba e da Província Alcalina de Goiás.

Já sobre os aspectos estratigráficos característicos do Grupo Caiuá, têmse a Formação Rio Paraná, que apresenta suas maiores espessuras no noroeste paranaense (acima de 200 m), apresenta contato lateral gradual com a formação Goio-Erê, tendo cimentação frequente de carbonatos (FERNANDES e COIMBRA, 2000). Em sua base ocorrem estratos com aspecto de brecha de até 1 m de espessura "constituído de arenito lamoso maciço, imaturo, com fragmentos centimétricos de basalto, nódulos de esmectita e carbonato" (FERNANDES e COIMBRA, 2000, p.717). Essa formação, comumente expõe estratificação cruzada de médio a grande porte (até 10m), sendo limitados por truncamentos de 2° ordem. Sua composição é de arenitos marrom-avermelhados a arroxeados, de granulometria fina a muito fina. Apresentando mineralogia supermatura, com boa maturidade textural. Quanto ao contexto deposicional, está relacionado à "construções eólicas de grande porte (*draas*), complexos de dunas de cristas sinuosas, amalgamadas, de região central de *sand sea* (FERNANDES e COIMBRA, 2000, p.720). Possivelmente o centro desse antigo deserto, se encontrava no Pontal do Paranapanema, onde foram encontrados as estratificações cruzadas de maior porte.

Já a Formação Goio-Êre, tem ocorrência apenas na região sudeste da bacia, com as espessuras mais profundas calculadas em até 50 m. a transição dessa formação para a Formação Rio Paraná se dá de forma transicional, enquanto que a transição para a Formação Serra Geral, ocorre em contatos erosivos. Sua composição aparece em camadas tabulares, com estratificação cruzada, alternando com estratificações de aspecto maciço e ocorrências ocasionais de "laminações plano-paralelo incipiente, ondulações de adesão, *climbing ripples* eólicos e pequenas dobras convolutas, todas descontínuas e mal definidas" (FERNANDES e COIMBRA, 2000, p.720).

Seus grãos são de arenitos quartzosos de matiz marrom-avermelhado a cinza arroxeado, de granulometria fina a muito fina e por vezes médio. Com mineralogia matura e textura submatura e frequente cimentação por carbonatos. O contexto dos depósitos dessa formação, está associado à áreas de depósitos marginais de *sand sea*, subordinado às oscilações do nível freático raso. Além também de dunas eólicas de porte moderado e com cristas sinuosas e presença de interdunas úmidas ou aquosas (FERNANDES e COIMBRA, 2000).

A Formação Santo Anastácio, ocorre principalmente nas calhas das baixas vertentes do dos afluentes do Rio Paraná em São Paulo, ocorrendo de forma restrita em São Paulo e em Minas Gerais, apresentando espessura máxima entre 70 e 100 m. o contato com as formações Rio Paraná e Vale do Rio do Peixe, se dá de forma gradual. A característica dessa formação, está em seus estratos tabulares arenosos, que contém aspecto maciço típico, de espessura de até 1 m, sendo incomum estratos de laminitos e argilitos. Sua constituição é de areia quartzosa de granulometria "fina a muito fina, pobremente selecionados, com a fração silte subordinada, e pequena quantidade da fração silto-argilosa" (FERNANDES e COIMBRA, 2000, p.720).

Seu contexto deposicional, compreende depósitos de lençóis de areia, predominantemente secos acumuladas em extensas e constantes planícies desérticas, periféricos aos complexos de dunas de *sand sea*. É raro o registro de depósitos de enxurradas do tipo *wadi*.

É relevante destacar que a hipótese de formação dos depósitos sedimentares da Bacia Bauru, nesse caso, exclusivamente sobre o grupo Caiuá, que até então têm suas descrições litofaciológicas oriundas de gênese sobretudo eólicas, têm sido objeto de estudos recentes, que têm mostrado ambiente de sedimentação com maior umidade (LIMA, 2019; KELLNER, 2019) do que o descrito até então.

Foi feito um mapa das formações geológicas da área de estudo (Figura 4), onde pode-se observar a presença de duas das formações do Grupo Caiuá (Formações Rio Paraná e Goio-Êre), na borda sul da Bacia Bauru, e o limite com a Formação Serra Geral (Grupo São Bento).

Figura 4 – Geologia da área de Estudo.

Fonte: a autora (2022).

3.2 Evolução Paleoambiental

A descrição paleogeográfica de Fernandes (1992), para o desenvolvimento da Bacia se dá sobretudo em ambiente desértico, sendo encontradas naquele momento, depósitos de fácies aquosas em algumas formações do Grupo Bauru (Formação Marília, Formação Uberaba e Formação Adamantina). E sistemas eólicos pertencentes ao Grupo Caiuá, representados pela Formação Santo Anastácio, com depósitos de extradunas e lençóis de areia, e Formação Rio Paraná e Formação Goiô-Erê com depósitos de campo de dunas.

Em 1994, Fernandes e Coimbra, atribuíam ao Grupo Caiuá uma deposição desértica, com sub-ambientes em cada Formação, sendo a formação Rio Paraná, mais ao centro da bacia caracterizada predominantemente por zona central de *sand sea*. A Formação Goio-Erê com o domínio de zonas de depósitos eólicos marginais e na Formação Santo Anastácio a prevalência de planícies de lençóis de areia.

Já o grupo Bauru, que é cronocorrelato ao grupo Caiuá, possuía associações faciológicas de ambientes aluviais e fluviais, nas formações Uberaba e Adamantina, enquanto que na Formação Marília, se encontravam depósitos de leques marginais (FERNANDES E COIMBRA, 1994) até esse momento esses autores classificavam o grupo Bauru com essas três formações.

Ainda na mesma cronologia dos autores supracitados se classificavam as formações do grupo Caiuá, com depósitos quase que exclusivamente de origem eólica, sendo somente a formação Santo Anastácio, que apresentava alguns depósitos de tipo *wadi* (úmido). A relação de fósseis também não era promissora.

A reconstrução paleogeográfica de Fernandes (1992), da Bacia Bauru, conforme pode ser visto na figura 5 na sequência, mostra o sistema fluvial entrelaçado, atribuído à formação Adamantina, com a presença de dinossauros, que representam os fósseis conhecidos dessa formação.

Fonte: Adaptado de Fernandes (1992).

Em revisão estratigráfica realizada por Fernandes e Coimbra (2000), da Bacia Bauru, o ambiente de deposição desértica prevalece, como é característico de toda bacia, mas já é descrito ambientes de depósitos marginais relacionados ao nível do freático na Formação Goio-Erê e as Formações Santo Anastácio e Rio Paraná, mantêm a sua descrição deposicional.

Com os estudos realizados no afloramento do sítio paleontológico de Cruzeiro do Oeste, assim como, nos fósseis encontrados nele, se têm tido um panorama diferente sobre o ambiente deposicional da parte sul da Bacia Bauru, onde começou a atribuir e encontrar litofácies mais úmidas, que pudessem proporcionar um ambiente menos inóspito ao desenvolvimento de algumas espécies (Figura 6).

<image>

Figura 6 – Obra de Maurílio Oliveira, mostrando possível paleoambiente e interação da fauna encontrada no afloramento de Cruzeiro do Oeste.

. Fonte: Kellner et al (2019).

A partir da descoberta de sítio paleontológico fossilífero em Cruzeiro do Oeste, foi possível a realização de estudos mais precisos sobre a taxonomia e comportamento de parte da fauna que habitava essa região, pois até então, só se tinham registros de icnofósseis no Grupo Caiuá, como as trilhas descritas por Leonardi (1977), de terópoda, denominado de "coelorussaurus" ou mais possivelmente "carnosaurus", que mais tarde foi associado por Langer et al (2019), ao táxon pertencente ao *Vespersaurus paranaenses*. Essas trilhas foram encontradas em Cianorte (Tabela 1 e figura 7), e são parte da Formação Goio-Êre, no limite de transição com os derrames basálticos da Formação Serra Geral.

LOCAL	LATITUDE	LONGITUDE
Cruzeiro do Oeste	23°44' S	53°05' O
(Icnofósseis).	(Aproximadamente)	(Aproximadamente)
(LEONARDI, 1994)		
Cruzeiro do Oeste	23°45'34,5" O	53°03'53,4" S
(Fósseis). (MANZIG et		
al, 2014)		

Tabela 1 – Coordenadas dos icnofósseis e fósseis relacionados a Bacia Bauru.

Cianorte (iconofósseis).	23°40'38" S	52°33'30,1" O
(LEONARDI, 1977)		
Indianópolis	23°4' S	52°39' O
(iconofósseis).	(Aproximadamente)	(Aproximadamente)
(LEONARDI, 1977)		
Porto Primavera	22°28'57" S	52°57'28,7" O
(icnofósseis).		
(FERNANDES et al.		
2009)		

Organização: A autora (2021).

Figura 7 – Localização de fósseis e icnofósseis encontrados no Grupo Caiuá (Bacia Bauru).

Fonte: A autora (2021).

Mais ao norte, no município de Indianópolis, também foram encontradas trilhas, descritas por Leonardi (1977), como pertencentes a mamíferos primitivos e dinossauro bípede pequeno (possivelmente "coelorussaurus"). Essas trilhas

estão na periferia da Formação Rio Paraná, próxima de um tributário do Rio Ivaí (LEONARDI, 1977; LEONARDI, 1994).

Também são encontrados icnofósseis no Pontal do Paranapanema, na hidrelétrica de Porto Primavera (município de Rosana, SP) onde as trilhas são observadas entre 6 e 8 metros acima do limite basáltico, sendo encontrados trilhas de terópodes e pequenos mamíferos, que são associados ao início do desenvolvimento do campo de dunas do "Deserto Caiuá", esse é um local relevante, pois, esses icnofósseis estão presentes na região central da Bacia Bauru, o que denota umidade e presença mesmo que ocasional de uma fauna, no interior da Bacia (FERNANDES et al., 2009).

Já no município de Cruzeiro do Oeste, próximo ao atual sítio paleontológico, em 1977 o Geólogo Luiz Carlos Godoy encontrou trilha de animal de aspecto mamiferóide, (LEONARDI, 1994). Antes, em 1971, foi descoberto o sítio paleontológico de Cruzeiro do Oeste, pelo senhor João Gustavo Dobruskii, que em 1975, enviou amostras de fósseis para a Universidade Estadual de Ponta Grossa, onde as amostras foram guardadas, tendo havido o seu "redescobrimento" em 2011, quando pesquisadores a procura de materiais para livro intitulado "Museus e fósseis da região sul do Brasil", (LIMA, 2019), fez com que mais cientistas conhecessem o local e começassem a estuda-lo desde então.

Dessa forma, desde 2014, têm sido publicados descobertas de novas espécies de dinossauros e pterossauros, assim como espécies já conhecidas, mas de abrangência de área não conhecida nessa região até então. Dentre as espécies já encontradas no sítio, estão: os pterossauros *Caiuaja dobruskii* (MANZIG et al., 2014) e o *Keresdrakon vilsonigen* (KELLNER et al., 2019); o lagarto *Guragama sulamericana* (SIMÕES et al. 2015); o dinossauro *Vesperssaurus paranaensis* (LANGER et al., 2019) e mais recentemente o dinossauro *Berthasaura leopoldinae* (Souza et al., 2021).

4 CONTEXTO GEOMORFOLÓGICO

A área de estudo está situado no Terceiro Planalto Paranaense (MAACK, 2017) e nessa região, sobretudo onde se encontra o Arenito Caiuá, o relevo se apresenta de forma uniforme e pouco dissecado, "caracterizado por extensos espigões levemente ondulados, com vertentes convexas, longas e de baixa declividade" (GASPARETTO, 1999).

Estando a maior parte desse relevo entre as altitudes de 550 m, em regiões próximas à Paranavaí e a 300 m, próximas as margens dos rios Paraná e Paranapanema. Em alguns locais de drenagem mais entalhada ou próximas aos leitos dos principais rios, o relevo pode se apresentar mais dissecado, com desníveis que podem passar de 50 m (GASPARETTO, 1999).

Essa paisagem regular, só é descontinuada, com os morros testemunhos silicificados, como os Três Morrinhos em Terra Rica, que tem alinhamento NW, coincidente com os derrames da Formação Serra Geral (GASPARETTO, 1999). Nesses morros, a declividade é mais escarpado. A figura 8, mostra as formas do relevo da área de estudo.

Figura 8 – Compartimentação geomorfológica da área de estudo.

Fonte: A autora (2022).

Foi realizado a elaboração de um perfil topográfico (Figuras 9 e 10), que abrange três pontos de interesse geológico, sendo eles: a seção geológica de Cruzeiro do Oeste (Formação Rio Paraná), as seções geológicas de Tuneiras do Oeste SGa e SGb, representados pelo mesmo ponto (Formação Goio-Erê) e um afloramento na BR-487, no limite entre os municípios de Araruna e Cianorte, que apresenta uma transição entre os arenitos e o basalto da Formação Serra Geral.

Figura 9 – Mapa geológico com os perfis topográficos traçados.

Fonte: A autora (2022).

Figura 10 – Perfil topográfico do perfil A-A'.

Fonte: A autora (2021).

As seções geológicas possuem diferentes extensões, portanto, foram atribuídos pontos que indiquem suas localizações. Esses pontos foram dispostos aproximadamente ao centro de cada seção, de acordo com a visualização no Google Earth.

Em campos realizados, foram observadas aspectos interessantes sobre a morfologia regional, sendo destacadas quatro localidades, em que era possível observar o limite entre os derrames basálticos e a sedimentação arenosa.

Uma primeira localizada, na BR-487, entre o limite dos municípios de Cianorte e Araruna (Figura 11), que é um dos pontos do perfil topográfico, que evidencia a estrutura basáltica com intensa alteração, inclusive por presença de erosão esferoidal na base, com aparente deposição de solo formado a partir do arenito.

Figura 11 – Trecho do limite entre as rochas magmáticas que estão em estado de erosão esferoidal, com os arenitos da Formação Goio-Êre, a espessura vertical desse trecho é de cerca de 5m.

Fonte: Edison Fortes (2020).
Outro contato entre os basaltos e os arenitos, se localiza no município de Alto Paraná, na pedreira Itaporã, que expõe limite basáltico com arenitos da Formação Goio-Êre (Figura 12), estando a cerca de 356 m de altitude.

Figura 12 – Contato entre derrames maciços da Formação Serra Geral e Arenitos da Formação Goio-Êre.

Fonte: Edison Fortes (2020).

Aqui, os sedimentos estão sobrepostos ao derrame basáltico da Formação Serra Geral que apresenta algumas fraturas verticais preenchidas por arenitos de aspecto silicificado (Figura 13), indicando que mesmo após o encerramento das atividades vulcânicas, a presença de altas temperaturas associada a atividade geotérmica, propiciava a deposição de sílica nos poros.

Figura 13 – A) Intrusão de arenito em falha vertical do basalto. B) Detalhe de arenito silificado pelo basalto.

Fonte: Edison Fortes (2020).

Outro contato arenito/basalto ocorre em pedreira localizada a pouco mais de 7 km de distância ao sul das seções geológicas a e b e Tuneiras do Oeste (Figura 14), a 382 m de altitude. Nesse contato também foram observadas intrusões de arenito em falhas no basalto, assim como verificado na pedreira de Alto Paraná, porém, a ocorrência erosiva é intensa sendo observadas erosão esferoidal nos basaltos (Figura 14 c).

Figura 14 – A) Contato do basalto (Formação Serra Geral) e arenitos (Formação Goio-Êre); B) Intrusão de arenito silicificado em falha no basalto; C) erosão esferoidal do basalto.

Fonte: Edison Fortes.

Ainda próximo das seções Geológicas a e b, a cerca de 16 km ao sul, em área de vale, verifica-se outro contato entre os dois tipos litológicos (Figura 15), onde mais uma vez, o arenito apresenta-se silicificado em falhas dos derrames basálticos da Formação Serra Geral. Nesse ponto, a erosão observada no basalto é decorrente de intensa ação da água.

Figura 15 – Intrusão de arenito em falha de basalto em região de vale no município de Tuneiras do Oeste.

Fonte: A autora (2021).

Apesar do embasamento basáltico e de localidades onde o mesmo é aflorante, o aspecto de grande friabilidade dos solos derivados das rochas arenosas que são predominantes regionalmente, e a intensa mecanização ocorrida no noroeste paranaense a partir de 1970, faz com que haja processos erosivos muito frequentes na região, como pôde ser verificado *in loco*, em área rural de Loanda (Figura 16), muito próxima do perímetro urbano.

Essa voçoroca, têm grande extensão vertical e horizontal, e apesar de obras da prefeitura para sua contensão, chuvas mais intensas e esgoto de indústria próxima, faz com que essa voçoroca continue se desenvolvendo. Essa localidade está situada na Formação Rio Paraná, a aproximadamente 421 m de altitude.

Figura 16 – Interior de voçoroca em Loanda.

Fonte: Edison Fortes (2020).

5 PROCEDIMENTOS METODOLÓGICOS

A metodologia empregada na realização desse trabalho, consiste sumariamente na Revisão Bibliográfica (determinação de metodologias e assimilação da área de pesquisa e correlação dos dados obtidos), Trabalhos de Gabinete (execução de mapas, imagens, tabelas, gráficos, planilhas e texto), Trabalhos de Campo (Observação de campo e coleta de amostras) e Trabalhos de Laboratório (Processamento das amostras).

5.1 Trabalho de Gabinete

Essa etapa constitui-se na elaboração de mapas temáticos da região de pesquisa, realizados a partir do software QGIS nas versões 2.8.3 e 2.18.12, utilizando-se como base mapas temáticos disponibilizados gratuitamente pelos órgãos Estaduais/Federais (Tabela 2).

Produto Cartográfico de Base	Fonte	Ano
Geologia	SGB (Serviço Geológico do	2021
	Brasil)	
Geomorfologia	IBGE (Instituto Brasileiro de	2019
	Geografia e Estatística)	
Hidrografia	IBGE (Instituto Brasileiro de	2017
	Geografia e Estatística)	
Malha Estadual/ Federal	IBGE (Instituto Brasileiro de	2016
	Geografia e Estatística)	
Rodovia	DER/PR (Departamento de	2017
	Estradas de	
	Rodagem/Paraná)	

Tabela 2 – Produtos cartográficos utilizados na confecção dos mapas.

Fonte: A autora (2021).

Já o perfil topográfico foi desenvolvido no software Google Earth Pro, que a partir da ferramenta de "mostrar o perfil de elevação" executou o mesmo para o perfil designado, que teve sua concepção final realizada no programa gratuito de vetorização Inkscape, a partir dos dados teóricos de limites entre cada formação a partir do mapa geológico do Serviço Geológico do Brasil e espessura máxima para a Formação Rio Paraná, estimada em 277 m por Fernandes (2004).

5.2 Trabalhos de Campo

Foram realizadas 3 excursões de campo, uma primeira entre os dias 9 a 12 de novembro de 2020, onde foi descrito e coletado amostras da seção geológica a em Tuneiras do Oeste. Ao todo foram 64 amostras coletadas, distribuídas em 7 perfis.

O segundo campo ocorreu nos dias 25 e 26 de julho de 2021 e teve como objetivo a descrição e coleta de amostras da seção geológica b. Nesse campo foram abertos 3 perfis, porém foram coletadas amostras somente em 2, sendo 48 amostras recolhidas.

E uma terceira incursão em campo para finalizar a seção geológica b, entre os dias 26 a 29 de setembro de 2021 com mais 3 perfis abertos para descrição e coleta, somando mais 56 amostras a essa seção.

5.3 Granulometria e Decantação

Esse procedimento, segundo Teixeira *et al* (2017), visa conhecer a distribuição dos tamanhos dos grãos minerais individuais, alterados ou não de uma rocha, que podem conter mais de um mineral, concreções e cimentações.

As amostras coletadas em campo das seções geológicas a e b foram processados no GEMA (Grupo de Estudos Multidisciplinares do Ambiente), onde foi utilizada a metodologia padrão da Embrapa, descrito no manual de solos da Embrapa (TEIXEIRA et al., 2017), de forma adaptada, que servirá como base de

comparação com as granulometrias feitas por LIMA (2019). Sendo utilizado os intervalos para a determinação das frações granulométricas, a escala estabelecida por Wentworth (1922) de: 2 mm, 1mm, 0,500mm, 0,250 mm, 0,125mm e 0,063 mm, que é amplamente utilizada no Brasil e o processo de decantação da última fração para a determinação da porcentagem de silte e argila nas amostras.

Com a obtenção desses dados, os valores foram colocados em planilhas elaboradas no GEMA, que permitem quantificar a porcentagem de cada fração granulométrica sendo posteriormente lançados no programa GRADISTAT, que gera dados estatísticos sobre a amostra.

Essas amostras processadas para a granulometria e decantação, foram utilizadas para a análise estatísticas de Folk e Ward (1957), morfologia no MEV e para a análise dos argilominerais no DRX.

Os dados estatísticos de Folk e Ward (1957), foram adquiridos a partir dos dados das frações granulométricas de cada amostra processados no software GRADISTAT e dentre as estatísticas geradas destacam-se o parâmetro de desvio padrão, que é um indicador da maturidade textural dos sedimentos (DIAS, 2004). Parâmetros de assimetria, que identificam se o ambiente é predominantemente de deposição (assimetria positiva) ou de remoção (assimetria negativa).

E a estatística de curtose, que compara a forma da curva das amostras em relação a uma curva modelo dos sedimentos, estando associado ao grau de seleção das amostras. Esse parâmetro é dividido em três principais classificações: Platicúrutico, mesocúrtico e leptocúrtico, com a primeira e terceira classes respectivamente podendo receber ainda as denominações auxiliares "muito" ou "extremamente".

5.4 Microscopia Eletrônica de Varredura (MEV)

A Miscroscopia Eletrônica de Varredura (MEV), tem como diferencial dos microscópios ópticos convencionais, a utilização de feixe de elétrons ao invés de

fótons, o que permite um aumento de 300.000 vezes ou mais de um objeto. Outras vantagens desse aparelho são a sua alta resolução das imagens, assim como o aspecto tridimensional que as imagens possuem, podendo dessa forma ser analisadas as microestruturas e rugosidades das amostras (DEDAVID et al, 2007).

Esse procedimento metodológico, é para analisar a morfologia dos grãos de cada litofácie, já que a partir da forma dos grãos e suas marcas, associado a outros elementos, como análise química e tamanho dos grãos, pode indicar com maior precisão, o ambiente deposicional ao qual esses sedimentos foram submetidos.

Os procedimentos de preparação da amostra, se dão em: secagem em estufa das amostras selecionadas, já que o aparelho não permite umidade. Fixação dos grãos em fita de carbono sobre o stub, que é uma plataforma de cerca de três centímetros de diâmetro de metal e posterior metalização da amostra com uma camada fina de ouro para que o feixe de elétrons possa percorrer pelas amostras.

5.5 Difratometria de Raio-X (DRX)

A difração de raio-X, é uma técnica utilizada desde 1930, para a identificação mineralógica e caracterização de argilominerais e outros constituintes das frações mais finas dos solos ou sedimentos. Essa é considerada a principal técnica para essa finalidade, tornando-se essencial aos estudos mineralógicos (TEIXEIRA, *et al*, 2017). O equipamento utilizado para essa análise, também se encontra na COMCAP, sendo utilizados para a sua operação granulometria <0,053mm.

6 RESULTADOS E DISCUSSÕES

6.1 Correlação Litofaciológica e Estruturas Sedimentares da Srção Geológica de Cruzeiro do Oeste (SGCO)

A caracterização dessa seção geológica foi realizada com base nos dados obtidos por LIMA (2019), que descreveu o afloramento, quanto ao conteúdo sedimentar e paleontológico, porém sem estabelecer associação com outras seções, notadamente aquelas associadas a Formação Goio-Êre. A seção geológica de Cruzeiro do Oeste está contida no interflúvio entre dois rios da bacia do Rio das Antas em corte de estrada vicinal. Esse afloramento se estende da base da vertente desde a cota de 382 m até o topo a 426 m, totalizando um desnível de 44 m no relevo e foi associada, pela autora supracitada à Formação Rio Paraná.

A seção geológica completa tem área de exposição em ambas margens da estrada, com espessura máxima de até 3 m e com cobertura coluvial pedogenizada que não ultrapassam 2 m de espessura, que faz contato irregular com os arenitos causado pelo alto nível de bioturbação no topo do mesmo.

Foi setorizado por Lima (2019), três sub-seções geológicas dispostas ao longo da vertente, denominadas pela autora por S1, S2 e S3 (Figura 17 e 18). A primeira seção se estende da baixa até a média vertente e apresenta arenitos finos de cor avermelhada em estratificações cruzadas de grande porte. O predomínio se dá nas frações de areia fina (27% a 47%), secundariamente as areias muito fina, que variam entre 11% a 21%, na sequência, o silte (14% a 19%) e em seguida a areia média (1% a 7%).

Figura 17 – Perfil litoestratigráfico, com as indicações das seções e as unidades estratigráficas.

Fonte: Adaptado de Lima (2019).

Figura 18 - Perfil estratigráfico esquemático representando o afloramento de Cruzeiro do Oeste.

Fonte: Adaptado de Edison Fortes et al. (2019).

A segunda seção ocorre na média vertente e se caracteriza pelo aspecto ligeiramente embaciado. A S2 se destaca pela ocorrência de importante jazigo fossilífero com presença de espécies já mencionadas em capítulo anterior. Essa unidade é definida pela autora como pertencente a litofácie de interduna úmida e cuja disposição e concentração de fauna de fósseis de pterossauros indica um paleoambiente associado a fluxos torrencias (*wadi*) (LIMA, 2019), compreendendo perfil a ser apresentado os dados de DRX e MEV no presente trabalho.

Ainda segundo a autora, os arenitos da base dessa seção apresentam estratificações plano-paralelas abundantes em material fossilifero. Acima desse nível estão expostos pacotes sedimentar maciço com rara presença de material fóssil.

A terceira seção, localizada na parte alta da vertente, apresentam grãos de arenito fino avermelhado em laminações que em conjunto formam estratificações cruzadas, que são associadas por Lima (2019), como *foresets* de dunas e cujas laminações mergulham em sentido oposto aquelas da base do perfil (S1). A distribuição granulométrica é predominantemente constituída por areia fina (28% e 47%), secundariamente areia muito fina com teores variando entre 21% e 21,20%, na sequência a fração de argila (12,10% e 17%), em seguida a fração de areia média (9,70% e 10,70%), e por último o silte (0% e 9,20%).

A partir dos dados granulométricos dessa seção geológica, foram organizados gráficos de boxplot que sumarizam os dados expostos anteriormente, contendo todas as 21 amostras, para as duas litofácies dessa seção, que são frente de duna (8 amostras) e interduna úmida (13 amostras).

Para a litofácies de frente de duna, é possível observar a partir do gráfico de boxplot (Figura 19) que se destaca a fração de areia fina, com valores variando entre 27% a 47%, sendo a fração de maior amplitude de valores. Já as outras frações granulométricas, com exceção da areia grossa, apresentam distribuição de valores dentro de uma amplitude similar, com uma maior regularidade entre as frações granulométricas. Em comparação com a mesma litofácies da formação Goio-Erê, onde se observa um predomínio na fração areia

média, que apresentam porcentagens mais altas e maior irregularidade na distribuição dos valores entre as outras frações.

Figura 19 – Gráfico de boxplot, da litofácies de Frente de Duna da seção Geológica de Cruzeiro do Oeste.

Fonte: A autora (2022).

Já em relação a litofácies de inteduna úmida, se verifica um predomínio entre as frações de areia fina, areia muito fina e silte, sendo o último respectivamente o que apresenta os maiores valores, variando entre 22% a 34,60%, no entanto, todas as frações estão distribuídas em um baixo gradiente de valores (Figura 20).

Figura 20 – Gráfico de boxplot da litofácies de Interduna úmida da Seção Geológica de Cruzeiro do Oeste.

Fonte: A autora (2022).

Segundo os parâmetros estatísticos de Folk e Ward (1957) a seção S2, apresenta grãos com seleção moderada, recebendo de acordo com o valor de desvio padrão a classificação de areia fina. A curtose é predominantemente leptocúrtica (LIMA, 2019).

Ainda sobre esses parâmetros, foi elaborado um gráfico de dispersão (Figura 21), com os valores de diâmetro médio dos grãos das 21 amostras. A litofácies de frente de dunas apresenta majoritariamente grãos classificados como areia muito fina, com mediana calculada em 116,5 µ. Nota-se que na distribuição ao longo da vertente, as amostras coletadas próxima do vale,

possuem diâmetro médio menor em relação as duas amostras coletadas na alta vertente.

Já a litofácies de Interduna úmida, apresenta grãos com tamanho médio relativamente maiores, com mediana no valor de 142 μ, estando em sua maioria classificados como areia fina. Essas foram coletadas na média alta vertente.

Figura 21 – Gráfico de dispersão relacionando o diâmetro médio das amostras pela escala de Wentworth (1922), para cada litofácies da SGCO.

Fonte: A autora (2022).

Em análise de microscopia eletrônica de varredura (MEV) para a seção fossilífera Lima (2019), utilizou os intervalos granulométricos de 0,250 mm, 0,125 mm, 0,063 mm e <0,063 mm, todas pertencentes ao perfil fossilífero.

Segundo análises da autora supramencionada, os grãos são bem marcados por feições originadas pela ação de transporte eólico, essas se evidenciam pela presença de fissuras, fraturas e quebras nos grãos e ainda ocorrências relacionadas a dissolução química, que produz diferentes formas em sua superfície, conforme podem ser observadas na figura 22.

Figura 22 – A) fotogrametria de grão exibindo cavidades e fissuras originadas a partir de transporte eólico. B) grãos apresentando marcas de dissolução e desgaste mecânico.

Fonte: Adaptado de Lima (2019).

As amostras pertencentes ao acamamento plano-paralelo apresentam elevado registro de ação mecânica, causando fraturas e fissuras nesses grãos, denotando pouco transporte dos mesmos. Já os grãos relacionados a níveis onde os fósseis foram preservados, ocorrem mais feições de alteração química. Nos grãos de areia muito fina, são observados grãos em formato prismático, colunares e subangulosos e pouca ação química, sendo esses os que apresentaram menor grau de esfericidade e arredondamento, indicando menor retrabalhamento desses grãos no ambiente.

Com o auxílio do EDS (Espectroscopia por energia dispersiva), Lima (2019), realizou análise química desses grãos, que evidenciam composição químicas muito similares, constituída basicamente de silício e hidróxido de ferro, denotando que esse material sofreu processo de lixiviação por dissolução.

Em análise de difratometria de Raio-X, para a seção fossilífera, Lima (2019), constata que as amostras têm uma mesma origem, dada a equivalência dos minerais detectados, ocorrendo apenas variação na proporção de ocorrência. Os minerais detectados foram quartzo, hematita e caulinita.

6.2 Correlação Litofaciológica e de Estruturas da Seção Geológica a de Tuneiras do Oeste

Essa seção geológica, localiza-se em margem da BR-487, Km 131, tendo sua exposição associada a Formação Goio-Êre. Nessa localidade ocorrem dois afloramentos contíguos, porém em lados opostos da rodovia. Isso permitiu uma análise mais detalhada da geometria dos estratos presentes. O primeiro afloramento denominamos Seção Geológica a (SGa). A segunda de Seção Geológica b (SGb). A SGa apresenta comprimento total de 250 m, e sua altura é de carca de 12 m, já a segunda seção respectivamente, possui 57 m de comprimento e 5,05 m de altura. Ambas seções foram analisadas por perfilagem lateral, a partir de seções verticais definidas conforme a distribuição geométrica dos litossomas. Na primeira seção foram descritos 7 perfis verticais e na segunda 5 perfis (Figura 23 e 24).

Figura 23 – Corte da margem direita (sentido Campo Mourão) da Rodovia BR-487, com os perfis destacados da seção geológica a, que compreende a formação Goio-Êre

Fonte: Adaptado de SÁ (2021).

Figura 24 – Perfis estratigráficos A1, A2, A3, A4, A5, A6 e A7.

Fonte: A autora (2022).

A parte basal do afloramento é constituído por estratos arenoso finos, com matriz carbonática e estruturas convolutas, com mergulho suave para oeste/noroeste, em direção ao centro da Bacia Bauru. No afloramento se destacam níveis mais rígidos, em alto relevo que marcam o contato superior dessas camadas, formando feições de *sabkhas*, que delimitam níveis erosivos de 1º ordem e constitui o embasamento das demais litofácies. As estruturas convolutas comuns nos arenitos da Formação Goio-Erê, já discutidas por Salamuni et al. (1981), são interpretados como resultado de atividade sísmica, durante a deposição em meio sub-aquoso com oscilação periódica do lençol freático (Figura 25).

Figura 25 – Vista parcial da Seção Geológica a, com a base exibindo estruturas convolutas e marcas em alto relevo, delimitando contatos erosivos de 1° ordem.

Fonte: Edison Fortes (2020).

A sequência arenosa de *sabkhas* são recobertas por sequências arenosas finas representadas por frentes de dunas e interdunas secas.

A parte centro direita do afloramento na litofácie de interduna aquosa com arquitetura acanalada, é marcado por descontinuidade de 2° ordem com todas as litofácies adjacentes, exceto com a litofácies de interduna lençóis de areia da base. Ainda nesse afloramento são destacados as litofácies de interduna seca, que se encontra em contato cruzado acanalado com a interduna aquosa e contato cruzado tangencial na parte inferior. Já na parte direita do afloramento se encontra litofácie de frente de duna que faz contato cruzado acanalado com a interduna aquosa e cruzado tabular com os lençóis de areia na base.

A feição acanalada desse afloramento, foi identificado por Sá (2021) e Prestes (2021) como Lençóis de areia na base da feição e barras de canal no topo, que nesse trabalho estão sendo reinterpretados como interduna aquosa acanalada, pela continuidade da arquitetura acanalada e pelas estratificações cruzadas acanaladas em diversas direções, que sugere região de margem, onde os sedimentos foram assentados em diferentes momentos e direções.

E Sá (2021), ainda identificou a litofácie de *playa lake*, que se encontra na margem esquerda entre os lençóis de areia da base e a interduna seca, mas que não serão objeto desse trabalho por não ter continuidade topográfica com o SGb.

A seleção dos perfis analisados na seção geológica a, estão relacionados topograficamente com os da seção geológica b. Ao todo na seção a foram 64 amostras coletadas, distribuídas em sete perfis, como pode ser visualizado na tabela 3. Dessas 64 amostras, 26 também distribuídas entre todos os perfis, foram selecionadas em gabinete a fim de realizar análises de microscopia eletrônica de varredura (MEV) e análise de difratometria de Raio-X (DRX), que compreendessem no mínimo a base e o topo de cada litofácie.

SEÇÃO GEOLOGICA a			
AMOSTRA	LITOFÁCIES	PERFIL	
A1-A3	Litofácies de Lençóis de Areia	Perfil A1	
A4-A6	Litofácies de Lençóis de Areia	Perfil A2	
A7-A9	Litofácies de Lençóis de Areia	Perfil A3	
A10-A17	Litofácies de Interduna Seca	Perfil A4	

 Tabela 3 – Amostras da seção geológica a, com suas respectivas litofácies indicadas e divisão nos perfis.

A18-A31	Litofácies de Interduna úmida		
A32-A46	Litofácies de Interduna úmida	Perfil A5	
A47-A58	Litofácies de Interduna úmida	Perfil A6	
A59-A64	LitofácieS de Frente de Duna	Perfil A7	

Fonte: A autora (2022).

Ademais, foi elaborado um gráfico de dispersão, com a distribuição dos valores de diâmetro médio dos grãos das litofácies da seção geológica a (Figura 26), que denotam predomínio na classe de silte muito grosso segundo a escala de Wentworth (1922). Nos lençóis de areia o predomínio se dá na classificação anteriormente mencionada, com alguns grãos de diâmetro maiores que se classificam em areia muito fina (2 amostras) e areia fina (1 amostra), que estão associadas a bolsões arenosos coletados ao longo dos três perfis dessa litofácies. Ocorrendo a mesma relação na litofácies de interduna seca.

Na litofácies de interduna aquosa, também se observa a predominância da classificação de silte muito grosso, essas são predominantes mais nas amostras coletadas em maior profundidade, enquanto os grãos de maior diâmetro, estão associados a lentes arenosas e/ou com a maior proximidade da superfície, onde se predominam as bioturbações. Já a litofácies de frente de duna, apresenta os grãos com maiores valores de diâmetro médio, estando classificados majoritariamente como areia fina.

Figura 26 – Gráfico de dispersão relacionando o diâmetro médio das amostras pela escala de Wentworth (1922), para cada litofácies da SGa.

Fonte: A autora (2022).

A análise do MEV para essa seção geológica, pelo fato de as amostras não terem sido processadas em laboratório, revelou estruturas características de franja de esmectita cimentando alguns grãos. Porém essa e outras estruturas que recobriam partes dos grãos, impediu uma observação mais detalhada de suas superfícies. Sendo selecionados grãos <0,125mm para a realização dessas análises.

6.2.1 Lençóis de Areia - SGa

Essas litofácies se situam na base da seção geológica, compreendendo o perfil A1, perfil A2 e perfil A3 e é marcada por ocorrência de estratos plano paralelos com laminações convolutas, muito bem delimitado entre estratos maciços não deformados (figura 27). Formam sequências subparelelas com estratos com presença de estruturas sedimentares associados a condição hidroplástica a que esses sedimentos foram submetidos.

O arenito se apresenta muito resistente devido ao cimento carbonático, definindo níveis plano-paralelos, que se destacam em alto relevo no perfil, com mergulho aparente para oeste, em direção ao centro da Bacia Bauru. Por vezes, pode formar nódulos de arenito carbonático que acompanha essa estratificação. Conforme descrito anteriormente, os limites desses arenitos, definem formas do tipo sabkhas que delimitam diversos níveis erosivos de 1º ordem. Com base na arquitetura dos estratos e nas estruturas sedimentares presentes, é possível deduzir condições paleogeomorfológicas associadas a áreas planas em processo de subsidência que possibilitou o empilhamento sucessivo de material sedimentar que manteve o lençol freático próximo a superfície. A ação coesiva da água permitiu a união dos grãos molhados, destacados por estruturas de adesão. Dessa forma, a ação erosiva se dava sobre a areia seca sobreposta.

Figura 27 – Detalhe de estratificação convoluta na parte superior direita do perfil A3.

Fonte: Edison Fortes (2020).

Ainda nessa litofácies foram observadas através de imagens obtidas pelo MEV, em todas as amostras analisadas (A1, A3, A4, A6, A7 e A9) estruturas de esmectita (Figura 28) e cimentação carbonática identificadas a partir de teste de campo com HCI (ácido clorídrico) na proporção de 10% dissolvido em água deionizada, tais características também foram observado por Fernandes (1994), para amostras de superfície da Formação Goio-êre, que associou maior proporção de esmectita para essa formação em relação a Formação Rio Paraná, Adamantina e Santo Anastácio, provavelmente por conta da cimentação carbonática que inibiu e preservou essa unidade de processos intempéricos. Figura 28 – A) fotogrametria de amostra da litofácies Lençois de Areia (parte superior do perfil A2), exibindo estrutura característica de franja de esmectita em volta do grão e em possível cimentação desprendida de seu grão de origem. B) fotogrametria de estruturas de franja de esmectita revestindo quase toda a superfície do grão em destaque e na base do grão da margem superior direita da imagem.

Fonte: Microscopia Eletrônica de Varredura (2021).

As amostras que pertencem a esse sistema são A1 a A9. Aqui a fração de areia fina é predominante (entre 27,14% a 52,22%). Secundariamente ocorre a fração de areia muito fina, que possui grande proporção nas amostras, com gradiente de valores entre 20,65% a 34,04% (Anexo I). Na sequência, a fração de argila, apresentando valores entre 6,10% a 21,95%. Em seguida o silte (8,07% a 24,19%). A areia média em seguida com valores entre 0,17% a 11,57%. A fração de areia grossa ocorre entre 0,01% a 5,06%.

No gráfico da figura 29, é possível visualizar a distribuição descrita, com a predominância dos grãos mais finos, pouca amplitude entre os valores de cada fração granulométrica em relação as litofácies de interdunas aquosa e secas da mesma seção geológica.

Figura 29 – Gráfico boxplot representando a distribuição granulométrica da litofácies de lençóis de areia da SGa.

Fonte: A autora (2022).

Já os parâmetros estatísticos de Folk e Ward (1957), estão detalhados no Anexo III, onde se observa que os grãos apresentam em sua maioria (cerca de 67%) diâmetro médio correspondente a classificação de silte muito grosso, são muito mal selecionados, e demonstram bimonalidade em 67% amostras. A assimetria é positiva e a curtose divide-se em muito leptocúrtico (5 amostras) e platicúrtico e muito platicúrtico (4 e 1 amostras respectivamente).

6.2.2 Interduna Seca - SGa

Essa litofácie corresponde a base do perfil A4, ocorrendo em contato tangencial, de 1^a ordem, na base com a litofácies de Lençóis de Areia e contato lateral de 3° ordem no topo e lateralmente a direita com a litofácies de interduna aquosa de feição acanalada.

As estratificação são plano-paralelo, com as cores das laminações alternando-se entre cinza claro e roxo. Nessa litofácie é possível observar intercalações de lentes arenosas sem matriz argilosa no topo da litofácie (Figura 30). É comum a presença de bioturbações de caráter pós deposicional que ocorrem desde formas circulares a alongadas que acompanham o acamamento das estratificações (Figura 30).

Figura 30 – A) marcas de lentes arenosas. B) marcas de bioturbações circulares e alongadas.

Fonte: Edison Fortes (2020)

A análise dos grãos no MEV dessa litofácie foram realizadas nas amostras A11 na base e A16 no topo, sendo verificada na primeira respectivamente, estrutura característica de esmectita (Figura 31). Foram observadas ainda, agora em ambas amostras as superfícies dos grãos exibindo aspecto lisos ou marcadas por dissolução química, não sendo possível verificar a predominância de alguma das superfícies pela escassez de imagens obtidas. Figura 31 – A) fotogrametria de grão com revestimento característico de estrutura de franja de esmectita ocorrendo na parte central direita do grão (base da litofácie). B) fotogrametria de grãos de superfície lisa em destaque no centro da imagem e na parte inferior central da imagem, grão com marcas de alteração química, além de outros grãos com revestimento de cimentação não identificada.

Fonte: Microscopia Eletrônica de Varredura (2021).

A granulometria referente a essa litofácie corresponde ao intervalo das amostras A10 a A17. Sendo predominante a fração de areia fina (39,52% a 67,83%), em seguida a granulometria de areia muito fina (11,99% a 17,91%). Posteriormente têm-se a fração de argila com índices entre 9,80% a 17,76% (Anexo I). Na sequência, a fração de areia média que possui gradiente variando entre 5,97% a 17,63%. O silte exibe intervalo de valores entre 3,54% a 8,42%. Já a areia grossa é virtualmente inexistente (0% a 0,05%). A figura 32, exibe graficamente os dados citados, mostrando pouca amplitude de valores dentro de cada classificação granulométrica.

Figura 32 – Gráfico boxplot representando a distribuição granulométrica da litofácies de Interdunas seca da SGa.

Fonte: A autora (2022).

Quanto aos parâmetros de Folk e Ward (1957), pode-se ver os dados em detalhe no anexo III, onde verifica-se que metade do diâmetro médio dessas amostras estão contidas na classificação de silte muito grosso e 25% das amostras com diâmetro correspondente a areia muito fina e mais 25% correspondendo a areia fina. As amostras variam entre mal selecionadas a muito mal selecionadas e apresentando em 75% de bimodalidade nas amostras e 25% de unimodalidade. A assimetria é positiva e a curtose é categorizada como leptocúrtica e suas derivações.

6.2.3 Interduna Aquosa - SGa

A litofácie de interduna aquosa corresponde a uma feição acanalada, compreendendo o perfil A4, perfil A5 e perfil A6, localizados no topo da seção

geológica a (Figura 33), e configurando-se como continuidade do litossoma homônimo da seção geológica b, que é descontinuada pelo corte da rodovia.

Figura 33 – Visão parcial da seção geológica a, com destaque para as litofácies a direita no afloramento.

A litofácies de lençóis de areia na base se prolonga por quase toda a seção geológica a, demarcando com a litofácie em análise uma descontinuidade de primeira ordem. Já a esquerda a litofácies de interduna aquosa faz contato de terceira ordem com a interduna seca. E na margem direita a descontinuidade é de segunda ordem com a litofácie de frente de duna.

De modo geral as estratificações inclinam-se de forma regular em direção ao centro embaciado com a parte central aparentando maior horizontalidade. Porém em detalhe, se observa uma diversidade nos ângulos de inclinação cruzadas acanaladas em uma pequena espessura (cerca de 3 m), em diversas direções, que sugere região de margem, onde os sedimentos foram assentados em diferentes momentos e direções. No perfil A4, o contato com a litofácies inferior de interduna seca acontece de forma gradual, apresentando suave inclinação a direita próxima desse contato e ligeiro aumentando a partir daí até o topo do perfil, com as cores variando entre cinza claro e roxo.

A presença de bioturbações é frequente, sobretudo no terço superior. Essas estruturas são provavelmente pós deposicionais e exibem desde formas arredondadas e alongadas com halos preenchidos de areia mais grossa e sem matriz e bioturbações preenchidos por argila marrom podendo apresentar-se em formas irregulares, circulares e alongados de variados tamanhos. Em alguns casos essas estruturas acompanham o acamamento das camadas/laminações.

Já o perfil A5, expõe no terço superior estratificações com suave inclinação a esquerda onde ocorre o centro embaciado, com ligeiro aumento de angulação em direção ao contato com o segundo terço do perfil, que acontece de forma gradual e tangencial as camadas superiores. Suas laminações em conjunto formam camadas de 1 a 2 cm de matiz arroxeadas, apresentando película de óxido de ferro e pouca matriz argilosa, intercalados por lâminas cinza avermelhado.

No terço inferior ocorrem intervalos de laminações/camadas roxas e cinza claro. A estratificação é tangencial e aproximadamente na metade desse terço inferior, a direção das laminações/camadas, passam de inclinadas da esquerda para a direita (referência de visão frontal do afloramento).

Em estratificação do terço superior e inferior, são observados estruturas onduladas na laminação roxa sobrepostas a camada clara (Figura 34 A). Ainda nesse perfil se observa estrutura de lente arenosa (Figura 34 B) na base, assim como algumas laminações arenosas com pouca ou nenhuma cimentação.

Além disso, são verificadas a presença de bioturbações ao longo do perfil, sendo as da parte mediana circulares ou alongados (esses podem acompanhar o plano de estratificação), com aureola preenchida por areia mais grossa e sem cimentação, já as do topo do perfil são de formatos irregulares ou de aspecto de raiz, preenchidos por material avermelhado mais argiloso, em ambos casos as bioturbações são pós deposicionais.

Figura 34 – A) laminações roxas exibindo marcas de onda. B) lente de areia média associada a fluxo efêmero de pequenos corpos aquosos.

Fonte: Edison Fortes (2021).

Por fim têm-se o perfil A6 que se localiza próximo a margem direita, aqui sua estratificação apresenta-se na metade inferior com inclinação em direção ao centro do embaciamento e na metade superior, compõe-se por estratos dispostos em plano-paralelo, essa mudança se dá a partir de contato gradual.

A base do perfil exibe estratos de cor cinza avermelhado, na região central as laminações são predominantemente roxas e no nível superior ocorrem camadas cinza claro intercalados por camadas arroxeadas.

Em relação as imagens obtidas através do MEV, verificou-se que a superfície dos grãos são lisas ou marcadas por alteração química (Figuras 35 A e 35 B), sendo ausentes marcas de fraturas provocadas por ação mecânica com o ambiente. Ainda foram observados a presença de estruturas de esmectita (Figura 35 C), porém revestindo as superfícies dos grãos em menor proporção comparadas as outras litofácies da mesma seção geológica.

Figura 35 – A) fotogrametria de grão bem arredondado e esférico polimorfo do quartzo com superfície lisa. B) Aproximação em cavidades geradas em grão a partir de alteração química.
C) fotogrametria de grão com estrutura característica de franja de esmectita revestida em parte de sua superfície.

Fonte: Microscopia Eletrônica de Varredura (2021)

A granulometria dessa litofácies está representada pelas amostras A18 a A31 do perfil A4, amostras A32 a A46 do perfil A5 e amostras A47 a A58 do perfil A6, conforme pode ser visto nas tabelas do anexo I. A fração de maior representatividade nessa litofácies é a areia fina com intervalo de valores entre 27,97% a 87,5%. Secundariamente, têm se a fração de areia muito fina, com valores variando entre 10,54% a 29,92%. Na sequência, a fração com maior proporção nessa litofácies é a de argila (6,35% a 27,77%).

Em seguida a fração de silte, que exibe valores que variam entre 0,74% a 12,22%. A fração de areia média aparece na sequência, com valores entre 0,11% a 51,53%, com uma sucessão de valores de maior proporção (acima de 16,26%), na base do perfil A2. e posteriormente a fração de areia grossa (0% a 0,95%).

Os resultados estão demonstrados graficamente na figura 36, onde se observa uma maior amplitude de valores para cada classificação granulométrica em relação as litofácies da seção geológica a. Se destaca para essa litofácies a fração de areia média, que em sua maioria (80% das amostras) é representada por valores menores que 10%, e 17% das amostras dessa fração granulométrica variam entre 16,26% e 23,45%, havendo um valor extremo de 51,53%, na amostra 43, que se trata de uma intercalação arenosa.

Figura 36 – Gráfico boxplot representando a distribuição granulométrica da litofácies de Interduna aquosa da SGa.

Fonte: A autora (2022).

Já os parâmetros de Folk e Ward (1957), mostram que a maioria dos grãos (cerca de 75%), são categorizados como silte muito grosso e em seguida por areia muito fina e areia fina, ambas com cerca de 12% de ocorrência. Quanto a seleção, assim como nas outras litofácies da mesma seção geológica, as amostras são classificadas entre mal selecionadas a muito mal selecionadas (Anexo III).

A totalidade das amostras apresenta assimetria positiva e 80% possui bimodalidade, enquanto os 20% restantes unimodalidade. A curtose é essencialmente leptocúrtica (considerando também seus derivados), representando cerca de 80% das amostras e em seguida têm-se a curtose platicúrtica (15%) e por último a mesocúrtica (5%).

6.2.4 Frente de Duna - SGa

Essa Litofácie é representada pelo Perfil A7, que apresenta arquitetura triangular, com estratificação plano-paralelo na base e cruzado tabular com mergulho para a direita e esquerda (Figura 37). Em sua base ocorre descontinuidade de primeira ordem com a litofácie de lençóis de areia e lateralmente a esquerda e no topo ocorre descontinuidade de segunda ordemcom a litofácies de interduna aquosa.

Próximo ao perfil onde foram coletadas as amostras observam-se estrutura de carga (Figura 37 B) e estratificação ondulada (Figura 37 C). Também é comum a presença de bioturbações, essas de aspecto circular e alongados, preenchidos por areia mais grossa sem cimentação, que em alguns casos segue o plano de estratificação.

Figura 37 – A) contato das estratificações cruzado tabular. B) Estrutura de carga na suíte basal de frente de duna denotando substrato mais úmido e plástico. C) estrutura de deformação associado a fluxo de grão.

Fonte: Edison Fortes (2021).

As imagens obtidas pelo MEV, demonstram superfícies lisas na maioria dos grãos e eventualmente marcas de fraturas provocadas por ação mecânica ou marcas de alteração química (Figura 38 A). Nessa litofácie, também foram verificadas estruturas características de esmectita, tendo sido observadas em grãos da região central e do topo dessa litofácie (Figura 38 B).

Figura 38 – A) fotogrametria de grão em destaque polimorfo do quartzo com superfície lisa.
Acima pode-se observar grão revestido de estrutura característica de esmectita assim como em grão do lado esquerdo no topo e ao lado direito do grão em destaque. B) fotogrametria de grão localizado no centro do perfil, de morfologia tetaédrica arredondado com parte da superfície esquerda com presença de estrutura característica de esmectita e a ponta do grão com fratura ortorrômbica. A superfície apresenta-se tenuamente alterada quimicamente.

Fonte: Microscopia Eletrônica de Varredura (2021).

Os resultados granulométricos dessa litofácies é constituída pelas amostras A59 a A64 (Anexo I). E assim como as demais litofácies, a areia fina representa as maiores proporções, variando entre 38,09% a 50,06%. A fração de areia média possui grande proporção nessa litofácie, com índices entre 21,32% a 38,61%. Em seguida têm-se a fração de areia muito fina (5,77% a 18,17%).

Na sequencia o silte que exibe gradiente de valores entre 4,01% a 10,04%. A argila aparecem em pouca proporção (2,75% a 9,60%). E por fim, a areia grossa que basicamente não altera a sua proporção (0,01% a 0,05%). A figura 39 demostra graficamente os resultados apresentados, sendo destacável a fração de areia média que apresenta os maiores valores dentre essa
classificação granulométrica em comparação com as litofácies da seção geológica b. Ainda se observa, para todas as classificações granulométricas pouca amplitude de valores.

Figura 39 – Gráfico boxplot representando a distribuição granulométrica da litofácies de Frente de duna da SGa.

Os parâmetros estatísticos de Folk e Ward (1957), demonstram que a maioria desses grãos (cerca de 83%), apresentam diâmetro classificado como aria fina, sendo os 17% restante categorizado por areia muito fina (Anexo III). As mesmas porcentagens se repetem para a seleção dessas amostras, que são mal selecionadas (83%) e muito mal selecionadas (17%). A totalidade das amostras é unimodal, com assimetria positiva e curtose muito leptocúrtica.

Fonte: A autora (2022).

6.3 Correlação Litofaciológica e de Estruturas da Seção Geológica b de Tuneiras do Oeste

A seção geológica SGb, é constituída por arenitos associados a Formação Goio-Erê e se localiza na margem oposta do SGa na rodovia BR-487, Km 131. Essa seção é representada por conjunto de litofácies, que se distribuem verticalmente e lateralmente em espessura média de 5,05 metros e extensão lateral de 57 metros. Sendo as litofácies distinguidas e descritas conforme suas geometrias, relações de contato e estruturas sedimentares. Em relações as características texturais dos grãos componentes, ficou evidente sua forte homogeneidade relacionada ao predomínio das frações arenosas finas.

Para representar as litofácies identificadas, foram realizadas a abertura de cinco perfis ao longo da seção (Figura 40 e 41). Esses foram abertos em "degraus", em razão da altura do afloramento e a inclinação do mesmo, que impossibilita por vias manuais uma limpeza contínua em uma mesma profundidade.

Figura 40 – Corte da margem esquerda (sentido Campo Mourão) da Rodovia BR-487, com os perfis destacados da seção geológica b, que compreende a formação Goio-Êre. E perfis B1, B2, B3, B4 e B5.

Figura 41 - Perfis estratigráficos B1, B2, B3, B4 e B5.

Ao longo dessa seção foram identificadas 3 litofácies distintas que se distribuem lateralmente da esquerda para a direita em litofácies de frente de dunas, litofácies de lençóis de areia (margem esquerda), litofácies de interduna aquosa (base), litofácie de interduna aquosa (embaciamento central) compreendendo 39 m de comprimento e por último, litofácies de lençóis de areia localizado na margem direita.

Dos cinco perfis foram coletadas 104 amostras (tabela 4), compreendendo todas as litofácies identificadas. E dentre essas amostras, 37 foram selecionadas em campo para análise de microscopia eletrônica de varredura (MEV) e difratometria de raio X (DRX), buscando contemplar no mínimo duas amostras distintas de uma mesma litofácies.

SEÇÃO GEOLOGICA b							
AMOSTRA	LITOFÁCIES	PERFIL					
B1-B2 e B5-B10	Litofácies de Frente de Duna	Perfil B1					
B3-B4	Litofácies de Lençóis de Areia						
B11-B20	Litofácies de Lençóis de Areia	Perfil B2					
B21-B30	Litofácies de Interduna Úmida						
B31-B56	Litofácies de Interduna Úmida	Perfil B3					
B57-B78	Litofácies de Interduna Úmida	Perfil B4					
B79-B88	Litofácies de Lençóis de Areia	Perfil B5					
B89-B104	Litofácies de Interduna Úmida						

Tabela 4 – Amostras da seção geológica b,	com suas respectivas litofácies indicadas e divisã	0
n	os perfis.	

Fonte: A autora (2022).

Com a totalidade dessas amostra, o gráfico de dispersão da figura 42 foi elaborado, mostrando a relação do diâmetro médio dos grãos com a escala estabelecida por Wentworth (1922), para a seção geológica b, que assim como na SGa, demonstra maior predominância na classificação de silte muito grosso.

Com exceção a litofácies de frente de duna, que apresenta em conjunto os maiores diâmetros dos grãos, se desviando do predomínio geral das amostras e estando classificado dominantemente como areia muito fina.

Fonte: A aurora (2022).

A litofácies de lençóis de areia ocorre em maior profundidade e apresenta associação dos diâmetros médios de maior tamanho associados a estratificações mais arenosas. Há ainda uma pequena variação do diâmetro médio dentro da classificação de silte muito grosso, relacionado a posição vertical, onde as amostras da margem direita (visão frontal para a seção geológica b), que estão inseridas no contexto do nível do lençol freático, apresentam um menor diâmetro médio em comparação com as amostras da mesma litofácies da margem esquerda.

Quanto a litofácies de interduna aquosa, além do domínio da classificação em silte muito grosso, observa-se também ocorrências relevantes na classificação de areia muito fina e areia fina. Quanto a variação vertical, observase que as amostras dos perfis B1 e B2, apresentam maior variação nos valores de diâmetro médio dos grãos, podendo ser decorrente de uma maior proximidade com o sistema mais arenosos de lençóis de areia, enquanto as amostra do perfil B4, que pertence ao centro da feição embaciada, ocorrem médias de diâmetro menores, já para as amostras do perfil B5, concentra-se em conjunto os menores diâmetros médios dos grãos, podendo nesse caso estar associado a maior proximidade com o nível do lençol freático. E assim como nas outras litofácies, os grãos de maior diâmetro estão associados geralmente a estratificação mais arenosas e/ou lentes arenosas.

Para a análise no MEV, foram selecionadas amostras entre 0,180mm e 0,125mm, que passaram por procedimento laboratorial (processo de defloculação da granulometria), deixando esses grãos com suas superfícies totalmente expostas, evidenciando-as e possibilitando a identificação mais precisa de marcas por alteração química, faturamento mecânico, ou superfícies lisas, sendo os dois últimos respectivamente, mais comumente identificados.

6.3.1 Frente de Duna - SGb

Essa litofácie está na margem esquerda da seção geológica b, considerando-se visão frontal para o mesmo, tendo-se o perfil B1, como o seu representante. Lateralmente a direita, verifica-se descontinuidade de segunda ordem com a litofácie de lençóis de areia, o mesmo ocorre em parte do primeiro terço inferior desse perfil.

Ainda na base, predomina-se a cor marrom claro que a partir do segundo terço do perfil passa a apresentar coloração predominantemente cinza claro com laminações e camadas roxas ao longo do perfil. Algumas camadas da base, apresentam aparentemente estrutura bioturbada, possivelmente de origem sindeposicional, com uma série de cavidades em forma circular que acompanham a estratificação cinza claro. (Figura 43A).

Ao longo do perfil foram observadas ainda algumas estratificações que apresentavam estruturas de marcas de onda e de deslizamento (Figura 43B), geralmente em conjunto de laminações e todas nas camadas roxas. Estes tipos de estruturas podem estar relacionadas a fluxo gravitacional de deposição dessas laminações. Figura 43 – Marcas de estruturas de bioturbação que acompanham a estratificação cinza claro na base do perfil B1. B) Marcas de onda deformando a estratificação plano-paralelo no topo do perfil.

Fonte: Edison Fortes (2022).

As imagens realizadas no MEV, evidenciam a ocorrência de grãos com superfícies lisas, marcadas por corrosão química (Figuras 44 A e 44 B) ou marcados por fraturas produzidas por abrasão mecânica no momento do transporte.

Figura 44 – A) fotogrametria de grãos com superfície lisa e marcados por alteração química, localizado no topo do perfil. B) fotogrametria de grão em destaque exibindo cavidades decorrentes de ação química.

Fonte: Microscopia Eletrônica de Varredura (2022).

A granulometria dessa litofácie é representada pelas amostras B1, B2 e entre B5 a B10, todas pertencentes ao perfil B1. A fração de predomínio nesse perfil é o da areia fina, que apresenta valores entre 52,42% a 70,19%, juntamente com a fração de areia muito fina, correspondem a mais de 2/3 das frações. A terceira fração que se destaca é o da argila, que apresenta valor mínimo de 11,57% e máximo de 20,15%.

Posteriormente, têm-se as frações de silte, que apresentam valores entre 3,09% a 7,56%. As areias médias não representam muito das amostras, visto que chegam a valores entre 0,76% a 7,41% e a areia média é basicamente inexistente (Anexo II). Essa distribuição pode ser visualizada em gráfico na figura 45.

Figura 45 – Gráfico boxplot representando a distribuição granulométrica da litofácies de frente de duna da SGb.

Fonte: A autora (2022).

Segundos critérios estatísticos de Folk e Ward (1957), o diâmetro médio dos grãos correspondem na metade das amostras a classificação de areia muito fina e a outra metade se divide entre areia fina e silte muito grosso. A seleção das amostras varia entre mal selecionada e muito mal selecionada. O desvio padrão ainda revela metade das amostras apresentando unimodalidade e a outra metade bimodalidade. A curtose de 7 das oito amostras é muito leptocúrtica ou extremamente leptocúrtica e 1 das oito amostras é mesocúrtica. Os dados pormenorizados estão no Anexo IV.

6.3.2 Interduna Aquosa – SGb

Essa litofácies ocorre em dois sistemas distintos, um primeiro se que se encontra na base do perfil B3, marcando uma descontinuidade de segunda ordem de grandeza com a litofácie homônima sobreposta. Essa feição apresenta cores de camadas cinza claro que podem apresentar aspecto maciço, com seus grãos apresentando pouca matriz e película de óxido de ferro. Já as roxas apresentam-se em conjuntos de laminações que podem formar estruturas onduladas próximas das camadas mais claras ou até mesmo estratificação convoluta (Figura 46) indicando fluxo aquoso, onde foi observado a presença de uma bioturbação de aspecto sindeposicional cruzando transversalmente as laminações convolutas, indicando presença de atividade biológica a esse ambiente.

Já o segundo sistema, compreende a metade superior do perfil B2, primeiro e segundo terços do perfil B3, a totalidade do perfil B4 e a metade superior do perfil B5. exibindo descontinuidade de segunda ordem com as litofácies de lenções de areia da margem direita e com a litofácie de interduna aquosa da base do perfil B3. E com a litofácie de lençóis de areia, ocorre descontinuidade de terceira ordem.

Figura 46 – Camada convoluta na base do perfil B3 com estruturas em chama no topo. B) Marca de bioturbação alongada transversal ao conjunto de laminações.

Fonte: Edison Fortes (2021).

Sua arquitetura exibe forma embaciada, estando as camadas e laminações voltadas para a região central. A metade superior dos perfis B3 e B5, demarcam as margens esquerda e direita respectivamente dessa arquitetura, que apresentam relativa simetria entre a direção de mergulho dos estratos para a região central representado pelo perfil B4. Já o terço inferior do perfil B3 e a metade superior do perfil B2, apresentam um prolongamento dessa feição embaciada, com uma diminuição de seu ângulo de mergulho, até contato com as litofácies sotopostas.

No contexto geral, as cores são formadas por conjunto de camadas com laminações interna de cores variando de roxo a marrom claro e cinza claro, exibindo por vezes aspecto rítmico, com a intercalação de camadas cinza claro e marrom intercaladas por camadas roxas, sendo esse aspecto mais evidente no perfil B4.

Ao longo dessa litofácies são encontradas diversas estruturas, sendo mais comum as bioturbações, essas são possivelmente de origem pós deposicional e se distribuem principalmente na porção superior dessa litofácies, exteriorizando desde formas circulares, alongadas, anastasomados e indefinidas, de diversos tamanhos, por vezes acompanhando o acamamento das estratificações e preenchidos por areia mais grossa ausente de cimentação e matriz ou preenchidos por areia fina marrom.

Com frequência também são encontradas lentes arenosas (Figura 47A), com sua presença sendo verificadas somente nos perfis B3, B4 e B5, distribuídos na porção de maior simetria dessa litofácies. Ainda são notadas a presença de marcas de ondas deformando parte da estratificação ou camadas, ou até mesmo camadas inteiras perturbadas por marcas de ondas (Figuras 47B e 47C).

Figura 47 – A) Estrutura de bioturbação atravessando estratificação cruzada e marcas onduladas em estrato inferior da margem esquerda de zona de interduna aquosa, sugerindo margem de paleolagoa ou canal fluvial. B) marcas de onda em camada arenosa de cerca de 9 cm de espessura e comprimento de onda em cerca de 10 cm, sem apresentar cimento ou matriz, localizado na região central do perfil, próximo ao contato com a litofácie sotoposta de lençóis de areia; C) intercalações onduladas com cerca de 3 a 4 cm de espessura podendo apresentar lentes de areia mais grossa acompanhando as ondulações, essas laminações são por vezes descontínuas e de aspecto convoluto.

Fonte: Edison Fortes (2021).

Das cinco amostras coletadas da litofácies de interduna aquosa da base do perfil B3, duas delas foram submetidas a análise no MEV, ambas próximas do topo. A amostra coletada em camada roxa, demonstra maior predominância de grãos marcados por ação mecânica no ambiente (Figuras 48A e 48B), porém, apresentando ainda marcas de alteração química ou superfícies lisas. Quanto a morfologia, é notável que esses grãos exibem formas mais angulosas em comparação com as outras litofácies da seção geológica b.

Já a amostra coletada em camada cinza claro, expõe morfologia similar as outras litofácies da mesma seção geológica, explicitando morfologia mais subarredondada e arredondado. Essa concordância também ocorre nas superfícies desses grãos, que apresentam-se lisas ou marcadas por desgaste químico ou abrasão mecânica, não tendo uma evidente soberania em alguma dessas características.

Figura 48 – A) fotogrametria de grão localizado no topo da litofácie em camada roxa, evidenciando forma monoclínica, com marcas de fratura e de alteração química sobretudo por formas alongadas dispostas em paralelo. B) fotogrametria de também localizado no topo da litofácie e pertencendo a camada roxa, demonstra bom arredondamento e esfericidade, com marcas de alteração química e fratura mecânica.

Fonte: Microscopia Eletrônica de Varredura (2022).

Em relação a microscopia empregada nas 23 amostras selecionadas para essa análise da feição central, distribuídas entre os perfis B2 (3 amostras), B3 (5 amostras), B4 (6 amostras) e B5 (9 amostras). Pôde ser verificado que os grãos com superfície marcados por ação mecânica (Figuras 49A e 49B) e superfícies lisas predominam em todas as amostras com grãos marcados por alterações químicas sendo menos recorrentes.

Figura 49 - A) Fotogrametria de grão presente na parte superior do perfil B2, sendo observado alto grau de retrabalhamento do grão no ambiente pelas marcas de desgaste mecânico. B)
 Fotogrametria de grão de de morfologia tetaédrica, com suas arestas arredondadas e marcas de abrasão mecânica.

Fonte: Microscopia Eletrônica de Varredura (2022).

Os resultados granulométricos são representados pelas amostras dos perfis B2 (B21 a B30), B3 (B31 a B56), B4 (B57 a B78) e B5 (B89 a B104) que podem ser verificados no anexo II. Sendo o intervalo das amostras B31 a B35 do perfil B3, correspondente a litofácie de interduna úmida na base que é superposta pela litofácie homônima central.

A fração predominante é de areia fina que apresenta variação próximos na margem esquerda (Perfil B3) e ao centro (Perfil B4), ocorrendo diminuição dessa fração na margem direita (Perfil B5). A fração de areia média sofre um tênue aumento na porção central em relação a margem esquerda e a margem direita exibe alguns picos com ligeiro aumento na proporção dessa fração.

Quanto a fração de argila, não ocorrem similaridades de distribuição da proporção das frações de forma a estabelecer um padrão lateral, porém verticalmente em cada perfil se percebem algumas característica. Como o perfil B3, na margem esquerda que apresenta maior proporção de argila na região central. Já o perfil B4, apresenta um teor alto de argila em todo o seu prolongamento. E o perfil B4, na margem direita, apresenta proporção de argila maiores comparado a outras amostras da mesma litofácie dessa seção geológica.

As amostras do perfil B3 (margem esquerda) e perfil B4 (centro do embaciamento), demonstram relação entre a fração de areia muito fina e as cores das amostras, com uma diminuição da proporção dessa fração nas amostras de cor cinza claro ou marrom e um aumento na proporção de areia muito fina nas amostras de cor roxa. Na margem direita (perfil B5), esse padrão também ocorre, porém com os valores de areia muito fina maiores em comparação com a margem esquerda e central.

Desse modo, têm-se como resultado para essa litofácie, assim como as demais, a predominância da granulometria de areia fina (anexo II), que apresenta grande gradiente de distribuição, com os valores entre 26,10% a 79,84%. Secundariamente a fração de maior representatividade é a de argila, que variam entre 4,80% a 27,35%. Em seguida tem-se a fração de areia muito fina com índices entre 2,03% a 36,22%. Posteriormente a fração de silte (1,06% a 16,72%). A areia média aparece em seguida, exibindo valores entre 0,04% a 24,15%. Já a areia grossa, assim como as demais litofácies, apresenta valores quase insignificantes (0% a 0,13%). Essas características podem ser visualmente verificadas em gráfico de boxplot da figura 50. Onde se observa uma maior amplitude de valores em relação as litofácies da SGa e SGb, caracterizado por ambiente de menor energia.

Figura 50 – Gráfico boxplot representando a distribuição granulométrica da litofácies de Interduna aquosa da SGb.

Fonte: A autora (2022).

Quanto aos parâmetros estatísticos de Folk e Ward (1957), detalhados no anexo IV, mostra que o diâmetro médio das amostras são primordialmente categorizadas por silte muito grosso (56%), seguida por areia muito fina (23%), posteriormente por areia fina (17%) e por último silte grosso (3%). A seleção das amostras varia entre mal selecionada e muito mal selecionada e ocorre predominância de amostras bimodais (61%) em comparação com as unimodais (39%). O conjunto das amostras apresentam assimetria positiva e a curtose é majoritariamente leptocúrtica e seus derivativos (77%), seguida por platicúrtica e seus derivados (17%) e por fim mesocúrtica (6%).

6.3.3 Lençóis de Areia –SGb

Essa litofácies é encontrada a esquerda e a direita da feição central embaciada, na margem esquerda, ocorrem na base do perfil B1 e base do perfil B2, exibindo coloração predominantemente clara. A estratificação é planoparalelo com ligeira inclinação a direita próxima do contato discordante de terceiro grau com a litofacie acanalada de interduna aquosa. Na base dessa litofácie são encontradas estruturas de lentes arenosas ausentes de matriz e cimentação (Figura 51).

Figura 51 – Marca de lente arenosa na base do perfil B, causando ligeira ondulação nas laminações roxas.

Fonte: Edison Fortes (2022).

Já na margem direita essa litofácie compreende o primeiro terço do perfil B5, que da sua base até cerca de 65 cm foi interceptado pelo lençol freático pretérito, dando a esses sedimentos uma maior resistência rochosa, assim como, estratificação convoluta adquirida pelo meio aquoso de deposição. Essa sequência apresenta cores que variam de marrom a cinza claro.

Sobreposta a essa estratificação convoluta, ocorre estratificação planoparalelo pouco nítido, ainda resistente, porém em menor grau com transição ocorrendo a partir de descontinuidade de terceira ordem. Já o contato com a litofácie sobreposta de Interduna aquosa se dá a partir de descontinuidade de segunda ordem de grandeza.

Para análise no MEV, foram destacadas nove amostras, duas pertencentes ao perfil B1, quatro ao perfil B2 e três ao perfil B5. a partir da imagens obtidas, foi possível observar a ocorrência de superfícies lisas, marcadas por alteração química e marcadas por fraturamento decorrente da ação mecânica no momento do transporte (Figuras 52A e 52B; 53A e 53B). Já a morfologia dos grãos, revela grande variedade, exibindo desde grãos mais angulosos (encontrados em menor quantidade) a mais arredondados (predominantes).

Figura 52 – A) Fotogrametria de grão encontrado na base do perfil B1, apresentando bom arredondamento e esfericidade, além de marcas de atuação mecânica no grão, gerando fissuras e fraturas no mesmo. B) Fotogrametria de amostra da base do perfil B1, exibe morfologia subarredondada e baixa esfericidade, com intensas marcas de abrasão mecânica em sua superfície.

Fonte: Microscopia Eletrônica de Varredura (2022).

Figura 53 – A) Fotogrametria de grão localizado na base do perfil B5, exibindo grão arredondado e de superfície majoritariamente lisa, com discreta presença de cavidades provocadas por ação mecânica causadas no transporte. B) fotogrametria de grão polimorfo do quartzo, também localizado na base do perfil B5, evidenciando fraturas conchoidais, tipicamente provocadas por transporte eólico.

Fonte: Microscopia Eletrônica de Varredura (2022).

Quanto a granulometria, foi observado nas amostras do perfil B2, uma relação entre as cores das amostras e os valores das frações de argila e areia média, com as amostras de forma geral obedecendo uma concentração maior de argila nas amostras roxas, com menores valores da fração areia média, e nas de cores marrom e cinza claro as amostras têm diminuído as proporções de argila e aumentado o valor de areia média, porém com a argila em todas as amostras apresentando valores mais altos do que a fração de areia média. Essa relação também é observável em relação ao aumento e diminuição da proporção da areia fina, que é menor nas amostras de cor mais clara e maior nas de cor roxa.

Já no perfil B5, as amostras apresentam uma distribuição entre as frações de areia fina (predominante), areia muito fina e argila muito próximos, mesmo as amostras que não constituem a base interceptada pelo nível do lençol freático (a partir da amostra B83).

Como resultados granulométricos para essa litofácies (amostras B3 e B4, do perfil B1, intervalo das amostras B11 a B20 do perfil B2 e intervalo das amostras B79 a B88), têm-se maior representatividade na fração de areia fina, com intervalos entre 21,69% a 62,03%, secundariamente a areia muito fina, com

intervalos entre 12,78% a 30,05%, seguida da fração de argila que exibe intervalo entre 13,20% a 31,54%, posteriormente a fração de silte entre 1,64% a 16,63%, depois a fração de areia média com intervalo entre 1,05% a 11,41% e por último a areia grossa, que é virtualmente inexistente, com intervalos entre 0% a 0,31%, podendo ser visualizados no anexo II. Na sequência (Figura 54) podem ser visualizados graficamente a distribuição mencionada.

Fonte: A autora (2022).

Em relação aos parâmetros estatísticos de Folk e Ward (1957), têm-se por resultados do diâmetro médio das amostras, que mais de 75% pertencem a classificação de silte muito grosso e o restante distribui-se entre as classificações de areia muito fina e silte grosso. A proporção entre as amostras bimodais é mais frequente que as unimodais. A seleção dessa litofácie, assim como as demais também varia entre mal selecionado a muito mal selecionado, essa unanimidade também se dá na assimetria positiva das amostras.

Já a curtose é predominantemente muito leptocúrtica e sua derivada leptocúrtica, representando 59% das amostras, em seguida platicúrtica com 32%, ocorrendo majoritariamente nas amostras do perfil E e por fim curtose mesocúrtica, representando 9% das amostras (Anexo IV).

6.4 Resultados da Difratometria de Raio-X

Na seção geológica a, assim como na da margem oposta (seção geológica b), verificou-se uma variada mineralogia obtida a partir das análises de DRX (Difratometria de Raio-X). A tabela 5 exibe de forma sintética o rol de minerais e seus prováveis grupos de rochas de origem. E nos anexos V e VI serão incorporados os minerais encontrados em cada uma das 63 amostras selecionadas para essa análise das duas seções.

Rochas	Sedimentares	Vulcânicas Básicas (Basalto) e seus solos	Vulcânicas Plutônicas Ácidas	ou	Metamórficas
Minerais	Caulinita Cristobalita Haloisita Muscovita Quartzo Rutilo Tridimita Zircão	Albita Anatásio Anortita Esmectita Goethita Hematita Ilmenita Lepidocrocita Maghemita Modernita	Cristobalita Grupo Feldspatos potássicos Microclínio Quartzo Sanidina Torita Tridimita	dos	Aragonita Chamosita Cianita Clinocloro Clorita Esperssatita Glossulária Lizardita Muscovita Quartzo Zircão

Tabela 5 – Paragênese e provável origem mineral da área de estudo.

Fonte: Cedido por Susana Volkmer (2022).

Dentre os minerais identificados, destacam-se o quartzo e seus polimorfos cristobalita e tridimita, que são os constituintes principais dos arenitos Caiuá, cuja concentração pode ser superior a 90% (GASPARETTO, 1999, p. 82), sendo esses identificados em todas amostras selecionadas.

A caulinita, frequentemente identificada nas amostras das seções geológicas a e b, indica origem a partir de erosão por intemperismo superficial,

ocorridas em condições climáticas atuais (tropical úmido) enquanto que as esmectitas, identificadas por análise de DRX em cerca de 9% das amostras, sugerem origem sindeposicional (Fernandes, 1994, p. 92).

A maghemita, presente em todas amostras, é um mineral, que segundo Fernandes (1992) têm sua origem relacionada aos basaltos sotopostos pelos arenitos.

Já minerais pesados como cianita, rutilo e zircão, verificados em 84%, 82% e 28% respectivamente das amostras selecionadas, também identificados em rochas do arenito Caiuá por Fernandes (1992) e Gasparetto (1999) indicam boa maturidade mineralógica para essas rochas.

7 CONSIDERAÇÕES FINAIS

A ausência de estruturas que identifiquem as caulinitas, que assim como as esmectitas são encontradas nos arenitos do Grupo Caiuá, podem ser decorrentes da sua factual inexistência, ou pelo fato de as imagens das amostras analisadas, terem sido obtidas de forma a não evidenciar grande número de grãos com aproximação suficiente para se poder identificar tais estruturas.

Ao longo da seção geológica a, foram identificadas estruturas características de esmectita, já no SGb essa característica não pôde ser verificada pela diferença nas amostras (a primeira utilizada sem processamento laboratorial e a segunda após processamento de granulometria, passando-se assim a amostra a reagentes que retiraram a cimentação dos grãos (defloculação), impedindo essa possibilidade de análise.

É evidente a predominância das frações de areia mais finas ao longo das seções geológicas estudadas, havendo de forma geral uma homogeneidade na distribuição entre as frações.

Levando-se em consideração as características dos fósseis descritos do sítio paleontológico de Cruzeiro do Oeste, pode-se inferir que haviam muitas restrições no ambiente para que se houvesse um desenvolvimento maior dos animais, vide a estatura dos mesmos, que sugere crescimento ósseo tardio. Essas caraterísticas, mais a arquitetura, estruturas, sedimentos e icnofósseis distribuídos regionalmente pode revelar que o Grupo Caiuá tinha ambiente minimamente propício para o desenvolvimento biológico, ou regiões restritos que permitiriam tal desenvolvimento.

Quanto as estruturas sedimentares convolutas, marcas de onda e bioturbações encontradas nas litofácies de Lençóis de Areia, Interduna Aquosa e Frente de dunas nas seções geológicas a e b, evidenciam condições de deposição em meio aquoso, permitindo a constatação de que essa região da bacia possuía condições de formar meios aquosos.

A região mais central da bacia representada pela Formação Rio Paraná de Cruzeiro do Oeste, está associado a ambiente árido, que transiciona para a margem da bacia representado pela Formação Goio-Êre de Tuneiras do Oeste, para ambientes com maior umidade, haja vista bioturbação em forma de gramínea sindeposional, estruturas sedimentares que indicam a presença de água, porém sem a identificação de fósseis.

REFERÊNCIAS

BATEZELLI, A.; SAAD, A. R.; ETCHEBEHERE, M. L de C.; PERINOTTO. J. A de J.; FULFARO, V. J. Análise Estratigráfica Aplicada à Formação Araçatuba (Grupo Bauru - K_s) no Centro-Oeste do Estado de São Paulo. 2003. Geociências, São Paulo, vol. 22, n° especial, p. 5-19.

BATEZELLI, A. Arcabouço Tectono-estratigráfico e Evolução das Bacias Caiuá e Bauru no Sudeste Brasileiro. 2010. Revista Brasileira de Geociências, vol. 40, n° 2, p. 265-285.

BLOTT, S. J.; PYE, K. **GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments**. 2001. *Earth Surface Processes and Landforms, vol.* 26, p. 1237-1248.

DE MELO, M. A.; SINFRÔNIO, E. A. da S.; GIANNINI, P. C. F.; FACHINI, M.; VICTORINO, M. C.; **Manual de Procedimentos Analíticos**. 2004. São Paulo, Instituto de Geociências da USP, p. 45.

DIAS, A. J. **A Análise Sedimentar e o Conhecimento dos Sistemas Marinhos.** 2004. E-book (versão preliminar). Faro, Universidade do Algarve.

FERNANDES, L. A. Mapa Litoestratigráfico da Parte Oriental da Bacia Bauru (PR, SP, MG), Escala 1:1.000.000. 2004, Boletim Paranaense de Geociências, n° 55, p. 53-66.

FERNANDES, L. A. Cobertura Cretácea suprabasaltica no Paraná e Pontal do Paranapanema (SP): os Grupos Bauru e Caiuá. Programa de Pós-Graduação em geologia Sedimentar, São Paulo (dissertação de Mestrado), 1992.

FERNANDES, L. A.; COIMBRA A. M. O Grupo Caiuá (Ks): revisão estratigráltca e contexto deposicional. 1994. Rev. Bra. Geociência.

FERNANDES, L. A.; COIMBRA A. M. **Revisão Estratigráfica da Parte Oriental da Bacia Bauru (Neocretáceo)**. 2000. Revista Barsileira de Geociências, vol. 30, n° 40, p.717-728.

FERNANDES, L. A.; SEDOR. F.A.; SILVA, R. C. da; SILVA, L. R. da; AZEVEDO,
A. A.; SIQUEIRA, A. G. Icnofósseis da Usina Porto Primavera, SP - Rastros de dinossauros e de mamíferos em rochas do deserto Neocretáceo do Caiuá.
WINGE, M. et al (ed.). Sítios Geológicos e Paleontológicos do Brasil – Volume II. 2009. CPRM, Brasília, vol. 2, p. 516.

FERNANDES, L. A.; CIMBRA, A. M.; NETO, M. B.; GESICKI, A. **Argilominerais do Grupo Caiuá.** 1994. Revista Brasileira de Geociências, v. 24, n. 2. P. 90-96.

FREITAS, R. O. - 1973 - Geologia e Petrologia da Formação Caiuá no Estado de São Paulo. São Paulo, Instituto Geográfico e Geológico. 122 p. (Boletim, 50).
FÚLVARO, V. J. 1974. Tectônica do Alinhamento Estrutural do Paranapanema. Boletim IG-USP, 5:129-138.

GASPARETTO, N. V. L. As formações superficiais do noroeste do Paraná e sua relação com o Arenito Caiuá. 1999. Instituto de Geociências-USP, São Paulo (Tese de Doutorado).

JABUR, I. C.; SANTOS, M. L. dos. **Revisão Estratigráfica da Formação Caiuá**. 1984. Boletim de Geografia, UEM, vol. 2, n° 2, p. 91-106.

KELLNER, A. W. A.; WEINSCHÜTZ, L. C.; HOLGADO, B.; BANTIM, R. A. M.; SAYÃO, J.M. **A new toothless pterosaur (Pterodactyloidea) from Southern Brazil** with insights into the paleoecology of a Cretaceous desert. 2019. Anais da Academia Brasileira de Ciências **91** (Supl. 2):343.

LANDIM, P. M. B. & FÚLFARO, V. J. - 1971 - Nota Sobre a Gênese da Formação Caiuá. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 25.0, São Paulo, 1971. Anais. São Paulo, Sociedade Brasileira de Geologia, v. 2 p. 277-280.

LANGER, M. C.; MARTINS, N. de O.; MANZIG, P. C.; FERREIRA, G. de S.; MARSOLA, C. de A.; FORTES, E.; LIMA, R.; SANT'ANA, L. C. F.; VIDAL, L. da S.; LORENÇATO, R. H. da S.; EZCURRA, M. D. **A new desert-dwelling** (Theropoda, Noasaurinae) from the Cretaceous of South Brazil. 2019. Scientific Reports, vol. 9, p. 1-31.

LEONARDI, G. **Two new ichnofaunas (vertebrates and invertebrates) in the eolian Cretaceous Sandstones of Caiuá Formation in Northwest Paraná.** 1977. Simpósio Regional de Geologia, 1, Atas, São Paulo, p. 112-128.

LEONARDI, G. Annotated Atlas os South America Tetrapod Footprints (Devonian to Holocene) With an Appendix on Mexico and Central America – with 27 figures and 35 plates. 1994. CPRM.

LIMA, R.N. de. Fácies Fossilíferas e Aspectos Paleogeográficos da Formação Rio Paraná na Bacia Hidrográfica do Rio da Antas – Cruzeiro do Oeste – PR. Maringá, Diss. Mestrado. Prog, de Pós-Graduação em Geografia, Unives. Estadual de Maringá. 2019, 112 p.

MAACK, R. Geografia física do Estado do Paraná. 2017. Ponta Grossa: Editora UEPG, 4. ed. 1. reimp. p.526.

MILANI, E. J. Capítulo XVI – Comentários sobre a origem e a evolução da bacia tectônica do Paraná. MANTESSO-NETO, V.; BARTORELLI, A.; CARNEIRO, C.
D. R.; NEVES, B. B. de B. Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. 2004. Editora Beca, São Paulo, p. 647.

MINERAIS DO PARANÁ S.A. (MINEROPAR); UNIVERSIDADE FEDERAL DO PARANÁ (UFPR). Atlas geomorfológico do Estado do Paraná: Escala Base 1:250.000, Modelos Reduzidos 1:500.000. 2006. Curitiba, p. 63.

NETTO, J. P. de Q. **Técnica para o estudo granulométrico da fração areia dos solos.** 1963. Bragantina, vol. 22, nº 2, p. 13-26.

SÁ, I. S. de; FORTES, E.; PRESTES, B. M. M.; ROQUE, D. C.; GRZEGORCKYK, V. Aspectos Texturais e Estruturas Sedimentares de Litofácies de uma Seção Geológica Complementar da Formação Goio Êre (Grupo Caiuá). 2021. Brasilian Journoul of Development, Curitiba, vol. 7, n. 5, p. 46658-46675.

SIMÕES, T. R.; WILNER, E.; CALDWELL, M. W.; WEINSCHÜLTZ, L. C.; KELLNER, A. W. A. A sten acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana. 2015. Nature Communications 6, artigo 8149.

SOUZA, G. A. de; SOARES, M. B.; BRUM, A. S.; ZUCOLOTTO, M,; SAYÃO, J. M.; WEINSCHÜTZ, L. C.; KELLNER, A.W.A. Osteohistologia e dinâmica de crescimento noasaurídeo brasileiro do Vespersaurus paranaensis Langer et al., 2019 (Theropoda: Abelisauroidea). 2020. PeerJ. Disponível em: < https://peerj.com/articles/9771/>. Acesso em: 19 de outubro de 2020.

SOUZA, G. A. de; SOARES, M. B.; WEINSCHÜTZ, L. C.; WILNER, E.; LOPES, R. T.; ARAÚJO, O. M. O de.; KELLNER, A. W. A.; **The first edentulous ceratosaur from South America**. 2021. Sci Rep 11.

TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G.; Manual de Métodos de Análise do Solo. 2017. EMBRAPA. Brasília, DF. 3° ed., p. 574. WENTWORTH, C. K. 1922. A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30(5): 377-392 p.

ANEXOS:

ANEXO I:

Frações		Lençóis de Areia – SGa							
Granulométri	A1	A2	A3	A4	A5	A6	A7	A8	A9
cas									
Areia Grossa	0,04%	0,01%	0,14%	0,08%	0,02%	0,05%	5,06%	0,01%	0,29%
Areia Média	10,71			11,57					
	%	3,13%	0,17%	%	5,83%	2,96%	2,54%	1,07%	1,48%
Areia Fina	44,01	52,22	33,15	45,37	36,24	37,89	36,36	27,14	33,84
	%	%	%	%	%	%	%	%	%
Areia Muito	20,65	26,08	31,09	28,84	32,85	28,43	34,04	28,33	23,56
Fina	%	%	%	%	%	%	%	%	%
Silte			23,75			11,26	14,66	21,50	24,19
	9,10%	8,79%	%	8,07%	9,04%	%	%	%	%
Argila	15,50		11,70		16,02	19,42		21,95	16,65
	%	9,77%	%	6,10%	%	%	7,35%	%	%

Resultados granulométricos da Seção Geológica a (SGa):

Fonte: A autora (2022).

Frações		Interduna Seca – SGa						
Granulométricas	A10	A11	A12	A13				
Areia Grossa	0,05%	0,05%	0,01%	0,02%				
Areia Média	8,97%	14,42%	17,13%	5,97%				
Areia Fina	61,10%	44,41%	49,35%	67,83%				
Areia Muito Fina	15,99%	17,91%	15,67%	11,99%				
Silte	4,09%	8,42%	5,99%	3,54%				
Argila	9,80%	14,82%	11,85%	10,65%				

Fonte: A autora (2022).

Frações	Interduna Seca – SGa						
Granulométricas	A14	A15	A16	A17			
Areia Grossa	0,01%	0,01%	0%	0,01%			
Areia Média	14,30%	12,25%	17,63%	11,26%			
Areia Fina	48,99%	45,94%	39,52%	46,79%			
Areia Muito Fina	14,84%	17,57%	15,39%	16,54%			
Silte	7,66%	7,18%	13,35%	7,65%			
Argila	14,20%	17,05%	14,10%	17,76%			

Frações	Interduna aquosa – SGa				
Granulométricas	A18	A19	A20	A21	A22
Areia Grossa	0,07%	0,09%	0,01%	0,01%	0,03%
Areia Média	21,14%	17,55%	7,39%	6,75%	6,40%
Areia Fina	32,65%	43,31%	66,57%	56,96%	59,37%
Areia Muito Fina	20,21%	20,36%	12,09%	15,26%	16,83%
Silte	5,57%	5,15%	3,33%	3,65%	4,37%
Argila	20,35%	13,56%	10,60%	17,38%	13%

Fonte: A autora (2021).

Frações	Interduna aquosa – SGa				
Granulométricas	A23	A24	A25	A26	A27
Areia Grossa	0,01%	0%	0,01%	0%	0%
Areia Média	3,71%	4,71%	2,05%	1,33%	0,35%
Areia Fina	56,83%	62,23%	58,40%	57,26%	58,86%
Areia Muito Fina	19,62%	16,95%	17,97%	19,33%	18,91%
Silte	4,68%	3,41%	4,76%	3,98%	4,55%
Argila	15,15%	12,70%	16,80%	18,13%	17,30%

Fonte: A autora (2021).

Frações	Interduna aquosa – SGa						
Granulométricas	A28	A29	A30	A31			
Areia Grossa	0,03%	0,09%	0,01%	0,02%			
Areia Média	0,74%	1,47%	0,51%	0,86%			
Areia Fina	59,87%	53,92%	53,47%	53,57%			
Areia Muito Fina	20,54%	21,38%	22,95%	19,31%			
Silte	5,11%	8,06%	8,14%	10,83%			
Argila	13,70%	15,08%	14,93%	15,40%			

Frações		Interduna aquosa – SGa				
Granulométricas	A32	A33	A34	A35	A36	
Areia Grossa	0,19%	0,01%	0,05%	0,06%	0,06%	
Areia Média	1,57%	0,63%	0,69%	0,24%	0,97%	
Areia Fina	60,38%	58,58%	55,73%	38,51%	58%	

Areia Muito Fina	15,01%	14,55%	17,86%	27,23%	18,74%
Silte	5,23%	6,35%	2,25%	6,18%	3,73%
Argila	17,63%	19,88%	20,42%	27,77%	18,50%

Fonte: A autora (2021).

Frações	Interduna aquosa – SGa					
Granulométricas	A37	A38	A39	A40	A41	
Areia Grossa	0,02%	0,18%	0,13%	0,02%	0,07%	
Areia Média	4,72%	4,87%	16,26%	17,19%	17,11%	
Areia Fina	65,49%	68,98%	55,06%	55,59%	45,19%	
Areia Muito Fina	12,98%	10,54%	13,65%	10,72%	17,12%	
Silte	3,34%	2,72%	3,01%	4,50%	4,23%	
Argila	13,44%	12,69%	11,90%	11,98%	16,27%	

Fonte: A autora (2021).

Frações		Interduna aquosa – SGa				
Granulométricas	A42	A43	A44	A45	A46	
Areia Grossa	0,13%	0,95%	0,15%	0,02%	0,02%	
Areia Média	18,96%	51,53%	23,45%	2,43%	2,87%	
Areia Fina	37,42%	27,97%	39,49%	57,51%	58,28%	
Areia Muito Fina	21,56%	11,47%	13,89%	11%	10,93%	
Silte	6,41%	0,74%	6,94%	7,65%	5,84%	
Argila	15,53%	6,35%	16,08%	21,40%	22,07%	

Fonte: A autora (2021).

Frações	Interduna aquosa – SGa					
Granulométricas	A47	A48	A49	A50	A51	A52
Areia Grossa	0,01%	0,09%	0,01%	0,05%	0,01%	0,01%
Areia Média	2,63%	2,24%	1,66%	3,65%	0,91%	1,17%
Areia Fina	53,92%	53,30%	57,54%	56,44%	46,62%	55,57%
Areia Muito Fina	15,12%	15,82%	16,69%	17,03%	19,56%	14,06%
Silte	8,49%	6,77%	5,55%	7,82%	11,20%	12,22%
Argila	19,80%	19,75%	18,55%	15%	21,70%	16,87%

Fonte: A autora (2021).

Frações		Interduna aquosa – A SGa					
Granulométricas	A53	A54	A55	A56	A57	A58	
Areia Grossa	0,01%	0,02%	0%	0,01%	0%	0,02%	
Areia Média	1,02%	1,43%	0,88%	0,36%	0,11%	0,80%	
Areia Fina	52,93%	60,84%	55,76%	59,46%	42,74%	47,55%	
Areia Muito Fina	14,03%	14,86%	17,73%	18,04%	29,92%	16,84%	
Silte	10,69%	4,04%	9,26%	7,73%	9,43%	15,43%	
Argila	21,32%	18,80%	16,38%	14,40%	17,80%	19,37%	

Fonte: A autora (2021).

	Frente de Duna – SGa					
A59	A60	A61	A62	A63	A64	
0,05%	0,02%	0,04%	0,01%	0,02%	0,01%	
21,32%	38,61%	37,39%	37,29%	27,04%	24,93%	
42,78%	43,24%	47,61%	50,06%	38,09%	44,10%	
16,21%	9,21%	7,92%	5,77%	18,17%	16,50%	
10,04%	4,03%	4,01%	4,13%	9,95%	7,54%	
9,60%	4,87%	3,02%	2,75%	6,73%	6,93%	
	A59 0,05% 21,32% 42,78% 16,21% 10,04% 9,60%	A59 A60 0,05% 0,02% 21,32% 38,61% 42,78% 43,24% 16,21% 9,21% 10,04% 4,03% 9,60% 4,87%	Frente de E A59 A60 A61 0,05% 0,02% 0,04% 21,32% 38,61% 37,39% 42,78% 43,24% 47,61% 16,21% 9,21% 7,92% 10,04% 4,03% 4,01% 9,60% 4,87% 3,02%	Frente de Duna – SGa A59 A60 A61 A62 0,05% 0,02% 0,04% 0,01% 21,32% 38,61% 37,39% 37,29% 42,78% 43,24% 47,61% 50,06% 16,21% 9,21% 7,92% 5,77% 10,04% 4,03% 4,01% 4,13% 9,60% 4,87% 3,02% 2,75%	Frente de Duna – SGa A59 A60 A61 A62 A63 0,05% 0,02% 0,04% 0,01% 0,02% 21,32% 38,61% 37,39% 37,29% 27,04% 42,78% 43,24% 47,61% 50,06% 38,09% 16,21% 9,21% 7,92% 5,77% 18,17% 10,04% 4,03% 4,01% 4,13% 9,95% 9,60% 4,87% 3,02% 2,75% 6,73%	

Frações		Frente de Dunas – SGb						
Granulométrica	B1	B2	B5	B6	B7	B8	B9	B10
S								
Areia Grossa	0,00%	0,00%	0,00%	0,02%	0,00%	0,00%	0%	0,01%
Areia Média	0,76%	2,39%	2,52%	5,01%	1,54%	5,98%	7,41%	4,23%
Areia Fina	64,71	70,19	68,00	69,72	62,14	59,45	62,00	52,42
	%	%	%	%	%	%	%	%
Areia Muito	16,18	11,64	11,50		17,23	15,68	14,29	15,64
Fina	%	%	%	9,14%	%	%	%	%
Silte	4,14%	4,21%	4,05%	3,09%	3,94%	3,89%	3,12%	7,56%
Argila	14,26	11,57	13,93	13,03	15,15	15,00	13,17	20,15
	%	%	%	%	%	%	%	%

Resultados granulométricos da Seção Geológica a (SGb):

Fonte: A autora (2022).

Frações		Interduna aquosa – SGb				
Granulométricas	B31	B32	B33	B34	B35	
Areia Grossa	0,00%	0,00%	0,01%	0,01%	0,02%	
Areia Média	2,30%	1,19%	1,32%	1,17%	3,65%	
Areia Fina	75,86%	73,52%	49,47%	32,78%	76,14%	
Areia Muito Fina	6,04%	9,51%	22,60%	30,18%	4,35%	
Silte	3,30%	3,12%	7,53%	10,99%	3,58%	
Argila	12,50%	12,65%	19,07%	24,87%	12,27%	

Fonte: A autora (2022).

Frações		Interduna aquosa – SGb					
Granulométricas	B21	B22	B23	B24	B25		
Areia Grossa	0,04%	0,00%	0,01%	0,00%	0%		
Areia Média	0,64%	3,59%	0,40%	4,08%	8,65%		
Areia Fina	32,30%	75,29%	54,19%	71,17%	58,82%		
Areia Muito Fina	27,90%	12,18%	22,77%	12,13%	11,58%		
Silte	16,72%	3,29%	6,24%	3,49%	4,83%		
Argila	22,41%	5,67%	16%	9,13%	16,13%		

Frações		Interduna aquosa – SGb				
Granulométricas	B26	B27	B28	B29	B30	
Areia Grossa	0,00%	0%	0%	0,01%	0,00%	
Areia Média	11,04%	7,16%	9,74%	3,81%	2,00%	
Areia Fina	66,09%	61,84%	63,05%	51,76%	55,19%	
Areia Muito Fina	10,09%	10,97%	10,86%	17,79%	20,77%	
Silte	1,06%	5,50%	3,89%	8,35%	6,57%	
Argila	11,72%	14,52%	12,45%	18,28%	15,53%	

Frações		Interduna aquosa – SGb					
Granulométricas	B36	B37	B38	B39	B40	B41	B42
Areia Grossa	0,05%	0%	0,00%	0,01%	0,01%	0,13%	0,01%
Areia Média	2,56%	7,19%	5,51%	10,11%	3,40%	3,81%	1,40%
Areia Fina	63,52%	72,26%	63,54%	69,36%	68,44%	63,85%	54,07%
Areia Muito Fina	13,79%	8,47%	12,88%	5,12%	9,83%	11,82%	19,09%
Silte	4,06%	2,85%	6,02%	7,75%	4,26%	11,63%	6,02%
Argila	16,02%	9,23%	12,05%	7,65%	14,08%	8,75%	19,40%

Fonte: A autora (2022).

Frações		Interduna aquosa – SGb					
Granulométricas	B43	B44	B45	B46	B47	B48	B49
Areia Grossa	0,01%	0,01%	0%	0,00%	0%	0%	0,00%
Areia Média	0,10%	0,19%	0,04%	0,25%	0,25%	0,17%	0,32%
Areia Fina	26,10%	65,41%	37,17%	73,66%	65,23%	40,75%	55,25%
Areia Muito Fina	36,22%	11,80%	33,16%	9,14%	11,97%	29,69%	12,39%
Silte	11,23%	4,71%	6,04%	4,13%	4,42%	7,28%	7,59%
Argila	26%	17,87%	23,57%	12,82%	18,12%	22,10%	24,45%

Fonte: A autora (2022).

Frações		Interduna aquosa – SGb					
Granulométricas	B50	B51	B52	B53	B54	B55	B56
Areia Grossa	0,00%	0,00%	0,00%	0%	0,00%	0,04%	0,00%
Areia Média	0,78%	0,18%	0,34%	0,74%	0,36%	1,84%	0,74%
Areia Fina	66,96%	71,72%	64,10%	79,84%	70,50%	69,66%	68,97%
Areia Muito Fina	18,00%	8,68%	17,39%	5,93%	8,55%	12,42%	10,86%

1	N۵
-	00

Silte	5,01%	3,86%	5,02%	3,38%	4,63%	4,80%	4,63%
Argila	9,25%	15,55%	13,15%	10,13%	16,00%	11,27%	14,80%

Fonte: A autora (2022).

Frações	Interduna aquosa – SGb					
Granulométricas	B57	B58	B59	B60	B61	B62
Areia Grossa	0,00%	0,01%	0,04%	0,00%	0,09%	0,01%
Areia Média	1,18%	0,72%	2,89%	3,89%	20,57%	0,61%
Areia Fina	60,11%	52,68%	70,20%	66,23%	69,49%	54,08%
Areia Muito Fina	15,23%	17,09%	5,45%	9,63%	2,03%	16,74%
Silte	7,23%	9,35%	9,95%	5,69%	2,99%	8,27%
Argila	16,25%	20,20%	11,45%	14,55%	4,80%	20,30%

Fonte: A autora (2022).

Frações	Interduna aquosa – SGb					
Granulométricas	B63	B64	B65	B66	B67	B68
Areia Grossa	0,07%	0%	0,01%	0,00%	0,07%	0,04%
Areia Média	3,75%	1,24%	11,26%	2,19%	0,34%	2,20%
Areia Fina	69,52%	70,86%	46,79%	73,21%	57,65%	70,78%
Areia Muito Fina	6,20%	6,64%	16,54%	5,53%	14,94%	7,91%
Silte	6,00%	5,16%	7,65%	5,15%	6,78%	4,33%
Argila	14,47%	16,10%	17,76%	13,93%	20,23%	14,75%

Fonte: A autora (2022).

Frações	Interduna aquosa – SGb						
Granulométricas	B69	B70	B71	B72	B73		
Areia Grossa	0,00%	0,01%	0,01%	0%	0,01%		
Areia Média	0,63%	2,53%	2,72%	0,84%	4,15%		
Areia Fina	59,88%	57,08%	65,15%	48,15%	66,55%		
Areia Muito Fina	14,86%	17,23%	10,03%	16,35%	6,90%		
Silte	7,00%	7,77%	5,89%	10,18%	6,55%		
Argila	17,63%	15%	16,20%	24,45%	15,85%		

Fonte: A autora (2022).
Frações	Interduna aquosa – SGb						
Granulométricas	B74	B75	B76	B77	B78		
Areia Grossa	0%	0%	0,01%	0,00%	0,01%		
Areia Média	2,83%	3,16%	4,90%	4,72%	2,90%		
Areia Fina	53,60%	62,17%	55,65%	69,75%	74,21%		
Areia Muito Fina	16,30%	6,51%	13,85%	5,71%	6,90%		
Silte	9,50%	11,88%	8,67%	4,95%	4,76%		
Argila	17,75%	16,27%	16,90%	14,87%	11,22%		

Fonte: A autora (2022).

Frações			Int	erduna ad	quosa – S	Gb		
Granulométrica	B89	B90	B91	B92	B93	B94	B95	B96
S								
Areia Grossa	0,01%	0,00%	0,03%	0,00%	0%	0,01%	0%	0%
Areia Média	24,15		12,63					
	%	4,81%	%	8,89%	1,14%	1,22%	1,29%	9,94%
Areia Fina	49,08	50,24	56,41	41,63	67,86	40,38	48,58	48,32
	%	%	%	%	%	%	%	%
Areia Muito	13,01	17,68	12,30	23,07	14,78	23,30	17,85	16,56
Fina	%	%	%	%	%	%	%	%
Silte						10,97		
	4,35%	7,65%	3,58%	6,53%	2,91%	%	8,50%	5,80%
Argila		19,63		19,88	13,27	24,13	23,77	19,37
	9,40%	%	15%	%	%	%	%	%

Fonte: A autora (2022).

—								
⊢raçoes	Interduna aquosa – SGb							
Granulométrica	B97	B98	B99	B100	B101	B102	B103	B104
S								
Areia Grossa	0,00%	0,00%	0,00%	0,04%	0%	0,00%	0,00%	0,00%
Areia Média	1,09%	0,63%	1,22%	7,17%	0,84%	1,29%	0,42%	7,29%
Areia Fina	39,77	48,66	48,64	59,03	63,37	44,60	58,01	57,20
	%	%	%	%	%	%	%	%
Areia Muito	20,88	22,16	21,52	15,31	14,49	25,56	17,85	15,59
Fina	%	%	%	%	%	%	%	%
Silte	10,92							
	%	6,05%	6,72%	4,11%	4,83%	7,77%	4,10%	1,64%

Argila	27,35	22,50	21,90	14,37	16,45	20,75	19,57	18,30
	%	%	%	%	%	%	%	%

Fonte:	А	autora	(2022)	
--------	---	--------	--------	--

Frações	Lençóis de Areia – SGb							
Granulométricas	B3	B4	B11	B12	B13	B14		
Areia Grossa	0,01%	0,00%	0,00%	0,00%	0,02%	0,00%		
Areia Média	2,49%	7,29%	9,49%	1,50%	1,93%	4,88%		
Areia Fina	59,96%	57,20%	60,26%	49,46%	50,69%	61,15%		
Areia Muito Fina	12,78%	15,59%	12,95%	20,09%	20,60%	14,34%		
Silte	9,86%	1,64%	4,09%	8,87%	7,96%	5,78%		
Argila	14,92%	18%	13,20%	20,07%	18,80%	13,85%		

Fonte: A autora (2022).

Frações	Lençóis de Areia – SGb							
Granulométricas	B15	B16	B17	B18	B19	B20		
Areia Grossa	0,01%	0,01%	0%	0,01%	0,07%	0,01%		
Areia Média	2,66%	2,89%	5,32%	6,23%	1,05%	1,47%		
Areia Fina	61,52%	50,76%	56,64%	62,03%	53,53%	54,09%		
Areia Muito Fina	14,28%	17,88%	15,64%	14,02%	20,87%	23,13%		
Silte	5,26%	9,02%	7,05%	4,29%	5,58%	4,69%		
Argila	16,27%	19,45%	15,35%	13,42%	18,98%	16,62%		

Fonte: A autora (2022).

Frações		Lençóis de areia– SGb							
Granulométricas	B79	B80	B81	B82	B83				
Areia Grossa	0,08%	0,00%	0,31%	0,02%	0,05%				
Areia Média	2,84%	1,27%	1,52%	7,15%	11,41%				
Areia Fina	30,20%	21,69%	34,18%	37,63%	43,35%				
Areia Muito Fina	24,65%	30,05%	22,38%	22,99%	20,19%				
Silte	15,94%	15,44%	16,63%	15,08%	7,20%				
Argila	26,30%	31,54%	24,97%	21,70%	17,80%				
		Comtos A outom	- (2022)						

10116. A autora (2022)	(<i>)</i>
------------------------	------------

Frações	Lençóis de areia– SGb						
Granulométricas	B84	B85	B86	B87	B88		
Areia Grossa	0,03%	0%	0,00%	0,07%	0,01%		
Areia Média	7,91%	5,72%	2,90%	7,57%	6,68%		
Areia Fina	36,15%	32,73%	32,75%	39,68%	43,73%		
Areia Muito Fina	22,36%	26,48%	28,16%	22,25%	26,70%		
Silte	9,67%	10,27%	10,76%	10,15%	6,20%		
Argila	23,87%	24,78%	25,43%	20,05%	16,67%		

Fonte: A autora (2022).

ANEXO III:

Resultados dos parâmetros estatísticos de Folk e Ward da Seção Geológica a (SGa):

AMOSTRA	DIÂMETRO MÉDIO (µm)	DESVIO P	ADRÃO	ASSIMETRI A (μm)	CURTOSE (µm)	GRUPO TEXTURA L
A1	127,5	2,836	Unimodal	-0,377	2,075	Areia
	Areia fina	Mal selecionad a		Muito bem assimétrico	Muito leptocúrtic o	lamacenta
A2	44,28	5,790	Bimodal	-0,641	2,007	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtic o	amacenta
A3	38,83	6,256	Bimodal	-0,668	0,888	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Platicúrtic o	lamacenta
AMOSTRA	DIÂMETRO	DESVIO P	ADRÃO	ASSIMETRI	CURTOSE	GRUPO
	MÉDIO (μm)			Α (μm)	(μm)	TEXTURA L
A4	52,48	6,151	Bimodal	-0,684	1,969	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtic o	amateria
A5	93,51	3,294	Unimodal	-0,643	2,020	Areia Jamacenta
	Areia muito fina	Mal selecionad o		Muito bem assimétrico	Muito leptocúrtic o	anaoona
A6	46,61	4,598	Bimodal	-0,567	0,896	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Platicúrtic o	amacenta
AMOSTRA	DIÂMETRO	DESVIO P	ADRÃO	ASSIMETRI	CURTOSE	GRUPO
	MEDIO (μm)			Α (μm)	(µm)	TEXTURA L
A7	82,65	3,767	Unimodal	-0,404	2,109	Areia
	Areia muito fina	Mal selecionad o		Muito bem assimétrico	Muito leptocúrtic o	lamacenta
A8	32,33	6,114	Bimodal	-0,573	0,668	Areia lamacenta

Quadro 1: Dados estatísticos dos perfis da Seção Geológica a (SGa):

	Silte muite grosso	o Muito ma seleciona	al ad		Muito ben assimétric	n Muito o platicúrtic	
A9	38,57	5,718	Bimod	lal	-0,579	0,762	Areia
	Silte muite grosso	o Muito ma seleciona o	al ad		Muito ben assimétric	n Platicúrtic o o	lamacenta
AMOSTR	DIÂMETR	DESVIO P	ADRÃO	AS	SIMETRIA	CURTOSE	GRUPO
Α	O MÉDIO				(µm)	(µm)	TEXTURA
1.10	(μm)	2.060	Lining a da		0.524	2.017	L
A10	133,1	2,909	Unimoda		-0,554	2,917	lamacent
	Areia fina	Mal selecionad o		N a:	luito bem ssimétrico	Muito leptocúrtico	а
A11	59,87	5,917	Bimodal		-0,678	1,997	Areia
	Silte muito grosso	Muito mal selecionad o		N a:	luito bem ssimétrico	Muito leptocúrtico	a
A12	110,0	3,938	Bimodal		-0,587	2,378	Areia
	Areia muito fina	Mal selecionad o		N a:	luito bem ssimétrico	Muito leptocúrtico	a
A13	135,4	2,911	Unimoda		-0,596	3,677	Areia
	Areia fina	Mal selecionad o		N a:	/luito bem ssimétrico	Extremament e leptocúrtico	a
A14	66,16	5,494	Bimodal		-0,688	2,087	Areia
	Areia muito fina	Muito mal selecionad o		N a:	luito bem ssimétrico	Muito leptocúrtico	a
A15	49,75	6,521	Bimodal		-0,699	1,928	Areia
	Silte muito grosso	Muito mal selecionad o		N a:	luito bem ssimétrico	Muito leptocúrtico	a
A16	60,60	6,162	Bimodal		-0,648	1,314	Areia lamacent
	Silte muito grosso	Muito mal selecionad o		N a:	luito bem ssimétrico	Leptocúrtico	a
A17	45,95	7,019	Bimodal		-0,715	1,813	Areia lamacent
	Silte muito grosso	Muito mal selecionad o		N a:	luito bem ssimétrico	Muito leptocúrtico	a
A18	49,81	7,397	Bimodal		-0,627	1,478	Areia
	Silte muito grosso	Muito mal selecionad o		N a:	/luito bem ssimétrico	Leptocúrtico	a
A19	85,89	4,775	Bimodal		-0,614	2,194	Areia lamacent a

	Areia	Muito mal		Muito bem	Muito	
	muito fina	selecionad o		assimétrico	leptocúrtico	
A20	136,9	3,033	Unimoda I	-0,577	3,865	Areia lamacent
	Areia fina	Mal		Muito bem	Extrema-	а
		selecionad		assimétrico	mente	
A 01	19 50	0 6.076	Bimodal	-0.762		Areia
AZI	49,00	0,070	Dimodal	-0,702	2,120	lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimétrico	leptocúrtico	
A22	98,39	3,621	Unimoda	-0,677	2,424	Areia
,	,		I I	,	,	lamacent
	Areia	Mal		Muito bem	Muito	а
	muito fina	selecionad		assimetrico	leptocurtico	
A23	59.36	5.134	Bimodal	-0.772	2.202	Areia
7.20	,			,	,	lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimétrico	leptocúrtico	
Δ24	126.0	3.051	Bimodal	-0.613	2.670	Areia
/\	,.	-,		-,	_,	lamacent
	Areia fina	Mal		Muito bem	Muito	а
		selecionad		assimétrico	leptocúrtico	
A25	47,46	6,103	Bimodal	-0,798	2,156	Areia
/ ==0	, , , , , , , , , , , , , , , , , , ,					lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimetrico	ieptocurtico	
A26	45,52	6,194	Bimodal	-0,796	2,110	Areia
						lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimetrico	leptocurtico	
A27	46,71	6,031	Bimodal	-0,799	2,128	Areia
						lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	o		assimetrico	ieptocurtico	
A28	75,74	3,976	Bimodal	-0,742	2,144	Areia
	Areia	Mal		Muito hem	Muito	lamacent
	muito fina	selecionad		assimétrico	leptocúrtico	a
		0			•	
A29	53,37	5,118	Bimodal	-0,759	1,895	Areia Iamacent
	Silte muito	Muito mal		Muito bem	Muito	a
	grosso	selecionad		assimétrico	leptocúrtico	
100	50.00	0	Dimension	0.750	4.005	A
A30	53,60	5,008	BIMODAL	-0,753	1,905	Areia
	Silte muito	Muito mal		Muito bem	Muito	anacent
	grosso	selecionad		assimétrico	leptocúrtico	
		0				

A31	50,20	5,294	Bimodal	-0,761	1,371	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Leptocúrtico	lamacent a
AMOSTR	DIÂMETR	DESVIO P	ADRÃO	ASSIMETRIA	CURTOSE	GRUPO
Α	Ο MÉDIO (μm)			(µm)	(μm)	TEXTURA L
A32	47,83	5,922	Bimodal	-0,801	1,997	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	lamacent a
A33	39,28	7,005	Bimodal	-0,811	1,250	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Leptocúrtico	amacent
A34	43,66	6,280	Bimodal	-0,791	1,365	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Leptocúrtico	a
A35	33,85	6,685	Bimodal	-0,670	0,555	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito platicúrtico	a
A36	45,20	6,227	Bimodal	-0,799	2,106	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito Ieptocúrtico	a
A37	103,6	3,446	Unimoda I	-0,718	2,777	Areia Iamacent
	Areia muito fina	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
A38	132,0	2,916	Unimoda I	-0,634	3,691	Areia Iamacent
	Areia fina	Mal selecionad o		Muito bem assimétrico	Extremament e leptocúrtico	а
A39	139,7	3,304	Bimodal	-0,515	3,019	Areia Iamacent
	Areia fina	Mal selecionad o		Muito bem assimétrico	Extrema- mente leptocúrtico	a
A40	121,8	3,674	Unimoda I	-0,589	3,070	Areia Iamacent
	Areia muito fina	Mal selecionad o	1	Muito bem assimétrico	Extrema- mente leptocúrtico	anacent
A41	53,33	6,852	Bimodal	-0,696	2,153	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a

A42 58,09 6,515 Bimodal -0,640 1,977	Y Areia
	lamacent
Silte muito Muito mal Muito bem Muito	a
grosso selecionad assimetrico leptocum	lico
A 4 3 219 8 3 097 Unimoda -0 556 2 274	Areia
Mal	Aicia
Areia fina selecionad Muito bem Muito	,
o assimétrico leptocúrt	tico
A44 57,98 7,121 Bimodal -0,666 1,855	Areia
	lamacent
Silte muito Muito mal Muito bem Muito	a a
grosso selecionad assimetrico replocum	
A45 44.24 6.376 Bimodal -0.799 0.795	j Areia
	lamacent
Silte muito Muito mal Muito bem Platicúrt	ico a
grosso selecionad assimétrico	
A46 42,92 6,646 Bimodal -0,806 0,835	Areia
Silte muito Muito mal Muito bem Platicúrt	
grosso selecionad assimétrico	
0	
AMOSTR DIÂMETRO DESVIO PADRÃO ASSIMETRIA CURTO	SE GRUPO
A MÉDIO (μm) (μm)) TEXTURA
(μm)	L
A47 45,32 6,055 Bimodal -0,780 0,906	6 Areia
Silte muito Muito mal Muito hem Mesoci	
grosso selecionado assimétrico o	
A48 44,65 6,268 Bimodal -0,789 1,18	1 Areia
	lamacenta
Silte muito Muito mal Muito bem Leptocú	irtic
grosso selecionado assimétrico o	
A49 44,56 6,356 Bimodal -0,799 1,982	C () ()
	2 Areia
Silte muito Muito mal Muito bem Muito	2 Areia lamacenta
Silte muito Muito mal Muito bem Muito grosso selecionado Assimétrico leptocúr	2 Areia lamacenta o tico
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúrA5056,085,338Unimodal-0,7762,007	2 Areia lamacenta o tico 1 Areia
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúrA5056,085,338Unimodal-0,7762,007	2 Areia lamacenta o tico 1 Areia lamacenta
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúr 2,007A5056,085,338Unimodal-0,7762,007Silte muitoMuito mal selecionadoMuito bem provinción de la provinción de la provi	2 Areia lamacenta 5 tico 1 Areia lamacenta 5 tico
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúr leptocúrA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúr leptocúr	2 Areia lamacenta 5 tico 1 Areia lamacenta 5 tico
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúr leptocúrA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúrA5139,286,453Bimodal-0,7320,710	2 Areia lamacenta o tico 1 Areia lamacenta o tico 0 Areia lamacenta
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúrA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúrA5139,286,453Bimodal-0,7320,710Silte muito Silte muitoMuito mal selecionadoMuito bem assimétricoMuito leptocúr	2 Areia lamacenta o tico 1 Areia lamacenta o tico 0 Areia lamacenta tico
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúr leptocúrA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúr leptocúrA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticúr assimétrico	2 Areia lamacenta o tico 1 Areia lamacenta o tico 2 Areia lamacenta ilamacenta
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúnA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúnA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticún ptocúnA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticún ptocúnA5247,545,615Bimodal-0,7770,940	2 Areia lamacenta o tico 1 Areia lamacenta o tico 0 Areia lamacenta tico
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúr leptocúrA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuito leptocúr leptocúrA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticúr assimétricoA5139,286,453Bimodal-0,7320,710A5247,545,615Bimodal-0,7770,940	2 Areia lamacenta ortico 1 Areia lamacenta ortico 2 Areia lamacenta tico 2 Areia lamacenta
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúr leptocúrA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúr leptocúrA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticúr assimétricoA5139,285,615Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticúr assimétricoA5247,545,615Bimodal-0,7770,940Silte muito grossoMuito mal selecionadoMuito bem assimétricoMesocúr assimétrico	2 Areia lamacenta ortico 1 Areia lamacenta ortico 2 Areia lamacenta tico 0 Areia lamacenta itico
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúnA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúnA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticún leptocúnA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticún assimétricoA5247,545,615Bimodal-0,7770,940Silte muito grossoMuito mal selecionadoMuito bem assimétricoMesocún oA5338,067,021Bimodal-0,7910,742	2 Areia lamacenta ortico 1 Areia lamacenta ortico 0 Areia lamacenta tico 0 Areia lamacenta irtic
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúnA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúnA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticún leptocúnA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticún assimétricoA5247,545,615Bimodal-0,7770,940A5338,067,021Bimodal-0,7910,742	2 Areia lamacenta ortico 1 Areia lamacenta ortico 2 Areia lamacenta tico 2 Areia lamacenta irtic 2 Areia lamacenta
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúrA5056,085,338Unimodal-0,7762,00Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúrA5139,286,453Bimodal-0,7320,710A5139,286,453Bimodal-0,7320,710A5139,286,453Bimodal-0,7320,710A5247,545,615Bimodal-0,7770,940A5247,545,615Bimodal-0,7770,940A5338,067,021Bimodal-0,7910,742Silte muito grossoMuito mal selecionadoMuito bem assimétricoMesocú oA5338,067,021Bimodal-0,7910,742	2 Areia lamacenta ortico 1 Areia lamacenta ortico 0 Areia lamacenta tico 0 Areia lamacenta irtic 2 Areia lamacenta tico
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúnA5056,085,338Unimodal-0,7762,007Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúnA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticún leptocúnA5139,286,453Bimodal-0,7320,710Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticún assimétricoA5247,545,615Bimodal-0,7770,940Silte muito grossoMuito mal selecionadoMuito bem assimétricoMesocú oA5338,067,021Bimodal-0,7910,742Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticún assimétrico	2 Areia lamacenta ortico 1 Areia lamacenta ortico 0 Areia lamacenta tico 0 Areia lamacenta irtic 2 Areia lamacenta itico
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúr leptocúrA5056,085,338Unimodal-0,7762,00°Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúrA5139,286,453Bimodal-0,7320,710A5139,286,453Bimodal-0,7320,710A51Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticúr assimétricoA5247,545,615Bimodal-0,7770,940A5338,067,021Bimodal-0,7910,742A5446,925,985Bimodal-0,8041,996	2Areia lamacenta0Iamacenta0Areia lamacenta0Areia lamacenta1Areia
Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúlA5056,085,338Unimodal-0,7762,00°Silte muito grossoMuito mal selecionadoMuito bem assimétricoMuita leptocúlA5139,286,453Bimodal-0,7320,710A5139,286,453Bimodal-0,7320,710A51Silte muito grossoMuito mal selecionadoMuito bem assimétricoPlaticúr assimétricoA5247,545,615Bimodal-0,7770,940A5338,067,021Bimodal-0,7910,742A5446,925,985Bimodal-0,8041,996A5446,925,985Bimodal-0,8041,996	2Areia lamacenta2Areia lamacenta1Areia lamacenta2Areia lamacenta3Areia lamacenta2Areia lamacenta2Areia lamacenta1Areia lamacenta

A55	47,92	5,531	Bimodal	-0,775	1,436	Areia
	Silte muito	Muito mal		Muito bem	Lentocúrtic	lamacenta
	grosso	selecionado		assimétrico	0	
A56	59,05	4,966	Unimodal	-0,778	2,054	Areia
						lamacenta
	Silte muito	Muito mal		Muito bem	Muito	
A C 7	grosso 40.67	selecionado	Pimodol	assimetrico		Aroio
A57	40,07	0,020	Dimoual	-0,700	1,209	lamacenta
	Silte muito	Muito mal		Muito bem	Leptocúrtic	
	grosso	selecionado		assimétrico	0	
A58	42,63	5,918	Bimodal	-0,727	0,722	Areia
				Multa have	Dististation	lamacenta
		selecionado		Nullo Dem	Platicurtico	
AMOSTR	DIÂMETRO	DESVIO			CURTOSE	GRUPO
Δ	MÉDIO	DESTIG	ADIAO	(um)	(um)	TEXTURAL
~	(um)			(μ)	(μ)	
A59	101,2	4,205	Unimodal	-0,562	1,927	Areia
, 100						lamacenta
	Areia Muito	Muito mal		Muito bem	Muito	
	Fina	selecionado		assimétrico	leptocúrtic	
460	202.7	2 771	Unimodal	-0.364	2 302	Areia
AUU	202,7	2,771	Oninodai	-0,004	2,002	Alcia
	Areia fina	Mal		Muito bem	Muito	
		selecionada		assimétrico	leptocúrtic	
A.C.4	214.2	2 170	Unimodal	0.229	0	Aroio
Abi	214,2	2,179	Unimodal	-0,220	1,770	Areia
	Areia fina	Mal		Bem	Muito	
		selecionada		assimétrico	leptocúrtic	
		0.400		0.044	0	. .
A62	216,9	2,129	Unimodal	-0,214	1,783	Areia
	Areia fina	Mal		Bem	Muito	
		selecionada		assimétrico	leptocúrtic	
					0	
A63	140,2	3,392	Unimodal	-0,429	1,803	Areia
	Areia fina	Mal		Muito bem	Muito	lamacenta
		selecionada		assimétrico	leptocúrtic	
					0	
A64	152,9	3,144	Unimodal	-0,401	2,148	Areia
	A			NA SIA	NA . 11	lamacenta
	Areia fina	Mai		IVIUITO DEM	Multo	
		Selecionada		assimetrico		

ANEXO VI:

Resultados dos parâmetros estatísticos de Folk e Ward da seção Geológica b (SGb):

AMOSTR	DIÂMETR	DESVIO P	ADRÃO	ASSIMETRI	CURTOSE	GRUPO
Α	O MÉDIO			Α (μm)	(μm)	TEXTURA
	(µm)					L
B1	77,66	4,236	Bimodal	-0,769	2,489	Areia lamacent
	Areia	Muito mal		Muito bem	Muito	а
	Muito Fina	selecionad o		assimétrico	leptocúrtico	
B2	129,0	2,952	Unimoda I	-0,643	3,387	Areia lamacent
	Areia fina	Mal		Muito bem	Extremament	а
		selecionad		assimétrico	e leptocúrtico	
	55.00	0	Dimendal	0.700	4.005	A
B3	55,26	5,511	Bimodai	-0,793	1,905	Areia lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad o		assimetrico	Leptocurtico	
B4	47,63	6,572	Bimodal	-0,767	2,334	Areia lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimétrico	Leptocúrtico	
		0			0.770	<u> </u>
B5	83,86	3,994	Unimoda I	-0,770	2,773	Areia lamacent
	Areia	Mal		Muito bem	Muito	а
	muito fina	selecionad o		assimétrico	leptocúrtico	
B6	126,2	2,941	Unimoda I	-0,663	3,854	Areia lamacent
	Areia fina	Mal		Muito bem	Extremament	а
		selecionad		assimétrico	e leptocúrtico	
D7	61 11	0 5.078	Bimodal	0 700	2 377	Areia
D/	01,11	5,070	Dimoual	-0,730	2,011	lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad o		assimétrico	leptocúrtico	
B8	64,97	4,964	Unimoda I	-0,758	2,341	Areia lamacent
	Areia	Muito mal		Muito bem	Muito	а
	muito fina	selecionad o		assimétrico	leptocúrtico	
B9	121,3	3,223	Unimoda	-0,613	2,791	Areia
			I	Muito bem	Muito	lamacent
	Areia	Mal		assimétrico	leptocúrtico	а
	muito fina	selecionad				
		0				

Quadro 2: Dados estatísticos dos perfis da Seção Geológica b (SGb):

B10	44,95	6,251	Bimodal	-0,777	1,067	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Mesocúrtico	a
AMOSTR	DIÂMETR	DESVIO P	ADRÃO	ASSIMETRI	CURTOSE	GRUPO
A	Ο MÉDIO (μm)			Α (μm)	(μm)	TEXTURA L
B11	103,5	3,800	Unimoda	-0,662	2,801	Areia
	Areia muito fina	Mal selecionad o	I	Muito bem assimétrico	Muito leptocúrtico	lamacent a
B12	41,13	6,493	Bimodal	-0,769	1,008	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	mesocúrtico	lamacent a
B13	43,21	6,312	Bimodal	-0,771	1,474	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Leptocúrtico	a
B14	72,54	4,531	Unimoda	-0,769	2,316	Areia
	Areia muito fina	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B15	49,71	5,929	Bimodal	-0,806	2,161	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B16	43,14	6,394	Bimodal	-0,773	1,049	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Mesocúrtico	a
B17	55,51	5,605	Bimodal	-0,776	2,079	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B18	93,83	3,880	Unimoda I	-0,711	2,631	Areia Iamacent
	Areia muito fina	Mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B19	43,88	6,237	Bimodal	-0,782	1,975	Areia lamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B20	47,01	5,957	Bimodal	-0,780	2,150	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	amacent

B21	30,26	6,900	Bimodal	-0,630	0,693	Areia
	Silte grosso	Muito mal selecionad		Muito bem assimétrico	Platicúrtico	amacent
B22	150,1	2,613	Unimoda	-0,557	4,359	Areia
	Areia fina	Mal selecionad o		Muito bem assimétrico	Extremament e leptocúrtico	
B23	46,62	5,970	Bimodal	-0,780	2,110	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B24	138,9	2,812	Unimoda I	-0,607	4,240	Areia Iamacent
	Areia fina	Mal selecionad o		Muito bem assimétrico	Extremament e leptocúrtico	a
B25	51,81	6,284	Bimodal	-0,758	2,326	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B26	145,1	3,018	Unimoda	-0,537	4,255	Areia
	Areia fina	Mal selecionad o		Muito bem assimétrico	Extrema- mente leptocúrtico	a
B27	67,01	5,023	Unimoda I	-0,752	2,457	Areia Iamacent
	Areia muito fina	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B28	128,3	3,166	Unimoda	-0,589	3,230	Areia
	Areia fina	Mal selecionad o		Muito bem assimétrico	Extremament e leptocúrtico	a
B29	45,51	6,196	Bimodal	-0,774	1,319	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Leptocúrtico	a
B30	52,49	5,536	Bimodal	-0,775	2,094	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
AMOSTR	DIÂMETR	DESVIO P	ADRÃO		CURTOSE	GRUPO
A	(μm)			Α (μm)	(µm)	L
B31	131,3	2,908	Unimoda I	-0,668	4,477	Areia lamacent
	Areia Fina	Mal selecionad o		Muito bem assimétrico	Extremament e leptocúrtico	а

B32	129,3	2,909	Unimoda	-0,656	4,190	Areia
	Areia Fina	Mal	I	Muito hem	Extremement	lamacent
	Arcia I Illa	selecionad		assimétrico	e leptocúrtico	a
		0			•	
B33	41,06	6,501	Bimodal	-0,769	1,351	Areia
	Silte muito	Muito mal		Muito bem	Leptocúrtico	aniacent
	grosso	selecionad		assimétrico		
D 04	22.40	0	Dimedal	0.626	0.590	Aroia
B34	33,49	0,478	Bimodal	-0,636	0,589	lamacent
	Silte muito	Muito mal		Muito bem	Muito	a
	grosso	selecionad		assimétrico	platicúrtico	
B35	132.5	2.874	Unimoda	-0.670	4,405	Areia
000	102,0	2,011	I	0,010	1,100	lamacent
	Areia Fina	Mal		Muito bem	Extremament	а
		o		assimetrico	e leptocurtico	
B36	50,48	5,775	Unimoda	-0,809	2,272	Areia
		Multo mol	I		Muite	lamacent
	arosso	selecionad		assimétrico	leptocúrtico	а
	<u> </u>	0				
B37	148,4	2,809	Unimoda	-0,549	4,436	Areia
	Areia fina	Mal	I	Muito bem	Extremament	amacent
		selecionad		assimétrico	e leptocúrtico	
D 00	07.42	0	Dimodol	0.710	2,666	Aroio
B38	97,43	3,747	Dimoual	-0,719	2,000	lamacent
	Areia	Mal		Muito bem	Muito	а
	muito fina	selecionad		assimétrico	leptocúrtico	
B39	138,6	3,064	Unimoda	-0,588	4,365	Areia
	A		I			lamacent
	Areia fina	Mal selecionad		Muito bem	Extremament	а
		0		uconnotnee	e loptoou loo	
B40	80,45	4,203	Unimoda	-0,781	2,964	Areia
	Areia	Muito mal	I	Muito bem	Muito	amacent
	Muito Fina	selecionad		assimétrico	leptocúrtico	4
D 44	00.00	0	L haine a d a	0.744	0.004	Anala
B41	09,08	3,819		-0,744	2,294	lamacent
	Areia	Mal	-	Muito bem	Muito	а
	Muito Fina	selecionad		assimétrico	leptocúrtico	
B42	40.97	6,691	Bimodal	-0,791	1,746	Areia
DHZ	-,	-,				lamacent
	Silte Muito	Muito mal		Muito bem	Muito	а
	610550	o o		สรรแบยแบบ		
B43	29,47	6,611	Bimodal	-0,637	0,595	Areia
	Silto	Muito mol		Muito hom	Muito	lamacent
	grosso	selecionad		assimétrico	platicúrtico	a
		0				

B44	48,00	5,912	Bimodal	-0,816	2,067	Areia
						lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimetrico	leptocurtico	
B45	33.00	6.813	Bimodal	-0.685	0.711	Areia
D40	,	0,010	2	0,000	0,111	lamacent
	Silte muito	Muito mal		Muito bem	Platicúrtico	а
	grosso	selecionad		assimétrico		
D 40	106.7	0	Linimada	0 700	2.940	A roio
B46	100,7	3,391	Unimoda	-0,730	3,049	lamacent
	Areia	Mal		Muito bem	Extremament	a
	muito fina	selecionad		assimétrico	e leptocúrtico	
		0				
B47	46,30	6,252	Bimodal	-0,821	2,148	Areia
	Silte muito	Muito mal		Muito hem	Muitol	amacent
	drosso	selecionad		assimétrico	Leptocúrtico	a
	g	0				
B48	37,01	6,370	Bimodal	-0,691	0,805	Areia
						lamacent
	Silte multo	Muito mai		Muito bem	Platicurtico	а
	grosso	o		assimetrico		
B49	42,24	6,352	Bimodal	-0,790	0,574	Areia
						lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimetrico	Platicurtico	
B50	128.6	2.860	Unimoda	-0.606	2.829	Areia
Doo	,.	_,	I	-,	_,	lamacent
	Areia Fina	Mal		Muito bem	Muito	а
		selecionad		assimétrico	Leptocúrtico	
R51	56.91	5 304	Bimodal	-0.823	2 906	Areia
001	00,01	0,001	Binodai	0,020	2,000	lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimétrico	Leptocúrtico	
D	95.14	0	Unimodo	0.749	2.442	Aroio
B52	05,14	3,009	Unimoda	-0,740	2,442	lamacent
	Areia	Mal		Muito bem	Muito	a
	muito fina	selecionad		assimétrico	leptocúrtico	
		0		0.047	4 7 4 4	<u> </u>
B53	143,8	2,726	Unimoda	-0,617	4,741	Areia
	Areia Fina	Mal	1	Muito bem	Extremament	amacent
	7	selecionad		assimétrico	e Leptocúrtico	4
		0				
B54	50,93	5,606	Bimodal	-0,824	2,489	Areia
	Silte muite	Muito mol		Muito hom	Muito	lamacent
	drosso	selecionad		assimétrico	leptocúrtico	a
	9.0000	0				
B55	127,0	2,944	Unimoda	-0,645	3,123	Areia
		N.4 - F		NAL 24 - L	E da contra d	lamacent
	Areia Fina	IVIAI selecionad		IVIUITO DEM	Extremament	а
		0		assimethou		

B56	64,79	4,731	Unimoda	-0,802	2,537	Areia
	Δτρία	Muito mal	I	Muito hem	Muito	lamacent
	muito fina	selecionad		assimétrico	leptocúrtico	a
		0			•	
AMOSTR	DIÂMETR	DESVIO P	ADRÃO	ASSIMETRI	CURTOSE	GRUPO
Α	O MÉDIO			Α (μm)	(μm)	TEXTURA
	(µm)					L
B57	48,48	6,009	Bimodal	-0,803	2,034	Areia
	Silte muito	Muito mal		Muito bem	Muito	amacent
	arosso	selecionad		assimétrico	leptocúrtico	a
	5	о			•	
B58	39,15	6,830	Bimodal	-0,788	0,884	Areia
				Muite here	Distinútion	lamacent
		Multo mai		Multo bem	Platicurtico	а
	910330	0		assimetrico		
B59	77,49	4,373	Unimoda	-0,793	2,946	Areia
			I			lamacent
	Areia	Muito mal		Muito bem	Muito	а
	multo ima	Selecionad		assimetrico	Leptocurtico	
B60	65,48	5,035	Bimodal	-0,802	2,602	Areia
200						lamacent
	Areia	Muito mal		Muito bem	Muito	а
	muito fina	selecionad		assimetrico	Leptocurtico	
B61	193,3	2,402	Unimoda	-0,247	3,683	Areia
201	,	,	I	,	, 	
	Areia Fina	Mal		Bem	Extremament	
		o		assimetrico	e Leptocurtico	
B62	41,23	6,581	Bimodal	-0,790	0,940	Areia
						lamacent
	Silte muito	Muito mal		Muito bem	Mesocúrtico	а
	grosso	o		assimetrico		
B63	65,53	5,049	Bimodal	-0,812	3,190	Areia
						lamacent
	Areia	Muito mal		Muito bem	Extremament	а
	multo lina	selecionad		assimetrico	e ieplocuriico	
B64	51,05	5,873	Unimoda	-0,830	2,717	Areia
		-	I			lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimetrico	leptocurtico	
B65	45,60	6,142	Bimodal	-0,798	1,166	Areia
200						lamacent
	Silte muito	Muito mal		Muito bem	Leptocúrtico	а
	grosso	selecionad		assimetrico		
B66	75.30	4,491	Unimoda	-0.806	4,460	Areia
200	,	, -	I	,	,	lamacent
	Areia	Muito mal		Muito bem	Extremament	а
	muito fina	selecionad		assimétrico	e leptocúrtico	
		U				

B67	43,29	6,395	Bimodal	-0,800	1,110	Areia
						lamacent
	Silte multo	Muito mai		Muito bem	Mesocurtico	а
	910330	0		assimetrico		
B68	67,48	4,851	Unimoda	-0,810	3,269	Areia
			I			lamacent
	Areia	Muito mal		Muito bem	Extremament	а
		o		assimetrico	e iepioculiico	
B69	46,78	6,051	Bimodal	-0,802	1,915	Areia
						lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	0		assimetrico	ieptocurtico	
B70	53,32	5,561	Bimodal	-0,784	2,024	Areia
						lamacent
	Silte multo	Muito mai		Muito bem	Muito	а
	grosso	0		assimetrico	ieptocurtico	
B71	50,58	5,779	Unimoda	-0,813	2,133	Areia
	Silto muito	Muito mol	I	Muito hom	Muito	lamacent
	drosso	selecionad		assimétrico	leptocúrtico	a
	g. = = = =	0				
B72	39,31	6,539	Bimodal	-0,751	0,582	Areia
	Silte muito	Muito mal		Muito hem	Muito	lamacent
	grosso	selecionad		assimétrico	Platicúrtico	u
	<u> </u>	0				
B73	52,66	5,766	Unimoda	-0,817	2,266	Areia
	Silte muito	Muito mal	I	Muito bem	Muito	amacent
	grosso	selecionad		assimétrico	leptocúrtico	5
	45.00	0	<u> </u>	0.704	4 005	
B74	45,89	6,153	Bimodal	-0,781	1,665	Areia
	Silte muito	Muito mal		Muito bem	Muito	a
	grosso	selecionad		assimétrico	leptocúrtico	
	40.04	0	Dimendel	0.000	1 100	Anala
B/5	49,94	5,979	Bimodai	-0,809	1,103	Areia lamacent
	Silte muito	Mal		Muito bem	Mesocúrtico	a
	grosso	selecionad		assimétrico		
DZC	48.20	0	Rimodal	0.780	1 662	Aroio
B/0	40,20	0,130	Dimoual	-0,789	1,002	lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimétrico	leptocúrtico	
B77	64 77	0 4 962	Unimoda	-0.811	3 680	Areia
БП	,,,,	7,002		0,011	0,000	lamacent
	Areia	Mal		Muito bem	Extremament	а
	muito fina	selecionad		assimétrico	e leptocúrtico	
R78	130.3	2.986	Unimoda	-0 668	4 497	Areia
010	,0	_,000		5,000	.,	lamacent
	Areia Fina	Mal		Muito bem	Extremament	а
		selecionad		assimétrico	e leptocúrtico	
	1		1		1	

AMOSTRA	DIÂMETRO MÉDIO	DESVIO P	ADRÃO	ASSIMETRI A (um)	CURTOSE (µm)	GRUPO TEXTURA
	(µm)			u. 7	4° 7	L
B79	30,92	6,817	Bimodal	-0,591	0,580	Areia
	Silte grosso	Muito mal selecionad o		Muito bem assimétrico	Muito platicúrtico	lamacent a
B80	27,60	6,498	Bimodal	-0,571	0,577	Areia
	Silte grosso	Muito mal selecionad o		Muito bem assimétrico	Muito Platicúrtico	a
B81	32,47	6,645	Bimodal	-0,604	0,583	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito platicúrtico	a
B82	32,89	7,710	Bimodal	-0,645	0,780	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Platicúrtico	a
B83	46,69	6,820	Bimodal	-0,693	1,956	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B84	38,73	6,889	Bimodal	-0,628	0,649	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito platicúrtico	a
B85	34,05	7,048	Bimodal	-0,626	0,603	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito platicúrtico	a
B86	33,34	6,703	Bimodal	-0,634	0,581	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito platicúrtico	а
B87	40,64	6,859	Bimodal	-0,671	1,142	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Leptocúrtico	a
B88	46,51	6,231	Bimodal	-0,707	2,099	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B89	156,6	3,346	Unimoda I	-0,436	2,896	Areia Iamacent
	Areia fina	Mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	а

B90	41,47	6,779	Bimodal	-0,777	1,282	Areia
	Silto muito	Muito mal		Muito hom	Lontocúrtico	lamacent
	drosso	selecionad		assimétrico	Lepiocuriico	a
	9.0000	0				
B91	73,15	5,063	Unimoda	-0,708	2,569	Areia
	.		I			lamacent
	Areia muito	Muito mai		Muito bem	Muito	а
	lilla			assimetrico	ieptocurtico	
B92	41,36	7,129	Bimodal	-0,696	1,470	Areia
						lamacent
	Silte muito	Muito mal		Muito bem	Leptocúrtico	а
	grosso	selecionad		assimetrico		
B93	124.6	3.011	Bimodal	-0.641	2.881	Areia
200	, -	-,-		- , -) = =	lamacent
	Areia muito	Mal		Muito bem	Muito	а
	fina	selecionad		assimétrico	leptocúrtico	
B0/	36.65	6 393	Bimodal	-0.668	0.602	Areia
034	00,00	0,000	Dimodul	0,000	0,002	lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimétrico	platicúrtico	
P05	40.32	0 6.495	Bimodal	-0 763	0.626	Δreia
095	10,02	0,100	Dimodal	0,100	0,020	lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimétrico	platicúrtico	
POG	46.30	0 6 797	Bimodal	-0 721	1 87/	Areia
D90	40,00	0,797	Dimodal	-0,721	1,074	lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimétrico	leptocúrtico	
P07	34 53	0 6 621	Bimodal	-0.653	0 555	Areia
D97	04,00	0,021	Dimodal	-0,000	0,000	lamacent
	Silte muito	Muito mal		Muito bem	Muito	а
	grosso	selecionad		assimétrico	platicúrtico	
D 00	40.36	0 6 4 2 3	Bimodal	0 758	0.810	Areia
D90	40,00	0,420	Dimodal	-0,750	0,013	lamacent
	Silte muito	Muito mal		Muito bem	Platicúrtico	а
	grosso	selecionad		assimétrico		
- DOO	40.72	0	Rimodal	0.763	0 888	Aroio
B99	40,72	0,433	Dimoual	-0,703	0,000	lamacent
	Silte muito	Muito mal		Muito bem	Platicúrtico	а
	grosso	selecionad		assimétrico		
D400	77.65	0	Dimodel	0.705	2.405	Aroio
B100	co, i i	4,009	DILIOUAL	-0,725	∠,490	lamacent
	Areia muito	Muito mal		Muito bem	Muito	а
	fina	selecionad		assimétrico	leptocúrtico	
D101	19.05	0	Rimodol	0.910	2 224	Aroio
BIUI	40,90	0,900	BILIOUAL	-0,012	۷,۷۷۱	lamacent
		Marite and I		Muito hom	Muito	2
	Silte muito	iviuito mai		Multo Delli	INUITO	a
	grosso	selecionad		assimétrico	leptocúrtico	a

B102	39,53	6,364	Bimodal	-0,720	0,988	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Mesocúrtico	a
B103	44,18	6,290	Bimodal	-0,800	2,012	Areia
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a
B104	47,63	6,572	Bimodal	-0,767	2,334	Areia Iamacent
	Silte muito grosso	Muito mal selecionad o		Muito bem assimétrico	Muito leptocúrtico	a

Fonte: A autora (2021).

ANEXO V:

Minerais do SGa identificados a partir do DRX, com as tabelas organizadas por perfil:

PERFIL A1		
AMOSTRAS	A3	A1
MINERAIS	Vermiculita	Vermiculita
	Tridimita	Caulinita
	Albita	Tridimita
	Caulinita	Microclínio
	Microclínio	Cristobalita
	Anortita	Modernita
	Modernita	Feldspato potássico
	Feldspato potássico	Cianita
	Lepdocrocita	Chamosita
	Cianita	Clinocloro
	Muscovita	Anortita
	Cristobalita	Maghemita
	Rutilo	Zircão
	Maghemita	Torita
	Lizardita	Quartzo
	Zircão	Rutilo
	Torita	Cristobalita
	Quartzo	Anatásio
	Glossulária	
	Chamosita	
	Clinocloro	
	Goethita	
PERFIL A2		
AMOSTRAS	A4	A6
MINERAIS	Vermiculita	Tridimita
	Tridimita	Anortita
	Albita	Caulinita
	Caulinita	Cristobalita
	Cristobalita	Albita
	Mordenita	Goethita
	Lepdocrocita	Feldspato potássico
	Sanidina	Sanidina
	Anortita	Cianita
	Muscovita	Muscovita
	Anortita	Caulinita
	Microclínio	Microclínio
	Cianita	Rutilo
	Rutilo	Maghemita
	Zircão	Zircão
	Torita	Torita

		Quartzo Maghemita	Quartzo Maghemita		ZO	
			Chamosita		nosita	
		Clinocloro		Clinocloro		
				Anata	ISIO	
AMOSTRAS		A7		A9		
MINERAIS		Vermiculita		Verm	iculita	
		Tridimita		Anort	ita	
		Caulinita		Micro	clínio	
		Albita			nita	
		Aportita		Mode	rnita	
		Modernita		Lepdo	ocrocita	
		Goethita		Magh	emita	
		Sanidina		Cianit	a	
		Cianita		Goetł	nita	
		Clinocloro		Iridin	nita	
		Torita		Cristo	halita	
		Maghemita		Esper	rssatita	
		Chamosita		Torita	l	
		Cristobalita		Hematita		
				Chamosita		
				Quartzo		
				Clino	cloro	
PERFIL A4		<u> </u>		Chine		
AMOSTRAS	A11		A16		A18	
MINERAIS	Verm	iculita	Tridimita		Tridimita	
	Quart	ZO	Caulinita		Albita	
	Anort	na ovita	Aportita		MICrociinio Cristobalita	
	Cauli	nita Mordenista			Goethita	
	Esme	ectita	Goethita		Zircão	
	Morde	enita	Feldspato		Sanidina	
	Goeth	nita	potássico		Cianita	
	⊢elds	pato	Sanidina		Anortita	
	potas		Clincloro		Rutilo	
Cianit		a	Albita		Maghemita	
Clinoc		cloro	Microclínio		Lizardita	
	Albita		Anortita		Quartzo	
	Micro	clinio	Maghemita		l orita	
	Magh	emite	Zircao Clinocloro		Clinocioro	
	Zircão)	Quartzo		Torita	
	Cham	nosita	Rutilo			
	Cristo	obalita	Cristobalita			
	Torita	1	Torita			

	Rutilo		
AMOSTRAS	A22	A26	A30
AMOSTRAS MINERAIS	A22TridimitaAlbitaMicroclínioCristobalitaMordenitaGoethitaFeldspatopotássicoCianitaAnortitaMaghemitaMuscovitaClinocloroVermiculitaCaulinitaLizarditaToritaQuartzoRutiloHematitaChamositaCristobalitaClinocloro	A26TridimitaClinocloroCaulinitaGoethitaMicroclínioMuscovitaSanidinaCianitaAnortitaAlbitaToritaQuartzoMaghemitaRutiloChamositaCristobalitahematita	A30TridimitaIlmenitaMicroclínioGoethitaSanidinaAnortitaMuscovitaAnortitaCianitaCianitaCaulinitaMicroclínioLizarditaClinocloroToritaMaghemitaRutiloChamositaCristobalitaGoethitaTorita
MINERAIS	Quartzo Musscovita Albita Microclínio	Anortita Caulinita Microclínio Cristobalita	Tridimita Albita Microclínio Anortita
	Anortita Mordenita Goethita Feldspato potássico Lepdocrocita Clinocloro Tridimita Caulinita Rutilo Torita Maghemita Chamosita Cristobalita	Mordenita Goethita Quartzo Lepdocrocita Albita Maghemita Clinocloro Tridimita Rutilo Zircão Torita Rutilo Goethita	Mordenita Feldspato potássico Sanidina Maghemita Anortita Muscovita Vermiculita Caulinita Clincloro Cianita Rutilo Lizardita Torita Quartzo Chamosita Goethita Cristobalita

MINERAIS	Qu	artzo	Tridimi	ta	Quartzo		Tridimita
	Δn	ortita	Caulini	ta	Microclínio		Caulinita
	Mic	croclínio	Microc	línio	Cristobalita		Mordenita
		oita	Goethi	ta	Caulinita	•	Quartzo
	Cri	stobalita	Sanidir	າວ	Mordenita		Microclínio
	E DI	denato	Δnortit	1a 2	Quartzo		Muscovita
	nla	ajoclássico	Clinoch	oro	Lendocroci	ta	Anortita
	Mo	ylociassico	Tridimi	to to	Albita	la	Cionita
		denato	Cianita	la	Aportita		Maghemita
	not	rássico	Caulini	ta	Anorita		Lizardita
		assico	Aportit	ia D	Tridimito		Torito
	Cia	nita	Maghe	a mita	Cianita		Rutilo
	Sa	nidina	Lizardi	ta	Lizardita		Cristobalita
	Cli	nocloro	Zircão	la	Torita		Clinocloro
	Tri	dimita	Torita		Maghemita		
	Ca	ulinita	Rutilo		Rutilo		
	Ru	tilo	Cristob	alita	Chamosita		
	Ma	ahemita	Quartz	0	Clinocloro		
	To	rita	Quartz	0	Goethita		
	Glo	ossulária			Cootinia		
	Ch	amosita					
	aoe	ethita					
PERFIL A6	<u> </u>						
AMOSTRAS	A4	8	A53		A56		A58
MINERAIS	Trie	dimita	Tridimi	ta	Tridimita		Muscovita
	Ca	ulinita	Albita		Microclínio		Tridimita
	Mic	croclínio	Caulini	ta	Esmectita		Anortita
	Cri	stobalita	Microcl	línio	Cristobalita		Caulinita
	Alb	oita	Cristob	alita	Mordenita		Microclínio
	Lep	odocrocita	Morder	nita	Feldspato		Cristobalita
	Cia	anita	Cianita		potássico		Goethita
	Cli	nocloro	Feldsp	ato	Zircão		Feldspato
	An	ortita	potássi	со	Sanidina		potássico
	Ve	rmiculita	Zircão		Cianita		Zircão
	Ca	ulinita	Sanidir	าล	Anortita		Lepdocrocita
	An	ortita	Cianita		Muscovita		Sanidina
	Ma	ghemita	Anortita	a .,	Clinocloro		Cianita
		odocrocita	Musco	VIta	Vermiculita		
			Magne	mita			
	Ru Ch	uio omoito	Ouertz		Rullio Maghamita		Albila
		amsila	Quartz	0	Torito		Torito
		rita	Rutilo		Quartzo		Quartzo
		na	Chamo	sita	Rutilo		Rutilo
			Clinoch	oro	Anatásio		Chamosita
			Gorthit	a	Hematita		Unamosita
			Torita		Glossulária	l	
PERFIL A7							
AMOSTRAS		A59		A61		A6	3
MINERAIS		7 100		7.01		7.10	<u> </u>

Caulinita	Mordemita	Quartzo
Albita	Cristobalita	Tridimita
Esmectita	Feldspato	Caulinita
Goethita	plagioclásico	Microclínio
Feldspato	Goethita	Cristobalita
potássico	Zircão	Goethita
Sanidina	Sanidina	Aragonita
Cianita	Microclínio	Albita
Muscovita	Clinocloro	Sanidina
Clinocloro	Anortita	Clinocloro
Anortita	Albita	Anortita
Microclínio	Caulinita	Maghemita
Maghemita	Maghemita	Rutilo
Zircão	Caulinita	Chamosita
Torita	Torita	
Quartzo	Quartzo	
Rutilo	Rutilo	
Cristobalita	Goethita	
 Goethita		

Fonte: A autora (2021).

ANEXO VI:

Minerais do SGb identificados a partir do DRX, com as tabelas organizadas por perfil:

PERFIL B1								
AMOSTRAS	B2			B3			B4	
MINERAIS	Maghe Goethi Sanidi Cianita Clinoc Anortit Albita Caulin Torita Quartz Haloisi Chamo Hemat Cristot	emita ita na loro ita osita tita palita		Tridimir Goethit Morder Lepdoc Microcl Cianita Clinocl Anortita Albita Caulini Rutilo Maghe Torita Quartz Haloisi Chamo Cristob	ta ta crocita línio oro a ta mita o ta osita oalita	2	Ma Alb Go Sa Clin Tric Cia Ca Ru Qu Cri Toi	ghemita pita ethita nidina nocloro dimita anita ulinita ortita tilo artzo stobalita rita
AMOSTRAS		B5				B9		
MINERAIS		Tridi Albit Anor Crist Goe Sani Mos Tridi Cian Caul Rutil Mag Lepo Torit Chai Clino	mita a tita tobalita thita dina covita mita ita linita o hemita docrocita a mosita pcloro	3		Maghe Goeth Sanid Microo Cianit Anorti Torita Albita Caulir Rutilo Lepdo Quart Cristo Clinoo	emiti nita ina clíni a ita nita pocro zo bali clorc	ta o cita ta
PERFIL B2								
AMOSTRAS	B13		B14		B17			B18
MINERAIS	Maghemita Anortita Caulinita	а	Maghe Anortita Goethit	emita Tridimita a Cristobalita ta Goethita		mita tobalita thita	l	Tridimita Cristobalita Goethita

	Es	nectita	Sanidir	าล	Sanidina		Microclínio	
	Go	ethita	Cianita		Moscovita		Sanidina	
	Sanidina		Clinocloro		Clinocloro		Moscovita	
	Alb	ita	Caulini	ta	Anortita		Clinocloro	
	То	rita	Albita		Albita		Albita	
	Ru	tilo	Haloisi	ta	Caulinita		Anortita	
	Cia	nita	Quartz	0	Rutilo		Maghemita	
	Qu	artzo			Maghemita	l	Caulinita	
	Cri	stobalita			Lepdocroci	ta	Torita	
	Cli	nocloro			Torita		Haloisita	
					Chamosita		Chamosita	
					Anatásio			
AMOSTRAS		B22		B23		B2	8	
MINERAIS		Anortita		Maghe	mita	Ma	ighemita	
		Goethita		Albita		An	ortita	
		Sanidina		Esmec	tita	Mo	ordenita	
		Caulinita		Cristob	palita	Go	ethita	
		Maghemita		Goethi	ta	Sa	nidina	
		Haloisita		Sanidir	าล	IVIO	scovita	
		Quartzo						
		Cristopalita		Anortita	a		ulinita	
						Ru	uio rite	
		Iorita					nia emercite	
				Rullio Quartza			Cline elere	
			Torita					
				Clincel	oro	Qu	stobalita	
				Hemati	ita	CII	Sioballia	
PERFIL B3				Tiemat				
AMOSTRAS	B3	4	B35		B36		B48	
MINERAIS	Ма	ghemita	Tridimi	ta	Maghemita	l	Anortita	
	Alb	oita	Anortita	а	Goethita		Mordenita	
	Go	ethita	Morder	nita	a Sanidina		Goethita	
	Cia	inita	Sanidir	na Cianita			Cianita	
	Mu	scovita	Microcl	linio	Clinocloro		Albita	
	An	ortita	Cianita	a Anortita			Caulinita	
	Ca	ulinita	Muscov	vita	Albita		Torita	
	То	rita	Vermic	ulita	Caulinita		Cianita	
	Qu	artzo	Albita		Torita		Maghemita	
	Cri	stobalita	Caulinita		Lepdocroci	ta	Rutilo	
	Cli	nocloro	Maghemita		Zircão		Quartzo	
			Torita		Rutilo		Cristobalita	
			Quartz	0	Quartzo		Clinocioro	
			Rutilo	- :4 -		l		
			Chamo	ISITA	Clinocioro			
				alla				
			Cirrocle	uiu ta				
ΔΜΟςτρλς		B/Q	Gueini	Ia R52	<u> </u>	RF	3	
MINFRAIS		Mordenita		Anortite	а	An	ortita	

		Tridimita		Goethi	ta	Ca	ulinita	
		Cristobalita	1	Sanidir	าล	Ara	agonita	
		Caulinita		Cianita	1	Cia	Cianita	
		Sanidina		Albita		Cli	nocloro	
		Albita		Caulini	ta	Go	Goethita	
		Anortita		Lendor	crocita	Alk	oita	
		Clinocloro		Maghe	mita	Ru	tilo	
		Cianta		Rutilo	inita	Ma	ahemita	
		Goethita		Quartz	0		igricinita Iartzo	
		Maghemita		Criston	o Valita	Cri	atzo stobalita	
		Quartzo		Chalor	anta		rita	
PERFIL B4		Quartzo		<u> </u>				
AMOSTRAS		B57		B59		B6	6	
MINERAIS		Anortita		Anortit	а	Mc	ordenita	
		Goethita		Goethi	ta	Alb	oita	
		Sanidina		Sanidir	าล	Са	ulinita	
		Cianita		Aragor	nita	Ara	anonita	
		Albita		Clinocl	oro	An	ortita	
		Tridimita		Albita		Mi	croclínio	
		Caulinita		Caulini	ta	Ма	ahemita	
		Maghemita		Maghe	mita	Qu	artzo	
		Rutilo		Lendocrocita		Cianita		
		Quartzo		Quartzo		Cristobalita		
		Cristobalita	1	Rutilo		Goethita		
		clinocloro	Cristobalita		Rutilo			
				Torita	anta	clir	nocloro	
AMOSTRAS		B67		B73		B7	<u>4</u>	
MINERAIS		Tridimita		Tridimi	ta	Δn	ortita	
		Mordenita		Goethi	ta	Go	ethita	
		Microclínio		Sanidir	าว	Sa	nidina	
		Muscovita		Clinocl	oro	Cli	nocloro	
		Anortita		Anortit	910 9		nita	
		Cristobalita	1	Δlhita	ц	Cia	anita	
		Caulinita		Caulinita		Caulinita		
		Torito		Maghemita			rita	
		Maghemita		Rutilo		Ma	ahemita	
		Rutilo		Quartzo		Ru	tilo	
		Chamosita		Cristobalita			artzo	
		Clincloro		Torita	Janta	Cri	stobalita	
				Tonta		Cli	nocloro	
PERFIL B5				<u> </u>				
AMOSTRAS	B8	0	B85		B88		B90	
MINERAIS	Tri	dimita	Tridimi	ta	Tridimita		Tridimita	
	Alb	oita	Morder	nita	Caulinita		Caulinita	
	Ara	agonita	Aragor	nita	Microclínio		Microclínio	
	An	ortita	Anortit	а	Cristobalita	a	Anortita	
	Ca	ulinita	Albita		Goethita		Goethita	
	Go	ethita	Caulini	ta	Sanidina		Sanidina	
	Ma	ghemita	Torita		Cianita		Cianita	
	Cia	anita	Maghe	mita	Albita		Albita	

	Quartzo	Cianita	Anortita	Moscovita
	Anatásio	Quartzo	Maghemita	Clinocloro
	Cristobalita	Haloisita	Lepdocrocita	Anortita
	Clinocloro	Cristobalita	Haloisita	Maghemita
	Hematita	Goethita	Quartzo	Haloisita
			clinocloro	Quartzo
				Cristobalita
				Clinocloro
				Torita
AMOSTRAS	B91	B93	B94	B95
MINERAIS	Anortita	Anortita	Anortita	Maghemita
	Goethita	Goethita	Goethita	Caulinita
	Sanidina	Aragonita	Sanidina	Anortita
	Cianita	Caulinita	Microclínio	Goethita
	Clinocloro	Albita	Cianita	Lepdocrocita
	Albita	Maghemita	Caulinita	Cianita
	Caulinita	Cianita	Lepdocrocita	Moscovita
	Maghemita	Haloisita	Maghemita	Clinocloro
	Haloisita	Quartzo	Haloisita	Tridimita
	Quartzo	Cristobalita	Quartzo	Microclínio
	Cristobalita	Clinocloro	Anatásio	Torita
		Torita	Cristobalita	Quartzo
				Cristobalita
AMOSTRAS	B96	B100	B102	B103
MINERAIS	Anortita	Maghemita	Maghemita	Maghemita
	Goethita	Goethita	Albita	Albita
	Aragonita	Sanidina	Goethita	Goethita
	Albita	Cianita	Sanidina	Sanidina
	Cianita	Clinocloro	Cianita	Anortita
	Clinocloro	Anortita	Clinocloro	Clinocloro
	Torita	Haloisita	Tridimita	Caulinita
	Rutilo	Albita	Caulinita	Microclínio
	Maghemita	Caulinita	Microclínio	Rutilo
	Lepdocrocita	Microclínio	Anortita	Cianita
	Zircão	Rutilo	Rutilo	Torita
	Haloisita	Chamosita	Quartzo	Quartzo
	Quartzo	Cristobalita	Cristobalita	Chamosita
	Anatásio	Torita		Cristobalita
	Cristobalita			

Fonte: A autora (2021).