
STATE UNIVERSITY OF MARINGÁ

CENTER OF EXACT SCIENCES

DEPARTAMENT OF MATHEMATICS

GRADUATE PROGRAM IN MATHEMATICS

(Doctorate)

ANDERSON ERVINO SCHWERTNER

Derivative-free Low Order-Value Optimization1

Otimização de Menor Valor Ordenado Sem Derivadas

Maringá - PR

2023
1This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior –

Brasil (CAPES) – Finance Code 001.

Anderson Ervino Schwertner

Derivative-free Low Order-Value Optimization

Otimização de Menor Valor Ordenado Sem Derivadas

Doctorate thesis submitted to the Graduate Program in

Mathematics of the Department of Mathematics, Center

of Exact Sciences of the State University of Maringá, as

a requirement to obtain the title of Ph.D. in Mathemat-

ics.

Concentration area: Applied Mathematics.

Advisor: Dr. Francisco Nogueira Calmon Sobral

Maringá - PR

2023

 Dados Internacionais de Catalogação na Publicação (CIP)
 (Biblioteca Setorial BSE-DMA-UEM, Maringá, PR, Brasil)

 Schwertner, Anderson Ervino
S415d Derivative-free low order-value optimization =

Otimização de menor valor ordenado sem derivadas /
Anderson Ervino Schwertner. -- Maringá, 2023.

 xx 86 f. : il., color.

 Orientador: Prof. Dr. Francisco Nogueira Calmon

Sobral.
 Tese (doutorado) - Universidade Estadual de

Maringá, Centro de Ciências Exatas, Programa de Pós-
Graduação em Matemática - Área de Concentração:
Matemática Aplicada, 2023.

 1. Otimização sem derivadas. 2. Otimização de

menor valor ordenado. 3. Método de região de
confiança. 4. Análise de complexidade do pior caso.
5. Derivative-free optimization. 6. Low order-value
optimization. 7. Trust region method. 8. Worst case
complexity analysis. I. Sobral, Francisco Nogueira
Calmon, orient. II. Universidade Estadual de
Maringá. Centro de Ciências Exatas. Programa de Pós-
Graduação em Matemática - Área de Concentração:
Matemática Aplicada. III. Título.

CDD 22.ed. 519.6

Edilson Damasio CRB9-1.123

ANDERSON ERVINO SCHWERTNER

 DERIVATIVE-FREE LOW ORDER-VALUE OPTIMIZATION

Tese apresentada ao Programa de Pós-Graduação em Matemática do Departamento de Matemática,

Centro de Ciências Exatas da Universidade Estadual de Maringá, como parte dos requisitos necessários

para a obtenção do título de Doutor em Matemática tendo a Comissão Julgadora composta pelos

membros:

COMISSÃO JULGADORA:

Prof. Dr. Francisco Nogueira Calmon Sobral - UEM (Presidente)

Prof. Dr. José Mario Martinez Pérez - UNICAMP

Prof. Dr. Luís Felipe Cesar da Rocha Bueno - UNIFESP

Profa. Dra. Elizabeth Wegner Karas - UFPR

Prof. Dr. Emerson Vitor Castelani - UEM

Aprovado em: 23 de fevereiro de 2023.
Local de defesa: Videoconferência – Google Meet (https://meet.google.com/uzw-bnxg-mhd)

I dedicate this thesis to all children who dream

of building a better future through education.

Acknowledgments

This endeavor would not have been possible without the dedication, patience,

companionship, and essential support of my supervisor. I am also grateful for your great

lessons, for believing in me, and for showing me that we can do much more when we have

focus and the correct guidance.

I would like to extend my sincere thanks to the professors, employees, and col-

leagues of the Graduate Program in Mathematics, and all those who contributed to the

conclusion of this journey. In particular, I am grateful for the countless opportunities we had

to be together, discussing Mathematics or talking about things in life.

I dedicate a special thanks to the members of the defense committee for accepting

the invitation and dedicating their time to read and revise this work.

I am also thankful to IMPA and OBMEP for showing me that Mathematics can

be very funny and that science is a fascinating experience.

I would like to mention my appreciation and gratitude to God for my family. I

am also grateful for His grace, care, and love for my family and me. I thank my beloved

wife, for her patience and affection, for always being by my side and encouraging me to keep

moving forward. I am grateful to my parents for being constant examples and believing

in my dreams. I am thankful to my brother and sister-in-law for supporting me and being

examples of perseverance.

Lastly, I would like to thank the financial support that I received from CAPES,

CNPq, and Fundação Araucária during my academic journey.

“Do your best, in the condition you have,

while you don’t have better conditions, to do even better.”

Mario Sergio Cortella

Abstract

The development of derivative-free optimization (DFO) methods was driven by

the growing need to solve complex and diverse problems, particularly, problems for which

the derivatives of the objective function and constraints are not available. This is the case

for many practical applications in science, medicine, and engineering, among others. For

example, in situations where the objective function is of black-box type, it has no analytical

expression or it has a high computational cost. There are several different approaches to DFO

methods, among which we can mention direct and pattern search, model-based, augmented

lagrangian, among others. Despite the wide variety of methods found in the literature, we

are unaware of methods dedicated to solving low order-value optimization (LOVO) problems,

in which we seek to minimize the minimum among a finite number of function values within

a feasible set. In this work, we are interested in the constrained nonlinear optimization

LOVO problem, whose feasible set is convex, closed, and nonempty, and each component

function is black-box and continuously differentiable. We also assume that it is simple to

compute the orthogonal projection of an arbitrary point onto the feasible set. We developed

a derivative-free trust-region algorithm for constrained LOVO problems with convergence to

weakly critical points. Under suitable conditions, we establish global convergence and worst

case complexity results. We discuss the construction of linear and quadratic models suitable

for derivative-free optimization and extend the concept to underdetermined quadratic models

based on approximate values of the function. Finally, we present an efficient implementation

of our algorithm, as well as numerical results.

Keywords: Derivative-free Optimization, Low Order-Value Optimization, Trust-

Region Method, Worst Case Complexity Analysis.

Resumo

O desenvolvimento dos métodos de otimização sem derivadas (DFO) foi impul-

sionado pela necessidade crescente de resolver problemas complexos e diversos, em especial,

problemas para os quais as derivadas da função objetivo e das restrições não estão dispońıveis.

Este é o caso de diversas aplicações práticas encontradas na ciência, medicina e engenharia,

entre outros. Por exemplo, em situações onde a função objetivo é do tipo caixa preta (black-

box), não possui expressão anaĺıtica, ou ainda, possui um alto custo computacional. Existem

diversas abordagens distintas para DFO, dentre as quais podemos citar busca direta, busca

padrão, baseada em modelos, lagrangianos aumentados, entre outros. Apesar da grande vari-

edade de métodos encontrados na literatura, desconhecemos métodos dedicados a solução de

problemas de otimização de menor valor ordenado (LOVO), nos quais buscamos minimizar o

mı́nimo entre um número finito de valores de função em um conjunto viável. Neste trabalho

estamos interessados no problema de otimização LOVO não linear restrito, cujo conjunto

viável é convexo, fechado e não vazio, e cada função componente é do tipo black-box e con-

tinuamente diferenciável. Também assumimos que é simples calcular a projeção ortogonal

de um ponto arbitrário sobre o conjunto viável. Desenvolvemos um algoritmo de região de

confiança sem derivadas para problemas LOVO restritos com convergência para pontos fra-

camente cŕıticos. Sob condições adequadas, estabelecemos resultados de convergência global

e de complexidade do pior caso. Discutimos a construção de modelos lineares e quadráticos

adequados para otimização sem derivadas e estendemos o conceito para modelos quadráticos

subdeterminados baseados em valores aproximados da função. Por fim, apresentamos uma

implementação eficiente de nosso algoritmo, bem como resultados numéricos promissores.

Palavras-chave: Otimização sem Derivadas, Otimização de Menor Valor Orde-

nado, Método de Região de Confiança, Análise de Complexidade do Pior Caso.

List of Figures

4.1 Contour and surface plot of an example of QD problem. 53

4.2 Data profiles for the problems in MW test set. 55

4.3 Data profiles for the problems in HS test set. 57

4.4 Data profiles for the problems in QD test set. 59

C.1 Data profile for MW test set with tolerance τ = 10−1. 78

C.2 Data profile for MW test set with tolerance τ = 10−3. 79

C.3 Data profile for MW test set with tolerance τ = 10−5. 79

C.4 Data profile for MW test set with tolerance τ = 10−7. 80

D.1 Data profile for HS test set with tolerance τ = 10−1. 81

D.2 Data profile for HS test set with tolerance τ = 10−3. 82

D.3 Data profile for HS test set with tolerance τ = 10−5. 82

D.4 Data profile for HS test set with tolerance τ = 10−7. 83

E.1 Data profile for QD10 test subset with tolerance τ = 10−5. 84

E.2 Data profile for QD25 test subset with tolerance τ = 10−5. 85

E.3 Data profile for QD50 test subset with tolerance τ = 10−5. 85

E.4 Data profile for QD75 test subset with tolerance τ = 10−5. 86

E.5 Data profile for QD100 test subset with tolerance τ = 10−5. 86

List of Tables

2.1 Error bounds for linear and quadratic interpolation models. 20

4.1 Dimension and number of component functions of the test sets. 53

4.2 Performance of LOWDER in QD test sets. 58

A.1 Selected problems from Hock and Schittkowski collection. 73

B.1 Problems 1 to 20 of HS test set. 74

B.2 Problems 21 to 50 of HS test set. 75

B.3 Problems 51 to 80 of HS test set. 76

B.4 Problems 81 to 87 of HS test set. 77

List of Symbols and Notations

I Set of indexes.

Y Set of sample points (or interpolation points).

|Y| Cardinality of set Y .
B(x, δ) Open ball centered at x with radius δ.

B(x, δ) Closed ball centered at x with radius δ.

Pa
n(R) Space of polynomials of degree at most a in n variables with real

coefficients.

dim(Pa
n(R)) Dimension of space Pa

n(R).

|α| Absolute value of α.

∥x∥ Euclidean norm of vector x.

∥x∥∞ Maximum norm of vector x.

∥A∥ Euclidean induced norm of matrix A.

A−1 Inverse matrix of A.

A† Pseudoinverse matrix of A.

In Identity matrix of order n.

O(n) Big O notation for linear behavior.

O(n2) Big O notation for quadratic behavior.

Contents

1 Introduction 1

2 Polynomial models and complexity constants 5

2.1 Short overview . 5

2.2 Determined models . 7

2.3 Underdetermined models . 9

2.3.1 Minimum Frobenius norm models . 14

2.4 Summary of complexity constants . 19

3 A derivative-free trust-region LOVO algorithm 21

3.1 Short overview . 21

3.2 Framework and algorithm . 23

3.3 Convergence analysis . 27

3.4 Worst-case complexity . 39

4 Numerical implementation and experiments 47

4.1 Short overview . 47

4.2 Implementation details . 49

4.3 Numerical experiments . 50

4.3.1 MW test set . 54

4.3.2 HS test set . 55

4.3.3 QD test set . 57

CONTENTS xiv

5 Conclusions and suggestions for future work 60

Bibliography 64

Appendices 73

A Hock-Schittkowski selected problems 73

B HS test set problems 74

C Data profiles for MW test set 78

D Data profiles for HS test set 81

E Data profiles for QD test set 84

Chapter 1

Introduction

There are several optimization problems for which information regarding the first

and second-order derivatives is unavailable, unreliable, or demands a high computational

cost. This is the case for many scientific, social, medical, engineering, and, more recently,

artificial intelligence applications [5, 24, 27, 45]. In this sense, derivative-free optimization

algorithms are convenient tools to handle such problems since, essentially, they employ only

objective function values. Detailed surveys of derivative-free optimization methods can be

found in [45, 63], and theoretical aspects can be revisited in [5, 27].

The development of these methods goes back to the work of Nelder and Mead

[54], Spendley et al. [68], and Winfield [76] in the 1960s. After a period of little activity, the

last 25 years have seen a resurgence and an increase in the effort dedicated to developing

efficient methods for derivative-free optimization [13], and they became popular due to the

good numerical performance of the algorithms proposed by Powell [57, 58, 59]. Among the

various classes of existing derivative-free optimization methods, we will focus on model-based

methods. In particular, we are interested in the derivative-free trust-region method. In this

framework, we replace the information about the derivative of the objective function with

the derivative of a model, which is generally smooth, easy to evaluate, and accurate in a

neighborhood of the point of interest [63]. There are several derivative-free trust-region

algorithms described in the literature, which can be applied to unconstrained problems [5,

19, 23, 27, 28, 32, 33, 57, 58, 60, 65, 75], bound constrained [4, 38, 59, 73], linearly constrained

[40, 61], convex constrained [17, 42, 72], and general constrained [12, 18, 24, 34, 71] problems,

as well as composite nonsmooth optimization [35, 37, 46], and multi-objective optimization

[7, 64, 69] problems, among others.

Introduction 2

In this work, we are interested in Low Order-Value Optimization problems (LOVO)

[2]. The LOVO problem involves minimizing the minimum among a finite number of function

values within a feasible set, and has several practical applications such as protein alignment

[1, 2, 48, 49], robust parameter estimation [2, 15, 31, 66], portfolio optimization [10, 48],

hidden pattern search [2], computer vision [47], fitting Nash-Equilibrium models [47], robust

response surface methodology [56], among others. More specifically, we are interested in the

following constrained LOVO problem:

min
x∈Ω

fmin(x) = min
x∈Ω

min{f1(x), . . . , fr(x)}, (1.1)

where Ω ⊂ Rn is a nonempty closed convex set and fi : Rn → R, i = 1, . . . , r, are continuously

differentiable black-box functions. Note that function fmin is not necessarily smooth, and

for points in its domain where the derivative is well-defined, it simply cannot be accessed

because each component function fi is of black-box type. In order to solve problem (1.1), we

developed a derivative-free trust-region algorithm specialized in LOVO black-box problems.

In recent years, several authors have developed LOVO versions of classical contin-

uous optimization methods, such as the Levenberg-Marquardt [15, 31, 66], Augmented La-

grangian [2, 47], Trust-Region [1], Line-Search [2, 49] and Coordinate-Search [48] algorithms.

However, to the best of our knowledge, the method we propose is the first derivative-free

algorithm specially designed for LOVO black-box problems.

In Chapter 2, we organize several results in the literature about bounds that ap-

pear in derivative-free trust-region algorithms based on linear and quadratic models. When

dealing with model-based methods, it is natural to ask ourselves how to measure and guaran-

tee the quality of the model to be built during the iterations of the algorithm. An indicator

of the quality of the model is the degree to which the model approximates the objective

function f and its derivatives in a neighborhood of interest, which usually also involves some

assumptions about the smoothness of the model and the function [27, 45, 72]. So that we can

guarantee the quality of the model, the set of interpolation points must have good geometric

properties, which typically involves ensuring that the system of equations that defines the

interpolation model has a solution and that its norm is bounded [27, 72]. All these char-

acteristics are related to the bounds presented in Chapter 2, and these constants are given

Introduction 3

explicitly by the quality of the sample set, the dimensions of the problem and polynomial

space, and the number of sample points. We consider linear and quadratic determined models

and underdetermined quadratic models, particularly minimum Frobenius norm models. We

extend some results to allow “inexact” interpolation sets, where some numerical errors are

expected in the evaluation of the objective function or in the construction of the models. This

new approach is related to linear and quadratic models build from support vector regression

strategies [72]. We also provide clearer proofs than those already existing in the literature

for the underdetermined case.

The main contribution of this work resides in Chapter 3, where we propose the first

derivative-free trust-region algorithm designed for convex-constrained LOVO problems. Our

algorithm is mainly based on the algorithms proposed in [17, 72], and on the ideas discussed

by [1]. Since we do not specify the construction of the models, we allow a certain freedom in

their choice as long as they satisfy a quality condition. As in the algorithm proposed by [72],

we employ two distinct radii, one for the trust-region and the other for the sample region,

which meets the theoretical need to allow the term that controls the quality of the model to

converge to zero, while practical experiments show us that it is desirable that the radius of

the trust-region to be as large as possible. Under assumptions common to other model-based

derivative-free optimization algorithms, we also present global convergence results for weakly

critical points, as well as an interpretation of these results under the classic theory of LOVO

problems. Finally, we perform the worst-case analysis and show that the algorithm has the

expected behavior for model-based methods.

Chapter 4 is dedicated to exposing the implementation details of our algorithm,

the description of the numerical tests performed, as well as the results we found. In this

sense, the theory of global convergence and worst-case analysis, established in Chapter 3, is

of great importance as they provide us with indications about the correct implementation

of the algorithm’s mechanisms. Our implementation is also compared with other algorithms

capable of solving piecewise continuous derivative-free optimization problems, although they

do not have the ability to explore the properties of LOVO problem. The tests are carried

out choosing three sets of test problems, one unrestricted and two with box constraints.

Finally, in Chapter 5, we present the conclusions of this work and several sugges-

Introduction 4

tions for future research, involving issues related to models for optimization without deriva-

tives, as well as extensions of the theory developed for our algorithm. We also suggest several

practical enhancements that can be implemented to improve its performance, making it more

efficient and robust.

Chapter 2

Polynomial models and complexity

constants

In this chapter, we study polynomial models, commonly used in derivative-free

trust-region algorithms. In particular, we discuss the conditions under which they provide

good approximations to the true function. This chapter is organized as follows. In Section 2.1

we present a brief introduction about models for derivative-free optimization, and we point

out the importance of establishing accurate complexity constants to understand the numerical

behavior of optimization algorithms. Section 2.2 is concerned with bounds to linear and

quadratic polynomial models which are uniquely determined by the sample set. Section 2.3

is the main contribution of this chapter and discusses error bounds for underdetermined

quadratic models, since they are the most efficient models in practice [58]. Finally, all

complexity constants that appear in this chapter are organized and summarized in Section 2.4.

The text of this chapter is an extended version of the results presented in [67],

which are currently under review.

2.1 Short overview

Polynomial interpolation is one of the main aspects of model-based derivative-free

algorithms. Given a function f : Rn → R and a set of interpolation points Y = {y0, . . . , yp},
the interpolating polynomial m ∈ Pa

n(R) is such that

m(yi) = f(yi), i = 0, . . . , p, (2.1)

Polynomial models and complexity constants 6

where Pa
n(R) is the space of polynomials of degree at most a in n variables. It is well

understood that quadratic polynomials (a = 2) provide a good approximation, being able to

capture the curvature of f using a reasonable amount of interpolation points [27, p.35]. In

what follows, the set of interpolation points Y is also called the sample set, a well-established

term in the literature on derivative-free optimization [5, 27, 45, 63].

More recently, the worst-case complexity analysis of optimization algorithms be-

came popular. Although most of the bounds obtained are very pessimistic, the analysis

provide further insights into the parameters and the dependence on the problems’ dimen-

sions.

When studying worst-case complexity of derivative-free trust-region algorithms

using linear or quadratic polynomials, one has to deal with bounds related to the geometric

quality of Y and to the Hessian of the model (in the quadratic case). In [27], several bounds

were provided, which explicitly show the dependence on the problems’ dimensions, that is,

the dimension and the number of interpolation points. Such bounds were used, for example,

in the excellent complexity analysis of [13, 35]. The complexity bounds generated the desire of

performing derivative-free optimization on smaller subspaces, to further decrease the impact

of dimensionality in the construction of models [14].

In [72], some error bounds were obtained for a relaxed version of condition (2.1)

|m(yi)− f(yi)| ≤ κδ2, i = 0, . . . , p, (2.2)

where κ is a constant and δ can be viewed as the precision of the model [61, 72] or just

as the trust-region radius [27]. Condition (2.2) is related to linear and quadratic models

build from support vector regression strategies. Unfortunately, only the determined case is

analyzed in [72], that is, the case where p = dim(Pa
n(R))− 1. This work extends the bounds

obtained in [72] to the underdetermined case, which is known to have better performance in

practical implementations, and organize all the bounds associated with linear and quadratic

polynomial models in literature, making clear their dependence on the dimension and quality

of the interpolation set.

Polynomial models and complexity constants 7

2.2 Determined models

Let us assume that Y ⊂ B(y0, δ). Determined interpolation models need that the

number of sample points in Y equals the dimension of Pa
n(R). In our notation, the number

of sample points is given by |Y| = p, and the dimension of the polynomial space is given by

dim(Pa
n(R)) = q. In the linear case, we assume that p = n = q and define matrices

LL =




(y1 − y0)T

...

(yn − y0)T


 =




y11 − y01 . . . y1n − y0n
...

. . .
...

yn1 − y01 . . . ynn − y0n


 , and L̂L =

1

δ
LL. (2.3)

In the quadratic case, we assume p = (n2 + 3n)/2 = q and define the matrix

LQ =




φ(y1 − y0)

�T
...

φ(yq − y0)

�T


 ,

where φ(x) =
�
x1, x2, . . . , xn,

1
2
x2
1, x1x2, x1x3, . . . , x1xn,

1
2
x2
2, . . . , xn−1xn,

1
2
x2
n

�T
is the vector

whose elements form the natural basis of monomials in P2
n(R), as defined in [27, Section 3.1].

We also consider the matrix

L̂Q = LQ


 D−1

L 0

0 D−1
Q ,


 (2.4)

where DL = δIn ∈ Rn×n, and DQ = δ2I(q−n) ∈ R(q−n)×(q−n). Matrices LL and LQ are related

with the construction of determined interpolation models, while (2.3) and (2.4) are their

respective scaled versions, mainly used for theoretical purposes.

We will assume that the following assumptions are valid.

Assumption 2.1. ∇f is Lipschitz continuous with constant L in a sufficiently large open

bounded domain X ⊂ Rn.

Assumption 2.2. f is bounded below.

Assumption 2.3. If the model to be built is linear, then the matrix LL is non-singular and

there is a constant κL > 0 such that

L̂−1

L

 ≤ κL. If the model is quadratic, then the matrix

LQ is nonsingular and there is a constant κQ > 0 such that

L̂−1

Q

 ≤ κQ.

Polynomial models and complexity constants 8

The next assumption is related to the relaxed concept of interpolation models

considered in this chapter, which follows condition (2.2).

Assumption 2.4. There is a constant κ ≥ 0 such that for every yi ∈ Y ⊂ B(y0, δ),

|m(yi)− f(yi)| ≤ κδ2.

Note that Assumption 2.4 includes the creation of “exact” interpolation models

and also models under uncertainty [72], under numerical errors or even when we can control

the precision in which f is calculated [11]. The next theorem provides the error bounds for

determined polynomial interpolation under Assumption 2.4.

Theorem 2.5. Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then, for all x ∈
X ∩B(y0, δ), if the model is linear

∇2m(x)

 = 0,

∥∇f(x)−∇m(x)∥ ≤
�
L+

�
1

2
L+ 2κ

�
κL

√
n

�
δ,

|f(x)−m(x)| ≤
�
1

2
L+ κ+

�
1

2
L+ 2κ

�
κL

√
n

�
δ2,

and, if the model is quadratic,

∇2m(x)

 ≤ 2κQ

p
2q(κ+ L),

∥∇f(x)−∇m(x)∥ ≤
�
2κQ

√
q
�
1 +

√
2
�
(κ+ L)

�
δ,

|f(x)−m(x)| ≤
�
1

2
L+ κ+ κQ

√
q
�
2 + 3

√
2
�
(κ+ L)

�
δ2.

Proof. See [72, Theorem 2].

Observe that the error bounds obtained in Theorem 2.5 depend on the properties

of the objective function, the sample set, and the relaxed concept of interpolation models

expressed by Assumption 2.4. According to [72, p. 15], it is possible to obtain better

bounds, with the powers of delta increased by one in both cases, similarly to [27, Theorem

3.16]. However, it is necessary to have stronger properties than Assumptions 2.3 and 2.4,

such as assuming that the objective function f is twice continuously differentiable and ∇2f

is Lipschitz continuous in a sufficiently large open bounded domain.

Polynomial models and complexity constants 9

In order to ensure Assumption 2.3, we need to make additional hypotheses about

the geometry of the sample set Y . The existence and uniqueness of model m, also known

as poisedness, is not enough. In linear interpolation, for example, this can be achieved by

assuming that the points in Y are sufficiently affinely linear independent [73]. Here, we

assume that the set Y is Λ-poised on the ball B(y0, δ), for some Λ > 0. This definition is

taken from [27] and its reproduced below. This concept will be better discussed in Section 2.3

for underdetermined polynomials.

Definition 2.6. [27, Definition 3.6] Let ϕ = {ϕ0(x),ϕ1(x), . . . ,ϕp(x)} be a basis in Pa
n and

Λ > 0. A set Y = {y0, . . . , yp} ⊂ X is Λ-poised in B(y0, δ) (in the interpolation sense) if for

each x ∈ B(y0, δ) there exists λ(x) ∈ Rp+1 such that

pX

i=0

λi(x)ϕj(y
i) = ϕj(x),

for all j = 0, . . . , p, with ∥λ(x)∥∞ ≤ Λ.

Note that the definition of Λ-poisedness does not depend on the choice of basis

[72, p. 16]. Furthermore, the constant Λ does not depend on the scale of the sample set [27,

Lemma 3.8] and is invariant concerning coordinate shifts [27, Lemma 3.9]. The following

lemma, adapted from [72], shows that Assumption 2.3 is valid when the models to be built

are linear or quadratic and Y is Λ-poised.

Lemma 2.7. Let Λ > 0. If Y = {y0, y1, . . . , yn} is Λ-poised in B(y0, δ) with respect to the

basis ϕ of P1
n, then

L̂−1
L

 ≤ Λ
√
n. If Y = {y0, y1, . . . , yq} is a Λ-poised set in B(y0, δ) with

respect to the basis ϕ of P2
n, then,

L̂−1
Q

 ≤ 4Λ
p

(q + 1)3.

Proof. See [72, Lemma 8] and [72, Lemma 10].

2.3 Underdetermined models

The main drawback of determined polynomials is the high number of interpolation

points needed in the quadratic case. One could use only linear polynomials, but quadratic

polynomials are known to better explore the curvature of f . Therefore, we are interested in

Polynomial models and complexity constants 10

building quadratic polynomials using less than q interpolation points. Now we assume that

n < p < q and q = dim(P2
n(R))− 1 = (n2 + 3n)/2.

When dealing with classical interpolation theory, in the sense of (2.1), building

an underdetermined interpolation quadratic model m ∈ P2
n(R) can be viewed as finding

α ∈ Rq+1 such that
Pq

j=0 αjϕj(y
i) = f(yi), for i = 0, . . . , p, or, equivalently,

M(ϕ,Y)α = f(Y), (2.5)

where ϕ = {ϕ0(x),ϕ1(x), . . . ,ϕq(x)} is a basis for P2
n(R),

M(ϕ,Y) =




ϕ0(y
0) ϕ1(y

0) · · · ϕq(y
0)

ϕ0(y
1) ϕ1(y

1) · · · ϕq(y
1)

...
...

. . .
...

ϕ0(y
p) ϕ1(y

p) · · · ϕq(y
p)



, and f(Y) =




f(y0)

f(y1)
...

f(yp)



. (2.6)

Under the above conditions, the number of interpolation points is less than the dimension of

the space of the polynomials P2
n(R), that is, |Y| = p + 1 < q + 1 = dim(P2

n(R)). Therefore,

the interpolation polynomials defined by (2.5) are no longer unique.

In this section, our goal is to build an underdetermined quadratic model, which

approximately interpolates the function f over Y ⊂ B(y0, δ), in the sense of Assumption 2.4.

First, let us consider matrices

Ls =




(y1 − y0)T

...

(yp − y0)T


 =




y11 − y01 . . . y1n − y0n
...

. . .
...

yp1 − y01 . . . ypn − y0n


 , and L̂s =

1

δ
Ls. (2.7)

In order to obtain the main error bounds for the underdetermined case, we need

to assume some geometric conditions. In other words, we need matrix Ls to satisfy conditions

similar to Assumption 2.3, and the Hessian of the model to be bounded. Such properties are

given by Assumptions 2.8 and 2.9.

Assumption 2.8. The matrix Ls ∈ Rp×n has full column rank, that is, rank(Ls) = n,

and there is a constant κs > 0 such that

L̂†

s

 ≤ κs, where L̂†
s denotes the Moore-Penrose

pseudo-inverse of the matrix L̂s.

Polynomial models and complexity constants 11

Assumption 2.9. The hessian of the model is bounded, that is, there is a constant κH ≥ 0

such that ∥H∥ ≤ κH .

In a similar way to what happens for determined models, Assumption 2.8 is sat-

isfied if the sample set Y is Λ-poised in the linear regression sense [27, p. 69 and 83]. For the

completeness of the text, we reproduce the definition of Λ-poisedness for regression models

given by Conn et al. [27].

Definition 2.10. [27, Definition 4.7] Let ϕ = {ϕ0(x),ϕ1(x), . . . ,ϕn(x)}, with p > n, be a

basis in P1
n and Λ > 0. A set Y = {y0, . . . , yp} ⊂ X is Λ-poised in B(y0, δ) (in the linear

regression sense) if for each x ∈ B(y0, δ) there exists λ(x) ∈ Rp+1, such that λ(x) is the

minimum l2-norm solution of
pX

i=0

λi(x)ϕj(y
i) = ϕj(x),

for all j = 0, . . . , n, with ∥λ(x)∥∞ ≤ Λ.

Since we are interested in quadratic models, we will not focus on linear regression

models but on minimum Frobenius norm models, as we will see later. The following theorem

establishes error bounds for the underdetermined model and its derivatives in X ∩B(y0, δ).

Theorem 2.11. Suppose that Assumptions 2.1, 2.2, 2.8 and 2.9 hold. Then, for all x ∈
X ∩B(y0, δ),

∥∇f(x)−∇m(x)∥ ≤ 2κs
√
p

�
L+ κ+

3

4
κH

�
δ, (2.8)

|f(x)−m(x)| ≤
�
1

2
(L+ κH) + κ+ 2κs

√
p

�
L+ κ+

3

4
κH

��
δ2. (2.9)

Proof. The proof is strongly based in the ideas of [27, Theorem 5.4] and [72, Theorem 2].

For completeness, we present the proof as follows. In addition ∥H∥ and

L̂†

s

 were replaced

by their respective bounds in equations (2.8) and (2.9).

Initially, note that for every sample point yj ∈ Y , and for all x ∈ X ∩ B(y0, δ),

m(yj) = m(x) +∇m(x)T (yj − x) +
1

2
(yj − x)TH(yj − x), (2.10)

where H ∈ Rn×n is a symmetric matrix. Given that the function f is continuously differ-

entiable, by applying the Mean Value Theorem we have that for every j = 0, 1, . . . , q, there

Polynomial models and complexity constants 12

exists zj ∈ [y0, yj] ⊂ B(y0, δ) such that f(yj) = f(y0) + ∇f(zj)T (yj − y0). Therefore, by

equation (2.10), we have that

m(yj)− f(yj) = m(x) +∇m(x)T (yj − x) +
1

2
(yj − x)TH(yj − x)− f(y0)

−∇f(zj)T (yj − y0), for j = 0, 1, . . . , q.

(2.11)

By letting j = 0 in (2.11) and subtracting from (2.11), for j = 1, . . . , q,

m(yj)− f(yj)−

m(y0)− f(y0)

�
=

= m(x) +∇m(x)T (yj − x) +
1

2
(yj − x)TH(yj − x)− f(y0)

−
�
m(x) +∇m(x)T (y0 − x) +

1

2
(y0 − x)TH(y0 − x)− f(y0)

�

−∇f(zj)T (yj − y0)

= ∇m(x)T (yj − y0) +
1

2
(yj − y0)TH(yj − y0)− (yj − y0)TH(x− y0)

−∇f(zj)T (yj − y0),

and, consequently,

∇m(x)T (yj − y0) = ∇f(zj)T (yj − y0) +

�
(x− y0)− 1

2
(yj − y0)

�T

H(yj − y0)

+ m(yj)− f(yj)−

m(y0)− f(y0)

�
.

Then, by subtracting ∇f(x)T (yj − y0) from both sides of the equality, and by

applying the Cauchy-Schwarz inequality, Assumption 2.1 and equation (2.2), we have that

for all x ∈ X ∩ B(y0, δ), and for j = 1, . . . , q,

Polynomial models and complexity constants 13

(∇m(x)−∇f(x))T (yj − y0) = m(yj)− f(yj)−

m(y0)− f(y0)

�

+

∇f(zj)−∇f(x)

�T
(yj − y0)

+

�
(x− y0)− 1

2
(yj − y0)

�T

H(yj − y0)

≤
��m(yj)− f(yj)

��+
��m(y0)− f(y0)

��

+

�

x− y0

+

1

2

yj − y0

�
∥H∥

yj − y0

+

∇f(zj)−∇f(x)

yj − y0

≤ 2κδ2 + 2Lδ2 +

�
δ +

δ

2

�
δ ∥H∥

= 2

�
L+ κ+

3

4
∥H∥

�
δ2.

Therefore, it follows from Assumptions 2.8 and 2.9 that

∥∇m(x)−∇f(x)∥ =

L̂†

sL̂s

∇m(x)−∇f(x)

�

≤ 1

δ

L̂†
s

Ls

∇m(x)−∇f(x)

�

≤
√
p

δ

L̂†
s

Ls

∇m(x)−∇f(x)

�

∞

≤ 2κs
√
p

�
L+ κ+

3

4
κH

�
δ.

(2.12)

Lastly, given that for all x ∈ X ∩ B(y0, δ),

m(x) = m(y0) +∇m(y0)T (x− y0) +
1

2
(x− y0)TH(x− y0),

by applying the Cauchy-Schwarz inequality, Assumptions 2.8 and 2.9, equations (2.2) and

(2.12), we have that

|f(x)−m(x)| =
����f(x)−m(y0) +∇m(y0)T (x− y0) +

1

2
(x− y0)TH(x− y0)

����

≤
��f(x)− f(y0)−∇f(y0)T (x− y0)

��+ 1

2
∥H∥

x− y0

2

+
��f(y0)−m(y0)

��+

∇f(y0)−∇m(y0)

x− y0

≤ 1

2
Lδ2 +

1

2
κHδ

2 + κδ2 + 2κs
√
p

�
L+ κ+

3

4
κH

�
δ2

=

�
1

2
(L+ κH) + κ+ 2κs

√
p

�
L+ κ+

3

4
κH

��
δ2,

which concludes the proof.

Polynomial models and complexity constants 14

2.3.1 Minimum Frobenius norm models

To establish a bound for the norm of the Hessian of the quadratic model, we must

specify its construction. In this sense, we will reduce the degree of freedom in choosing the

model, assuming that it is the minimum Frobenius norm model. We will also need to define

what is a relaxed minimum Frobenius norm model.

Let ϕ be the natural basis of P2
n(R) and consider its split into the sets ϕL =

{1, x1, . . . , xn} and ϕQ =
�

1
2
x2
1, x1x2, . . . ,

1
2
x2
n

	
. Then we can write the underdetermined

interpolation model as m(x) = αT
LϕL(x) + αT

QϕQ(x), where αL and αQ are appropriate parts

of the vector of coefficients α. As in [27, p. 80-81], we can define the minimum Frobenius

norm solution αmfn as the solution of the optimization problem,

min 1
2
∥αQ∥2

s.t. M(ϕL,Y)αL +M(ϕQ,Y)αQ = f(Y),
(2.13)

in the variables αL and αQ, where Y is the set of interpolation points and the matrices

M(ϕL,Y) and M(ϕQ,Y) are submatrices of M(ϕ,Y), given in (2.6), whose columns corre-

spond to the elements of ϕL and ϕQ, respectively.

It is important to point out that the condition of existence and uniqueness of the

minimum Frobenius norm model is that the matrix defined by

F(ϕ,Y) =


 M(ϕQ,Y)M(ϕQ,Y)T M(ϕL,Y)

M(ϕL,Y)T 0




is nonsingular. Note that F(ϕ,Y) is nonsingular if and only if M(ϕL,Y) has a full column

rank and M(ϕQ,Y)M(ϕQ,Y)T is positive definite on the nullspace of M(ϕL,Y)T , this last

condition being guaranteed if M(ϕQ,Y) has full row rank [27, p. 81].

Definition 2.12. [27, p. 81] Let ϕ be the natural basis of monomials of P2
n(R). A sample set

Y = {y0, y1, . . . , yp} is said to be poised in the minimum Frobenius norm sense if the matrix

F(ϕ,Y) is nonsingular.

Note that poisedness in the minimum Frobenius norm sense implies poisedness in

the linear interpolation or regression senses and, as a result, poisedness for underdetermined

quadratic interpolation in the minimum norm sense [27, p. 81].

Polynomial models and complexity constants 15

Remark 2.13. As we saw earlier, if Y is poised in the minimum Frobenius norm sense, then

F(ϕ,Y) is nonsingular and hence M(ϕL,Y) has a full column rank. So, as

M(ϕL,Y) =


1 0

e Ip




 1 y0

T

0 Ls


 = E−1


 1 y0

T

0 Ls




where e = [1, 1, . . . , 1]T ∈ Rp, and Ip ∈ Rp×p is the identity matrix. Since E is an elementary

nonsingular matrix and M(ϕL,Y) has full column rank, it follows that Ls has full column

rank, which partially satisfies Assumption 2.8.

Therefore, we will assume that the following hypothesis holds.

Assumption 2.14. The set of sample points Y = {y0, y1, . . . , yp} is poised in the minimum

Frobenius norm sense on B(y0, δ).

Consider the following auxiliary lemma.

Lemma 2.15. There is a number σ∞ > 0 such that for any choice of v satisfying ∥v∥∞ = 1,

there is z ∈ B(0, 1) such that
��vTϕ(z)

�� ≥ σ∞. If, in addition, vTϕ(x) is a quadratic polynomial

and ϕ is the natural basis in P2
n(R), then

max
x∈B(0,1)

��vTϕ(x)
�� ≥ 1

4
.

If ϕ is the natural basis of P1
n(R), then,

max
x∈B(0,1)

��vTϕ(x)
�� ≥ 1.

Proof. See [27, Lemma 3.10] and [27, Lemma 6.7].

Remark 2.16. Let ϕ be the natural basis of P1
n(R). Given v ∈ Rn+1 with ∥v∥ = 1, there are

β ∈ (0,
√
n+ 1) and v ∈ Rn+1 such that ∥v∥∞ = 1 and v = βv. Thus, by Lemma 2.15, we

have that

max
x∈B(0,1)

��vTϕ(x)
�� = max

x∈B(0,1)

1

β

��vTϕ(x)
�� ≥ 1√

n+ 1
max

x∈B(0,1)

��vTϕ(x)
�� ≥ 1√

n+ 1
.

Equation (2.13) is strongly related with the exact interpolation condition (2.1).

In order to relax such condition we will first define minimum Frobenius norm Lagrange

polynomials.

Polynomial models and complexity constants 16

Definition 2.17. [27, Definition 5.5] Given a set Y of p+ 1 interpolation points, the set of

p + 1 polynomials ℓj(x) = αT
j ϕ(x), j = 0, . . . , p, is called set of minimum Frobenius norm

Lagrange polynomials for ϕ, if αj = ((αj)L, (αj)Q) is the solution of

min 1
2
∥αQ∥2

s. t. M(ϕL,Y)αL +M(ϕQ,Y)αQ = ej+1,

where ej is the j-th canonical vector in Rp+1.

By comparing the KKT conditions of Definition 2.17 and equation (2.13) it is

possible to show that the minimum Frobenius norm polynomial that interpolates f in Y can

be defined as m(x) =
Pp+1

j=1 ℓj(x)f(y
j). So, in order to relax (2.13), we will say that our

relaxed minimum Frobenius norm polynomials are given by

m(x) =

p+1X

j=1

ℓj(x)γj (2.14)

where γj, j = 1, . . . , p + 1, are chosen such that Assumption 2.4 holds. One can think that

m was obtained by solving (2.13) with f(yj) replaced by γj for all j = 0, . . . , p.

The theorems that follow are the main contribution of this chapter. Their es-

tablish bounds for ∥∇2m(x)∥ and

L̂†

s

 under the hypothesis of well poised interpolation

sets and, therefore, Assumptions 2.8 and 2.9 can be removed from Theorem 2.11. Using a

partial definition from [27], we first define what we mean as well poised interpolation sets for

minimum Frobenius norm quadratic models.

Definition 2.18. [27, Definition 5.6] Let Λ > 0 and B ⊆ Rn be given. Let ϕ be the natural

basis of monomials of P2
n(R). A poised set Y is said to be Λ-poised in B (in the minimum

Frobenius norm sense) if and only if for any x ∈ B, the solution λ(x) ∈ Rp+1 of

min 1
2

M(ϕQ,Y)Tλ(x)− ϕQ(x)

2

s.t. M(ϕL,Y)Tλ(x) = ϕL(x)

is such that ∥λ(x)∥∞ ≤ Λ.

Note that Definition 2.18 does not need to be relaxed. We are now ready to

provide the necessary bounds in terms of the quality of the interpolation set, the Lipschitz

constant and the dimension of the problem.

Polynomial models and complexity constants 17

Theorem 2.19. Suppose that Assumptions 2.1 and 2.14 hold. Assume that the set Y =

{y0, y1, . . . , yp} is Λ-poised in B(y0, δ) in the minimum Frobenius norm sense and δmax > 0

is an upper bound for δ. Then,

∇2m(x)

 ≤

�
κ+

L

2

�
4Λ(p+ 1)

p
2(q + 1)

c(δmax)2
,

where c(δmax) = min{1, 1/δmax, 1/δ
2
max}.

Proof. This proof follows the proof of [27, Theorem 5.7]. Assume, without loss of generality,

that y0 = 0. By Lemma 2.15, the definition of Λ-poisedness and arguments very similar

to [27, Theorem 5.7] we have that

∇2ℓj(x)

 ≤

p
2(q + 1)

4Λ

δ2c(δmax)2
, j = 0, . . . , p, (2.15)

where δmax and c(δmax) were defined by the theorem.

Now, let us consider the function f̂(x) = f(x) − f(y0) −∇f(y0)T (x − y0). Note

that f̂(y0) = 0, ∇f̂(y0) = 0 and the Hessian remains unchanged. In addition, if m(x) is

a relaxed minimum Frobenius norm model for f over the set Y , then it is easy to see that

m̂(x) = m(x)−f(y0)−∇f(y0)T (x−y0) also satisfies Assumption 2.4 for f̂ and the points in Y .

Therefore, we can assume without loss of generality that f(y0) = 0 and ∇f(y0) = 0. Thus,

we have that |f(x)| =
��f(x)− f(y0)−∇f(y0)T (x− y0)

�� ≤ (L/2)δ2, for all x ∈ B(y0, δ) and,

by (2.14), we can prove that |γj| ≤ (κ+ L/2)δ2, j = 0, . . . , p. By using the definition of m

in (2.14) and (2.15), we finally get that

∇2m(x)

 ≤

pX

j=0

|γj|

∇2ℓj(x)

 ≤
�
κ+

L

2

�
4Λ(p+ 1)

p
2(q + 1)

c(δmax)2
,

and we conclude the proof.

In order to help us prove the following theorem, consider the auxiliary lemmas.

Lemma 2.20. Let M ∈ Rm×n be a matrix partitioned as M =


 A 0

B C


. Then the Moore-

Penrose pseudoinverse of M is given by

M† =


 K†AT K†BT

0 C†


 ,

where K = ATA+BTB, if and only if BTC = 0.

Polynomial models and complexity constants 18

Proof. See [43, Lemma 2].

Lemma 2.21. Let w be a right-singular vector of matrix A corresponding to its largest

singular value. Then, for any vector r of the appropriate size, ∥Ar∥ ≥
��wT r

�� ∥A∥.

Proof. See [27, Lemma 3.13].

Theorem 2.22. If Y = {y0, y1, . . . , yp} is a Λ-poised set in B(y0, δ) in the sense of the

minimum Frobenius norm, then

L̂†

s

 ≤ Λ
p

2(n+ 1)(p+ 1).

Proof. It is known that Λ-poisedness does not depend on the scale of the sample set and it

is invariant with respect to shifts [27]. Therefore, let us consider the set Ŷ = {0, (y1 −
y0)/δ, . . . , (yp − y0)/δ} which is Λ-poised in B(0, 1), and the matrices given by M̂L =

M(ϕL, Ŷ),

E =


 1 0

−e Ip


 ,E−1 =


 1 0

e Ip


 , and Q = EM̂L =


 1 0

0 L̂s


 ,

where M̂L ∈ R(p+1)×(n+1), E ∈ R(p+1)×(p+1), E−1 ∈ R(p+1)×(p+1), Q ∈ R(p+1)×(n+1), e =

[1, 1, . . . , 1]T ∈ Rp, Ip ∈ Rp×p is the identity matrix and L̂s was defined in (2.7). Note that

the Moore-Penrose pseudoinverse of Q is given by Q† =

QTQ

�−1
QT ∈ R(n+1)×(p+1). Thus,

by Lemma 2.20,

Q†

 =


 1 0

0 L̂†
s




= max

n
1,

L̂†

s

o
≥

L̂†
s

 . (2.16)

By Definition 2.18, for every x ∈ B(0, 1) ⊂ Rn there exists λ(x) ∈ Rp+1, with

∥λ(x)∥∞ ≤ Λ, such that M̂T
Lλ(x) = ϕL(x). Since E is a non-singular matrix, we have that

for each x ∈ B(0, 1),

M̂T
Lλ(x) = ϕL(x) ⇐⇒ M̂T

L

ETE−T

�
λ(x) = ϕL(x)

⇐⇒

M̂T

LE
T
�
E−Tλ(x)

�
= ϕL(x)

⇐⇒

EM̂L

�T
E−Tλ(x)

�
= ϕL(x)

⇐⇒ QT

E−Tλ(x)

�
= ϕL(x)

⇐⇒ E−Tλ(x) = Q†TϕL(x).

(2.17)

Polynomial models and complexity constants 19

Note that ∥λ(x)∥∞ ≤ Λ and E−Tλ(x) =
hPp

j=0[λ(x)]j,λ(x)
T
iT

. So, by (2.17),

Q†TϕL(x)

 =

E−Tλ(x)

=

vuut

pX

j=0

[λ(x)]j

!2

+

pX

j=1

[λ(x)]2j

≤

vuut

pX

j=0

|[λ(x)]j|
!2

+

pX

j=1

|[λ(x)]j|2

≤
q

(p+ 1)Λ
�2

+ pΛ2 <
p

2(p+ 1)2Λ2

= Λ
√
2(p+ 1).

(2.18)

Let v ∈ Rn+1 be a singular right unit vector of Q†T associated with the largest

singular value σ1, and x ∈ Rn the maximizer of
��vTϕL(x)

�� in B(0, 1). Using Lemma 2.21 and

the fact that

Q†

 = σ1, we have that

Q†ϕL(x)

 ≥ |vTϕL(x)|

Q†T

. Then, from Lemma

2.15 and Remark 2.16,

Q†TϕL(x)

 ≥

��vTϕL(x)
��

Q†

 = max

x∈B(0,1)

��vTϕL(x)
��

Q†

 ≥ 1√

n+ 1

Q†

 .

Thus, from the previous inequality, (2.16) and (2.18), it follows that

L̂†

s

 ≤

Q†

 ≤

Λ
p

2(n+ 1)(p+ 1), and we complete the proof.

2.4 Summary of complexity constants

This section is dedicated to collecting the error bounds described in Sections 2.2

and 2.3, for determined and underdetermined “inexact” interpolation models, in the sense

of Assumption 2.4. Table 2.1 organizes and summarizes these constants to make their use

practical.

Polynomial models and complexity constants 20

M
o
d
e
l
T
y
p
e

E
rr
o
r

E
rr
o
r
b
o
u
n
d

R
ef
.

L
in
ea
r
d
et
er
m
in
ed

|m
(x
)
−

f
(x
)|

 1 2
L
+

κ
+

 1 2
L
+

2κ
� Λ

n
� δ2

[7
2]

∥∇
m
(x
)
−

∇
f
(x
)∥

 L
+
 1 2

L
+

2κ
� Λ

n
� δ

[7
2]

 ∇
2
m
(x
)

0
[7
2]

Q
u
ad

.
d
et
er
m
in
ed

|m
(x
)
−

f
(x
)|

� 1 2
L
+

κ
+

4Λ
p
q(
q
+
1)

3
 2

+
3
√
2� (κ

+
L
)� δ2

[7
2]

∥∇
m
(x
)
−

∇
f
(x
)∥

� 8Λ
p

q(
q
+
1)

3
 1

+
√
2� (κ

+
L
)� δ

[7
2]

 ∇
2
m
(x
)

8Λ
p

2q
(q

+
1)

3
(κ

+
L
)

[7
2]

Q
u
ad

.
u
n
d
er
d
et
er
m
in
ed

|m
(x
)
−

f
(x
)|

 1 2
(L

+
κ
H
)
+

κ
+

2κ
s
√
p
 L

+
κ
+

3 4
κ
H

��
δ2

T
h
m
.
2.
11

∥∇
m
(x
)
−

∇
f
(x
)∥

2κ
s
√
p
 L

+
κ
+

3 4
κ
H

� δ
T
h
m
.
2.
11

M
in
.
F
ro
b
en
iu
s
n
or
m

|m
(x
)
−

f
(x
)|

�
1 2

� L
+
 κ

+
L 2

� Λ
4
(p

+
1
)√

2
(q

+
1
)

c
(δ

m
a
x
)2

�
+

κ
+

T
h
m
.
2.
11

,
2.
19

,
2.
22

+
2Λ
p
2p

(n
+

1)
(p

+
1)

� L
+

κ
+

 κ
+

L 2

� Λ
3
(p

+
1
)√

2
(q

+
1
)

c
(δ

m
a
x
)2

��
δ2

∥∇
m
(x
)
−

∇
f
(x
)∥

2Λ
p

2p
(n

+
1)
(p

+
1)

� L
+

κ
+

 κ
+

L 2

� Λ
3
(p

+
1
)√

2
(q

+
1
)

c
(δ

m
a
x
)2

�
δ

T
h
m
.
2.
11

,
2.
19

,
2
.2
2

 ∇
2
m
(x
)

 κ
+

L 2

� Λ
4
(p

+
1
)√

2
(q

+
1
)

c
(δ

m
a
x
)2

T
h
m
.
2.
19

Table 2.1: Error bounds for linear and quadratic interpolation models under Assumption 2.4.

Chapter 3

A derivative-free trust-region LOVO

algorithm

This chapter is organized as follows. Section 3.1 provides a short overview about

low order-value optimization problems and derivative-free optimization methods. We ded-

icate part of the section to reviewing the central ideas of some recent works in the area,

in particular, on methods capable of solving problems with characteristics similar to LOVO

problems. In Section 3.2, we introduce the derivative-free trust-region framework and our

algorithm for LOVO problems. Global convergence analysis results are presented and dis-

cussed in Section 3.3, as well as an interpretation from the perspective of the classical theory

of LOVO problems. Finally, in Section 3.4, we study the worst-case complexity of our algo-

rithm.

3.1 Short overview

Let us consider the following constrained nonlinear optimization problem

min
x∈Ω

fmin(x) = min
x∈Ω

min{f1(x), . . . , fr(x)}, (3.1)

where Ω ⊂ Rn is a nonempty closed convex set and fi : Rn → R, i = 1, . . . , r, are continuously

differentiable black-box functions. Although we consider that each function that composes

the objective function is smooth, we assume that there is no information available about its

first and second-order derivatives. As we saw earlier, the problem (3.1) is known as the Low

Order-Value Optimization problem (LOVO), for which extensive theory and applications

A derivative-free trust-region LOVO algorithm 22

exist [2, 47].

The main contribution of this chapter is the development and analysis of the first

derivative-free optimization algorithm designed for LOVO problems. Note that the LOVO

problem can be understood as a particular case of nonsmooth composite optimization. In

this sense, Garmanjani et al. [35] and Grapiglia et al. [37], propose model-based derivative-

free algorithms for objective functions of the form f + h ◦ g, where f and g are smooth, and

h is convex. However, such methods are not compatible with the specificities of the LOVO

problem since the minimum function is not convex. Furthermore, the construction of the

models involves the evaluation of h ◦ g at each one of the points in the sample set, which can

impair the performance of the method, especially in cases where evaluations of the functions

g or h have a high computational cost. Recently, Larson et al. [46] propose a manifold

sampling algorithm for minimizing nonsmooth compositions g ◦ f , where g is nonsmooth,

f is smooth with no information about its derivatives, and g ◦ f is a continuous selection

[46, Definition 1.1]. From a theoretical point of view, the algorithm generates a sequence

of iterates that converge to a Clarke stationary point (see [16]). However, [48] shows that

the concept of Clarke stationarity is not sufficiently satisfactory for LOVO problems, which

makes it necessary to adopt methods that are provably to converge to points that satisfy

stronger optimality conditions, such as [48, Theorem 6.1].

It is worth mentioning that [1] presents a trust-region LOVO algorithm with local

and global convergence. In this sense, the proposed method is an improvement as we allow

general quadratic models and closed convex constraints. Finally, Hough and Roberts [42]

propose a model-based derivative-free method for black-box optimization problems subject

to convex constraints, in an approach similar to the trust-region structure presented in [17]

but with another criticality measure. However, they assume that the objective function is

smooth, which may not be valid for LOVO problems. In this work, the authors also generalize

the notions of fully linear models and Λ-poised interpolation sets discussed in Chapter 2 (see

[27]) to arbitrary convex sets. This new approach allows us to solve a well-known problem

in derivative-free optimization, namely in cases where it might be impossible to build fully

linear models using only feasible points. However, the authors do not propose extensions to

other forms of poisedness, such as those allowed in our method.

A derivative-free trust-region LOVO algorithm 23

3.2 Framework and algorithm

In this section, we present our algorithm for solving the LOVO problem (3.1).

In order to help us with the theoretical results exposed in this text, consider the following

definition.

Definition 3.1. [15, Definition 1] Given a feasible point x ∈ Ω we define

Imin(x) = {i ∈ {1, . . . , q} | fi(x) = fmin(x)}.

For convenience of notation, we will denote the set of component function indices

by I := {1, 2, . . . , q}. We consider the following assumptions on the objective function.

Assumption 3.2. The function fi : Rn → R, for i ∈ I, is continuously differentiable and

its gradient ∇fi : Rn → Rn is Lipschitz continuous, with constant Li > 0, in a sufficiently

large open bounded domain X ⊂ Rn.

Assumption 3.3. The function fi : Rn → R, for i ∈ I, is bounded below in Ω ⊂ Rn, i.e.,

there is a constant Mi ∈ R such that fi(x) ≥ Mi, for all x ∈ Ω.

Remark 3.4. If Assumption 3.3 holds and M := mini∈I{Mi}, then the function fmin is

bounded below in Ω by the constant M .

Our algorithm is based on the trust-region frameworks of [1, 72]. At each iteration

k ∈ N, we consider the current iterate xk ∈ Ω, the associated index ik ∈ Imin(xk) and the

quadratic model for fik

mk(x) = mk(xk + d) = bk + gT
k d+

1

2
dTHkd, (3.2)

where d = x − xk ∈ Rn, bk ∈ R, gk ∈ Rn and Hk ∈ Rn×n is a symmetric matrix. In [1], a

similar approach is taken with gk = ∇fik(xk) and Hk = ∇2fik(xk). Note that only one index

ik ∈ Imin(xk) is chosen at iteration k ∈ N. Thus, we will omit the indication of such index

in the model definition and other expressions that depend on the choice of index.

We also follow the practical ideas of Powell [58, 59], further developed in [72], of

using two radii: δk is related to the quality of the model, and ∆k is associated with the trust-

region. Assumption 3.5 below defines what “quality of the model” means and is a weaker

A derivative-free trust-region LOVO algorithm 24

assumption than “fully linear models” of [27], since it does not especify how to build such

models.

Assumption 3.5. For all k ∈ N, ∥∇fik(x)−∇mk(x)∥ ≤ κgδk, for all x ∈ X ∩ B(xk, δk)

and some constant κg > 0 independent of x and k.

We define the stationarity measure at xk for the problem of minimizing mk over

the set Ω by

πk = ∥PΩ(xk − gk)− xk∥ , (3.3)

where PΩ denotes the orthogonal projection onto Ω, which exists because it is a closed convex

set [25, 62]. In our context, given i ∈ I, we say that a point x∗ ∈ Ω is stationary for the

problem minx∈Ω fi(x) when ∥PΩ(x∗ −∇fi(x∗))− x∗∥ = 0 [25, Section 12.1.4].

At iteration k ∈ N, the candidate point xk + dk ∈ Ω is computed, where dk is the

approximate solution of the following trust-region subproblem

minimize mk(xk + d)

subject to xk + d ∈ Ω

∥d∥ ≤ ∆k.

(3.4)

If the model is accurate for fik , we expect that xk+dk may also decrease fmin, since xk+dk ∈ Ω

and fmin(xk + dk) ≤ fik(xk + dk) ≤ fik(xk). By “approximate solution” we mean that xk + dk

must satisfy a sufficient decrease condition of mk, given by Assumption 3.6.

Assumption 3.6. The approximate solution of (3.4) satisfies the sufficient decrease condi-

tion

mk(xk)−mk(xk + dk) ≥ θπk min

�
πk

1 + ∥Hk∥
,∆k, 1

�
,

for some constant θ > 0 independent of k.

Conditions of this type are well-known in trust-region strategies, and were used

in different contexts by several authors, as we can see in [17, 72], [5, Lemma 11.3], [25,

Assumption AA.1], [27, Theorem 10.1], [42, Assumption 3.3], [55, Lemma 4.5], and [70,

Section 3.1.4].

A derivative-free trust-region LOVO algorithm 25

We accept step xk + dk when the ratio between actual and predicted reductions

ρk =
fmin(xk)− fmin(xk + dk)

mk(xk)−mk(xk + dk)
(3.5)

is greater than or equal to a fixed constant η > 0. In this case, the new iterate becomes

xk+1 = xk + dk, the model is updated and the trust-region radius ∆k is possibly increased.

Otherwise, we reject the step and ∆k is decreased.

We present now our derivative-free trust-region algorithm for LOVO problems,

without specification about the model update or the solution of subproblem (3.4). Our

algorithm is based on the ideas discussed by Andreani et al. [1] and on the algorithms

proposed by Conejo et al. [17] and Verdério et al. [72].

A derivative-free trust-region LOVO algorithm 26

Algorithm 1: Derivative-free trust-region LOVO algorithm
Input: x0 ∈ Ω, β > 0, 0 < δ0 ≤ ∆0, 0 < τ1 ≤ τ2 < 1 ≤ τ3 ≤ τ4, η1 ∈ (0, 1), 0 ≤ η < η1 ≤ η2, Γ = 0,

1 ≤ Γmax ∈ N, i0 ∈ Imin(x0).

1 for k = 0, 1, . . . do

2 Construct the model mk.

3 if δk > βπk then /* Criticality Phase */

4 Let xk+1 = xk, ik+1 = ik, ρk = 0, dk = 0, δk+1 = τ1δk, and choose ∆k+1 ∈ [τ1∆k, τ2∆k].

5 else

6 Find an approximate solution dk for (3.4) that satisfies Assumption 3.6.

7 Compute ρk by (3.5).

8 if ρk ≥ η then /* Step Acceptance Phase */

9 Let xk+1 = xk + dk, and choose ik+1 ∈ Imin(xk+1).

10 else

11 Let xk+1 = xk, and ik+1 = ik.

12 end

13 if ρk ≥ η1 then Γ = 0 end

14 if ρk ≥ η and ik+1 ̸= ik and Γ ≤ Γmax then /* Radii Adjustment Phase */

15 Let δk+1 = τ4δk, ∆k+1 = τ4∆k, and Γ = Γ+ 1.

16 else /* Radii Update Phase */

17 Let

δk+1 =





τ1δk, if ρk < η1;

τ3δk, if ρk > η2 and ∥dk∥ = ∆k;

δk, otherwise;

and

∆k+1 =





τ1∆k, if ρk < η1;

τ3∆k, if ρk > η2 and ∥dk∥ = ∆k;

∆k, otherwise.

18 end

19 end

20 end

A derivative-free trust-region LOVO algorithm 27

The general idea of the algorithm is given below:

• The algorithm allows freedom in the choice of mk as long as it satisfies Assumption 3.5.

However, its practical efficiency greatly relies in the way it is implemented, as discussed

in Section 4.2.

• When δk is large with respect to πk, we cannot guarantee that the model accurately

represents fik . Hence, if δk > βπk, the radius δk is reduced in an attempt to find a

more accurate model.

• In the case where there was a successful iteration (ρk ≥ η) and another function is

taken as the representative of fmin (ik+1 ̸= ik), what we call “index swap”, we increase

δk+1 and ∆k+1 by a factor of τ4 ≥ 1. After a successful iteration with ρk ≥ η1 and

index swap, this procedure is executed at most Γmax ∈ N iterations with index swap

that satisfy η ≤ ρk < η1. Thus, the radii of the other iterations satisfying ρk < η1

continue to be reduced by τ1. By allowing the radius of the trust-region to increase, we

expect the algorithm to try larger steps when a new fik+1
is considered. In [1], ∆k+1 is

reset to ∆0 whenever index swap occurs, but we observed that such choice resulted in

worst-complexity results with higher order.

• In the case where |I| = 1 (usual convex constrained optimization problem), Algorithm

1 is reduced to the derivative-free trust-region algorithm proposed by [72].

Remark 3.7. Algorithm 1 can be modified to allow iterations satisfying ρ ≥ 0 to enter the

radii adjustment phase (line 14). This change does not affect the results obtained in Section

3.3.

3.3 Convergence analysis

In this section, we will provide global convergence results, in the LOVO sense, for

sequences generated by Algorithm 1. We will show that every point of accumulation of a

sequence generated by Algorithm 1 is stationary for some index i ∈ I.

In the following lemma, we prove that the Hessian of the model mk is bounded.

A derivative-free trust-region LOVO algorithm 28

Lemma 3.8. Suppose that Assumptions 3.2 and 3.5 hold. Thus, for every iteration k ∈ N,

∥Hk∥ ≤ κH − 1,

where κH := 2κg + L+ 1 and L := max
i∈I

{Li}.

Proof. Let k ∈ N, ik ∈ Imin(xk) be the chosen index associated with mk in this iteration and

d ∈ Rn an arbitrary direction satisfying ∥d∥ = δk. Initially, note that,

∇mk(xk + d) = gk +Hkd and ∇mk(xk) = gk. (3.6)

and therefore,

∥Hkd∥ = ∥∇mk(xk + d)−∇mk(xk)∥

≤ ∥∇mk(xk + d)−∇fik(xk + d)∥+ ∥∇fik(xk + d)−∇fik(xk)∥

+ ∥∇fik(xk)−∇mk(xk)∥

≤ Likδk + ∥∇mk(xk + d)−∇fik(xk + d)∥

+ ∥∇fik(xk)−∇mk(xk)∥

≤ Likδk + 2κgδk

= (Lik + 2κg)δk.

(3.7)

So, by the definition of the Euclidean matrix norm, it follows that

∥Hk∥ = max
∥d∥=δk

Hk
d

∥d∥

=
1

δk
max
∥d∥=δk

∥Hkd∥

≤ 1

δk
(Lik + 2κg)δk

= Lik + 2κg

≤ L+ 2κg.

Thus, by arbitrarily choosing k ∈ N, we obtain the desired result.

Analogously to [17, 72], let us consider the following sets of indices

S = {k ∈ N | ρk ≥ η} and S = {k ∈ N | ρk ≥ η1}, (3.8)

and note that S ⊂ S. The next lemma establishes that if the trust-region radius is sufficiently

small, then the iteration will be successful.

A derivative-free trust-region LOVO algorithm 29

Lemma 3.9. Suppose that Assumptions 3.2, 3.5 and 3.6 hold. Consider the set

K =

�
k ∈ N : ∆k ≤ min

�
πk

κH

,
(1− η1)πk

c1
, βπk, 1

��
, (3.9)

where c1 :=

L+ κg + κH/2

�
/θ. If k ∈ K, then k ∈ S.

Proof. Let k ∈ K and consider ik ∈ Imin(xk) the index associated with the model mk in this

iteration. By the Mean Value Theorem, there exists ξk ∈ (0, 1) such that

fik(xk + dk) = fik(xk) +∇fik(xk + ξkdk)
Tdk.

Therefore, by Assumptions 3.2, 3.5 and Lemma 3.8, by following the same arguments as [17,

Lemma 3.1], we obtain

|mk(xk)−mk(xk + dk) + fik(xk + dk)− fik(xk)| ≤
�
L+ κg +

1

2
κH

�
∆2

k. (3.10)

By (3.9) we have that πk > 0. Thus, the sufficient decrease condition of Assump-

tion 3.6 implies mk(xk) − mk(xk + dk) > 0. The key point in this proof is to observe that,

since ik ∈ Imin(xk), we know that fik(xk) = fmin(xk) and fmin(xk + dk) ≤ fik(xk + dk). By

(3.5), (3.10), Assumption 3.6 and Lemma 3.8,

1− ρk = 1− fmin(xk)− fmin(xk + dk)

mk(xk)−mk(xk + dk)

≤ 1− fik(xk)− fik(xk + dk)

mk(xk)−mk(xk + dk)

≤ |mk(xk)−mk(xk + dk)− fik(xk) + fik(xk + dk)|
mk(xk)−mk(xk + dk)

≤

L+ κg +

1
2
κH

�
∆2

k

θπk min
n

πk

κH
,∆k, 1

o

=
c1∆

2
k

πk min
n

πk

κH
,∆k, 1

o ,

where c1 = (L+ κg + κH/2) /θ. By the definition of the set K, we have that

∆k ≤ min

�
πk

κH

,
(1− η1)πk

c1
, βπk, 1

�
,

and so ∆k = min
n
πk/κH ,∆k, 1

o
. Hence,

1− ρk ≤
c1∆

2
k

πk min
n

πk

κH
,∆k, 1

o =
c1∆

2
k

πk∆k

=
c1∆k

πk

≤ 1− η1,

A derivative-free trust-region LOVO algorithm 30

from which we conclude that η1 ≤ ρk, and k ∈ S. Consequently K ⊆ S.

The following result is a direct consequence of Lemma 3.9. Assuming that πk ≥
ε > 0, we can prove that the trust-region radius is bounded below by ∆min, which depends on

the parameters of the algorithm, the characteristics of problem (3.1) and the type of model

mk used.

Corollary 3.10. Suppose that Assumptions 3.2, 3.5 and 3.6 hold, and let ε > 0. If πk ≥ ε,

then

∆k ≥ ∆min := min

�
∆0, τ1 min

�
ε

κH

,
(1− η1)ε

c1
, βε, 1

��
.

As mentioned earlier, the radius of the sample region δk controls the quality of

the model. More specifically, Assumption 3.5 tells us that the smaller the sample radius, the

better the models represent fik . Therefore, it is reasonable to expect δk to go to zero. The

following two lemmas show us that this happens.

Lemma 3.11. Suppose that Assumptions 3.2, 3.3, 3.5 and 3.6 hold, and
��S

�� = ∞. Then

the sequence {δk}k∈S converges to zero.

Proof. The proof follows the same arguments as [72, Lemma 3]. Initially, note that by

the definition of the set S, we have by the statement of the lemma that infinite successful

iterations occur satisfying ρk ≥ η1.

Let k ∈ S, be arbitrary. Given that k is a successful iteration, we know that

δk ≤ βπk, since the iteration has not entered the criticality phase, where β > 0 is a parameter

of the algorithm, and by the mechanisms of updating and adjusting of the radii, we have

that δk ≤ ∆k. Thus, for any k ∈ S, by (3.5), Assumption 3.6 and Lemma 3.8,

fmin(xk)− fmin(xk + dk) = ρk

mk(xk)−mk(xk + dk)

�

≥ ρkθπk min
n πk

1 + ∥Hk∥
,∆k, 1

o

≥ ρkθπk min
n πk

κH

,∆k, 1
o

≥ η1θ

β
δk min

n δk
βκH

, δk, 1
o
.

(3.11)

A derivative-free trust-region LOVO algorithm 31

Since {fmin(xk)}k∈N is a nonincreasing monotone sequence and bounded below,

because by Assumption 3.3, the funtions fi, i = 1, . . . , r, are bounded below in Ω, the

left-hand side of the expression (3.11) converges to zero. Therefore, we can conclude that

limk∈S δk = 0.

Lemma 3.12. Suppose that Assumptions 3.2, 3.3, 3.5 and 3.6 hold. Then the sequence

{δk}k∈N converges to zero.

Proof. The proof is based on [72, Lemma 3], but we will reproduce it for completeness. We

will split the demonstration into two cases.

i) S is finite.

Initially consider that the set S is finite. Hence, there is a finite number of

iterations for which the radii adjustment phase (line 14) is called. In fact, such phase is called

for at most Γmax

��S
�� iterations. Thus, there is k0 ∈ N such that for every k ≥ k0, the iteration

k /∈ S and the radii adjustment phase (line 14) is not called. Let M1 := {k ∈ N | k ≥ k0}.
Note that, by the radii update phase (line 16) present in the algorithm, we have that for

every iteration k ∈ M1 δk+1 = τ1δk, where τ1 < 1. Therefore, given that δk0 is a constant, it

follows that

lim
k→∞

δk = lim
k∈M1

δk = lim
k→∞

τ k1 δk0 = 0.

ii) S is infinite.

Now, assume that the set S is infinite and let M2 := {k ∈ N | k /∈ S}. If the set

M2 is finite, then by Lemma 3.11 it follows that

lim
k→∞

δk = lim
k∈S

δk = 0.

This leaves only the case where M2 is infinite. Note that, by Lemma 3.11, we

obtain the desired limit for indices in S. We will extend this result to the entire sequence.

For this purpose, let k ∈ M2 and lk be the last iteration in S before k. Since between the

A derivative-free trust-region LOVO algorithm 32

iterations lk and k the radii adjustment phase (line 14) is called at most Γmax times and

τ4 ≥ τ3 ≥ 1, we have that the value of δk is at most τΓmax
4 δlk . Therefore,

lim
k∈M2

δk ≤ lim
k∈M2

τΓmax
4 δlk = τΓmax

4 lim
lk∈S

δlk = 0,

and we conclude the proof.

Next, we show a weak convergence result for the problem of minimizing the model

mk in the feasible region Ω.

Lemma 3.13. Suppose that Assumptions 3.2, 3.3, 3.5 and 3.6 hold. Then sequence {πk}k∈N
admits a subsequence that converges to zero.

Proof. We will show that

lim inf
k→∞

πk = 0.

In fact, suppose by contradiction that there are ε > 0 and an integer k0 > 0 such

that πk ≥ ε for all k ≥ k0. Let k ∈ S, with k ≥ k0 arbitrary. By the definition of ρk given in

(3.5), Assumption 3.6, the contradiction hypothesis and Corollary 3.10, it follows that

fmin(xk)− fmin(xk + dk) ≥ ρkθπk min
n πk

κH

,∆k, 1
o

≥ η1θεmin
n ε

κH

,∆min, 1
o
.

By Assumption 3.3, {fmin(xk)}k∈N is bounded below, and given that it is a mono-

tone nonincreasing sequence, it follows that fmin(xk)−fmin(xk+dk) → 0. Since the right-hand

side of the above inequality is a positive constant, the set {k ∈ S : k ≥ k0} is finite, and

thus the radii adjustment phase (line 14) is also called only a finite number of iterations.

However, by the Lemma 3.12 we have that δk → 0, and given that πk ≥ ε for all k ≥ k1, it

follows that the criticality phase (line 3) is called only for a finite number of iterations. Thus,

for every sufficiently large k ∈ N, we only have iterations with ρk < η1 without the radii

adjustment phase (line 14) being called, which implies that ∆k+1 = τ1∆k. Consequently,

∆k → 0, contradicting Corollary 3.10.

The following result is a direct consequence of Lemma 3.13.

A derivative-free trust-region LOVO algorithm 33

Corollary 3.14. Suppose that Assumptions 3.2, 3.3, 3.5 and 3.6 hold. Then there is an

index i ∈ I, that is selected an infinite number of iterations such that

lim inf
k∈J (i)

πk = 0,

where J (i) = {k ∈ N | ik = i}.

Proof. From Lemma 3.13, we know that {πk}k∈N admits a subsequence that converges to

zero. Given that such a subsequence is infinite and that |I| = r < ∞, there must be an

index i ∈ I that is chosen in an infinite number of iterations of that subsequence. Thus,

collecting such iterations into the set J (i) = {k ∈ N | ik = i}, we have that lim
k∈J (i)

πk = 0,

and we conclude the proof.

If we, in addition, ask for a sufficient decrease condition η > 0 in Algorithm 1,

then we can show that {πk}k∈N converges to zero for any subsequence when an index i ∈ I
is selected an infinite number of iterations.

Lemma 3.15. Suppose that Assumptions 3.2, 3.3, 3.5 and 3.6 hold, and η > 0. Let i ∈ I
be an index chosen an infinite number of iterations. Thus,

lim
k∈J (i)

πk = 0,

where J (i) = {k ∈ N | ik = i}.

Proof. Initially, we know that J (i) exists by the same arguments of Corollary 3.14. Suppose

by contradiction that for some ε > 0 the set M1 = J ∩ {k ∈ N : πk ≥ ε} is infinite.

Given k ∈ M1, consider uk ∈ N the first iteration such that uk > k and πuk
≤ ε/2, and so

πk−πuk
≥ ε/2. Note that the existence of uk is guaranteed by Lemma 3.13. By Lemma 3.12,

there is k0 ∈ N such that, for k ≥ k0, we have δk ≤ ε/(8κg), where κg is the constant given

in Assumption 3.5. Also, let us define Ck = {j ∈ S : k ≤ j < uk}. We will show that Ck is

nonempty by considering two cases: uk ∈ J (i) and uk /∈ J (i).

i) uk ∈ J (i). Let k ∈ M1, with k ≥ k0, and assume that uk ∈ J (i). Using the definition

of πk, the triangular inequality, and the linearity and contraction properties of the

A derivative-free trust-region LOVO algorithm 34

projection operator, we have

ε

2
≤ πk − πuk

= ∥PΩ(xk − gk)− xk∥ −

PΩ(xuk

− guk
)− xuk

≤

PΩ(xk − gk)− xk − PΩ(xuk

− guk
) + xuk

≤ 2 ∥xk − xuk
∥+

gk − guk

 .

(3.12)

Given that uk ∈ J (i), we have that ik = iuk
. So, by the triangular inequality and

Assumptions 3.2 and 3.5, we obtain

ε

2
≤ 2 ∥xk − xuk

∥+

gk − guk

≤ ∥gk −∇fik(xk)∥+

∇fik(xk)−∇fiuk (xuk

)

+

∇fiuk (xuk
)− guk

+ 2 ∥xk − xuk
∥

≤ 2 ∥xk − xuk
∥+

∇fik(xk)−∇fiuk (xuk
)

+ κg(δk + δuk

)

≤ (2 + L) ∥xk − xuk
∥+ κg(δk + δuk

)

≤ (2 + L) ∥xk − xuk
∥+ ε

4
,

(3.13)

where the last inequality comes from the choice of k0. Therefore, it follows that

∥xk − xuk
∥ ≥ ε

4(2 + L)
. (3.14)

Since ε > 0, if Ck = ∅ then xk = xuk
, which contradicts (3.14). Hence Ck is nonempty.

ii) uk /∈ J (i). In this case, there is no guarantee that ∇fik and ∇fiuk are the same

functions and, therefore, the argument used in item i) is not valid. However, given that

uk /∈ J (i), by the index choice condition in the step acceptance phase (line 8), we know

that there was at least one index swap between iterations k and uk. Thus, the set Ck
is nonempty.

Therefore, in both cases we obtain that Ck is a nonempty set. Thus, by Assumption 3.6,

Lemma 3.8, Corollary 3.10, and the fact that πj ≥ ε/2, for all j ∈ Ck, we have that, for all

k ∈ M1, k ≥ k0,

A derivative-free trust-region LOVO algorithm 35

fmin(xk)− fmin(xuk
) ≥

X

j∈Ck

fmin(xj)− fmin(xj+1)

�

≥
X

j∈Ck
ρjθπj min

n πj

κH

,∆j, 1
o

≥ ηθε

2
min

(
ε

2κH

,
X

j∈Ck
∆j, 1

)

≥ ηθε

2
min

(
ε

2κH

,∆min, 1

)
.

(3.15)

Thus, since η > 0, it follows that the right-hand side of (3.15) is a positive

constant. On the other hand, by Assumption 3.3, {fmin(xk)}k∈N is bounded below and, by

the construction of the algorithm, is a monotone nonincreasing sequence. Hence, fmin(xk)−
fmin(xuk

) → 0, which is a contradiction with (3.15), and completes the proof.

We are now ready to prove the global convergence results for Algorithm 1. In

a way similar to the stationarity measure πk when solving subproblems (3.4), we adopt

the criticality measure ∥PΩ(x−∇f(x))− x∥, proposed by Conn, Gould and Toint [20] for

optimization problems involving a continuous function f on a convex feasible set Ω. This

measure was used in [17, 21, 72], for example, to establish global convergence results. The

following theorem is the main result of this section. It allows us to further describe what

kind of stationarity can be achieved by Algorithm 1.

Theorem 3.16. Let us define sets J (i) = {k ∈ N | ik = i}, for i ∈ I. Suppose that

Assumptions 3.2, 3.3, 3.5 and 3.6 hold and let {xk}k∈N be a sequence generated by Algorithm

1. The following statements are valid.

i) If η = 0, then

lim inf
k→∞

∥PΩ(xk −∇fik(xk))− xk∥ = 0.

Furthermore, there is an index i ∈ I such that

lim inf
k∈J (i)

∥PΩ(xk −∇fik(xk))− xk∥ = 0.

ii) If η > 0 and i ∈ I is any index chosen for an infinite number of iterations, then

lim
k∈J (i)

∥PΩ(xk −∇fik(xk))− xk∥ = 0.

A derivative-free trust-region LOVO algorithm 36

iii) If i ∈ I is an index chosen for an infinite number of iterations and x∗ ∈ Rn is an

accumulation point for the subsequence {xk}k∈J (i) ⊆ {xk}k∈N then i ∈ Imin(x∗).

Proof. Initially, note that by the triangular inequality, the properties of the projection oper-

ator, and Assumption 3.5, we have

∥PΩ(xk −∇fik(xk))− xk∥

= ∥PΩ(xk −∇fik(xk))− PΩ(xk − gk) + PΩ(xk − gk)− xk∥

≤ ∥PΩ(xk −∇fik(xk))− PΩ(xk − gk)∥+ ∥PΩ(xk − gk)− xk∥

= ∥PΩ(xk −∇fik(xk)− xk + gk)∥+ ∥PΩ(xk − gk)− xk∥

= ∥PΩ(gk −∇fik(xk))∥+ ∥PΩ(xk − gk)− xk∥

≤ ∥gk −∇fik(xk)∥+ ∥PΩ(xk − gk)− xk∥

≤ κgδk + πk.

(3.16)

Thus, using Lemmas 3.12 and 3.13, Corollary 3.14, and (3.16), we obtain i). On

the other hand, by Lemmas 3.12 and 3.15, and expression (3.16), we conclude the proof of ii).

It still remains for us to prove iii). Note that by the statement of the theorem we

have that limk∈J (i) xk = x∗, and by Assumption 3.2, the functions fj, j ∈ I, are continuously
differentiable. So the continuity of fj gives us

lim
k∈J (i)

fj(xk) = fj(x∗), (3.17)

for any index j ∈ I. Given that i ∈ Imin(xk), for every k ∈ J (i), we have by the definition

of this set that fi(xk) ≤ fj(xk) for any index j ∈ I and k ∈ J (i). Thus, taking the limit in

J (i), by (3.17) it follows that fi(x∗) ≤ fj(x∗), and therefore i ∈ Imin(x∗).

Theorem 3.16 states that if η > 0 and x∗ ∈ Rn is an accumulation point of

a sequence {xk}k∈N generated by Algorithm 1, it is possible to construct a subsequence

{xk}k∈J (i) that converges to x∗, where J (i) = {k ∈ N | ik = i}, and x∗ satisfies a necessary

optimality condition of gradient projected type for the problem

minimize fi(x)

subject to x ∈ Ω.
(3.18)

A derivative-free trust-region LOVO algorithm 37

In other words, x∗ is a first-order stationary point for the problem (3.18) (see [20] and [25,

p. 450]).

The following definition and corollaries help us to understand Theorem 3.16 from

the perspective of the LOVO theory [2].

Definition 3.17. [2, p. 05] Given x∗ ∈ Ω and established a necessary optimality condition

for the problem (3.18), we say that

i) x∗ is strongly critical if it satisfies a necessary optimality condition for (3.18), for all

i ∈ Imin(x∗).

ii) x∗ is weakly critical if it satisfies a necessary optimality condition for (3.18), for some

index i ∈ Imin(x∗).

Corollary 3.18. Suppose that Assumptions 3.2, 3.3, 3.5 and 3.6 hold, and η > 0. If x∗ ∈ Rn

is an accumulation point of a sequence {xk}k∈N generated by Algorithm 1, then x∗ is weakly

critical.

Proof. Let x∗ be an accumulation point of the sequence {xk}k∈N generated by Algorithm 1.

Thus, there is a subsequence {xk}k∈N ⊆ {xk}k∈N that converges to x∗. If i ∈ I is an index

that repeats for an infinite number of iterations in this subsequence then, as subsequence

{xk}k∈J (i) ⊆ {xk}k∈N ⊆ {xk}k∈N converges to x∗, by iii) of Theorem 3.16 it follows that

i ∈ Imin(x∗). Furthermore, from ii) of the same theorem, it follows that

lim
k∈J (i)

∥PΩ(xk −∇fi(xk))− xk∥ = 0,

and thus x∗ satisfies a necessary optimality condition for problem (3.18). Therefore, x∗ is a

weakly critical point.

Corollary 3.19. Suppose that Assumptions 3.2, 3.3, 3.5 and 3.6 hold. If Algorithm 1 gen-

erates a sequence {xk}k∈N that converges to x∗ ∈ Rn, then x∗ is weakly critical.

Proof. Let {xk}k∈N be a sequence generated by Algorithm 1 and suppose that it converges

to a point x∗ ∈ Rn. If

A derivative-free trust-region LOVO algorithm 38

• η = 0, let i ∈ I be the index from statement i) of Theorem 3.16;

• η > 0, let i ∈ I be any index chosen for an infinite number of iterations;

Note that {xk}k∈J (i) ⊆ {xk}k∈N converges to x∗ and so, by iii) of Theorem 3.16, it fol-

lows that i ∈ Imin(x∗). Furthermore, by i) or ii) of the same theorem, it follows that

limk∈J (i) ∥PΩ(xk −∇fi(xk))− xk∥ = 0 and thus x∗ satisfies a necessary optimality condition

for the problem (3.18). Therefore, x∗ is a weakly critical point.

Theorem 3.16 highlights another very desirable feature of Algorithm 1. It can

be used as the inner solver for general-constrained derivative-free algorithms, especially of

the Inexact Restoration type [12, 34], a case where Ω is composed by linear constraints. In

such a case, Algorithm 1 is able to generate sequences to Approximate Gradient Projection

(AGP) points. The AGP condition is a strong practical necessary optimality condition [3],

which is satisfied by every local minimizer of a nonlinear optimization problem without any

constraint qualification.

Consider our initial problem (3.1), and note that the feasible set Ω ⊂ Rn is convex,

closed, and nonempty. Assume that Ω can be expressed by a set of expressions of the form

gj ≤ 0, j = 1, 2, . . . , k1, and hl = 0, l = 1, 2, . . . , k2, where the functions gj are convex,

and hl are affine. In this context, our algorithm is able to generate sequences that satisfy

a Convex Approximate Gradient Projection (C-AGP) condition [3, p. 635]. C-AGP can

be more appropriate in some contexts and given a feasible point x∗ that satisfies C-AGP

and the Mangasarian-Fromovitz (MFCQ) constraint qualification then x∗ also satisfies the

KKT conditions for problem (3.18) [3, Theorem 3.2]. However, convergence to C-AGP points

does not imply AGP points and vice versa. Now consider the situation where the functions

gj, j = 1, 2, . . . , k1, are linear. This case is particularly interesting when we have bound (or

linear in general) constraints on the feasible set. Under these circumstances, we can employ a

Linear Approximate Gradient Projection (L-AGP) criterion [3, p. 638], which is a first-order

optimality condition stronger than the original AGP condition, in the sense that L-AGP

implies AGP.

The last discussion in this section is related to Assumption 3.5. It is well known

that such assumption is satisfied if, for example, linear or quadratic interpolation models

A derivative-free trust-region LOVO algorithm 39

are constructed using the so-called Λ-poised sample points [28], Λ > 0. Models with a

relaxed interpolation condition were also considered in [67, 72], and are covered in detail in

Chapter 2. Unfortunately, usually the techniques used to ensure well poisedness deal only

with the unconstrained case. Powell [59] uses a technique to build good underdetermined

quadratic interpolation models for box constraints. Hough and Roberts [42] present a weaker

definition of “fully linear models” and extend the concept of Λ-poisedness. Unfortunately, this

definition depends on a different stationarity measure, which requires a convex-constrained

optimization problem to be solved in order to be verified. On the other hand, the projected

gradient measure used by Algorithm 1 and by Theorem 3.16 has a closed form in many

special cases, when Ω is a box or a hyper-sphere, for example. Another possibility to build

well poised models using unconstrained strategies is to allow fmin to be evaluated in points

outside Ω. That was the case in [18, 34]. When fmin is not defined outside Ω (also known

as hard constraints), then the criticality measure and strategy from [42] can be adapted to

Algorithm 1 and benefit from using two different radii.

3.4 Worst-case complexity

In this section we will perform the worst-case complexity analysis for Algorithm 1. For this

purpose, let us first define the stationarity measure πf
k = ∥PΩ(xk −∇fik(xk))− xk∥. Given

ϵ > 0, we will bound the number of iterations necessary to verify πf
k < ϵ in terms of the

initial point, problem’s and algorithm’s constants, and ϵ. Note that, by Theorem 3.16, this

condition can be satisfied at least for a subsequence generated by Algorithm 1.

Hence, let kϵ ∈ N be the first iteration that πf
kϵ

< ϵ is verified. In order to help

counting the number of iterations up to kϵ, we define the sets

• Cϵ, iterations k ≤ kϵ that entered the criticality phase (line 3);

• Uϵ, all unsuccessful iterations (ρk < η);

• AR
ϵ and ANR

ϵ , all acceptable iterations (η ≤ ρk < η1) in which the radii adjustment

phase (line 14) is and is not called, respectively;

A derivative-free trust-region LOVO algorithm 40

• SR
ϵ and SNR

ϵ , all successful iterations (ρk ≥ η1) in which the radii adjustment phase

(line 14) is and is not called, respectively;

For the purposes of notation, we also define

• Sϵ = SR
ϵ ∪ SNR

ϵ , the set of all successful iterations;

• Rϵ = Uϵ ∪ANR
ϵ , the set of all iterations in which there was necessarily a reduction in

the trust-region radius;

• Nϵ = Cϵ∪Uϵ∪AR
ϵ ∪ANR

ϵ = Cϵ∪Rϵ∪AR
ϵ , the set of all iterations that are not successful.

The following two results help us to establish a relation between the stationarity

measures πk and πf
k .

Corollary 3.20. Suppose that Assumption 3.5 holds. Then the stationarity measures πk and

πf
k satisfy

���πk − πf
k

��� ≤ κgδk.

Proof. The result follows from the proof of Theorem 3.16.

Lemma 3.21. Suppose that Assumption 3.5 holds and that the criticality phase (line 3) is

not called in iteration k ∈ N. If πf
k ≥ ϵ, then πk ≥ c2ϵ, where c2 := 1/(1 + κgβ).

Proof. Since k ∈ N is not a criticality iteration, we have that δk ≤ βπk. Thus, by Assumption

3.5 and Lemma 3.20, it follows that

ϵ ≤ πf
k ≤

���πf
k − πk

���+ πk ≤ κgδk + πk ≤ κgβπk + πk ≤ (κgβ + 1) πk.

Therefore, by letting c2 = 1/(1 + κgβ), we obtain πk ≥ c2ϵ.

We are now able to count the number of successful iterations.

Theorem 3.22. Suppose that Assumptions 3.2, 3.5, and 3.6 hold. Then Algorithm 1 needs

a maximum of
��Sϵ

�� ≤ fmin(x0)−M

θη1c2
∆−1

minϵ
−1,

successful iterations to reach πf
kϵ

< ϵ, where M := mini∈I{Mi}, and ∆min is defined in

Corollary 3.10.

A derivative-free trust-region LOVO algorithm 41

Proof. Let k ∈ Sϵ. Thus, by the definition of ρk, Lemma 3.21, and letting ε = c2ϵ in Corollary

3.10, we have

fmin(xk)− fmin(xk+1) = ρk (mk(xk)−mk(xk+1))

≥ ρkθπk min

�
πk

κH

,∆k, 1

�

≥ η1θπk min

�
πk

κH

,∆k, 1

�

≥ η1θc2ϵmin

�
c2ϵ

κH

,∆k, 1

�

≥ η1θc2ϵmin

�
c2ϵ

κH

,∆min, 1

�

= θη1c2∆minϵ,

(3.19)

where the last inequality comes from the definition of ∆min. Thus, by adding up (3.19) to

every k ∈ Sϵ, we get

fmin(x0)− fmin(xkϵ) ≥
X

k∈Sϵ

(fmin(xk)− fmin(xk+1))

≥
X

k∈Sϵ

θη1c2∆minϵ

= θη1c2∆minϵ
��Sϵ

�� .

Given that fmin(xkϵ) ≥ M , then

fmin(x0)−M ≥ fmin(x0)− fmin(xkϵ) ≥ θη1c2∆minϵ
��Sϵ

�� ,

and it follows that,
��Sϵ

�� ≤ fmin(x0)−M

θη1c2
∆−1

minϵ
−1.

Next, we set an upper bound on the number of iterations that are not successful.

Recall that the set of all iterations up to kϵ is given by Sϵ ∪Nϵ.

Theorem 3.23. Under the conditions established in Theorem 3.22, Algorithm 1 needs at

most

|Nϵ| ≤
log

∆0

�
− log

∆min

�
��log

τ2
��� + c3

��Sϵ

�� (3.20)

not successful iterations to reach πf
kϵ
< ϵ, where c3 = Γmax +

Γmax + 1

� log(τ4)����log

τ2

�����
.

A derivative-free trust-region LOVO algorithm 42

Proof. Initially, note that, by the description of Algorithm 1

• ∆k+1 ≤ τ2∆k, for all k ∈ Cϵ;

• ∆k+1 = τ1∆k, for all k ∈ Rϵ;

• ∆k+1 ≤ τ3∆k, for all k ∈ SNR
ϵ ;

• ∆k+1 = τ4∆k, for all k ∈ AR
ϵ ∪ SR

ϵ .

Thus, by applying Corollary 3.10 with ε = c2ϵ and since τ1 ≤ τ2 and τ3 ≤ τ4, we must have

∆min ≤ ∆kϵ

≤ ∆0 · τ |Cϵ|2 · τ |Rϵ|
1 · τ

���SNR
ϵ

���
3 · τ |

AR
ϵ |+

���SR
ϵ

���
4

≤ ∆0 · τ |Cϵ|+|Rϵ|
2 · τ |

AR
ϵ |+

���SR
ϵ

���+
���SNR

ϵ

���
4

= ∆0 · τ |Cϵ|+|Rϵ|
2 · τ |A

R
ϵ |+|Sϵ|

4 .

Thereby,

log

∆min

�
≤ log

�
∆0 · τ |Cϵ|+|Rϵ|

2 · τ |A
R
ϵ |+|Sϵ|

4

�

=

|Cϵ|+ |Rϵ|

�
log

τ2
�
+
��AR

ϵ

��+
��Sϵ

��� log

τ4
�
+ log

∆0

�
,

what provides us

|Cϵ|+ |Rϵ|

�
log

τ2
�
≥ log

∆min

�
− log

∆0

�
−

��AR
ϵ

��+
��Sϵ

��� log

τ4
�
.

Given that τ2 < 1, we have log

τ2
�
< 0, it follows that

|Cϵ|+ |Rϵ| ≤
log

∆min

�
− log

∆0

�
−

��AR
ϵ

��+
��Sϵ

��� log

τ4
�

log

τ2
�

=
log

∆0

�
− log

∆min

�
��log

τ2
��� +

��AR
ϵ

��+
��Sϵ

��� log

τ4
�

��log

τ2
��� .

By the radii adjustment phase (line 14), we know that after an iteration in Sϵ,

at most Γmax iterations of the type AR
ϵ can occur, and so,

��AR
ϵ

�� ≤ Γmax

��Sϵ

��. Therefore, it

A derivative-free trust-region LOVO algorithm 43

follows that

|Nϵ| = |Cϵ|+ |Rϵ|+
��AR

ϵ

��

≤ log

∆0

�
− log

∆min

�
��log

τ2
��� +

Γmax + 1

� ��Sϵ

�� log

τ4
�

��log

τ2
��� + Γmax

��Sϵ

��

=

Γmax +

Γmax + 1

� log

τ4
�

��log

τ2
���

!
��Sϵ

��+ log

∆0

�
− log

∆min

�
��log

τ2
��� ,

what, together with the definition of c3 finishes the proof.

Theorem 3.24. Under the conditions of Theorem 3.22, Algorithm 1 needs at most O(κ3
gϵ

−2)

iterations to reach πf
kϵ
< ϵ.

Proof. By Theorems 3.22 and 3.23, we have

��Sϵ

��+ |Nϵ| ≤
��Sϵ

��+ c3
��Sϵ

��+ log

∆0

�
− log

∆min

�
��log

τ2
���

= (1 + c3)
��Sϵ

��+ log

∆0

�
− log

∆min

�
��log

τ2
���

≤ (fmin(x0)−M)

θη1c2
c3∆

−1
minϵ

−1 +
log

∆0

�
+ log

∆−1

min

�
��log

τ2
��� .

(3.21)

From Lemma 3.9, we have that c1 = (L+ κg + κH/2) θ
−1 = O(max {κg,κH}). Similarly, by

Lemma 3.21, c−1
2 = 1 + κgβ = O(κg). Hence, by letting ε = c2ϵ in Corollary 3.10,

∆−1
min = max

�
∆−1

0 ,
κH

τ1c2ϵ
,

c1
τ1(1− η1)c2ϵ

,
1

τ1βc2ϵ
, τ−1

1

�

= O(max {κg,κH}κgϵ
−1).

(3.22)

Therefore, we get from (3.21), (3.22), and Lemma 3.9, that

��Sϵ

��+ |Nϵ| = O(max {κg,κH}κ2
gϵ

−2) = O(κ3
gϵ

−2),

since κH = 2κg + L+ 1.

Remark 3.25. Similarly to [1, Algorithm 3.2], we can allow resets in the trust-region radius

of type ∆k+1 = max (τ3∆k,∆0) at line 15 in the radii adjustment phase. However, this choice

worsens the upper bound presented in Theorem 3.24 to O(ϵ−3).

A derivative-free trust-region LOVO algorithm 44

Remark 3.26. Similarly to Garmanjani et al. [35], we chose not to include assumptions

about the order of magnitude of the β parameter, which acts in accessing the criticality phase

(line 3). Although it is desirable that β is taken in an inversely proportional way to the choice

of ϵ, in the context of our algorithm that is not necessary to establish complexity results.

Cartis and Roberts [13], when studying the worst-caes complexity of algorithm DFO-GN, need

to assume a hypothesis about the magnitude of the criticality phase parameter.

In the following result, we explicitly expand constant κg to show the worst-case

complexity estimates for function evaluations. This is possible by further especifying how the

models are constructed. We consider determined and underdetermined linear and quadratic

polynomial models satisfying the inexact interpolation condition |m(yj)− f(yj)| ≤ κδ2, for

each point yj in a Λ-poised sample set Y ⊂ B(xk, δk), where κ ≥ 0 is the inexact constant.

Such calculations were given in Chapter 2. Note that this interpolation condition naturally

includes the classical interpolation models when κ = 0. Comments on how to build and

maintain Λ-poised sets were made in the end of Section 3.3 and practical considerations are

subject to the next chapter.

Theorem 3.27. Suppose that the Assumptions 3.2, 3.3, and 3.6 hold. Also, assume that the

models m are constructed by inexact linear or quadratic interpolation using a Λ-poised set

Y ⊂ Rn of sample points, Λ > 0. Then, the number of function evaluations that Algorithm 1

needs to reach πf
kϵ
≤ ϵ is

i) O

(n+ r)n3ϵ−2

�
if the model is linear;

ii) O

(r + n2)n12ϵ−2

�
if the model is quadratic determined;

iii) O

(r+p)n

9
2p

15
2 ϵ−2

�
if the model is quadratic underdetermined, for n < p < (n2+3n)/2

is the number of points used.

Proof. Initially, note that at each iteration, at most |Y| evaluations of the function fi are

performed, for some index i ∈ I, in order to build a Λ-poised set from scratch. Moreover, a

single evaluation of the fmin function is necessary to evaluate ρk, which in turn depends on

|I| = r function evaluations. Thus, by Theorem 3.24, we will need at most O

(|Y|+r)κ3

gϵ
−2
�

function evaluations during algorithm execution. We will separate the proof into three cases.

A derivative-free trust-region LOVO algorithm 45

i) Linear case.

In this case |Y| = n+ 1 and, by Theorem 2.5 and Lemma 2.7, we have that

κg = L+

�
L

2
+ 2κ

�
Λn = O(n).

Thus, we conclude that at most O

(n+ r)n3ϵ−2

�
function evaluations are necessary.

ii) Quadratic case.

In this case |Y| = (n2 + 3n)/2 + 1 = q + 1. Again, using Theorem 2.5 and Lemma 2.7,

we obtain

κg = 2
�
4Λ
p

(q + 1)3
�√

q

1 +

√
2
�
(κ+ L)

= 8Λ

1 +

√
2
�√

q
p

(q + 1)3(κ+ L)

< 8Λ

1 +

√
2
�
(q + 1)2(κ+ L)

= 8Λ

1 +

√
2
��n2 + 3n+ 2

2

�2

(κ+ L)

= O(n4)

what gives to us at most O

(r + n2)n12ϵ−2

�
function evaluations.

iii) Quadratic underdetermined case.

Finally, suppose that the models are quadratic underdetermined, with |Y| = p + 1

points, where n < p < q, q defined in case ii). Thus, by theorems 2.11, 2.19, and 2.22,

it follows that

κg = 2
√
p
�
Λ
p

2(n+ 1)(p+ 1)
�

L+ κ+

�
κ+

L

2

�
3Λ(p+ 1)

p
2(q + 1)

c(δmax)2

!

< 2
√
2Λ
p

(n+ 1)
p

(p+ 1)3

L+ κ+

�
κ+

L

2

�
3
√
2Λ

c(δmax)2
(p+ 1)

p
q + 1

!

= O(n
3
2p

5
2).

Hence, we will need at most O

(r + p)n

9
2p

15
2 ϵ−2

�
function evaluations.

A derivative-free trust-region LOVO algorithm 46

It is also worth mentioning that in the context of derivative-free optimization, most

of the worst-case complexity results presented in the literature are for direct-search methods

of directional type based on a condition of sufficient decrease [35, p. 1988]. Among the works

that study derivative-free trust-region methods with convergence to first-order stationary

points, as Algorithm 1, we can highlight the bound O

ϵ−2

�
obtained by Garmanjani et al. [35]

for unconstrained composite optimization problems, which is also obtained in expectation by

Gratton et al. [39], but based on probabilistic models. Grapiglia et al. [37], on the other hand,

presents the bound O

|log (ϵ)| ϵ−2

�
for unconstrained composite nonsmooth problems and

problems with equality constraints. Unfortunately, we are not aware of worst-case complexity

results for derivative-free trust-region methods for problems with general convex constraints.

Chapter 4

Numerical implementation and

experiments

We dedicate this chapter to presenting our implementation of Algorithm 1, per-

forming numerical tests using data profiles, and discussing the benchmark results. In Section

4.1, we present a brief overview of techniques for benchmarking derivative-free solvers. In

particular, we address the techniques of performance profiles, data profiles and relative min-

imization profiles. In Section 4.2, we discuss the implementation details of our algorithm,

which we will call LOWDER, an acronym for Low order-value Optimization Without DERiva-

tives. Our chosen test sets and algorithms to benchmark LOWDER performance are described

in Section 4.3, along with numerical results.

4.1 Short overview

In recent years, derivative-free optimization has become an increasingly popular

research area, especially due to the large number of complex applications that can be solved

[13]. The growing interest in the area also boosted a new wave of theoretical development

and the proposition of algorithms for the most diverse classes of derivative-free optimization

problems [52]. Recent surveys, such as those presented by Rios and Sahinidis [63] and Larson

et al. [45], point to this growing trend. In particular, [63] lists at least 22 leading software

implementations of state-of-the-art algorithms. On the other hand, [45] brings a detailed

description of several classes of derivative-free optimization methods, as well as enumerates

several algorithms.

Numerical implementation and experiments 48

Faced with this wide variety of derivative-free optimization methods and algo-

rithms, a question that has been gaining visibility is whether there is any fair way of com-

paring. Although there are several works in this direction, such as [8, 22, 29, 30, 50, 52, 53],

there is no consensus among researchers on the subject [52]. In addition, it is common to

come across a huge amount of data when performing benchmark tests on large test sets,

which can impair the visualization and synthesis of results, and discourage a more thorough

analysis of the performance of algorithms.

Among the benchmark tools for derivative-free optimization algorithms, the most

popular are perhaps performance profiles [30] and data profiles [52]. Performance profiles are

developed to compare solvers using a performance ratio chosen by the user. In this sense, the

performance profile of a solver is the cumulative distribution function for the performance

metric [30]. Despite its popularity, this tool has some limitations, being often sensitive to

the algorithm stopping criteria and the success criteria established by the user [9, 29]. In

turn, data profiles manage to overcome most of the limitations presented, adding even more

information since are capable of providing the percentage of problems solved for a given

computational budget, considering a pre-established tolerance. However, [29] points out that

the behavior of the data profile can also be influenced by the success criteria chosen by the

user. Curtis et al. [29] also proposes a new technique called relative minimization profiles

(RMP). According to the authors, this tool can assess simultaneously the relative performance

of several algorithms, taking into account the objective function value, the viability of the

point, and the speed of progress. Despite being a more robust comparison method than the

options presented, RMP still has some sensitivity to user choices when dealing with tolerance

in violation of feasibility [29, p. 166]. It is also worth reiterating that as this is a recent tool,

the limitations of this technique still need to be studied.

For the numerical tests carried out in this chapter, we adopted data profiles as the

benchmark tool, due to their wide use in the context of derivative-free optimization problems.

Numerical implementation and experiments 49

4.2 Implementation details

The LOWDER algorithm employs linear models to solve LOVO problems and has

several practical improvements when compared to the theoretical algorithm presented in

Section 3.2. One of the most significant changes occurs in definition of the relative reduction

coefficient ρk. Note that we need to calculate ρk at each iteration in order to define the step

acceptance, update, and radius correction phases. Since this involves evaluating the function

fmin, which can be costly in computational terms, in practice, we allow LOWDER to employ

the coefficient proposed by Castelani et al. [15]:

ρ̂k =
fik(xk)− fik(xk + dk)

mk(xk)−mk(xk + dk)
,

where ik ∈ Imin(xk), for up to nrhomax ∈ N consecutive iterations. After nrhomax iterations

ρk has to be calculated as presented in (3.5). Note that ρ̂k ≤ ρk, and so we are being

more demanding about the quality of the models and the decrease obtained. During the

preliminary tests, nrhomax = 3 proved to be efficient.

Another relevant change is the way the solution dk ∈ Rn of the trust region sub-

problem (3.4) is incorporated into the sample set Y . To do so, we implemented simplified

versions of the TRSBOX and ALTMOV functions, developed by Powell [59] for the BOBYQA algo-

rithm. Initially, we compute a solution dTRSk using the TRSBOX algorithm for the linear case. If

∥dTRSk ∥ ≥ ∆k

2
and ρk > 0 (or ρ̂k > 0), the point xnew = xk+dTRSk is inserted into Y . Otherwise,

we run ALTMOV to look for an alternative direction dALTk , and add the point xnew = xk+dALTk to

Y . At each iteration of LOWDER, only one point is added to Y , while another point is removed,

following procedures similar to BOBYQA.

In this first version, LOWDER employs only linear models to solve problem (3.1). In

this sense, LOWDER uses the sample set construction mechanism of BOBYQA. As with this solver,

we avoided fully rebuilding the models due to the computational cost involved. In general,

the model and sample set are only rebuilt if one of the following conditions is satisfied:

i) An index swap occurs, that is ik+1 ̸= ik, and the direction calculated by TRSBOX satisfies

ρk ≥ η (or ρ̂k ≥ η); or yet,

ii) An index swap occurs, ρk ≥ 0 (or ρ̂k ≥ 0) and fmin(xnew) is avaliable.

Numerical implementation and experiments 50

In all other cases, the model is updated using the current sample set and the information

obtained about the point xnew. Recall that only evaluations of fik+1
are needed to rebuild

the model. Each time the model is rebuilt or updated, we also calculate the QR factorization

of the matrix LL defined in (2.3). This information is needed to calculate dALTk given by

ALTMOV and the point that should leave set Y in case direction dTRSk is accepted.

Given that the radius of the sample region δk controls the quality of the model,

a solution x̃ = xk ∈ Ω is declared successful if it satisfies δk ≤ δmin and βπk ≤ δmin (or

βπ̃k ≤ δmin), where δmin > 0 is a parameter defined by the user. The default values for β

and δmin are 1 and 10−8, respectively. We say that LOWDER is stalled at iteration k if there is

no more room for improvement in the sample set and the model. This situation translates

into the case where δk ≤ δmin, ∆k ≤ δmin and it is not possible to perform any more ALTMOV

iterations. In this case, the maximum number of consecutive iterations of the ALTMOV type

is controlled by the maxalt ∈ N parameter, whose default value is |Y| − 1. Note that if

the sample and trust-region radii have values greater than δmin, we allow more than maxalt

consecutive iterations with ALTMOV directions. However, as soon as the stalled criterion is

satisfied the algorithm exits. For safety, the algorithm also exits if more than maxcrit ∈ N

successive iterations access the criticality phase (line 3), whose default value is |Y|− 1.

The LOWDER solver was implemented in the Julia language, version 1.6.1, and is

available in the repository:

https://github.com/aschwertner/LOWDER

4.3 Numerical experiments

To benchmark the LOWDER’s performance in solving LOVO black-box problems, we

compared our solver with other algorithms able of solving derivative-free optimization prob-

lems. These algorithms are Manifold Sampling Primal (MS-P) and Nonlinear Optimization

with the MADS algorithm (NOMAD).

The MS-P solver is a MatLab implementation of the Manifold Sampling method

proposed in [44, 45], and is designed to solve bound-constrained nonsmooth composite min-

Numerical implementation and experiments 51

imization problems

min
x∈Ω

f(x) = min
x∈Ω

h (F (x)) ,

where F : Rn → Rp, h : Rp → R is a continuous selection (see [44, Definition 1]), and the

feasible set is a subset of the n-fold Cartesian product of the extended reals R ∪ {−∞,∞}
defined by bound constraints of the form Ω = {x : l ≤ x ≤ u}. The manifold sampling

algorithm was initially proposed by Larson et al. [45] as a variant of gradient sampling, and

can be classified as model-based derivative-free method. In this method, models of F are

combined with sampled information about the function h to construct local models called

smooth master models, for use within a trust-region framework. MS-P builds fully linear

quadratic models using the interpolation and regression mechanisms of POUNDERS [74]. We

are grateful to Jeffrey Larson, co-author of the method, for providing the MS-P and POUNDERS

codes and being available to help us.

The NOMAD software is a C++ implementation of the Mesh Adaptive Direct Search

(MADS) algorithm, solves black-box optimization problems in general, and uses the progres-

sive barriers method to deal with problems with constraints. In this work, we use version

4.2.0 of NOMAD [6] through the interface for the Julia language called NOMAD.jl, version 2.2.1

[51]. This version of NOMAD presents a series of improvements compared to previous versions,

especially in comparison to version 3.9, such as a new software architecture and support for

new pool mechanisms and search algorithms, among others. All the algorithms were run

with their default parameters on an AMD Ryzen 7 1700X 3.40GHz with 8 cores (16 threads)

and 16GB of RAM and Linux Ubuntu Budgie 22.04.1 LTS operating system.

Our benchmark suite includes three sets of test problems denominated by MW,

HS, and QD. The MW set contains problems proposed by Moré and Wild in [52] for bench-

marking derivative-free optimization algorithms and comprises 53 unconstrained problems.

These problems are variations of 22 nonlinear least squares functions taken from the CUTEr

collection [36]. Each function is defined by r components in n variables. By combining dif-

ferent values for n and r, and distinct starting points, we obtain all the problems in MW test

set.

The HS test set includes 87 bound-constrained problems selected and modified

Numerical implementation and experiments 52

from the original collection published by Hock and Schittkowski [41] for testing nonlinear

programming algorithms (see appendices A and B for a full description). Initially, we selected

8 problems from [41] with bound constraints and different objective functions. By combining

two, three, or four of these problems, a new objective function fmin is defined. The problem

dimension is the largest dimension among the combined problems, and the bound constraints

are taken as the intersection of the original boxes. If this procedure generates constraints

with fixed values, that is li = ui for some index i ∈ {1, . . . , n}, then the problem is discarded.

Lastly, the QD test set has 5 subsets with 50 problems each, all with bound

constraints. The purpose of this test set is to demonstrate the impact of the number of

functions fi of the objective function fmin in the performance of the algorithms. In this sense,

the subsets of QD consist of problems with an increasing number of component functions

based on the general formula:

fi(x) = 5i +
1

2

nX

j=1

aij · (xj − bij)
2,

where ai ∈ [0, 1000]n, and bi ∈ [0, 10]n are vectors built by the pseudorandom number gen-

erator MarsenneTwister from the Random package of the Julia language, with the same

seed. We generate the problems in the test subsets with r ∈ {10, 25, 50, 75, 100} component

functions, respectively. We employ the same seed to generate vectors ai and bi to ensure that

the generated component functions come into problems belonging to test sets with larger r

values. In this way, the component functions generated for the QD10 test subset are present

in the other subsets, and they are complemented by new functions fi as the value of r in-

creases. In our case, all problems were generated with dimension n = 10, have the same

bound constraints l = [0, . . . , 0] and u = [10, . . . , 10], and the starting point x0 ∈ Rn is set to

the center of the box. Figure 4.1 ilustrates a two dimensional example of objective function

generated by this procedure, with 10 component functions.

We also present in Table 4.1 the maximum and minimum values for the dimension

n ∈ N and the number of component functions r ∈ N of the problems of each test set.

We use data profiles [52] to compare the performance of LOWDER, MS-P, and NOMAD,

over our benchmark test suite. We are interested in comparing the function values obtained

by each of the algorithms. Thus, we consider that a method has solved a problem with

Numerical implementation and experiments 53

Figure 4.1: Contour plot (left) and surface plot (right) for an example of objective function

fmin defined by the generating function of QD test set.

Test set nmin nmax rmin rmax

MW 2 12 2 65

HS 2 10 2 4

QD 10 10 10 100

Table 4.1: Dimension and number of component functions of MW, HS and QD test sets.

tolerance level τ > 0 after t function evaluations if the iterate xt satisfies

f(xt) ≤ fL + τ (f(x0)− fL) , (4.1)

where x0 is the starting point of the problem common to all algorithms, and fL is the

smallest function value obtained by the solvers for a given budget of function evaluations.

Following Moré andWild’s suggestion [52, Section 5], we decided to investigate the behavior of

algorithms with a limit of 100 simplex gradients of the objective function, where one simplex

gradient is defined by n + 1 function evaluations. Since MS-P and NOMAD always evaluate

function fmin completely and LOWDER has the ability to run each component function fi,

i ∈ I, independently, for each set of tests considered, we define the budget as 100 (nmax + 1)

evaluations of fmin for MS-P and NOMAD, and 100rp (nmax + 1) evaluations of fi for LOWDER,

where rp is the number of component functions of the problem p. Therefore, we allow the

algorithms to run at least 100 simplex gradients of the objective function fmin for each

problem in the test set.

Numerical implementation and experiments 54

To build the data profiles, we recorded the function values of fmin accessed by

the MS-P and NOMAD solvers and the function values of fi computed by LOWDER for each one

of the selected problems. Once the solver satisfies the criterion (4.1) for a problem p for the

first time after t function evaluations, its data profile row is incremented on the vertical axis

by 1
|P| at the point

t
(np+1)

, in the case of MS-P and NOMAD, or at the point t
rp(np+1)

, for LOWDER.

Therefore, our metric of simplex gradient evaluations for fmin is maintained.

The data profiles presented in the next subsections are available in a larger size

in appendices C, D, and E. The codes used to generate the numerical tests and data profiles

presented in this chapter are available at:

https://github.com/aschwertner/LOWDER_Numerical_Tests

4.3.1 MW test set

The MW set is our main problem test set since it was designed by Moré and Wild

[52], especially to benchmark unconstrained derivative-free algorithms. In Figure 4.2, we

present four data profiles for the MW test set. Each plot shows the percentage of problems

solved for a specified tolerance τ as a function of a computational budget of simplex gradients

of fmin. As we can see, LOWDER and MS-P solve around 90% of the problems for all tolerance

levels τ , up to the fixed budget. The difference in robustness between this two solvers is

less than 5%. We also note that the behavior of NOMAD its very different for distinct levels

of tolerance, ranging from around 60% to less than 40%, with τ = 10−1 and τ = 10−7,

respectively.

LOWDER is very efficient at solving problems in the MW test suite, solving about

90% of the problems with less than 20 simplex gradients. MS-P has a behavior very close

to LOWDER, outperforming the latter by about 2% for τ = 10−1, but loses performance as

the tolerance decreases, solving only 80% of problems for τ = 10−7. Although this behavior

is expected, since LOWDER uses mainly information of the fi’s, we must recall that MS-P

uses quadratic models, while LOWDER uses linear ones. For this computational budget and

τ = 10−1, NOMAD can solve 50% of the problems in the test set. However its performance drops

and stabilizes at around 40% for other values of tolerance. Inspecting the NOMAD execution

Numerical implementation and experiments 55

data, we can see three distinct behaviors that can explain its low performance in the MW

test set: difficulty in reducing the objective function, low convergence rate, and convergence

to weak stationary points that are local minima, while LOWDER and MS-P can converge to

global minimum points.

Figure 4.2: Data profiles for the problems in MW test set with tolerance τ ∈
{10−1, 10−3, 10−5, 10−7}.

4.3.2 HS test set

Analyzing Figure 4.3, we can see that NOMAD can solve all problems for τ = 10−1

and can solve 95% or more problems for other values of tolerance. LOWDER and MS-P have sim-

ilar performances, alternating in the second position. When considering the computational

budget of 100 simplex gradients, LOWDER is overcome by MS-P by 1% to 3%. For budget

values between 20 and 40 simplex gradients, LOWDER performs slightly better than MS-P.

The great performance of NOMAD can be explained by the small size of the problems

Numerical implementation and experiments 56

and by the recognized ability of the algorithm to solve complex problems, especially for non-

linear problems with constraints, as is the case of this test set. Note that LOWDER employs

only linear models to solve the trust-region subproblem (3.4). This can harm its performance

in the case of strongly non-linear problems since the solutions generated by TRSBOX tend not

to satisfy the conditions of the step acceptance phase (line 8), favoring set improvement

iterations with directions calculated by ALTMOV, which may not be directions in which the

objective function decrease. Another factor that can impact the quality of the solutions

obtained by LOWDER is the existence of several problems in HS test set that have an infinity

of local minima. NOMAD has two distinct mechanisms that help it escape from local minima.

The first one is a global search procedure called SEARCH step, which can return any point on

the underlying mesh, always trying to identify points that improve the best solution found so

far. The second is a local search called the POOL step, and your purpose is to generate trial

mesh points in the vicinity of the best solution [6]. Another behavior of the NOMAD solver that

we noticed during the execution of these problems was its tendency to find local and global

solutions on the boundary of the feasible set. Among the 87 problems that constitute the HS

test set, NOMAD found boundary solutions for 55 of them. Considering its good performance

in the data profile, this suggests the solver is very efficient when exploring and evaluating

the limits of the feasible set.

When looking at the proportion of problems solved by the three solvers, we can

see that they can solve about 40% of problems with 5 simplex gradients or less. From that

point on, the performance differences are quite significant, especially when comparing NOMAD

with the other solvers. By setting τ = 10−3, NOMAD can solve 60% of problems with just

13 simplex gradients, while LOWDER needs 17, and MS-P needs about 37 simplex gradients.

Another situation worth mentioning occurs with τ = 10−7. In this case, considering the 50%

mark of problems solved, NOMAD can reach this value with 6 simplex gradients, while LOWDER

and MS-P need approximately 28 and 33 simplex gradients, respectively.

Numerical implementation and experiments 57

Figure 4.3: Data profiles for the problems in HS test set with tolerance τ ∈
{10−1, 10−3, 10−5, 10−7}.

4.3.3 QD test set

Our goal in this test set is to show the benefits that LOWDER enjoys due to ex-

ploring the structure of LOVO problems. Figure 4.4 presents the data profiles generated

with tolerance τ = 10−5 for the problems in the QD test set, taking into account the subsets

generated with 10, 25, 50, 75, and 100 component functions. Analyzing the plots presented,

if we consider a computational budget of 100 simplex gradients, the robustness of the algo-

rithms is not affected by the number of functions fi. LOWDER and NOMAD manage to solve

approximately 85% of the problems while MS-P solves 77% of the problems, in the 5 scenarios

presented. Note that LOWDER outperforms MS-P and NOMAD by a large amount, especially for

computational budgets of less than 40 simplex gradients. For this fixed budget, MS-P also

outperforms NOMAD, but the situation reverses for higher budget values. More specifically,

the data profile shows us that for robustness rates above 70%, NOMAD is more efficient than

Numerical implementation and experiments 58

MS-P and is able to match LOWDER using less than 60 simplex gradients.

Another relevant fact is that the curves presented by MS-P and NOMAD do not

appear to be affected by the variation in the number of component functions, while the

LOWDER data profile curve has a clear tendency to approach the vertical axis according to

the number of component functions increases. That is, the performance of LOWDER tends to

improve, especially when considering small computational budgets, with less than 20 simplex

gradients. One way to visualize this influence is to verify the number of simplex gradients

needed to solve a certain percentage of problems, as shown in Table 4.2.

Test subset 20% 40% 60% 80% 85%

QD10 5 6 7 21 34

QD25 3 3 4 14 23

QD50 2 2 3 11 19

QD75 2 2 2 10 18

QD100 1 2 2 9 17

Table 4.2: Approximate number of function simplex gradients that LOWDER needs to solve

given ranges of problems on the QD test subsets.

Note that as the number of component functions increases, represented by the

number associated with the test subset, there is a tendency for the number of simplex gradi-

ents to decrease, and this can be verified for all ranges of problems considered.

Numerical implementation and experiments 59

Figure 4.4: Data profiles for the problems in QD test set, with τ = 10−5, and r ∈
{10, 25, 50, 75, 100}.

Chapter 5

Conclusions and suggestions for future

work

In this work, we introduced a new class of low order-value optimization methods,

considering an approach reasoned on model-based derivative-free optimization. We presented

a derivative-free trust-region algorithm for constrained black-box LOVO problems, which

is based on the algorithms proposed by Conejo et al. [17] and Verdério et al. [72], and

the ideas discussed by Andreani et al. [1]. Our algorithm can deal with general closed

convex constraints and is specially designed for problems whose objective function values are

provided through an oracle (black-box function). Note that we assume that we know how to

project an arbitrary point onto the feasible set. Algorithm 1 has a structure very similar to

the traditional trust-region framework and considers two different radii, one for the sample

region and another for the trust-region. We allowed some freedom in the choice of models,

as long as the gradient of the model is a good approximation of the gradient of the selected

component function, in the sense of well poisedness (Assumption 3.5).

We discussed global convergence results of the algorithm, adopting common as-

sumptions for this class of problems, as well as an interpretation from the perspective of

the classical theory of LOVO problems. We also showed how the choice and construction

of models can help us to obtain good theoretical properties. In this sense, we dedicated the

first chapter to organize several results from the literature about error bounds for linear and

quadratic models related to derivative-free trust-region algorithms. We also extended the

results of [72] to underdetermined models, allowing “inexact” interpolation, and provided a

clearer proof than [27] for the bound on

Ls

†

 in the minimum Frobenius norm case.

Conclusions and suggestions for future work 61

Inspired by the works of Cartis and Roberts [13] and Garmanjani et al. [35], we

also studied the worst-case complexity analysis of Algorithm 1, which showed us that the

number of iterations and function evaluations performed by the algorithm is in line with what

is expected for model-based methods, and that the adoption of minimum Frobenius-norm

quadratic models is competitive in terms of function evaluations when compared to complete

determined models.

We also presented LOWDER, our implementation of Algorithm 1 in Julia language,

discussed implementation details and performed numerical tests. In its current version,

LOWDER solves bound-constrained black-box LOVO problems and builds only determined lin-

ear models. LOWDER has several practical improvements, many of them derived from BOBYQA,

a general-purpose derivative-free optimization solver for bound-constrained problems. In par-

ticular, LOWDER inherits the initial sampling mechanisms and has simplified versions of the

TRSBOX and ALTMOV routines for solving the trust region subproblem (3.4) and improving the

geometry of the sample set, respectively. Like BOBYQA, we also avoided completely rebuilding

models through an update mechanism.

Since LOWDER is designed for LOVO problems, we compared it with algorithms

that can handle, in some way, this type of problem. In this sense, we selected MS-P [44] and

NOMAD [6]. MS-P is a manifold sampling algorithm for composition minimization problems.

NOMAD is a well-established algorithm for black-box optimization problems based on the direct

search.

We proposed a test suite with three sets: MW, HS, and QD. MW is our main

test set and contains the problems of Moré and Wild [52] for benchmarking derivative-free

optimization algorithms. HS is a test set created with a combination of problems from the

Hock and Schittkowski [41] collection for testing nonlinear optimization algorithms. Finally,

QD is a test set created by us to measure the impact of the number of component functions on

the performance of LOWDER. Despite not being the most robust algorithm, LOWDER can solve

about 90% of the problems from MW with less than 20 simplex gradients of the objective

function, being the most efficient algorithm for this range of computational budget. In the

QD test set, LOWDER is the most efficient and robust algorithm. Although NOMAD is the

least efficient algorithm for budgets smaller than 40 simplex gradients, it outperforms MS-P

Conclusions and suggestions for future work 62

and matches LOWDER for larger budgets. Despite having similar performances for budgets of

up to 5 simplex gradients in the HS test set, in general, NOMAD had the best performance

and robustness, managing to solve practically all problems with a budget of 100 simplex

gradients. MS-P and LOWDER obtain similar performances, solving about 70% of the problems

with tolerance τ = 10−1 and little more than 60% of the problems considering smaller values

of τ . The worse performance of LOWDER can be explained by the fact that we employ only

linear models, and since the problems in HS are strongly nonlinear, this fact can impair the

acceptance phases of the step and the general progress of the algorithm.

Future work may include the estimation of bounds for the Hessian of minimum

norm underdetermined quadratic models. In [26], the authors obtained bounds for the pro-

jection of errors onto a specific linear subspace, which is not very useful in practical terms.

On the other hand, [27, p. 79], suggests that by using an overall poisedness constant for the

sample set, it is possible to establish bounds for the Hessian of the model. Another interesting

question is whether models constructed by support vector regression [72] using underdeter-

mined quadratic polynomials are able to satisfy Assumption 2.4 and their practical benefits

under noisy blackbox functions.

In order to increase the performance of LOWDER, we can implement the construction

of determined and underdetermined quadratic models, based on the mechanisms proposed

by Powell [59] for the BOBYQA solver, and also modified versions of RESCUE, to avoid the full

reconstruction of the models. In addition, we can improve the implementation of the linear

models using more efficient ways to calculate and update the QR factorization. Another

possible advance is the usage of the sampling strategies presented by Hough and Roberts

[42] and thus avoiding situations for which Λ-poised sets are impossible to be constructed in

constrained problems.

Furthermore, we can implement a mechanism of long-term memory and store

relevant information about old sample points, such as objective function value, component

function index, and stationarity measure. This information can be useful in constructing

new sample sets and saving objective function evaluations. When interpreting LOVO as

a nonsmooth composite minimization problem, such a memory mechanism can also add

information about the minimum function when we calculate the function fmin completely,

Conclusions and suggestions for future work 63

similar to what happens in the manifold sampling algorithms proposed in [44, 46].

Finally, it is well known that the Low Order-Value Optimization can generalize the

nonlinear least-squares problem, as it allows us to discard observations considered outliers,

as we can see in [2, 15, 31, 66]. Therefore, we can enhance LOWDER to take advantage of the

structure of the least-squares problem, such as well-established algorithms like DFO-GN [13],

POUNDERS [74], and DFBOLS [77], making it a competitive solver in this segment.

Bibliography

[1] Roberto Andreani, José Mario Mart́ınez, and Leandro Mart́ınez. Trust-region superpo-

sition methods for protein alignment. IMA journal of numerical analysis, 28(4):690–710,

2008.

[2] Roberto Andreani, José Mario Mart́ınez, Leandro Mart́ınez, and Flávio S. Yano. Low

order-value optimization and applications. Journal of Global Optimization, 43(1):1–22,

2009.

[3] Roberto Andreani, Gabriel Haeser, and José Mario Mart́ınez. On sequential optimality

conditions for smooth constrained optimization. Optimization, 60(5):627–641, 2011.

[4] Maŕıa B. Arouxét, Nélida Echebest, and Elvio A. Pilotta. Active-set strategy in Powell’s

method for optimization without derivatives. Computational & Applied Mathematics,

30:171–196, 2011.

[5] Charles Audet and Warren Hare. Derivative-free and blackbox optimization. Springer,

2017.

[6] Charles Audet, Sébastien Le Digabel, Viviane Rochon Montplaisir, and Christophe

Tribes. Algorithm 1027: NOMAD version 4: Nonlinear optimization with the MADS

algorithm. Transactions on Mathematical Software, 48(3):35:1–35:22, 2022.

[7] Manuel Berkemeier and Sebastian Peitz. Derivative-free multiobjective trust region

descent method using radial basis function surrogate models. Mathematical and Com-

putational Applications, 26(2):31, 2021.

[8] Stephen C. Billups, Steven P. Dirkse, and Michael C. Ferris. A comparison of large scale

Bibliography 65

mixed complementarity problem solvers. Computational Optimization and Applications,

7(1):3–25, 1997.

[9] Ernesto G. Birgin and Jan M. Gentil. Evaluating bound-constrained minimization soft-

ware. Computational Optimization and Applications, 53(2):347–373, 2012.

[10] Ernesto G. Birgin, Luis F. Bueno, Natasa Krejić, and José Mario Mart́ınez. Low order-

value approach for solving var-constrained optimization problems. Journal of Global

Optimization, 51(4):715–742, 2011.

[11] Ernesto G. Birgin, Natasa Krejić, and José Mario Mart́ınez. Inexact restoration for

derivative-free expensive function minimization and applications. J. Comp. Appl. Math.,

410:114193, 2022.

[12] Luis F. Bueno, Ana Friedlander, José Mario Mart́ınez, and Francisco N. C. Sobral.

Inexact restoration method for derivative-free optimization with smooth constraints.

SIAM Journal on Optimization, 23(2):1189–1213, 2013.

[13] Coralia Cartis and Lindon Roberts. A derivative-free Gauss-Newton method. Mathe-

matical Programming Computation, 11(4):631–674, 2019.

[14] Coralia Cartis and Lindon Roberts. Scalable subspace methods for derivative-free non-

linear least-squares optimization. arXiv:2102.12016, 2021.

[15] Emerson V. Castelani, Ronaldo Lopes, Wesley V. I. Shirabayashi, and Francisco N. C.

Sobral. A robust method based on lovo functions for solving least squares problems.

Journal of Global Optimization, 80(2):387–414, 2021.

[16] Frank H. Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

[17] Paulo D. Conejo, Elizabeth W. Karas, Lucas G. Pedroso, Ademir A. Ribeiro, and Mael

Sachine. Global convergence of trust-region algorithms for convex constrained minimiza-

tion without derivatives. Applied Mathematics and Computation, 220:324–330, 2013.

Bibliography 66

[18] Paulo D. Conejo, Elizabeth W. Karas, and Lucas G. Pedroso. A trust-region derivative-

free algorithm for constrained optimization. Optimization Methods and Software, 30(6):

1126–1145, 2015.

[19] Andrew R. Conn and Philippe L. Toint. An algorithm using quadratic interpolation for

unconstrained derivative free optimization. In Nonlinear optimization and applications,

pages 27–47. Springer, 1996.

[20] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Global convergence of a

class of trust region algorithms for optimization with simple bounds. SIAM Journal on

Numerical Analysis, 25(2):433–460, 1988.

[21] Andrew R. Conn, Nicholas I. M. Gould, Annick Sartenaer, and Philippe L. Toint. Con-

vergence properties of minimization algorithms for convex constraints using a structured

trust region. SIAM Journal on Optimization, 6(4):1059–1086, 1996.

[22] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Numerical experiments

with the LANCELOT package (Release A) for large-scale nonlinear optimization. Math-

ematical Programming, 73(1):73–110, 1996.

[23] Andrew R. Conn, Katya Scheinberg, and Philippe L. Toint. On the convergence of

derivative-free methods for unconstrained optimization. Approximation theory and op-

timization: tributes to MJD Powell, pages 83–108, 1997.

[24] Andrew R. Conn, Katya Scheinberg, and Philippe L. Toint. A derivative free optimiza-

tion algorithm in practice. In 7th AIAA/USAF/NASA/ISSMO Symposium on Multi-

disciplinary Analysis and Optimization, page 4718, 1998.

[25] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-region methods.

SIAM, 2000.

[26] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. Geometry of sample sets in

derivative-free optimization: polynomial regression and underdetermined interpolation.

IMA J. Numer. Anal., 28(4):721–748, 2008.

Bibliography 67

[27] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. Introduction to derivative-free

optimization. SIAM, Philadelphia, 2009.

[28] Andrew R. Conn, Katya Scheinberg, and Lúıs N. Vicente. Global convergence of general

derivative-free trust-region algorithms to first-and second-order critical points. SIAM

Journal on Optimization, 20(1):387–415, 2009.

[29] Frank E. Curtis, Tim Mitchell, and Michael L. Overton. A BFGS-SQP method for

nonsmooth, nonconvex, constrained optimization and its evaluation using relative min-

imization profiles. Optimization Methods and Software, 32(1):148–181, 2017.

[30] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with per-

formance profiles. Mathematical programming, 91(2):201–213, 2002.

[31] Edilaine S. Duran. Uma classe de métodos do tipo Levenberg-Marquardt com passos

múltiplos para problemas de Otimização de Menor Valor Ordenado. Master’s thesis,

Universidade Estadual de Maringá, Maringá PR BR, 2020.

[32] Giovanni Fasano, José L. Morales, and Jorge Nocedal. On the geometry phase in model-

based algorithms for derivative-free optimization. Optimization Methods & Software, 24

(1):145–154, 2009.

[33] Priscila S. Ferreira, Elizabeth W. Karas, and Mael Sachine. A globally convergent

trust-region algorithm for unconstrained derivative-free optimization. Computational

and Applied Mathematics, 34(3):1075–1103, 2015.

[34] Priscila S. Ferreira, Elizabeth W. Karas, Mael Sachine, and Francisco N. C. Sobral.

Global convergence of a derivative-free inexact restoration filter algorithm for nonlinear

programming. Optimization, 66(2):271–292, 2017.

[35] Rohollah Garmanjani, Diogo Júdice, and Lúıs N. Vicente. Trust-region methods without

using derivatives: worst case complexity and the nonsmooth case. SIAM Journal on

Optimization, 26(4):1987–2011, 2016.

Bibliography 68

[36] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. CUTEr and SifDec:

A constrained and unconstrained testing environment, revisited. ACM Transactions on

Mathematical Software (TOMS), 29(4):373–394, 2003.

[37] Geovani N. Grapiglia, Jinyun Yuan, and Ya-xiang Yuan. A derivative-free trust-region

algorithm for composite nonsmooth optimization. Computational and Applied Mathe-

matics, 35(2):475–499, 2016.

[38] Serge Gratton, Philippe L. Toint, and Anke Tröltzsch. An active-set trust-region method

for derivative-free nonlinear bound-constrained optimization. Optimization Methods and

Software, 26(4-5):873–894, 2011.

[39] Serge Gratton, Clément W. Royer, Lúıs N. Vicente, and Zaikun Zhang. Complexity

and global rates of trust-region methods based on probabilistic models. IMA Journal of

Numerical Analysis, 38(3):1579–1597, 2018.

[40] Elzain A. E. Gumma, Mohsin H. A. Hashim, and M. Montaz Ali. A derivative-free

algorithm for linearly constrained optimization problems. Computational Optimization

and Applications, 57(3):599–621, 2014.

[41] Willi Hock and Klaus Schittkowski. Test examples for nonlinear programming codes.

Journal of optimization theory and applications, 30(1):127–129, 1980.

[42] Matthew Hough and Lindon Roberts. Model-based derivative-free methods for convex-

constrained optimization. SIAM Journal on Optimization, 32(4):2552–2579, 2022.

[43] Ching-hsiang Hung and Thomas L. Markham. The Moore-Penrose inverse of a parti-

tioned matrix M=(ADBC). Linear Algebra and its Applications, 11(1):73–86, 1975.

[44] Jeffrey Larson and Matt Menickelly. Structure-aware methods for expensive derivative-

free nonsmooth composite optimization. arXiv:2207.08264, 2022.

[45] Jeffrey Larson, Matt Menickelly, and Stefan M. Wild. Derivative-free optimization meth-

ods. Acta Numerica, 28:287–404, 2019.

Bibliography 69

[46] Jeffrey Larson, Matt Menickelly, and Baoyu Zhou. Manifold sampling for optimizing

nonsmooth nonconvex compositions. SIAM Journal on Optimization, 31(4):2638–2664,

2021.

[47] José Mario Mart́ınez. Order-value optimization and new applications. In ICIAM 07: 6th

International Conference on Industrial and Applied Mathematics, Zürich, Switzerland,

16-20 July 2007: Invited Lectures, pages 279–296. European Mathematical Society, 2009.

[48] José Mario Mart́ınez. Generalized order-value optimization. Top, 20(1):75–98, 2012.

[49] Leandro Mart́ınez, Roberto Andreani, and José Mario Mart́ınez. Convergent algorithms

for protein structural alignment. BMC bioinformatics, 8(1):1–15, 2007.

[50] Hans D. Mittelmann. Benchmarking interior point LP/QP solvers. Optimization Meth-

ods and Software, 11(1-4):655–670, 1999.

[51] Alexis Montoison, Pierrick Pascal, and Ludovic Salomon. NOMAD.jl: A Julia interface

for the constrained blackbox solver NOMAD. https://github.com/bbopt/NOMAD.jl,

July 2020.

[52] Jorge J. Moré and Stefan M. Wild. Benchmarking derivative-free optimization algo-

rithms. SIAM Journal on Optimization, 20(1):172–191, 2009.

[53] Stephen G. Nash and Jorge Nocedal. A numerical study of the limited memory BFGS

method and the truncated-Newton method for large scale optimization. SIAM Journal

on Optimization, 1(3):358–372, 1991.

[54] John A. Nelder and Roger Mead. A simplex method for function minimization. The

computer journal, 7(4):308–313, 1965.

[55] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer Science &

Business Media, 2006.

[56] Bruna L. Pelegrini, Frederico M. B. Fernandes, Thiago Fernandes, et al. Novel green

strategy to improve the hydrophobicity of cellulose nanocrystals and the interfacial elas-

ticity of pickering emulsions. Cellulose, 28(10):6201–6238, 2021.

Bibliography 70

[57] Michael J. D. Powell. UOBYQA: unconstrained optimization by quadratic approxima-

tion. Mathematical Programming, 92(3):555–582, 2002.

[58] Michael J. D. Powell. The NEWUOA software for unconstrained optimization without

derivatives. In Large-scale nonlinear optimization, pages 255–297. Springer, Boston,

2006.

[59] Michael J. D. Powell. The BOBYQA algorithm for bound constrained optimization

without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cam-

bridge, pages 26–46, 2009.

[60] Michael J. D. Powell. On the convergence of trust region algorithms for unconstrained

minimization without derivatives. Computational Optimization and Applications, 53(2):

527–555, 2012.

[61] Michael J. D. Powell. On fast trust region methods for quadratic models with linear

constraints. Mathematical Programming Computation, 7(3):237–267, 2015.

[62] Ademir A. Ribeiro and Elizabeth W. Karas. Otimização cont́ınua: Aspectos Teóricos e

Computacionais. Cengage Learning, 2013.

[63] Luis M. Rios and Nikolaos V. Sahinidis. Derivative-free optimization: a review of al-

gorithms and comparison of software implementations. Journal of Global Optimization,

56(3):1247–1293, 2013.

[64] Jong-Hyun Ryu and Sujin Kim. A derivative-free trust-region method for biobjective

optimization. SIAM Journal on Optimization, 24(1):334–362, 2014.

[65] Katya Scheinberg and Philippe L. Toint. Self-correcting geometry in model-based algo-

rithms for derivative-free unconstrained optimization. SIAM Journal on Optimization,

20(6):3512–3532, 2010.

[66] Anderson E. Schwertner. O método de Levenberg-Marquardt para problemas de

otimização de menor valor ordenado. Master’s thesis, Universidade Estadual de Maringá,

Maringá PR BR, 2019.

Bibliography 71

[67] Anderson E. Schwertner and Francisco N. C. Sobral. On complexity constants of linear

and quadratic models for derivative-free trust-region algorithms. arXiv:2205.11358, 2022.

[68] Wiliam Spendley, George R. Hext, and Francis R. Himsworth. Sequential application

of simplex designs in optimisation and evolutionary operation. Technometrics, 4(4):

441–461, 1962.

[69] Jana Thomann and Gabriele Eichfelder. A trust-region algorithm for heterogeneous

multiobjective optimization. SIAM Journal on Optimization, 29(2):1017–1047, 2019.

[70] Anke Tröltzsch. An active-set trust-region method for bound-constrained nonlinear opti-

mization without derivatives applied to noisy aerodynamic design problems. PhD thesis,

Institut National Polytechnique de Toulouse-INPT, 2011.

[71] Anke Tröltzsch, Caslav Ilic, and Martin Siggel. SQPDFO-a Trust-Region Based Algo-

rithm for Generally-Constrained Derivative-Free Optimization. Proceedings of the 13th

AMiTaNS, 2021.

[72] Adriano Verdério, Elizabeth W. Karas, Lucas G. Pedroso, and Katya Scheinberg. On

the construction of quadratic models for derivative-free trust-region algorithms. EURO

J. Comput. Optim., 5(4):501–527, 2017.

[73] Stefan M. Wild. Derivative-free optimization algorithms for computationally expensive

functions. PhD thesis, Cornell University, Ithaca, 2008.

[74] Stefan M. Wild. POUNDERS in TAO: Solving Derivative-Free Nonlinear Least-Squares

Problems with POUNDERS, chapter 40, pages 529–539. MOS-SIAM Series on Opti-

mization. SIAM, 2017.

[75] Stefan M. Wild, Rommel G. Regis, and Christine A. Shoemaker. ORBIT: Optimiza-

tion by radial basis function interpolation in trust-regions. SIAM Journal on Scientific

Computing, 30(6):3197–3219, 2008.

[76] David H. Winfield. Function and Functional Minimization by Interpolation in Data

Tables. PhD thesis, Harvard University, Cambridge MA USA, 1969.

Bibliography 72

[77] Hongchao Zhang, Andrew R. Conn, and Katya Scheinberg. A derivative-free algorithm

for least-squares minimization. SIAM Journal on Optimization, 20(6):3555–3576, 2010.

Appendix A

Hock-Schittkowski selected problems

Prob. Objective function Constraints Initial guess

1 f1(x) = 100(x2 − x2
1)

2 + (1− x1)2 −1.5 ≤ x2 [−2, 1]

3 f3(x) = x2 + 10−5(x2 − x1)2 0 ≤ x2 [10, 1]

4 f4(x) =
1
3
(x1 + 1)3 + x2 1 ≤ x1 [1.125, 0.125]

0 ≤ x2

5 f5(x) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1 −1.5 ≤ x1 ≤ 4 [0, 0]

−3 ≤ x2 ≤ 3

25 f25(x) =

99X

i=1

(gi(x))
2 , 0.1 ≤ x1 ≤ 100 [100, 12.5, 3]

where gi(x) = −0.01i+ exp

− x−1

1 (ui − x2)x3
�
, 0 ≤ x2 ≤ 25.6

and ui = 25 + (−50 ln (0.01i))
2
3 , for i = 1, . . . , 99 0 ≤ x3 ≤ 5

38 f38(x) = 100(x2 − x2
1)

2 + (1− x1)2 + 90(x4 − x2
3)

2 −10 ≤ xi ≤ 10, [−3,−1,−3,−1]

+(1− x3)2 + 10.1

(x2 − 1)2 + (x4 − 1)2

�
for i = 1, . . . , 4

+19.8(x2 − 1)(x4 − 1)

45 f45(x) = 2− 1
120

x1x2x3x4x5 0 ≤ x1 ≤ i, [2, 2, 2, 2, 2]

for i = 1, . . . , 5

110 f110(x) =

10X

i=1

�
ln (xi − 2)2 + ln (10− xi)

2
�
−




10Y

j=1

xi




0.2

2.001 ≤ xi ≤ 9.999, [9, . . . , 9]

for i = 1, . . . , 10

Table A.1: Selected problems from Hock and Schittkowski collection, see [41].

Appendix B

HS test set problems

Prob. Dim. Comp. functions Lower bound Upper bound Initial guess

1 2 f1, f3]−∞, 0]] +∞,+∞[[−2, 1]

2 2 f1, f4 [1, 0]] +∞,+∞[[1.125, 0.125]

3 2 f1, f5 [−1.5,−1.5] [4, 3] [0, 0]

4 3 f1, f25 [0.1, 0, 0] [100, 25.6, 5] [100, 12.5, 3]

5 4 f1, f38 [−10,−1.5,−10,−10] [10, 10, 10, 10] [−3,−1,−3,−1]

6 5 f1, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

7 10 f1, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

8 2 f3, f4 [1, 0]] +∞,+∞[[1.125, 0.125]

9 2 f3, f5 [−1.5, 0] [4, 3] [0, 0]

10 3 f3, f25 [0.1, 0, 0] [100, 25.6, 5] [100, 12.5, 3]

11 4 f3, f38 [−10, 0,−10,−10] [10, 10, 10, 10] [−3,−1,−3,−1]

12 5 f3, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

13 10 f3, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

14 2 f4, f5 [1, 0] [4, 3] [1.125, 0.125]

15 3 f4, f25 [0.1, 0, 0] [100, 25.6, 5] [100, 12.5, 3]

16 4 f4, f38 [1, 0,−10,−10] [10, 10, 10, 10] [3, 1,−3,−1]

17 10 f4, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

18 4 f5, f38 [−1.5,−3,−10,−10] [4, 3, 10, 10] [−3,−1,−3,−1]

19 5 f5, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

20 4 f25, f38 [0.1, 0, 0,−10] [10, 10, 5, 10] [−3,−1,−3,−1]

Table B.1: Problems 1 to 20 of HS test set with fi, i ∈ I, described in Table A.1.

HS test set problems 75

Prob. Dim. Comp. functions Lower bound Upper bound Initial guess

21 5 f25, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

22 5 f38, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

23 10 f38, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

24 2 f1, f3, f4 [1, 0]] +∞,+∞[[10, 1]

25 2 f1, f3, f5 [−1.5, 0] [4, 3] [10, 1]

26 3 f1, f3, f25 [0.1, 0, 0] [100, 25.6, 5] [100, 12.5, 3]

27 4 f1, f3, f38 [−10, 0,−10,−10] [10, 10, 10, 10] [−3,−1,−3,−1]

28 5 f1, f3, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

29 10 f1, f3, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

30 2 f1, f4, f5 [1, 0] [4, 3] [1.125, 0.125]

31 3 f1, f4, f25 [1, 0, 0] [100, 25.6, 5] [100, 12.5, 3]

32 4 f1, f4, f38 [1, 0,−10,−10] [10, 10, 10, 10] [3, 1,−3,−1]

33 10 f1, f4, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

34 4 f1, f5, f38 [−1.5, 0,−10,−10] [4, 3, 10, 10] [−3,−1,−3,−1]

35 5 f1, f5, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

36 4 f1, f25, f38 [0.1, 0, 0,−10] [10, 10, 5, 10] [−3,−1,−3,−1]

37 5 f1, f25, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

38 5 f1, f38, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

39 10 f1, f38, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

40 2 f3, f4, f5 [1, 0] [4, 3] [1.125, 0.125]

41 3 f3, f4, f25 [1, 0, 0] [100, 25.6, 5] [100, 12.5, 3]

42 4 f3, f4, f38 [1, 0,−10,−10] [10, 10, 10, 10] [3, 1,−3,−1]

43 10 f3, f4, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

44 4 f3, f5, f38 [−1.5, 0,−10,−10] [4, 3, 10, 10] [−3,−1,−3,−1]

45 5 f3, f5, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

46 4 f3, f25, f38 [0.1, 0, 0,−10] [10, 10, 5, 10] [−3,−1,−3,−1]

47 5 f3, f25, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

48 5 f3, f38, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

49 10 f3, f38, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

50 3 f4, f5, f25 [1, 0, 0] [4, 3, 5] [100, 12.5, 3]

Table B.2: Problems 21 to 50 of HS test set with fi, i ∈ I, described in Table A.1.

HS test set problems 76

Prob. Dim. Comp. functions Lower bound Upper bound Initial guess

51 4 f4, f5, f38 [1, 0,−10,−10] [4, 3, 10, 10] [−3,−1,−3,−1]

52 5 f4, f5, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

53 4 f4, f25, f38 [1, 0, 0,−10] [10, 10, 5, 10] [−3,−1,−3,−1]

54 5 f4, f25, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

55 5 f4, f38, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

56 4 f5, f25, f38 [0.1, 0, 0,−10] [4, 3, 5, 10] [−3,−1,−3,−1]

57 5 f5, f25, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

58 5 f5, f38, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

59 5 f25, f38, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

60 2 f1, f3, f4, f5 [1, 0] [4, 3] [1.125, 0.125]

61 3 f1, f3, f4, f25 [1, 0, 0] [100, 25.6, 5] [100, 12.5, 3]

62 4 f1, f3, f4, f38 [1, 0,−10,−10] [10, 10, 10, 10] [3, 1,−3,−1]

63 10 f1, f3, f4, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

64 3 f1, f3, f5, f25 [0.1, 0, 0] [4, 3, 5] [100, 12.5, 3]

65 4 f1, f3, f5, f38 [−1.5, 0,−10,−10] [4, 3, 10, 10] [−3,−1,−3,−1]

66 5 f1, f3, f5, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

67 4 f1, f3, f25, f38 [0.1, 0, 0,−10] [10, 10, 5, 10] [−3,−1,−3,−1]

68 5 f1, f3, f25, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

69 5 f1, f3, f38, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

70 10 f1, f3, f38, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

71 3 f1, f4, f5, f25 [1, 0, 0] [4, 3, 5] [100, 12.5, 3]

72 4 f1, f4, f5, f38 [1, 0,−10,−10] [4, 3, 10, 10] [−3,−1,−3,−1]

73 4 f1, f4, f25, f38 [1, 0, 0,−10] [10, 10, 5, 10] [−3,−1,−3,−1]

74 10 f1, f4, f38, f110 [2.001, . . . , 2.001] [9.999, . . . , 9.999] [9, . . . , 9]

75 4 f1, f5, f25, f38 [0.1, 0, 0,−10] [4, 3, 5, 10] [−3,−1,−3,−1]

76 5 f1, f5, f25, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

77 5 f1, f5, f38, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

78 5 f1, f25, f38, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

79 3 f3, f4, f5, f25 [1, 0, 0] [4, 3, 5] [100, 12.5, 3]

80 4 f3, f4, f5, f38 [1, 0,−10,−10] [4, 3, 10, 10] [−3,−1,−3,−1]

Table B.3: Problems 51 to 80 of HS test set with fi, i ∈ I, described in Table A.1.

HS test set problems 77

Prob. Dim. Comp. functions Lower bound Upper bound Initial guess

81 4 f3, f4, f25, f38 [1, 0, 0,−10] [10, 10, 5, 10] [−3,−1,−3,−1]

82 4 f3, f5, f25, f38 [0.1, 0, 0,−10] [4, 3, 5, 10] [−3,−1,−3,−1]

83 5 f3, f5, f25, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

84 5 f3, f5, f38, f45 [0, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

85 5 f3, f25, f38, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

86 4 f4, f5, f25, f38 [1, 0, 0,−10] [4, 3, 5, 10] [−3,−1,−3,−1]

87 5 f5, f25, f38, f45 [0.1, 0, 0, 0, 0] [1, 2, 3, 4, 5] [2, 2, 2, 2, 2]

Table B.4: Problems 81 to 87 of HS test set with fi, i ∈ I, described in Table A.1.

Appendix C

Data profiles for MW test set

Figure C.1: Data profile for MW test set with tolerance τ = 10−1.

Data profiles for MW test set 79

Figure C.2: Data profile for MW test set with tolerance τ = 10−3.

Figure C.3: Data profile for MW test set with tolerance τ = 10−5.

Data profiles for MW test set 80

Figure C.4: Data profile for MW test set with tolerance τ = 10−7.

Appendix D

Data profiles for HS test set

Figure D.1: Data profile for HS test set with tolerance τ = 10−1.

Data profiles for HS test set 82

Figure D.2: Data profile for HS test set with tolerance τ = 10−3.

Figure D.3: Data profile for HS test set with tolerance τ = 10−5.

Data profiles for HS test set 83

Figure D.4: Data profile for HS test set with tolerance τ = 10−7.

Appendix E

Data profiles for QD test set

Figure E.1: Data profile for QD10 test subset with tolerance τ = 10−5.

Data profiles for QD test set 85

Figure E.2: Data profile for QD25 test subset with tolerance τ = 10−5.

Figure E.3: Data profile for QD50 test subset with tolerance τ = 10−5.

Data profiles for QD test set 86

Figure E.4: Data profile for QD75 test subset with tolerance τ = 10−5.

Figure E.5: Data profile for QD100 test subset with tolerance τ = 10−5.

