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Abstract

Let (M,⟨·, ·⟩) be a Riemannian manifold. The inner product ⟨·, ·⟩p on the tangent space

TpM induces a isomorphism Z : TpM → T ∗
p M between the tangent and cotangent spaces which

is the Legendre transform of the Lagrangian v 7→ 1
2⟨v,v⟩p. This isomorphism extends to the

Legendre transform between the tangent bundle T M and the cotangent bundle T ∗M and we

use it to transfer elements of Riemannian geometry from T M to T ∗M. In this work we study

the geodesic equation on T ∗M through Hamiltonian formalism. We also study the Riemannian

connection, curvature and Jacobi fields on T ∗M.

Finally, we generalize a result contained in the paper [25] of Vladimir Kozlov. In his paper

it was proved that the Lie group G with a left-invariant Riemannian metric is unimodular if

and only if the Euler-Arnold flow preserve the Haar measure on the Lie algebra g∗. We prove

that this result holds also on the Riemannian sphere of g∗. Afterwards we consider g∗ with an

auxiliary Riemannian metric and we generalize the Kozlov paper for Lie groups with a left-

invariant Finsler structure.

Keywords: Lagrangian mechanics, Hamiltonian mechanics, geodesic equation, curvature,

Jacobi fields, Euler-Arnold equation, Finsler manifolds.



Resumo

Seja (M,⟨·, ·⟩) uma variedade Riemanniana. O produto interno ⟨·, ·⟩p no espaço tangente

TpM induz um isomorfismo Z : TpM → T ∗
p M entre o fibrado tangente e cotangente o qual é a

transformada de Legendre da função Lagrangiana v 7→ 1
2⟨v,v⟩p. Este isomorfismo se estende

a transformada de Legendre entre o fibrado tangente T M e o fibrado cotangente T ∗M, e é us-

ado para transferir elementos da geometria Riemanniana de T M para T ∗M. Neste trabalho

estudamos as equações das geodésicas em T ∗M via o formalismo Hamiltoniano. Também es-

tudamos a conexão Riemanniana, curvatura e campos de Jacobi em T ∗M.

Finalmente, nós generalizamos um resultado contido no artigo [25] do Vladimir Kozlov.

Em seu artigo, foi provado que um grupo de Lie G com uma métrica Riemanniana invariante

à esquerda é unimodular se, e somente se, o fluxo Euler-Arnold preserva a medida de Haar na

álgebra de Lie g∗. Nós provamos que este resultado é válido para a esfera Riemanniana de g∗.

Depois, consideramos g∗ com uma métrica Riemannian auxiliar e generalizamos o artigo do

Koslov para grupos de Lie com uma estrutura de Finsler invariante à esquerda.

Palavras-chave: mecânica Lagrangiana, mecânica Hamiltoniana, equação da geodésica,

curvatura, campos de Jacobi, equações de Euler-Arnold, variedade de Finsler.
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Introduction

The beginning of the Riemannian geometry is dated on June 10 of 1854. Friedrich Bernhard

Riemann delivered to the university of Göttingen a lecture entitled Über die Hypothesen, welche

der Geometrie zu Grunde liegen (On the Hypothesis which lie ate the Foundations of Geome-

try, see [35]). Riemann had been born one year after the paper Disquisitiones generales circa

superficies curves published by Karl Friedrich Gauss in 1827, see [18]. In paper [18], Gauss

starts the study of surfaces based only on the first fundamental form. In [35], Riemannian ex-

tended the notions treated by Gauss for general manifolds. Its important to note the concept of

differentiable manifolds was not well established at that time.

The study of geodesics, curvatures and their relations are among the most fundamental

concepts in the Riemannian geometry. Inspired by the classical mechanics, the Lagrangian

mechanics was introduced by the mathematician and astronomer Joseph-Louis Lagrange in

his 1788 work Mécanique analytique, see [27]. The Lagrangian formalism allow us to see

geodesic as parametrized smooth curves with minimum arc length. Equivalently, geodesics is

a parametrized smooth curves with null acceleration. Let (M,⟨·, ·⟩) be a Riemannian manifold,

TxM the tangent space of M in x and T ∗
x M the cotangent space of M in x. Let T M = {(x,y) :

x ∈ M and y ∈ TxM} and T ∗M = {(x,ξ ) : x ∈ M and ξ ∈ TxM} be the tangent and cotangent

bundles of M respectively. Joining the Riemannian geometry and the Lagrangian formalism, if

γ(t) = (γ1(t), . . . ,γn(t)) is a parametrized smooth curve on a open set U ⊂ M that is solution of

the second order differential equation on the tangent bundle T M:

γ̈
k(t)+Γ

k
i jγ̇

i(t)γ̇ j(t) = 0 (1)

for k = 1, . . . ,n then γ is a geodesic on M. (For more details see [10] and [13]).

Sir William Rowan Hamilton introduced in 1834 the Hamiltonian mechanics as a refor-

mulation of Lagrangian mechanics, see [20]. The principal goal of the formalism given by

Hamilton is to eventually simplify the Lagrangian formalism. As consequence, the Hamil-
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ton formalism stimulated the born of the Symplectic Geometry, that is, a smooth manifold

with a non-degenerated closed 2-form. We can summarize the Hamiltonian Geometry as a ge-

ometry of symplectic manifolds with applications of momentum. The goal of Hamilton was

achieved for some applications, as example via the Legendre transform L : T M → T ∗M defined

by L(p,v) = (p,⟨v, ·⟩p) for Riemannian manifolds. The geodesic equations (1), is simplified as

a first order differential equation in the cotangent bundle T ∗M:

 γ̇ j(t) = gi j(γ(t))ξi(t)

ξ̇ j(t) = 1
2

∂gik

∂x j (γ(t))γ̇ i(t)γ̇k(t)
(2)

where ξ (t) = (ξ1(t), . . . ,ξn(t)) ∈ T ∗
γ(t)M and gi j is the inverse coefficients of the Riemannian

metric ⟨·, ·⟩. The equation (2), stimulates other questions about the simplification of invariants

in Riemannian geometry, as such curvatures and Jacobi fields. In Chapter 4 we give an answer

for these questions.

In 1917, Paul Finsler introduce in they doctoral thesis Über Kurven und Flächen in all-

gemeinen Räumen (On curves and surfaces in general spaces) a generalization of Riemannian

metrics where the length function depends on a Minkowski norm in each tangent space, see [16].

Paul Finsler consider a version of the structure proposed by Riemann in [35] and considers a

map F : T M → [0,+∞) satisfying the following properties:

(i) F is C∞ on the slit tangent bundle T M \{0};

(ii) F(x,λy) = λF(x,y) for all λ > 0;

(iii) The n×n Hessian matrix

(gi j) =

([
1
2

F2
]

yiy j

)
is positive-definite at every point of T M \{0}.

A smooth manifold with such a structure is called Finsler manifold. The terminology "Finsler

spaces" and "Finsler manifold" was introduced by Élie Cartan in his book Les espaces de Finsler

(Finsler Spaces) in 1834, see [8]. In contrast to the Riemannian geometry, the gi j in the Finsler

structure are not parametrized by points of M, but by directions in T M. This allow us to see

the Finsler manifolds as a geometry such that the inner product does not depends only of the
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point p ∈ M, but also depends of the direction v ∈ TpM. The Finsler geometry has also some

analogues of many natural objects in Riemannian geometry. For example, arc-length, geodesics,

curvature, connections and covariant derivative, generalize for Finsler geometry. But normal

coordinates do not have an analogue for Finsler manifolds, see [38]. Another difference between

these two geometries is that if the Finsler structure is not Riemannian, there is no connection

which is symmetrical and compatible with the metric, and there is no canonical volume element

associated to the Finsler structure, see [6]. The Finsler geometry has many applications in both

physics and applied sciences, see [3] [14], [23] and [26].

In 1765, Leonhard Euler showed in [15] that the motion of a rigid body in three dimensional

Euclidean space is described as geodesics in the group of rotations endowed with a left-invariant

metric. Vladimir Arnold rediscovered these equations in his seminal paper [5] of 1966. Let G

be a Lie group with Lie algebra g. The work of Arnold translated the equation given by Euler

to general Lie groups, including the infinite dimensional case, endowed with a left-invariant

Riemannian metric. Formally, Arnold considered the geodesic equations (2) in the Hamiltonian

formalism and applied for Lie groups with a left-invariant metric, resulting in the Euler-Arnold

equations

ξ̇ (t) =−ad∗(ξ (t)\)ξ (t) (3)

where \ is the musical isomorphism induced by the Riemannian metric. In 1988, Valery Kozlov

observed in [25] that the flow associated to the Euler-Arnold equations (3) preserves the volume

of the Euclidean space g∗ if and only if G is a unimodular Lie group.

Since the Hamiltonian formalism is also equivalent to Lagrangian formalism for Finsler

manifolds, this allow us to consider the Euler-Arnold equation (3) in Finsler structures and

search similar properties that Kozlov found in [25] for Finsler manifolds. The flow associated

to (3) remains in the spheres of (g∗,F∗), where F∗ is the dual norm of F , because the energy

functional is preserved along this flow. In order to study Koslov’s type problem in Finsler setup,

we chose an auxiliary inner product ⟨·, ·⟩∗ on g∗ in order to have a volume element on g∗ (Finsler

structures doesn’t provide natural volume elements). Our results don’t depend on this choice.

In Chapter 5 we proved that

(i) Koslov’s result also holds in Riemannian case when the flow is restricted to SF∗ .

(ii) Koslov’s result can be generalized for the Finsler setting.

Now we present two recent works that are related to this work. The study of Hamiltonian
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formalism in Finsler manifolds can be generalized for C0-Finsler structures, that is, a continuous

function F : T M → R such that F(x, ·) : TxM → R is a map satisfying:

(i) if F(x,y) = 0 then y = 0;

(ii) F(x,λy) = λF(x,y), for every λ ≥ 0 and y ∈ TxM;

(iii) F(x,y+ z)≤ F(x,y)+F(x,z) for every y,z ∈ TxM.

Assuming that a C0-Finsler structure has some kind of horizontal differentiability in [37], what

the authors get is that the Pontryagin’s maximum principle (see [32]) of the optimal control

theory can be applied and we can generalize the geodesic field of Riemannian Geometry. This

study of C0-Finsler structures looks very promising due to its differences with the Riemannian

Geometry. For example, the behavior of geodesics observed in Riemann and Finsler manifolds

are not satisfied in C0-Finsler manifolds. Also, the Hamiltonian formalism its not equivalent to

Lagrangian manifolds for C0-Finsler structures and in many cases the former works better (See

Subsections 9.1 and 9.2 of [37]).

In [33], Prudencio used a control theory version of the Euler-Arnold equation for C0-Finsler

manifolds using the Pontryagin’s maximum principle and she studied conditions such that a so-

lution of the Euler-Arnold equation on g∗ determine the extremal uniquely on g. In addition, she

classifies the orbits of this version of Euler-Arnold equation for all three-dimensional connected

Lie groups with the L1-norm on g.

The text is organized as follows. In Chapter 1 we present preliminary concepts and fix some

notations. In Chapter 2 we prove the Darboux theorem and study basic concepts of Symplectic

Geometry. In Chapter 3 we develop the initial theory of Hamiltonian mechanics. In Section

3.4 we treat the equivalence between the Lagrangian and Hamiltonian formalisms. In Chapter

4 we study the effect of Legendre transform in the Riemannian geometrical objects such as

curvatures and Jacobi fields. In Chapter 5 we generalize a Kozlov result in [25] for Riemannian

spheres and for the Finsler setting.



CHAPTER 1

Preliminaries

In this chapter, we will establish some initial requisites for the dissertation. We will start

with tensors in Section 1.1 and with symplectic geometry in Section 1.2. After that, the nec-

essary objects of Riemannian geometry will be introduced in Section 1.3 and 1.4. The basics

concepts of Finsler geometry will be introduced in Section 1.5.

During this work, smooth means of class C∞ and the Einstein summation convention is in

place.

1.1 Tensors

In this section, we introduce the theory of tensors on finite dimensional vector spaces and

on differentiable manifolds (see [13] and [28]).

Let V be a n-dimensional real vector space and V∗ its dual space.

Definition 1.1.1. A tensor T of type (k, l) is a (k+ l)-linear form

T : V∗×·· ·V∗︸ ︷︷ ︸
k times

×V×·· ·×V︸ ︷︷ ︸
l times

→ R

The addition and scalar multiplication of tensors are defined in the natural way, which gives

the set of tensors of type (k, l) on V a vector space structure. This space will be denoted by

T (k,l)(V).

Definition 1.1.2. Let T be a tensor of type (k1, l1) and S a tensor of type (k2, l2) on V. The
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tensor product T ⊗S between T and S is a tensor of type (k1 + k2, l1 + l2) defined by

T ⊗S(α1, . . . ,αk1, . . . ,αk1+k2,v1, . . . ,vl1, . . . ,vl1+l2)

:= T (α1, . . . ,αk1,v1, . . . ,vl1)S(α
k1+1, . . . ,αk1+k2,vl1+1, . . . ,vl1+l2).

Definition 1.1.3. Let T be a tensor of type (k, l), where k, l > 0. The trace of T with respect to

the pair (i, j) is the tensor of type (k−1, l −1) defined as

(tr(i, j)T )(α
1, . . . ,αk−1,v1, . . . ,vl−1)

:= T (α1, . . . ,αi−1,es,α i, . . . ,αk,v1, . . . ,v j−1,es,v j, . . . ,vl)

where {e1, . . . ,en} is a basis of V and {e1, . . . ,en} is its dual basis.

Usually we denote just by tr the trace in the pair (k, l) of a (k, l)-tensor.

1.2 Smooth manifolds

The initial goal of this dissertation is to prove the Darboux theorem. This theorem states that

any symplectic manifold is locally the vector space R2n with a canonical symplectic structure.

The purpose of this section is to present some notations, concepts and results required for the

prove of the Darboux theorem. For more details, see [10], [28] and [39].

Let M be a n-dimensional smooth manifold. We will denote the space of smooth vector

fields in M by X(M). An integral curve of X ∈ X(M) is a smooth curve γ : I → M such that for

all t ∈ I

γ̇(t) = X(γ(t)).

The vector field is complete when for any p ∈ M, exist a integral curve γ : R → M such that

γ(0) = p.

Let X ∈ X(M) be a complete vector field. So, for all p ∈ M, there exist an unique integral

curve γp : R→ M such that γp(0) = p. Then, we can define the map

φt : M → M

p 7→ γp(t)
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for all t ∈ R. The application φt is not just a relation between a point p ∈ M and its integral

curve, but a diffeomorphism with inverse φ−t . The flow generated by a vector fields allow us to

define a type of derivative of Y with respect to another vector field X ∈ X(M).

Definition 1.2.1. Let X ∈ X(M) and denote by φt the flow of X. For any Y ∈ X(M) we define

the Lie derivative LXY of Y with respect to X by

(LXY )(p) :=
d
dt

∣∣∣
t=0

d(φ−t)φt(p)(Yφt(p)).

If we observe the expression of Lie bracket in local coordinates, we conclude that

LXY = [X ,Y ]

for any X ,Y ∈ X(M).

Now we can extend our study to general tensor in manifolds. For that we denote by X∗(M)

the space of smooth 1-forms on M. A section α : M → T ∗M is an element of X∗(M) if and only

if α(X) is a smooth map for all X ∈ X(M).

Definition 1.2.2. A tensor field T of type (k, l) on a manifold M is a correspondence that for

each point p ∈ M associates a tensor T (p) ∈ T (k,l)(TpM), i.e., given α1, . . . ,αk ∈ X∗(M) and

Y1, . . . ,Yl ∈ X(M) the map

T (α1, . . . ,αk,Y1, . . . ,Yl)

is a differentiable function on M and T is D(M)-linear in each coordinate, where D(M) = { f :

M → R : f is smooth}.

We denote by T (k,l)M the space of tensors of type (k, l) on M. Definitions 1.1.2 and 1.1.3

are preserved in the context of manifolds. We can see that any tensor T of type (k, l) on M is

local and punctual, because

T (α1, . . . ,αn,Y1, . . . ,Yn)(p) = T (p)(α1(p), . . . ,αn(p),Y1(p), . . . ,Yn(p)).

.

Definition 1.2.3. Let M and N be two smooth manifolds and ϕ : M → N be a smooth map. If T
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is a tensor of type (0, l), the pullback ϕ∗T of T by ϕ is defined by

(ϕ∗T )p(v1, . . . ,vl) = Tϕ(p)(dϕp(v1), . . . ,dϕp(vl)),

where p ∈ M and v1, . . . ,vl ∈ TpM.

An extension of Definition 1.2.1 for tensors of type (0, l) is

Definition 1.2.4. Let T be a tensor of type (0, l). We define the Lie derivative of T with respect

to X by

(LX T ) :=
d
dt

∣∣∣
t=0

(φ∗
t T )p = lim

t→0

d(φt)
∗
p(Tφt(p))−Tp

t

where φt is the flow of X.

Denote by Ωk(M) the D(M)-module of k-forms. We will suppose knowledge of the reader

about basic properties of Lie derivative of k-forms. The fundamental property of this derivative

is given by the Cartan magic formula:

Theorem 1.2.5 (Cartan magic formula). For all ω ∈ Ωk(M) and X ∈ X(M), we have that

LX ω = diX ω + iX dω

where iX : Ωk(M)→ Ωk−1(M) is the interior derivative defined as iX(ω) = ω(X , ·, . . . , ·).

Proof. See page 372 of [28].

This theorem is the main tool for the resolution of problems in symplectic geometry, which

dates back to Élie Cartan, the mathematician who invented the modern theory of differential

forms.

Let X ∈X(M) be a complete vector field and denote its flow by φt . Since φt is defined on R

due to the completeness of X , the map

Qt : Ω
k(M)→ Ω

k−1(M)

ω 7→ iX(φ∗
t ω)

is well-defined for every t ∈ R. Using the Cartan magic formula

d
dt

φ
∗
t ω = Qt(dω)+dQt(ω)
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where d is the exterior derivative. Define Q(ω) :=
∫ 1

0 Qt(ω)dt. Then

φ
∗
1 ω −ω = Q(dω)+dQ(ω). (1.2.1)

This is a nice application of Cartan magic formula when we consider complete vector fields.

But we can think in a family of diffeomorphism parametrized by an interval I. This give us the

notion of isotopy. Namely, a smooth map ρ : M × I → M is an isotopy if each ρt := ρ(·, t) :

M → M is a diffeomorphism with ρ0 = Id, where Id is the identity map. An isotopy can define

one family of vector fields, which is called time dependent vector field and is given by

Xt(p) :=
dρs

ds

∣∣∣
s=t

(ρ−1
t (p))

for any p ∈ M. In other words, Xt is a family of vector fields on M such that

dρt

dt
(p) = Xt(ρt(p)).

The family of time dependent vector field also satisfies a similar property as (1.2.1).

Proposition 1.2.6 (Isotopy formula). Let ρt : M → M an isotopy. Then, exist an operator Q :

Ωk(M)→ Ωk−1(M) such that

ρ
∗
1 ω −ω = dQω +Qdω.

Proof. See page 40 in [10].

Proposition 1.2.7. Let ρt : M → M be a isotopy and αt be a family of k-forms. Then,

d
dt

ρ
∗
t αt = ρ

∗
t

(
LXt αt +

dαt

dt

)

Proof. If f : I × I → M is a smooth map, then

d
dt

f (t, t) =
d
dx

∣∣∣
x=t

f (x, t)+
d
dy

∣∣∣
y=t

f (t,y).
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Thus,

d
dt

ρ
∗
t αt =

d
dx

∣∣∣
x=t

ρ
∗
x αt +

d
dy

∣∣∣
y=t

ρ
∗
t αy

= ρ
∗
t LXt αt +ρ

∗
t

(
dαt

dt

)
= ρ

∗
t

(
LXt αt +

dαt

dt

)
.

1.3 Riemannian Geometry

In this section, we define the geometrical objects in Riemannian geometry that will be con-

sidered in this dissertation. More details can be found in [13].

Let (M,⟨·, ·⟩) be a Riemannian manifold. Let ∇ be a connection on M, that is, a map

∇ : X(M)×X(M)→ X(M) satisfying:

(i) ∇ϕX+ψY Z = ϕ∇X Z +φ∇Y Z,

(ii) ∇X(Y +Z) = ∇XY +∇X Z,

(iii) ∇X(ϕY ) = ϕ∇XY +X(ϕ)Y ,

where X ,Y,Z ∈ X(M) and ϕ,ψ ∈ D(M).

If the connection ∇ satisfies the following conditions:

(i) (Compatibility) X⟨Y,Z⟩= ⟨∇XY,Z⟩+ ⟨Y,∇X ,Z⟩,

(ii) (Symmetry) ∇XY −∇Y X = [X ,Y ],

we say that ∇ is the Levi-Civita connection or the Riemannian connection.

Definition 1.3.1. A parametrized smooth curve γ : I → M is a geodesic at t0 if

∇γ ′γ
′ = 0 (1.3.1)

at the point t0. If γ satisfies (1.3.1) for all t ∈ I, we say that γ is a geodesic.
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The Riemannian curvature R on M is a rule that associates for each pair of smooth vector

fields X ,Y ∈ X(M) a map

R(X ,Y ) : X(M)→ X(M)

Z 7→ ∇Y ∇X Z −∇X ∇Y Z +∇[X ,Y ]Z

where ∇ is the Levi-Civita connection. We can observe that R(X ,Y ) is a D(M)-linear map and

R is D(M)-bilinear on X(M)×X(M). For p ∈ M, R(X ,Y ) depends only on X(p) and Y (p) and

it defines a linear map R(X(p),Y (p)) : TpM → TpM.

Let p ∈ M, σ be a two dimensional subspace of TpM and {u,v} a basis of σ . We define the

sectional curvature of σ by

K(σ) :=
⟨R(u,v)u,v⟩
|u∧ v|2

where |u∧ v|=
√
|u|2|v|2 −⟨u,v⟩2.

For any p ∈ M, let v = zn be an unit vector in TpM. We can find an orthonormal basis

{z1, . . . ,zn−1} of TpM that is orthogonal to v. The Ricci and scalar curvatures are given by:

Ricp(v) :=
1

n−1

n−1

∑
i=1

⟨R(v,zi)v,zi⟩,

K(p) :=
1
n

n

∑
j=1

Ricp(z j),

respectively, and they doesn’t depend on the choice of the orthonormal basis.

Let γ : I → M be a geodesic on M. We can connect the concepts of geodesics and curvature

of a Riemannian manifold by the following differential equation:

D2J
dt2 +R(γ ′(t),J(t))γ ′(t) = 0, (1.3.2)

where D
dt is the covariant derivative along γ . The differential equation (1.3.2) and the solution J

of (1.3.2) are called Jacobi equation and Jacobi vector field, respectively.

1.4 Riemannian Submanifolds

In this section we establish the basic theory of Riemannian submanifolds that will be used

throughout the book. The main object of this section is the second fundamental form of a
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Riemannian hypersurface with the induced metric. For more details, see [11] and [13].

Let M and N two differentiable manifolds with dimensions m and n respectively. A dif-

ferentiable map f : M → N is called an immersion if the differential d fp : TpM → Tf (p)N is

injective for all p ∈ M. In this case, it follows that m ≤ n. The number k = n−m is called

the codimension of f . Just for definitions, we will refer to f , or to f (M), as an immersed

submanifold

Let ⟨·, ·⟩M and ⟨·, ·⟩N be two Riemannian metrics on M and N respectively. An immersion

f : M → N is said to be an isometric immersion if

⟨X ,Y ⟩M = f ∗⟨X ,Y ⟩N (1.4.1)

for all X ,Y ∈ X(M).

If f : M → N is an immersion and ⟨·, ·⟩N is a Riemannian metric on N, then (1.4.1) defines

a Riemannian metric on M called the metric induced by f with respect to which f becomes an

isometric immersion.

Definition 1.4.1. Let (N,⟨·, ·⟩) be a Riemannian manifold, M ⊂ N be a smooth manifold and

i : M ↪→ N be the inclusion map. Consider M endowed with the Riemannian metric i∗⟨·, ·⟩. We

say that M is a Riemannian submanifold of N if the topology of M is the subspace topology.

If f : M → N is an isometric immersion, then for each p ∈ M exist a neighborhood U of p

such that f (U) is a Riemannian submanifold of N. To simplify the notation, we will identify U

with f (U) where U ⊂M is an open subset and f (U) is a Riemannian submanifold of N. We also

identify each X(p) ∈ TpM, p ∈ U with d fp(X(p)) ∈ Tf (p)N. For each p ∈ M, the Riemannian

metric in TpN decomposes the tangent space in a direct sum

TpN = TpM⊕ (TpM)⊥

where (TpM)⊥ is the orthogonal complement of TpM in TpN.

If X(p) ∈ TpN, p ∈ M we can write

X(p) = X(p)T +X(p)⊥, X(p)T ∈ TpM, X(p)⊥ ∈ (TpM)⊥.

We call X(p)T by tangential component of X(p) and X(p)⊥ by normal component of X(p).

Denote by ∇ the Riemannian connection of N. If X and Y are local vector fields on M and
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X ,Y are local extensions on N, then the Riemannian connection of M is given by

∇XY = (∇XY )T .

With this definitions we are ready to define the main object of this section.

Definition 1.4.2. Let p ∈M,X(p)∈ TpM and Y (p)⊥ ∈ (TpM)⊥. The second fundamental form

(or shape operator) of f is the map

AY (p)⊥(X(p)) =−(∇X(p)Y )
T

where Y is a local extension of Y (p)⊥ normal to M.

The Definition 1.4 does not depend of the extension Y . In fact, if Y 1 is another extension of

Y (p)⊥, then

−(∇X(p)Y )
T − (−∇X(p)Y 1)

T = (∇X(p)(Y 1 −Y ))T = 0,

because Y 1 −Y = 0 over a trajectory of X .

An immediate consequence of the above definition its that the second fundamental form is

a symmetric operator (see [13]).

Now, considering the case of codimension 1, i.e., f : Mn → Nn+1, f (M)⊂ N is called hyper-

surface. Let p ∈ M and Y (p)⊥ ∈ (TpM)⊥ such that ||Y (p)⊥|| = 1. Since AY (p)⊥ : TpM → TpM

is symmetric, exist an orthonormal basis of eigenvectors {e1, . . . ,en} of TpM with eigenval-

ues k1, . . . ,kn. If M and N are both oriented then the vector Y (p)⊥ is uniquely determined

if we require that {e1, . . . ,en} is a basis in the orientation of M and {e1, . . . ,en,Y (p)⊥} is a

basis in the orientation of N. Therefore, we call ei the principal directions and ki principal

curvatures of f . The symmetric functions k1, . . . ,kn are invariants of immersion. In that case,

det(AY (p)⊥) = k1 · · ·kn is called Gauss-Kronecker curvature of f and 1
n(k1 + · · ·+ kn) is the

mean curvature of f .

1.5 Finsler Manifolds

In this section we will establish some preliminary definitions about C∞ and C0 Finsler ge-

ometry. Furthermore, we define left invariant Finsler structure on a Lie group.
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1.5.1 Geometry on Normed Spaces

This subsection will cover the concepts of Minkowski norms and asymmetric norms. For

more details about asymmetric norms, see [9], and for Minkowski norms see [6].

Throughout the text V denote a n-dimensional vector space over R.

Definition 1.5.1. A function F = F(v) : V→ R on V is called a Minkowski norm if it has the

following properties:

(i) F(v)≥ 0 for any v ∈ V, and F(v) = 0 if and only if v = 0;

(ii) F(λv) = λF(v) for any v ∈ V and λ > 0;

(iii) F is smooth in V\0, and for any v ∈V, the bilinear symmetric function g(v) on V defined

by

g(v)(v1,v2) :=
1
2

∂

∂ s∂ t
[F2(v+ sv1 + tv2)]s=t=0

is an inner product.

Definition 1.5.2. An asymmetric norm on V is a function F : V → [0,∞) satisfying the condi-

tions:

(i) If F(v) = 0, then v = 0;

(ii) F(λv) = λF(v) for every λ ≥ 0 and v ∈ V;

(iii) F(v+w)≤ F(v)+F(w).

In particular, a norm is clearly an asymmetric norm.

Proposition 1.5.3. Let F1 and F2 be asymmetric norms on a finite dimensional vector space V

over R. Then there exist constants c,C > 0 such that

cF1(y)≤ F2(y)≤CF1(y).

for every y ∈ V. Moreover, if F is an asymmetric norm, then F is continuous.

Proof. For a proof see page 32 of [33].



1.4 Finsler Manifolds 25

If F is an asymmetric norm, then we can define the following subsets of V.

BF(v,r) = {w ∈ V : F(w− v)< r}, open ball with center v and radius r;

BF [v,r] = {w ∈ V : F(w− v)≤ r}, closed ball with center v and radius r;

SF [v,r] = {w ∈ V : F(w− v) = r}, sphere with center v and radius r.

The next theorem ensures that the set of asymmetric norms contains the set of Minkowski

norms. The notation Fvi denotes the partial derivative of F with respect to vi.

Theorem 1.5.4. Let F be a nonnegative real-valued function on V with the following properties:

1. F is C∞ on the punctured space V\0;

2. F(λv) = λF(v) for every λ > 0;

3. the n×n matrix (gi j), where gi j(v) = [1
2F2]viv j(v), is positive definite for every v ̸= 0.

Then we have the following conclusions:

(i) (Positivity)

F(v)> 0 whenever v ̸= 0;

(ii) (Triangle inequality)

F(v+w)≤ F(v)+F(w),

where the equality holds if and only if w = λv or v = λw for some λ ≥ 0;

(iii) (Fundamental inequality)

wiFyi(v)≤ F(w) for every v ̸= 0,

and equality holds if and only if w = λy for some λ ≥ 0.

In particular, F is an asymmetric norm.

1.5.2 C0-Finsler Structures

In this subsection we define Finsler and C0-Finsler structures. By definition, we see that

C0-Finsler structures is a generalization of C∞-Finsler structures. For more details, see [6], [17]

and the Remark 2.4 in [37].
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Let M be a n-dimensional manifold. Let (x1, . . . ,xn) : U → Rn be a local coordinate system

on an open set U ⊂ M. The sets { ∂

∂xi} and {dxi} are the induced coordinate bases for TpM and

T ∗
p M, respectively. The coordinate coordinate system (x1, . . . ,xn) induces a local coordinates

system (xi,yi) on TU as

y = yi ∂

∂xi .

Similarly, (x1, . . . ,xn) induces local coordinates (xi,ξi) on T ∗U as

ξ = ξidxi.

Fix a coordinate system (x1,x2, . . . ,xn) on an open set U ⊂ M and the respective coordinate

systems (x1, . . . ,xn,y1, . . . ,yn) and (x1, . . . ,xn,ξ1, . . . ,ξn) on TU and T ∗U respectively. If F

is a nonnegative real-valued function on TU , the partial derivatives of F will be denoted by

Fyi,Fxi,Fyix j , . . ., etc.

Definition 1.5.5. A Finsler structure on M is a function

F : T M → [0,+∞)

satisfying the following properties:

(i) Regularity: F is C∞ on the slit tangent bundle T M \0;

(ii) Positive homogeneity: F(x,λy) = λF(x,y) for all λ > 0;

(iii) Strong convexity: the n×n Hessian matrix

(gi j) =

([
1
2

F2
]

yiy j

)

is positive-definite at every point of T M \0.

Given a manifold M and a Finsler structure F on M, the pair (M,F) is known as a Finsler

manifold.

Definition 1.5.6. Let M be a differentiable manifold. A C0-Finsler structure on M is a con-

tinuous functions F : T M → R such that F(x, ·) : TxM → R is an asymmetric norm for every

x ∈ M.
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By Theorem 1.5.4, C0-Finsler structures generalizes Finsler structures for the setting of

continuous functions. A differentiable manifold endowed with a C0-Finsler structure is a C0-

Finsler manifold.

1.5.3 Left Invariant C0-Finsler Structures in a Lie Group

In this subsection, we will restrict our manifold M to a Lie group and see what additional

properties we obtain. For more details, see [34].

Definition 1.5.7. A Lie group is a differentiable n-dimensional manifold G with a differentiable

group structure, i.e., its product is differentiable.

The map Lg : G → G defined by Lg(h) = gh is called left translation on G. Denote by g the

space of left invariant vector fields on G, that is, if X ∈ X(G) is such that

X(g) = d(Lg(e))X(e).

The space g endowed with the usual Lie bracket on X(G) is a Lie algebra, because if X and Y

are left invariant vector fields, so is the bracket [X ,Y ]. The Lie algebra g is called Lie algebra of

G. The most important property is that g is diffeomorphic to TeG, where e ∈ G is the identity.

If Fe is a asymmetric norm on the Lie algebra g of G, we can extended it to a left invariant

C0-Finsler structure on G defining

F(g,v) = Fe(d(Lg−1)g(v)), for all (g,v) ∈ T G. (1.5.1)

We can use the second condition of Definition 1.5.2 to define an asymmetric norm Fe on g

such that BFe[0,1] is a fixed convex and compact subset of g with the origin in its interior. Then

we can extend that norm to a C0-Finsler structure in G using (1.5.1).



CHAPTER 2

Symplectic Geometry

In this chapter, we prove the Darboux theorem in Section 2.1 as an application of the tools

presented in Section 1.2. In Section 2.2 we study the tautological 1-form and the canonical

symplectic form on the cotangent bundle T ∗M of a smooth manifold M.

2.1 Darboux Theorem

This section will be used to introduce the theory of symplectic manifolds. Further ahead,

we present the Moser trick, which will be used with the tools constructed in Section 1.2 to

demonstrate the Darboux theorem. For more details, see [10].

Proposition 2.1.1. Let ω be an anti-symmetric nondegenerate bilinear form on a finite real

vector space V. Then there exists a basis {e1, . . . ,en, f1, . . . , fn} of V such that

ω(ei,e j) = 0 = ω( fi, f j)

ω(ei, f j) = δi j

for all 1 ≤ i, j ≤ n. In particular, dimV is even.

Proof. For a proof see [10].

Definition 2.1.2. Bases like in Proposition 2.1.1 are called a symplectic basis.

Let {e1, . . . ,en, f1, . . . , fn} be a symplectic basis for V and denote by {e1, . . . ,en, f 1, . . . , f n}

its dual basis. In this context we write a symplectic form ω in V by

ω =
n

∑
i=1

ei ∧ f i.
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It can be proved that

ω
n = ω ∧ . . . ∧ω︸ ︷︷ ︸

n times

= n!(ei1 ∧ f i1 ∧ . . . ∧ eik ∧ f ik).

Thus, ωn(e1, f1, . . . ,en, fn) = n! ̸= 0, proving that ω is a volume form on V.

Let M be a manifold and ω ∈ Ω2(M) be a 2-form. For any p ∈ M, the application

ωp : TpM×TpM → R

is an anti-symmetric bilinear map. Note that ωp varies differentiable witch respect to p ∈ M. A

2-form ω is a exact 2-form if exist a 1-form η such that

ω = dη .

We say that ω is a closed 2-form if satisfies the differential equation

dω = 0.

Definition 2.1.3. A 2-form ω is called symplectic form if ω is closed and the induced applica-

tion

ω̃p : TpM → T ∗
p M

w 7→ ωp(·,w)

is a linear isomorphism for each p ∈ M.

By Remark 2.1.1, the dimension of TpM is always even. Therefore manifolds that admit a

symplectic form always have even dimension.

Definition 2.1.4. A symplectic manifold is a pair (M,ω), where M is a smooth manifold and

ω ∈ Ω2(M) a symplectic form.

As we showed, any symplectic form induces a volume form ωn on the tangent space. There-

fore, any symplectic manifold has an orientation induced by the symplectic form.
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Consider the particular case when M =R2n with linear coordinates x1, . . . ,xn,y1, . . . ,yn. The

2-form

ω0 =
n

∑
i=1

dxi ∧dyi

is symplectic. Indeed, taking α = −∑
n
i=1 yidxi, it follows that dα = ω0, showing that ω0 is

exact. In particular, ω0 is closed. This symplectic form is called by canonical symplectic form

of R2n. It is easily seen {
∂

∂xi , . . . ,
∂

∂xn ,
∂

∂y1 , . . . ,
∂

∂yn

}
is a symplectic basis. Another example is when M = S2(1) is the sphere of radius 1. Identify

TpS2(1) as the space of vectors that are orthogonal to p. Consider the 2-form

ωp(u,v) = ⟨p,u× v⟩

for all u,v ∈ TpM, where ⟨·, ·⟩ is the canonical inner product. Notice that the 2-form ω is non-

degenerate, because for every u ̸= 0, we can consider v = u× p ∈ TpM which forms a basis

of TpM with u, where u× v is a non-zero multiple of p. In addition, since dimS2(1) = 2 and

ω ∈ Ω2(M) we have

dω = 0, because dω ∈ Ω
3(M) = {0}.

Therefore ω is a symplectic form.

The isomorphism in the category of symplectic manifolds is called symplectomorphism. A

diffeomorphism φ : (M,ω)→ (N,η) is a symplectomorphism if

φ
∗
η = ω.

The main tool for the proof of Darboux theorem is the Moser trick. Now we introduce it.

For ω0,ω1 ∈Ωk(M), we will try to build a diffeomorphism φ : M →M such that φ∗ω1 =ω0.

The Moser trick is to construct φ as a flow of a time dependent vector field Xt on M. More

precisely, for a well-behaved family of k-forms ωt connecting ω0 and ω1, we try to find the time

dependent vector field Xt on M such that its flow φt : M → M satisfies

φ
∗
t ωt = ω0
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for all t ∈ I. For this, we need to solve a differential equation. By Proposition 1.2.7:

0 =
d
dt
(φ∗

t ωt −ω0)

=
d
dt

φ
∗
t ωt

= φ
∗
t (LXt ωt + ω̇(t)).

By Cartan magic formula (1.2.5),

0 = φ
∗
t (iXt dωt +diXt ωt + ω̇(t)).

Since φt is a diffeomorphism for all t ∈ I, φ∗
t is a linear isomorphism. Thus, the differential

equation has a solution if and only if

iXt dωt +diXt ωt + ω̇(t) = 0

has a solution. So, if the equation has solution, we can find a time dependent vector field Xt

such that its flow is a symplectomorphism between (M,ω0) and (M,ω1) for all t ∈ I.

Definition 2.1.5. A manifold M is said closed manifold if M is a compact topological space

without boundary.

The first application of the Moser trick is a classification of maps that preserve volume forms

in a closed and orientable manifold.

Theorem 2.1.6. Let M be a orientable, closed manifold and ω0,ω1 be two volume forms on M.

Then there exist a diffeomorphism φ : M → M such that φ∗ω1 = ω0 if and only if

∫
M

ω0 =
∫

M
ω1.

Proof. If there exist a diffeomorphism φ : M → M such that φ∗ω1 = ω0, then,

∫
M

ω0 =
∫

M
φ
∗
ω1 =

∫
φ(M)

ω1 =
∫

M
ω1.

Reciprocally, since M is closed and orientable, it follows that

Hn
dR(M) = R
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where Hn
dR is the de Rham cohomology. So, if

∫
M

ω0 =
∫

M
ω1,

it follows that ∫
M
[ω0 −ω1] = 0.

Therefore, ω0 −ω1 = 0 ∈ Hn
dR(M). Thus, exist β ∈ Ωn−1(M) such that

ω1 −ω0 = dβ .

Now, consider the following family of k-forms

ωt = (1− t)ω0 + tω1.

We are now going to show that ωt is a family of volume forms. Indeed, as ω0 and ω1 are

volume forms on the compact smooth manifold M, there exist f ∈D(M) such that f (p) ̸= 0 for

all p ∈ M and ω1 = f ω0. Since

∫
M

ω0 =
∫

M
ω1 =

∫
M

f ω0,

it follows that f > 0. Then,

ωt = (1− t)ω0 + tω1

= ω0 − tω0 + t f ω0

= (1− t + t f )ω0,

what proves that ωt is a family of volume forms because ω0 ̸= 0 for all p ∈ M. Applying the

Moser trick in this family, we have

0 = iXt dωt +diXt ωt + ω̇(t)

= diXt ωt +(ω1 −ω0)

= diXt ωt +dβ .

As ωt is non-null for all t ∈ I, the differential equation −dβ = diXt ωt has solution Xt for all
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t ∈ I, ensuring the existence of a time dependent vector field Xt with flow φt : M → M such that

φ
∗
t ωt = ω0.

Taking t = 1, we have the desired.

As a corollary, we can classify the closed symplectic surfaces of dimension 2. We call by

symplectic area of a symplectic 2-manifold (M,ω) the integral

Area(ω) :=
∫

M
ω.

Theorem 2.1.7 (Classification of closed Symplectic surfaces). Let (M1,ω1),(M2,ω2) be two

closed symplectic surfaces. These surfaces are symplectomorphic if and only if they have the

same genus and symplectic area.

Proof. We know that two closed and orientable surfaces are diffeomorphic if and only if M1

and M2 has the same genus and Theorem 2.1.6 guarantees that this diffeomorphism is a sym-

plectomorphism if and only if they has the same symplectic area.

Let M be a n-dimensional manifold and N be a k-dimensional submanifold of M by the

inclusion

i : N ↪→ M.

We can see the tangent space TpN as a subspace of the tangent space TpM for all p ∈ N by

the linear inclusion dip : TpN ↪→ TpM. The quotient space NpN := TpM/TpN is a (n− k)-

dimensional vector space called normal space to N in p. The normal bundle of N is the

bundle

N N := {(p,v) : p ∈ N and v ∈ NpN}.

The set N N has structure of vector bundle over N of rank n− k by the natural projection. So,

N N is an n-dimensional smooth manifold. The null section of N N is given by

i0 : N ↪→ N N

p 7→ (p,0)

and it is an embedding of N as a closed submanifold of N N. A neighborhood U0 of the null
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section N in N N is called convex if the intersection U0 ∩NpN for all p ∈ M are convex. With

this notations, we can enunciate the following result.

Theorem 2.1.8 (Theorem of tubular neighborhood). Let M be a n-dimensional smooth manifold

and N a k-dimensional submanifold of M. Exist a convex neighborhood U0 of N on N N, a

neighborhood U of N on M and a diffeomorphism ϕ : U0 →U such that the diagram

U0 ⊂ N N U ⊂ M

X

ϕ

commutes.

Proof. For proof, see page 37 in [10].

The following proposition is an application of Theorem 2.1.8

Proposition 2.1.9 (Poincaré Lemma). Let U be a tubular neighborhood of N in M. If ω ∈

Ωk(U) is closed in U and i∗ω = 0, then ω is exact. Moreover, we can take µ ∈ Ωk−1(U) such

that ω = dµ and µp = 0 for all p ∈ N.

Proof. Since U is a tubular neighborhood of N, exist a convex neighborhood U0 of N in N N

and a diffeomorphism

ϕ : U0 →U.

Define the isotopy

ρt : U0 →U

(p,v) 7→ ϕ(p, tv).

Since U0 is a convex subset, this isotopy is well-defined. We know that the operator

Q(ω) =
∫ 1

0
ρ
∗
t (iXt ω)dt

satisfies

ρ
∗
1 (ω)−ρ

∗
0 (ω) = dQ(ω)+Q(dω),

see page 40 of [10]. As ω is closed, it follows that

ω = dQ(ω),
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because i∗ω = 0. Define µ = Q(ω). Then dµ = dQ(ω) = ω . Now, we need to show that

µ(p,0) = 0 for all p ∈ N. In fact, ρt(p,0) = ϕ(p,0) for all p ∈ N and t ∈ I. Thus,

d
dt

ρt(p,0) = 0,

implying that

(dρt)(p,0)

(
d
dt

)
= 0.

Thus, µ(p,0) = Q(ω)(p,0) = 0.

The next Lemma will be useful for the proof of Weinstein’s theorem.

Lemma 2.1.10. Let Xt be a time dependent vector field on M. Suppose that Xt |p0 = 0 for all

t ∈ I where I is a closed interval. Then there exists a neighborhood U of p0 on M such that ρt

is defined for all x ∈U and t ∈ I.

Idea of proof. In local coordinates with p0 = 0,

Xt = f i(t,x1, . . . ,xn)
∂

∂xi

and there exist C̃ > 0 and a neighborhood U of p0 such that

| f i(t,x1, . . . ,xn)| ≤ C̃||(x1, . . . ,xn)||

for every (t,x1, . . . ,xn) ∈ I×U . Here || · || stands for the Euclidean metric. Therefore there exist

C > 0 such that

||Xt(x)|| ≤C||(x1, . . . ,xn)||

for every (t,x) ∈ I ×U . This means that if ρ(t) is a trajectory of Xt , then

||ρ(t)|| ≤ ||ρ(0)||eCt .

Therefore if we choose a sufficiently small neighborhood of p0, then ρt is well defined.

Theorem 2.1.11 (Weinstein’s Theorem). Let M be a smooth manifold and N be a submanifold

of M. If ω0,ω1 are two symplectic forms of M such that

ω0|N = ω1|N ,
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then there exist neighborhoods U0,U1 of N on M and a diffeomorphism ϕ : U0 →U1 such that

ϕ(p) = p for all p ∈ N, the diagram

U0 U1

N

ϕ

commutes and ϕ∗ω1 = ω0.

Proof. By hypothesis, ω0 −ω1 is closed and i∗(ω0 −ω1) = 0. By Poincaré Lemma 2.1.9, there

exists a neighborhood U of N and µ ∈ω1(U) such that ω1−ω0 = dµ and µ|N = 0 for all p∈N.

Let

ωt = tω1 +(1− t)ω0

= ω0 + t(ω1 −ω0)

= ω0 + tdµ

(2.1.1)

a family of 2-forms on U . We will show that the family of 2-forms ωt is non-degenerated on N.

Indeed, consider the map

ψ : N × [0,1]→ R

(p, t) 7→ detωt(p)

This function is non-null for all p ∈ N, because

ψ(p, t) = detωt(p)

= det(ω0 + tdµ)(p)

= detω0(p)

is non-degenerated for all t ∈ I by (2.1.1), what implies that ψ is non-null in a neighborhood of

{p}×I, which can be chosen as U ×I because I is compact. Therefore, we have a neighborhood

U for N such that ωt is symplectic for all t ∈ I.

By the Moser trick, we can define Xt as solution of iXt ωt = −µ because ωt is a family of

symplectic forms. Since µ|N = 0, it follows that

iXt ωt = ω(Xt , ·) = 0, (2.1.2)
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so Xt |N = 0 and ρt |N = IdN , where ρt its the time dependent map induced by Xt . By the previous

Lemma, there exists a neighborhood U0 of N such that U0 ⊂ U and ρt is defined for all t ∈ I.

Therefore, putting ρ1 = ϕ and U1 = ρ1(U0), we have the desired.

As a particular case of Weinstein theorem, we have the principal theorem of the section

Theorem 2.1.12 (Darboux Theorem). Let (M,ω) be a symplectic manifold of dimension 2n.

For all p ∈ M exists a neighborhood U of p in M and an open subset U0 of R2n such that (U,ω)

is symplectomorphic to (U0,ω), where ω0 is the canonical symplectic form of R2n.

Proof. Let {x1′, . . . ,xn′,y1′, . . . ,yn′} be a symplectic basis for (TpM,ωp). Extended this in a

neighborhood U ′ of p in M. On U ′ has two simplectic forms, namely ω0 = ω and

ω1 =
n

∑
i′=1

dxi′ ∧dyi′.

Now, apply the Weinstein’s theorem on N = {p} and M =U ′. Therefore, exist a neighborhoods

U0 and U1 of p in U ′, a diffeomorphism ϕ : U0 →U1 such that ϕ(p) = p and

ϕ
∗(

n

∑
i′=1

dxi′ ∧dyi′) = ω.

Putting xi = xi′ ◦ϕ and yi = yi′ ◦ϕ , we finish the proof.

The proof of Darboux Theorem relies on the fact that a symplectic form ω is closed. If ω is

not closed we cannot guarantee this theorem. Indeed, if ω is not closed then the Moser trick in

the Weinstein’s theorem is given by

iXt dωt +diXt ωt =−µ (2.1.3)

If Xt is a solution of (2.1.3), then we cannot guarantee that Xt |N = 0 as in (2.1.2) and apply the

Lemma 2.1.10.

While Riemannian geometry is about non-degenerate symmetric bilinear forms on tangent

spaces, symplectic geometry is about non-degenerate anti-symmetric bilinear forms on tan-

gent spaces with an additional condition described by the differential equation dω = 0. We

can impose a differential equation for the metric on a Riemannian manifold. In fact, not all

Riemannian manifolds are isometric to the Euclidean space with the canonical metric but Rie-

mannian manifolds with curvature tensor identically null are locally isometric to the Euclidean
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space. Therefore, this condition in the Riemannian case can be compared to the closedness of a

symplectic structure on a manifold.

2.2 Symplectic Form on the Cotangent Bundle

Now we will restrict our study to the cotangent bundle. In this section, we will put a specific

symplectic form in the cotangent bundle and study their properties. In short, we will induce

a symplectomorphism between cotangent bundles whenever exists a diffeomorphism between

manifolds. For more details, see [10].

Let M be an n-dimensional smooth manifold. Let π : T ∗M → M be the natural projection

on M. The tautological 1-form on T ∗M can be defined at p = (x,ξ ) by

αp = (dπp)
∗
ξ ∈ T ∗

p (T
∗

x M) (2.2.1)

with (dπp)
∗ being the transpose of dπp, i.e., (dπ∗

p)ξ = ξ ◦dπp. Equivalently,

αp(v) = (dπp)
∗(ξ )(v) = ξ (dπp(v)), for all v ∈ Tp(T ∗M).

Clearly, the definition of equation (2.2.1) does not depend of the choice of coordinates. Now, let

(x1, . . . ,xn) : U →Rn be a local coordinate system centered in x∈M with the corresponding nat-

ural coordinates (x1, . . . ,xn,ξ1, . . . ,ξn) in cotangent space given by ξidxi 7→ (x1(x), . . . ,xn(x),ξ1,

. . . ,ξn) centered in p = (x,ξ ). Take v = vi ∂

∂xi + ṽ j
∂

∂ξ j
∈ Tp(T ∗M). Notice that

dπp

(
∂

∂xi

)
=

∂

∂xi

and

dπp

(
∂

∂ξ j

)
= 0.

Thus,

αp(v) = ξ (dπp)(v)

= ξi(dxi)x

(
vi ∂

∂xi

)
.

Therefore, locally α = ξidxi.
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The symplectic canonical form ω on T ∗M is defined by

ω = dα.

And locally it is given by ω = dξi ∧dxi.

Observe that the tautological 1-form is uniquely determined by the following property: For

all 1-form µ : M → T ∗M we have that

µ
∗
α = µ.

Indeed, take p = (x,µx) ∈ T ∗M. Then,

(µ∗
α)p = (dµ)∗xαp

= (dµ)∗x(dπp)
∗
µx

= (d (π ◦µx)︸ ︷︷ ︸
IdM

)∗xµx

= µx.

Now, suppose the existence of another 1-form β on T ∗M satisfying the same property. Thus,

µ
∗
β = µ = µ

∗
α.

Therefore, µ∗(β −α) = 0 for all µ ∈ X∗(M). So for any v ∈ TxM,

0 = (β −α)(dµ)x(v).

For each p = (x,ξ ) ∈ T ∗M, the set

{(dµ)xv : µ ∈ X∗(M),µx = ξ and v ∈ TxM}

span Tp(T ∗M), so we conclude that β = α .

Let M and N be two manifolds of dimension n with tautological 1-forms α1 : T ∗M →

T (T ∗M) and α2 : T ∗N → T (T ∗N), respectively and f : M → N be a diffeomorphism. We
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are now going to show that exist a natural diffeomorphism

f\ : T ∗M → T ∗N

that lifts f . In fact, take p1 = (x1,ξ1) ∈ T ∗M. Define,

f\(p1) = p2 = (x2,ξ2)

where x2 = f (x1) ∈ N

ξ1 = (d fx1)
∗ξ2 ⇐⇒ ξ2 = ((d fx1)

∗)−1ξ1

and (d fx1)
∗ : T ∗

x2
N → T ∗

x1
M is a linear isomorphism. Notice that f\ is a diffeomorphism be-

tween the vector bundles T ∗M and T ∗N. Indeed, (x1,ξ ) 7→ ((d fx1)
∗)−1ξ1 is smooth because

of the smoothness of f . Therefore f\ is smooth. The smoothness of ( f\)−1 = ( f−1)\ follows

analogously.

Proposition 2.2.1. The lift f\ of a diffeomorphism f : M → N pull back the tautological 1-form

α2 of T ∗N to the tautological 1-form α1 on T ∗M, i.e.,

( f\)∗α2 = α1.

Proof. Given p = (x1,ξ1) ∈ T ∗M and f\(x1,ξ1) = (x2,ξ2)

(( f\)∗α2)(p) = ((d f\)∗p(α2))(p).

In this way, showing that ( f\)∗α2 = α1 is the same to show that

(d f\)∗p(α2( f\(p))) = α1(p).

Thus,

(d f\)∗p(α2( f\(p))) = (d f\)∗p(dπ2)
∗
f\(p)ξ2

= d(π2 ◦ f\)∗pξ2

= d( f ◦π1)
∗
pξ2
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because π2 ◦ f\(x1,ξ1) = π2(x2,ξ2) = x2 = f ◦π1(x1,ξ1). Then

(d f\)∗p(α2( f\(p))) = (dπ1)
∗
p(d f )∗pξ2

= (dπ1)
∗
pξ1

= αp.

Corollary 2.2.2. The lift f\ of a diffeomorphism f : M → N is a symplectomorphism, i.e.,

( f\)∗ω2 = ω1

where ω1 and ω2 are the symplectic canonical forms of M and N, respectively.

Proof. Let α1 and α2 being the tautological 1-forms of M and N, respectively. Thus,

( f\)∗ω2 = ( f\)∗(dα2)

= d( f\)∗α2

= dα1

= ω1.

Summarizing, a diffeomorphism between manifolds induces a symplectomorphism between

their respective cotangent bundles, as the following diagram illustrates

(T ∗M,ω1) (T ∗N,ω2)

M N

f\

f

As an example, take M = N = S1(1). We know that T ∗S1(1) is the infinite cylinder S1(1)×

R. Let ω = dθ ∧ dξ be the symplectic canonical form, called by area form. If f : S1(1) →

S1(1) is a diffeomorphism, then f\ : S1(1)×R → S1(1)×R is a symplectomorphism, i.e., a

diffeomorphism that preserves area.



CHAPTER 3

Hamiltonian Mechanics

The aim of this chapter is to define the Hamilton formalism and study the geodesic equa-

tions in this formalism. In Section 3.1 we define the concept of Hamiltonian vector fields. In

Section 3.2 we introduce the Lagrangian formalism and determine the equation of geodesics

in Riemannian manifolds using such formalism. In Section 3.3 we give sufficient condition to

the Hamiltonian and Lagrangian formalism to be equivalent. Finally, in Section 3.4 we find the

equations of the geodesic field on the cotangent bundle. More discussion about the action of La-

grangian in the Riemannian geometry can be seen in [13]. For more details about Hamiltonian

geometry and their connection with the Lagrangian formalism, see [1], [10], [37].

3.1 Hamiltonian and Symplectic Vector Fields

In this section we define the concepts of the Hamiltonian formalism and present some re-

sults. In order to make the definitions more concrete in this section, we present many examples.

Let (M,ω) be a symplectic manifold and H : M → R a smooth function. Its differential is a

closed 1-form dH. Since ω is non-degenerated, exist an unique vector field XH on M such that

iXH ω = dH.

We call XH by Hamiltonian vector field with Hamiltonian function H. The triple (M,ω,H)

is called by Hamiltonian system.

Suppose that M is compact, or at least that XH is complete. Let ρt : M → M the 1-parameter
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group of diffeomorphisms generated by XH . Then, ρt preserves the symplectic form ω . In fact,

d
dt

ρ
∗
t ω = ρ

∗
t LXH ω

= ρ
∗
t (diXH ω + iXH dω)

= ρ
∗
t (ddH)

= 0,

showing that ρ∗
t ω is constant for all t ∈ I. As ρ0 = IdM, we have the desired. This implies that

every function H : M →R on (M,ω), induces a family of symplectomorphism. More than that,

if (M,ω,H) is a Hamiltonian system and γ(t) is a integral curve to XH . By the chain rule

d
dt

H(γ(t)) = dH(γ(t))
(

d
dt

γ(t)
)

= dH(γ(t))(XH(γ(t)))

= ω(XH(γ(t)),XH(γ(t)))

= 0.

(3.1.1)

Therefore, H(γ(t)) is constant.

Let us see an example.

Example 3.1.1. Let S2(1) be the sphere in R3 with symplectic structure given by ωp(u,v) =

⟨p,u× v⟩ for all p ∈ S2(1) and u,v ∈ TpS2(1). Considering the cylindrical polar coordinates

(θ ,h) away from the poles, where θ is the angle and h is the height on S2(1), the symplectic

structure can be represented as ω = dθ ∧dh. Consider the height function H(θ ,h) = h. Thus,

iXH (dθ ∧dh) = dh if and only if

XH =
∂

∂θ
.

Then, ρt(θ ,h) = (θ + t,h) which is rotation about the vertical axis and the height function H is

preserved by this motion.

The equalities in (3.1.1) show that the Lie derivative of H with respect to XH is identically

zero, since

LXH H =
d
dt

H(γ(t))

with γ(t) being the integral curve of XH . In short, the energy functions are preserved by its

Hamiltonian vector fields.
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Definition 3.1.2. A smooth vector field X on M preserving the symplectic form ω , i.e., LX ω = 0,

is called symplectic vector field.

If X is a Hamiltonian vector field, exist an energy function H : M →R such that X is solution

of the differential equation

iX ω = dH,

showing that iX ω is an exact 1-form. Conversely, if iX ω is exact, exist H ∈ D(M) such that

iX ω = dH.

Therefore, the 1-form iX ω is exact if and only if X is a Hamiltonian vector field. In particular,

iX ω is closed if X is a Hamiltonian vector field.

We have a bijection between symplectic vector fields X on M and the 1-forms iX ω that are

closed. In fact, if X is symplectic, then

0 = LX ω = diX ω.

By the other side, if iX ω is a closed 1-form, we have that

LX ω = diX ω + iX dω = 0.

In summary, the following bijections are true.

{X is Hamiltonian} ⇐⇒ {The 1-form iX ω is exact}

and

{X is symplectic} ⇐⇒ {The 1-form iX ω is closed}

Locally, in every contractible open subset U of (M,ω), all symplectic vector fields are

Hamiltonian. Indeed, since

H1
dR(U) = 0, (3.1.2)

if X is a symplectic vector field, by the above considerations, iX ω is a closed 1-form. Thus, by
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(3.1.2), iX ω is exact. In the case M =U , we showed the existence of the following bijections

{X is Hamiltonian} ⇐⇒ {The 1-form iX ω is closed} ⇐⇒ {X is symplectic} .

In general, H1
dR(M) measures the obstruction of symplectic vector fields to be Hamiltonian.

Example 3.1.3. In the 2-torus (T 2,dθ1 ∧dθ2), the vector fields

X1 =
∂

∂θ1
and X2 =

∂

∂θ2
.

are symplectic vector fields, but they not are Hamiltonian. In fact,

iX1(dθ1 ∧dθ2)(Y ) = (dθ1 ∧dθ2)

(
∂

∂θ1
,Y
)

= dθ1

(
∂

∂θ1

)
dθ2(Y )−dθ1(Y )dθ2

(
∂

∂θ1

)
= dθ2(Y ).

Analogously we have that iX2(dθ1 ∧ dθ2)(Y ) = dθ1(Y ). Therefore, iX1ω and iX2ω are closed

forms, showing that they are symplectic forms. In order to show that X1 and X2 are not Hamil-

tonian, note that

dθ1 ∧dθ2 is defined in T 2,

because the dθ1 and dθ2 are defined in T 2. Considering x0 ∈ S1 and the closed curve γ(t) =

(x0,e2πit) on T 2, it follows that

∫
[0,1]

γ
∗dθ2 =

∫
[0,1]

2πdt = 2π,

concluding that dθ2 is not exact. In analogous way, we prove that dθ1 is not exact.

This example motive us to the following result.

Proposition 3.1.4. Every Hamiltonian vector field X in a compact symplectic manifold (M,ω)

is null in some point of M.

Proof. Let XH be a Hamiltonian vector field with Hamiltonian function H : M → R. By com-

pactness of M, the map H has a maximum at some point p ∈ M. Thus, for any v ∈ TpM

0 = dHp(v) = iXH ωp(v) = ωp(XH ,v).
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By non-degeneracy of ω , the Hamiltonian vector field XH is null in p ∈ M.

3.2 Variational Principles

Let F : T M → R be a smooth function. This section will be dedicated to finding conditions

about F for the action to be minimized. In Subsection 3.2.1 we describe the Euler-Lagrange

equations. In Subsections 3.2.2 and 3.2.3 we solve the Euler-Lagrange equations for particular

cases.

3.2.1 Variational Problems

Let M be a n-dimensional smooth manifold. Let F : T M → R be a smooth function.

If γ : [a,b]→ M is a smooth curve in M, define the lift of γ to T M as the curve in T M given

by

γ̃ : [a,b]→ T M

t 7→ (γ(t),γ ′(t)).

The action of γ is defined by

Aγ :=
∫ b

a
((γ̃∗)F)(t)dt =

∫ b

a
F(γ(t),γ ′(t))dt.

For any p,q ∈ M, denote by P(a,b, p,q) the set of smooth curves that start in p and ends

in q, i.e.,

P(a,b, p,q) := {γ : [a,b]→ M : γ(a) = p and γ(b) = q}.

The aim of this subsection is to find among all γ ∈ P(a,b, p,q), the curve γ0 which minimizes

Aγ . The next lemma guarantees that minimizing curves are locally minimizing:

Lemma 3.2.1. Suppose that γ0 : [a,b]→ M is minimizing. Let [a1,b1] a subinterval of [a,b] and

let p1 = γ0(a1), q1 = γ0(b1). Then, γ0|[a1,b1] is minimizing among the curves in P(a1,b1, p1,q1).

Proof. Suppose that γ0|[a1,b1] is not minimizing in [a1,b1]. Then, exist a smooth curve γ1 con-
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necting p1 and q1 that is minimizing. Define the following curve in [a,b],

γ2(t) =


γ0(t), if t ∈ [a,a1]

γ1(t), if t ∈ [a1,b1]

γ0(t), if t ∈ [b1,b]

.

Then Aγ2 ≤ Aγ0 . We can smooth the corners of the broken path γ2(t), in such away that we get

a smooth curve γ3(t) satisfying Aγ3 ≤ Aγ0 , which gives a contradiction.

For any p,q∈M and a smooth curve γ0 joining p and q, we assume that p,q and γ0 are in the

coordinate open subset (x1, . . . ,xn) : U → Rn of U ⊂ M. Let (x1, . . . ,xn,y1, . . . ,yn) : TU → R2n

be the natural coordinate system on TU given by yi ∂

∂xi 7→ (y1, . . . ,yn). Using this trivialization,

the curve γ : [a,b]→U is written in coordinates by

γ(t) = (γ1(t), . . . ,γn(t)).

The lift of γ in coordinates is

γ̃(t) = (γ1(t), . . . ,γn(t),γ1
′(t), . . . ,γn

′(t)).

Until the end of subsection we will give necessary conditions in order to a smooth curve

minimizes the action. Let c1, . . . ,cn ∈ D([a,b]) such that ci(a) = ci(b) = 0 for all 1 ≤ i ≤ n.

Define the curve γε : [a,b]→U by

γε(t) = (γ1(t)+ εc1(t), . . . ,γn(t)+ εcn(t)).

For a sufficiently small ε > 0, the smooth curve γε is well-defined and γε ∈ P(a,b, p,q). Let

Aε := Aγε
. If γ0 minimizes A , then

dAε

dε
(0) = 0,
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implying that

dAε

dε
(0) =

∫ b

a

dF
dε

(γε(t),γε
′(t))|ε=0dt

=
∫ b

a

(
∂F
∂xi (γ0(t),γ0

′(t))ci(t)+
∂F
∂yi (γ0(t),γ0

′(t))ci′(t)
)

=
∫ b

a

∂F
∂xi (γ0(t),γ0

′(t))ci(t)+
∂F
∂yi (γ0(t),γ0

′(t))ci(t)
∣∣∣b
a
−
∫ b

a

d
dt

∂F
∂yi (γ0(t),γ0

′(t))ci(t)

=
∫ b

a

(
∂F
∂xi (γ0(t),γ0

′(t))− d
dt

∂F
∂yi (γ0(t),γ0

′(t))
)

ci(t)dt

= 0.

Since this is true for all ci(t),1 ≤ i ≤ n, satisfying the boundary condition ci(a) = ci(b) = 0, by

the Fundamental Lemma of the Calculus of Variations (see page 6 of [24]), we conclude that

∂F
∂xi (γ0(t),γ0

′(t)) =
d
dt

∂F
∂vi (γ0(t),γ0

′(t)). (3.2.1)

These are the Euler-Lagrange equations of the problem of minimizing the action Aγ with

γ ∈ P(a,b, p,q).

3.2.2 Minimizing Properties

From now on, assume that

det
(

∂ 2F
∂vi∂v j

)
̸= 0. (3.2.2)

The expression (3.2.2) is called Legendre condition. Taking

gi j(p,v) =
(

∂ 2F
∂vi∂v j

)−1

,

the Euler-Lagrange equations become

(γ j)′′(t) = gi j ∂F
∂xi (γ(t),γ

′(t))−gi j ∂ 2F
∂vi∂xk (γ(t),γ

′(t))(γk)′(t). (3.2.3)

This second order ordinary differential equation has a unique solution given initial conditions

γ(a) = p and γ
′(t) = v.
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In this subsection we study minimizing properties of the solution (3.2.3).

Let V a n-dimensional real vector space with basis {e1, . . . ,en}. Given v ∈ V, we write

v = viei. Let F(v1, . . . ,vn) : V→ R be a smooth map on V. Take p ∈ V and u = uiei ∈ V. The

Hessian of F is the quadratic map on V defined by

(d2F)p(u) :=
∂ 2F(p)
∂vi∂v j uiu j.

Definition 3.2.2. We say that a function F : V → R is strongly convex if (d2F)p is positive-

definite for all p ∈ V.

An important question is if γ0 ∈ P(a,b, p,q) satisfies the Euler-Lagrange equations, does

γ0 minimizes A ? According to the next theorem, locally the answer is yes.

Theorem 3.2.3. For every sufficiently small subinterval [a1,b1] of [a,b], the curve γ0|[a1,b1] is

minimizing in P(a1,b1, p1,q1).

The proof of this theorem needs the Wirtinger inequality, which will be assumed.

Lemma 3.2.4 (Wirtinger inequality). Let f : [a,b]→R be a C1-class map with f (a) = f (b) = 0.

Then, ∫ b

a
| f (t)|2dt ≤ (b−a)2

π2

∫ b

a
| f ′(t)|2dt.

Proof. For a proof see page 184 of [21].

The Wirtinger inequality has many applications in geometry. As an example of application,

see the isoperimetric inequality in [21]. Now, we use the Wirtinger inequality to prove Theorem

3.2.3.

Suppose that γ0 : [a,b]→U satisfies the Euler-Lagrange equation. Take ci ∈ D([a,b]) such

that ci(a) = ci(b) = 0 for 1 ≤ i ≤ n. Define γε = γ0 +εc where c = (c1, . . . ,cn). For sufficiently

small ε > 0, the smooth curve γε ∈ P(a,b, p,q) and define Aε = Aγε
. We have that

d2Aε(0)
dε

=
∫ b

a

∂ 2F
∂xi∂x j (γ0(t),γ0

′(t))ci(t)c j(t)dt (3.2.4)

+2
∫ b

a

∂ 2F
∂xi∂v j (γ0(t),γ0

′(t))ci(t)c j′(t)dt (3.2.5)

+
∫ b

a

∂ 2F
∂vi∂v j (γ0(t),γ0

′(t))ci′(t)c j′(t)dt. (3.2.6)
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Analyzing the term (3.2.4),∣∣∣∣∫ b

a

∂ 2F
∂xi∂x j (γ0(t),γ0

′(t))ci(t)c j(t)dt
∣∣∣∣≤ ∫ b

a
|⟨c(t),(d2F)p(c(t))⟩|dt

≤ K1|c|2L2
, for some constant K1 > 0

where | · |L2 is the L2 norm. By the same argument and Hölder inequality (see page 92 of [7]) in

(3.2.5) we have that:

∣∣∣2∫ b

a

∂ 2F
∂xi∂v j (γ0(t),γ0

′(t))ci(t)c j′(t)dt
∣∣∣≤ K2

∣∣∣∫ b

a
ci(t)c j′(t)dt

∣∣∣
≤ K2

∫ b

a
|⟨c(t),c ′(t)⟩|dt

≤ K2|c|L2|c
′|L2.

for some constant K2 > 0 bounding ∂ 2F
∂xi∂vi (γ0(t),γ0

′(t)). To get a constant in term (3.2.6), as

d2F is definite-positive for all (p,v) ∈ T M, there exists a constant K3 > 0 such that

∫ b

a

∂ 2F
∂vi∂v j (γ0(t),γ0

′(t))ci
′(t)c j

′(t)dt ≥ K3|c ′|2L2
.

Therefore,

d2Aε

dε2 (0)≥ K3|c ′|2L2
−2K2|c|L2|c

′|L2 −K1|c|2L2

≥
(

K3 −
K3

2

)∫ b

a
|c ′(t)|2 −

(
K2

2
2K3

+K1

)∫ b

a
|c(t)|2

were we use that
K2

2
2K3

A2 +
K3

2
B2 ≥ K2AB

for terms A,B. Putting K4 := K3
2 and K5 := K2

2
2K3

+K1, by Wirtinger inequality

d2Aε

dε2 (0)≥ K4π2

(b−a)2 |c|
2
L2
−K5|c|2L2

≥
(

K4
π2

(b−a)2 −K5

)
|c|2L2

.
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For sufficiently small b−a, we showed that

d2Aε

dε2 (0)> 0.

As γ0 satisfies Euler-Lagrange, then γ0 is locally minimizing.

3.2.3 Minimizing Geodesics

In this subsection we restrict the study for locally minimizing curves in a smooth Rieman-

nian manifold. Let (M,⟨·, ·⟩) be a n-dimensional Riemannian manifold. The Riemannian metric

induces a quadratic map

F : T M → R

(p,v) 7→ |v|2p

where |v|2p = ⟨v,v⟩p. Let γ : [a,b]→M be a smooth curve joining p and q on M. By the quadratic

map F the action of γ is given by

Aγ =
∫ b

a
|γ ′(t)|2dt.

Let τ : [a1,b1]→ [a,b] be a reparametrization of γ . Note that the arc-length of a smooth curve

is invariant under reparametrizations. In fact, if τ is increasing, then

l(γ ◦ τ) =
∫ b1

a1

|(γ ◦ τ) ′(t)|dt

=
∫ b1

a1

|γ ′(τ(t))τ ′(t)|dt

=
∫ b1

a1

τ
′(t)|γ ′(τ(t))|dt

=
∫ b

a
|γ ′(u)|du

= l(γ)

where u(t) = τ(t) and du = τ ′(t)dt. The proof when τ is decreasing is analogous. Supposing

that γ ′(t) ̸= 0 for all t ∈ [a,b], we can find a reparametrization τ : [a,b] → [a,b] such that

γ ◦ τ : [a,b]→ M has constant velocity. We say that a smooth curve γ : [a,b]→ M parametrized
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in this way is parametrized proportionally to the arc-length.

Let γ : [a,b]→ M be a smooth curve on M. By the Schwarz inequality:

(∫ b

a
1 · |γ ′(t)|dt

)2

≤
(∫ b

a
12dt

)(∫ b

a
|γ ′(t)|2dt

)
.

Thus,

l(γ)2 ≤ (b−a)Aγ

and equality occurs if and only if |γ ′(t)| is constant, that is, if and only if t is proportional to

the arc-length. These computations take us to the following proposition:

Proposition 3.2.5. Let p,q ∈ M and let γ0 : [a,b]→ M be a minimizing geodesic joining p and

q. Then, for all curves γ ∈ P(a,b, p,q)

Aγ0 ≤ Aγ

and the equality holds if and only if γ is a minimizing geodesic.

Proof. By the computations above, it follows that

(b−a)Aγ0 = l(γ0)
2

≤ l(γ)2

≤ (b−a)Aγ

for all γ ∈ P(a,b, p,q), proving the first part. Now, if the equality holds, we have that l(γ)2 =

(b− a)Aγ , implying that the parameter t is proportional to arc-length, and l(γ0) = l(γ). The

converse is trivial by the first part of the proof.

Let (x1, . . . ,xn) :U →Rn be a coordinate system on the open set U ⊂M with associated chart

in the tangent bundle T M given by (x1, . . . ,xn,y1, . . . ,yn) : TU → R2n. In local coordinates the

quadratic map is given by

F(p,v) = gi j(p)viv j

where gi j(p) = ⟨ ∂

∂xi ,
∂

∂x j ⟩p. We shall to compute the Euler-Lagrange equations for this quadratic
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map. By the left hand side of (3.2.1),

∂F
∂x j (γ, γ̇(t)) =

∂

∂x j (gi j(p)γ̇ i
γ̇

j)

=
∂

∂x j gik(p)γ̇ i
γ̇

j.

By the right side of (3.2.1),

d
dt

(
∂F
∂v j (γ, γ̇(t))

)
=

d
dt
(gik(p)γ̇ i)

=
∂gik(p)

∂x j γ̇
i
γ̇

j +gik(p)γ̈ i

=
1
2

∂gik(p)
∂x j γ̇

i
γ̇

j +
1
2

∂gik(p)
∂x j γ̇

i
γ̇

j +gik(p)γ̈k.

Interchanging the indices i and j in the middle term, we have that

d
dt

(
∂F
∂v j (γ, γ̇(t))

)
=

1
2

∂gik(p)
∂x j γ̇

i
γ̇

j +
1
2

∂g jk(p)
∂xi γ̇

i
γ̇

j +gik(p)γ̈k.

Joining the two sides, the Euler-Lagrange equations are

gikγ̈
i +

1
2

(
∂gik(p)

∂x j +
∂g jk(p)

∂xi −
∂gi j(p)

∂xk

)
γ̇

i
γ̇

j = 0.

Multiplying by the inverse matrix gik of gik, it follows that

γ̈
i +Γ

k
i jγ̇

i
γ̇

j = 0 (3.2.7)

where

Γ
s
i j(p) =

1
2

(
∂gik(p)

∂x j +
∂g jk(p)

∂xi −
∂gi j(p)

∂xk

)
gks.

Definition 3.2.6. A smooth curve γ : [a,b]→ M that locally minimizes the arc-length is called

geodesic.

The second order differential equation (3.2.7) is called geodesic equation



3.3 Legendre Transform 54

3.3 Legendre Transform

In this section we finally give the connection between the Lagrangian formalism and the

Hamiltonian formalism. The Subsection 3.3.1 is preliminary for the Subsection 3.3.2, where

we study the concept of Legendre transform.

3.3.1 Strong Convexity

In the literature, the maps satisfying the conditions in Definition 3.2.2 are usually called

strictly convex maps, but these maps are usually related to a weaker definition. Let V be an

n-dimensional real vector space. In this dissertation a map f : V→ R will be called convex if

for any v,w ∈ V

f (tv+(1− t)w)≤ t f (v)+(1− t) f (w), for all t ∈ [0,1].

The map f is called strictly convex if the inequality above is strict for all t ∈ (0,1). In this

section we explore the relation between strictly and strongly convex maps and explore their

properties.

For any v,w ∈ V, denote

(v,w) = {z ∈ V : z = tv+(1− t)w where t ∈ (0,1)}

and

[v,w] = {z ∈ V : z = tv+(1− t)w where t ∈ [0,1]}

the open and closed segment joining v and w, respectively.

Let f :V→R be a strongly convex map. For any v,w∈V, the Taylor formula with Lagrange

remainder guarantees the existence of a element z ∈ (v,w) such that

f (w) = f (v)+(d f )v(w− v)+(d2 f )z(w− v)2.

By Definition 3.2.2,

f (w)> f (v)+
1
2
(d f )v(w− v).
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Therefore, if x = t0v+(1− t0)w, we have that

f (v)> f (x)+(d f )x(v− x) (3.3.1)

f (w)> f (x)+(d f )x(w− x). (3.3.2)

Multiplying (3.3.1) by t0, (3.3.2) by (1− t0) and adding the two inequalities, it follows that

t0 f (v)+(1− t0) f (w)> t0 f (x)+ t0(d f )x(v− x)+ f (x)− t0 f (x)

+(d f )x(w− x)− t0(d f )x(w− x)

= (d f )x(t0v− t0x+w− x− t0w+ t0x)+ f (x)

= f (x).

This implies that f is a strictly convex map.

Remark 3.3.1. A strictly convex map f : V→ R is not necessarily strongly convex. In fact, the

map f (x) = x4 is strictly convex, but f ′′(0) = 0.

Remark 3.3.2. A map f : V → R is strongly convex if and only if it is strongly convex when

restricted to lines. This means that the map f : V→R is strongly convex if and only if f (v+ tw)

is strongly convex for every v ∈ V and w ∈ V \ {0}. This fact follows when we define g(t) =

f (v+ tw). Thus,

g ′′(t) = (d2 f )v+tw(w)2.

Therefore, g ′′(t)> 0 if and only if (d2 f )v+tw(w)2 for all v,w ∈ V with v ̸= w.

The following proposition give us many conditions which are equivalent to strong convexity

of a map.

Proposition 3.3.3. Let f :V→R be a strongly convex map. The following items are equivalent:

1. f has a critical point;

2. f has a local minimum at some point;

3. f has a unique global minimum;

4. f is proper, i.e., f (v)→+∞ when |v| →+∞.
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Proof. (1) ⇒ (2) If (d f )v = 0 for some v ∈V, by the Taylor formula with Lagrange remainder,

for any w ∈ V, exist x ∈ V such that

f (w) = f (v)+(d f )v(w− v)+
1
2
(d2 f )x(w− v)2

> f (v).

for w ̸= v because f is strongly convex. Thus f (v) is the unique global minimum of f . In

particular, is a local minimum.

(2) ⇒ (3) The prove of this implication just proceed as in (1)⇒ (2).

(3) ⇒ (1) If f (v) is a unique global minimum for some v ∈ V, then (d f )v = 0.

(1) ⇒ (4) The condition f (v)→ +∞ when |v| → +∞ means that for any constant M ∈ R,

there exist RM > 0 such that f (v)≥ M whenever |v| ≥ RM. Suppose without loss of generality

that f (0) = 0 is the unique critical point of f . Let Sn−1(1) ⊂ V the unit sphere on V. Since

Sn−1(1) is compact, exist v1 ∈ Sn−1(1) such that f |Sn−1(1)(v1) is the minimum. Define

ϕ : V\{0}→ R

v 7→ f (v)
|v|

.

We have that ϕ is the slope of the line passing through 0 and f (v). ϕ is well-defined and smooth.

As f |Sn−1(1)(v1) is the minimum on Sn−1(1), it follows that

λmin := ϕ(v1)≤ ϕ(w), for every w ∈ Sn−1(1).

Fix x ∈ Sn−1(1) and consider the ray σx starting in 0 and passing through x. Strong convexity

of f guarantees that for any y ∈ σx with |y| ≥ 1,

ϕ(x) =
f (x)
|x|

≤ f (y)
|y|

= ϕ(y).

Then, given M > 0, define RM := M
λmin

. If |y|> RM, this implies that

f (y)≥ λmin|y|> λmin

(
M

λmin

)
= M.

(4) ⇒ (1) Let M > 0 such that (−∞,M]∩ Im f ̸= /0. Let RM > 0 such that if |y| > RM, then
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f (y)> M. Then f−1((−∞,M])⊂ B[0,RM] and it is a nonempty compact subset of V. Therefore

f assumes a global minimum in f−1((−∞,M]), which is also a minimum in V.

Definition 3.3.4. A strongly convex map f : V→R is said to be stable if satisfies any condition

of Proposition 3.3.3.

Next let us present some examples:

Example 3.3.5. Consider the map f (x) = ex + ax. As f ′′(x) = ex > 0 for all x ∈ R, we have

that f is strongly convex. f ′(x) = ex +a, and f ′ admits a critical point if and only if a < 0. In

this case, f is stable. It isn’t stable for a ≥ 0.

Figure 3.1: Function ex +ax for a =−1 and a = 1 in purple and red, respectively.

Example 3.3.6. The map g(x) = x2+ax is strongly convex, because g ′′(x) = 2> 0 for all x∈R.

It is straightforward that g is stable for all a ∈ R. Some solutions are presented below:

Figure 3.2: Function x2 +ax for a =−1 and a = 1 in purple and red, respectively.
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3.3.2 Legendre Transform

For now on, we will assume that f : V→ R is strongly convex. For each v ∈ V we have the

identification

T ∗
v V= V∗.

By this identification we can consider the section d f on the cotangent bundle as a map

d f : V→ V×V∗.

Projecting on the second factor, the Legendre transform is defined by

L f : V→ V∗

v 7→ (d f )v.

If (v1, . . . ,vn) is a coordinate system on V, we have that

det(d2 f )v > 0, for all v ∈ V.

This implies that the Legendre transform is a local diffeomorphism by the inverse mapping

theorem. Below, we will show that L f takes V diffeomorphically on an open subset of V∗.

Given α ∈ V∗, define

fα : V→ R

v 7→ f (v)−α(v).

Observe that

(d2 fα)v(u) =
d2 fα

dt2 (v+ tu)|t=0

=
d2( f −α)

dt2 (v+ tu)|t=0

= (d2 f )v(u).

Definition 3.3.7. The set of stability of a strongly convex map f : V→ R is defined by

Wf := {α ∈ V∗ : fα is stable}.
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Proposition 3.3.8. Let f : V→ R be a strongly convex map. The set W f is open and convex in

V∗. Moreover the Legendre transform L f is a diffeomorphism over Wf .

Proof. First of all, notice that d fv ∈ Wf for every v ∈ V because fd fv admits a critical point.

Therefore L f (V)⊂Wf .

Conversely, take α ∈ Wf . Since fα : V → R is stable, exist an unique v ∈ V such that

(d fα)v = 0. Therefore,

0 = (d fα)v(u)

= (d f )v(u)−α(u),

i. e., d fv = α , and Wf ⊂ L f (V). In short, this shows that for any α ∈Wf , there exists a unique

v ∈ V such that d fv = α , showing that the Legendre transform L f is a bijection over Wf . As L f

is a local diffeomorphism for every v ∈ V, there exist neighborhoods Uv of v on V and Uα of α

on V∗ such that L f |Uv is a diffeomorphism over Uα . Therefore, Uα ⊂Wf is a neighborhood of

α contained in Wf , showing that Wf is a open set. The fact that L f is a bijection implies that L f

is a diffeomorphism over Wf due to the inverse function theorem.

Take α1,α2 ∈Wf . Since fα1 and fα2 are stable functions, we have that

fα1(v), fα2(v)→+∞, when |v| →+∞. (3.3.3)

Now, for any t ∈ [0,1],

t fα1(v)+(1− t) fα2(v) = ftα1+(1−t)α2(v). (3.3.4)

From (3.3.3) and (3.3.4), it follows that ftα1+(1−t)α2(v)→ +∞ when |v| → +∞ and tα1 +(1−

t)α2 ∈Wf , what shows that Wf is convex.

As consequence of Legendre transform being a bijection, we have a global minimum of fα

for each α ∈Wf . Indeed, given α ∈Wf , there exists a unique point v ∈V such that v = L−1
f (α)

and L f (v)(u) = α(u) for every u ∈ V. Thus, (d fα)v(u) = 0. Since, fα is stable, we have that

fα(v) is the global minimum of fα on V.
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Definition 3.3.9. The dual map f ∗ of f is defined by

f ∗ : Wf → R

α 7→ −min
v∈V

fα(v).
(3.3.5)

We have that,

f ∗(α) = α(v)− f (v),

where v = L−1
f (α), due to Proposition 3.3.8.

Theorem 3.3.10. Assuming that Wf = V∗, we have that L−1
f = L f ∗ .

Proof. First of all notice that

f ∗(α) = α(L−1
f (α))− f (L−1

f (α)).

Denote v = L−1
f (α). Considering the derivative of f ∗ at α calculated at β , we get

d f ∗α(β ) = β (L−1
f (α))+α(d(L−1

f )α(β ))−d fv(d(L−1
f )α(β )).

But α = d fv. Therefore

d f ∗α(β ) = β (L−1
f (α)).

Identifying d f ∗α ∈ V∗∗ with L−1
f (α) = (d f )−1

α ∈ V, we get (L f )
−1 = L f ∗ .

3.4 Variational Problems

The goal of this section is to give the relation between the Hamiltonian and Lagrangian

formalism. In Subsection 3.4.1 this relation is established. In Subsection 3.4.2 we use this

relation to study geodesics. As a corollary, we gain a geodesic equation in the Hamiltonian

formalism.

3.4.1 Application to Variational Problems

Let M be a n-dimensional smooth manifold and F : T M → R be a smooth function on the

tangent bundle T M. The goal of this section is to study the problem of minimization of Aγ . For
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any p ∈ M, denote

Fp := F |TpM : TpM → R.

Assume that Fp is strongly convex for any p ∈ M. The Legendre transform in each tangent

space

LFp : TpM →WFp

is a diffeomorphism. The dual map to Fp is denoted by F∗
p : WFp →R. With all this notations in

place and assuming that WFp = T ∗
p M for every p ∈ M, we can define

L : T M → T ∗M

(p,v)→ L(p,v) := d(Fp)v : TpM → R

and

H : T ∗M → R

(p,α) 7→ H(p,α) = F∗
p (α) : T ∗

p M → R.

The maps L and H are smooth maps on their respective vector bundles. In fact, the map L is a

diffeomorphism, because the restriction of L to each tangent space is also a diffeomorphism.

Lemma 3.4.1. Let (x,ξ ) ∈ ΓL, where ΓL is the graph of L. Then,

∂H
∂x

(x,ξ ) =−∂F
∂x

(x,v)

with H = F∗.

Proof. First, note that

∂H
∂x

(x,ξ ) = LF∗
x (x,ξ )

= LF∗
x (LFx(v))

= (x,v)

where v = v(x,ξ ) is the unique v ∈ TxM satisfying (x,ξ ) = L(x,v(x,ξ )). Deriving H(x,ξ ) =



3.4 Variational Problems 62

ξ (v(x,ξ ))−F(x,v(x,ξ )) with respect to x, we have

∂H
∂x

= ξ

(
∂v
∂x

)
− ∂F

∂x
(x,v)− ∂F

∂v

(
∂v
∂x

)
.

But ξ = ∂F
∂v because ξ is the Legendre transform of F and

∂H
∂x

=−∂F
∂x

what settles the lemma.

Let (x1, . . . ,xn) : U →Rn be a local coordinate systems on the open set U ⊂M with associate

coordinate systems (x1, . . . ,xn,v1, . . . ,vn) : TU → R2n and (x1, . . . ,xn,ξ1, . . . ,ξn) : T ∗U → R2n

for T M and T ∗M, respectively. Let γ : [a,b]→ M a smooth curve and γ̃ : [a,b]→ T M its lift. In

local coordinates, write γ(t) = (x1(t), . . . ,xn(t)) and γ̃(t) = (x1(t), . . . ,xn(t),v1(t), . . . ,vn(t)).

Theorem 3.4.2. The smooth curve γ satisfies the Euler-Lagrange equation if and only if L◦ γ̃ :

[a,b]→ T ∗M is a integral curve of the Hamiltonian field XH where H(p,α) = F∗
p (α).

Proof. We know that the integral curves (x(t),ξ (t)) of XH satisfies the Hamilton equations:


dx
dt (t) =

∂H
∂ξ

(x(t),ξ (t));

dξ

dt (t) =−∂H
∂x (x(t),ξ (t)).

x(t) satisfies the Euler-Lagrange equation

∂F
∂x

(x(t),x ′(t)) =
d
dt

∂F
∂v

(x(t),x ′(t)).

Define v(t) = x ′(t) and L(x(t),ξ (t)). Suppose that γ satisfies the Euler-Lagrange equations. As

LFx(t)(v(t)) = ξ (t), then

dx
dt

(t) = LF∗
x(t)
(ξ (t)) =

∂H
∂ξ

(x(t),ξ (t))

satisfying the first condition of Hamilton equations. Now, by ξ = ∂F
∂v and Lemma 3.4.1, we

have

d
dt

∂F
∂v

(x(t),v(t)) =
dξ

dt
(t) (3.4.1)
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and

∂F
∂x

(x(t),v(t)) =−∂H
∂x

(x(t),ξ (t)). (3.4.2)

Joining the equations (3.4.1) and (3.4.2), it follows that

dξ

dt
(t) =−∂H

∂x
(x(t),ξ (t)),

showing that (x(t),ξ (t)) satisfies the Hamilton equation. By the other side, if (x(t),ξ (t)) satis-

fies the Hamilton equation,

d
dt

∂F
∂v

(x(t),v(t)) =
dξ

dt
(t) =−∂H

∂x
(x(t),ξ (t)) =

∂F
∂x

(x(t),v(t)),

proving the desired equivalence.

3.4.2 Geodesics Equation in Hamiltonian Formalism

Let (M,⟨·, ·⟩) be a n-dimensional Riemannian manifold with Riemannian metric ⟨·, ·⟩. Let

(x1, . . . ,xn) : U → Rn be a local coordinate system on the open set U ⊂ M with correspond-

ing natural coordinate systems (x1, . . . ,xn,y1, . . . ,yn) : TU → R2n and (x1, . . . ,xn,ξ1, . . . ,ξn) :

T ∗U → R2n. The map

F : T M → R

(p,v) 7→ 1
2

gi j(p)viv j

is strongly convex where gi j = ⟨ ∂

∂xi ,
∂

∂x j ⟩. Let γ : [a,b]→ M be a geodesic joining p and q on

M and γ̃ : [a,b] → M its lift. In local coordinates, write γ(t) = (x1(t), . . . ,xn(t)) and γ̃(t) =

(x1(t), . . . ,xn(t),v1(t), . . . ,vn(t)). Then,

ξk(t) =
∂Fx(t)

∂vk (ẋ(t))

=
∂

∂vk

(
1
2

gi j(x(t))ẋiẋ j
)

=
1
2

gi j(x(t))δ i
kẋ j +

1
2

gi j(x(t))δ
j

k ẋi

=
1
2

gi j(x(t))ẋ j +
1
2

gik(x(t))ẋi
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= gki(x(t))ẋi

Therefore, ẋi(t) = gki(x(t))ξk(t). But,

H((x(t),ξ (t)) = ξiẋi − 1
2

gi j(x(t))ẋiẋ j

= ξigki(x(t))ξk −
1
2

gi j(x(t))gki(x(t))ξkgl j(x(t))ξl

= gki(x(t))ξiξk −
1
2

glk(x(t))ξkξl

=
1
2

gki(x(t))ξiξk.

In this way,

∂H
∂ξ j

(x(t),ξ (t)) =
1
2
(gki(x(t))δ j

i ξk +gki(x(t))ξiδ
j

k )

=
1
2
(gk j(x(t))ξk +g ji(x(t))ξi)

= gi j(x(t))ξi

and

∂H
∂x j (x(t),ξ (t)) =

∂

∂x j

(
1
2

gki(x(t))ξiξk

)
.

Therefore (x(t),ξ (t)) satisfies

 ẋ j(t) = gi j(x(t))ξi(t);

ξ̇ j(t) = 1
2

∂gik

∂x j (x(t))ξ̇i(t)ξ̇k(t).
(3.4.3)

Equation (3.4.3) is the geodesic equation in the Hamiltonian formalism. Observe that it is

simpler than the geodesic equation in Lagrangian formalism (3.2.7) due to the absence of a

complicated term as the Christoffel symbol.



CHAPTER 4

Hamiltonian Formalism in Riemannian

Geometry

In this chapter we apply the Hamiltonian formalism of Section 3.4 to develop the study of

curvatures and Jacobi fields in the cotangent space. In Section 4.1 we study the connection on

general tensor bundles that comes from the Riemannian connection. This connection will be

applied along to the rest of this chapter. In Sections 4.2, 4.3, 4.4 and 4.5 we use the Hamiltonian

formalism to give definitions of curvatures for the cotangent bundle and see the equivalence

between the definitions given for the tangente bundle. See Chapter 4 and Chapter 7 of [29] for

more details of Sections 4.1 and 4.2, respectively.

4.1 Covariant Derivation of Tensor Fields

In this section we define the connection for tensors fields. This concept is the basis to study

curvatures and Jacobi fields on the cotangent space.

Let (M,⟨·, ·⟩) be a Riemannian manifold of dimension n with Riemannian metric ⟨·, ·⟩. De-

note by ∇ : X(M)×X(M) → X(M) the Riemannian connection on M. The main idea is to

define a connection ∇ on X(M)×Γ(T (k,l)M), where T (k,l)M is the fiber bundle of tensors of

type (k, l) on M and Γ(T (k,l)M) is the space of smooth sections on T (k,l)M. This connection has

to satisfy the following properties:

1. In T (1,0)M = T M, ∇ coincides with the Riemannian connection on M;

2. In T (0,0)M = M×R, ∇ is given by

∇X f = d f (X) = X f ;
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3. ∇ satisfies the product rule with respect to tensor product:

∇X(T ⊗S) = (∇X T )⊗S+T ⊗ (∇X S).

4. ∇ commutes with all contractions, i.e., if tr(i, j) denote the trace of any pair of index (i, j),

then

∇X(tr(i, j)T ) = tr(i, j)(∇X T )

This connection satisfies the following additional conditions:

(a) ∇ obeys the product rule:

∇X(ω(Y )) = (∇X ω)(Y )+ω(∇XY ).

(b) For any T ∈ Γ(T (k,l)M), smooth 1-forms ω1, . . . ,ωk and vector fields Y1, . . . ,Yl we

have that

(∇X T )(ω1, . . . ,ωk,Y1, . . . ,Yl) =X(T (ω1, . . . ,ωk,Y1, . . . ,Yl))

−
k

∑
i=1

T (ω1, . . . ,∇X ωi, . . . ,ω
k,Y1, . . . ,Yl)

−
l

∑
j=1

T (ω1, . . . ,ωk,Y1, . . . ,∇XYj, . . . ,Yl).

First, denote by ∇ a family of connections on T (k,l)M satisfying (1)-(4). We prove that ∇

satisfies (4a) and (4b). Indeed, observe that

tr(ω ⊗Y ) = tr
(

ωidxi ⊗Y j ∂

∂x j

)
= ωiY jtr

(
dxi ⊗ ∂

∂x j

)
= ωiY i

= ω(Y )

for all ω ∈ X∗(M) and Y ∈ X(M). Thus, by induction

T (ω1, . . .ωk,Y1, . . . ,Yl) = T i1...ik
j1... jl ω

1
i1 · · ·ω

k
ikY

j1
1 · · ·Y jl

l
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which is represented by

tr◦ · · · ◦ tr︸ ︷︷ ︸
k+l times

(T ⊗ω
1 ⊗·· ·⊗ω

k ⊗Y1 ⊗·· ·⊗Yl)

for the sake of simplicity.

∇X(ω(Y )) = ∇X(tr(ω ⊗Y ))

= tr(∇X(ω ⊗Y ))

= tr((∇X ω))⊗Y +ω ⊗∇XY )

= (∇X ω)(Y )+ω(∇XY ).

Proceeding by induction we get (4b):

∇X(T (ω1, . . . ,ωk,Y1, . . . ,Yl)) = ∇X tr◦ · · · ◦ tr(T ⊗ω
1 ⊗·· ·⊗ω

k ⊗Y1 ⊗·· ·⊗Yl)

= tr◦ · · · ◦ tr(∇X(T ⊗ω
1 ⊗·· ·⊗ω

k ⊗Y1 ⊗·· ·⊗Yl))

= tr◦ · · · ◦ tr((∇X T )(ω1 ⊗·· ·⊗ω
k ⊗Y1 ⊗·· ·⊗Yl))

+
k

∑
i=1

tr◦ · · · ◦ tr(T ⊗ω
1 ⊗·· ·⊗∇X ω

i ⊗·· ·⊗ω
k ⊗Y1 ⊗·· ·⊗Yl)

+
l

∑
j=1

tr◦ · · · ◦ tr(T ⊗ω
1 ⊗·· ·⊗ω

k ⊗Y1 ⊗·· ·⊗∇XYj ⊗·· ·⊗Yl).

Since T (ω1, . . . ,ωk,Y1, . . . ,Yl) is a smooth function, we have that

(∇X T )(ω1, . . . ,ωk,Y1, . . . ,Yl) = X(T (ω1, . . . ,ωk,Y1, . . .Yl))

−
k

∑
i=1

T (ω1, . . . ,∇X ω
i, . . . ,ωk,Y1, . . . ,Yl)

−
k

∑
j=1

T (ω1, . . . ,ωk,Y1, . . . ,∇XYj, . . . ,Yl).

The next step is prove the uniqueness. By (2) and (4a) the covariant derivative of any 1-form is

given by

(∇X ω)(Y ) = X(ω(Y ))−ω(∇XY ),

showing that ∇ on X∗(M) is only determined by the Riemannian connection on M. Similarly,

(4b) gives us an explicit formula of covariant derivative for any T ∈ Γ(T (k,l)T M) in terms of
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covariant derivatives of smooth vector fields and 1-forms. Therefore, the family of connections

∇ on T (k,l)M is uniquely determined.

For the existence, define the covariant derivative on the 1-forms by

(∇X ω)(Y ) = X(ω(Y ))−ω(∇XY )

and for any T ∈ Γ(T (k,l)M) by

(∇X T )(ω1, . . . ,ωk,Y1, . . . ,Yl) = X(T (ω1, . . . ,ωk,Y1, . . .Yl))

−
k

∑
i=1

T (ω1, . . . ,∇X ω
i, . . . ,ωk,Y1, . . . ,Yl)

−
k

∑
j=1

T (ω1, . . . ,ωk,Y1, . . . ,∇XYj, . . . ,Yl).

(4.1.1)

We will show that (4.1.1) is multilinear on D(M) for each ω i and Yj, showing that ∇X T is a

smooth tensor. We prove it for 1-forms and the general case is similar. Given Y,Z ∈ X(M) and

f ∈ D(M), then

(∇X ω)( fY +Z) = X(ω( fY +Z))−ω(∇X( fY +Z))

= f X(ω(Y ))+X(ω(Z))−ω( f (∇XY )+∇X Z)

= f (X(ω(Y )))− f (ω(∇XY ))+X(ω(Z))−ω(∇X Z)

= f ((∇X ω)(Y ))+(∇X ω)(Z).

and (∇X ω) is a smooth 1-form because it is linear over D(M) on X(M) and satisfies the product

rule on T . By definition of ∇X T , the proof that (∇X T ) is a smooth tensor came as a consequence

of the definition of ∇X ω and ∇XY , where ω ∈ X∗(M) and Y ∈ X(M).

Let T ∈ Γ(T (k1,l1)M) and S ∈ Γ(T (k2,l2)M). By definition of ∇, the property (3) follows by:

(∇X(T ⊗S))(ω1, . . . ,ωk1 , . . . ,ωk1+k2,Y1, . . . ,Yl1, . . . ,Yl1+l2) =

X(T ⊗S(ω1, . . . ,ωk1 , . . . ,ωk1+k2,Y1, . . . ,Yl1, . . . ,Yl1+L2))

−
k1+k2

∑
i=1

(T ⊗S)(ω1, . . . ,∇X ω
i, . . . ,ωk1+k2,Y1, . . . ,Yk1+k2)

−
l1+l2

∑
i=1

(T ⊗S)(ω1, . . . ,ωk1+k2 ,Y1, . . . ,∇XYi, . . . ,Yl1+l2)
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= X(T (ω1 . . . ,ωk1,Y1, . . . ,Yl1)S(ω
k1+1, . . . ,ωk1+k2,Yl1+1, . . . ,Yl1+l2))

− ∑
i≤k1

T (ω1, . . . ,∇X ω
i, . . . ,ωk1,Y1, . . . ,Yl1)S(ω

k1+1, . . . ,ωk1+k2,Yl1+1, . . . ,Yl1+l2)

− ∑
i>k1

T (ω1, . . . ,ωk1,Y1, . . . ,Yl1)S(ω
k1+1, . . . ,∇X ω

i, . . . ,ωk1+k2,Yl1+1, . . . ,Yl1+l2)

− ∑
i≤l1

T (ω1, . . . ,ωk1 ,Y1, . . . ,∇XYi, . . . ,Yl1)S(ω
k1+1, . . . ,ωk1+k2,Yl1+1, . . . ,Yl1+l2)

− ∑
i>l1

T (ω1, . . . ,ωk1 ,Y1, . . . ,Yl1)S(ω
k1+1, . . . ,ωk1+k2,Yl1+1, . . . ,∇XYi, . . . ,Yl1+l2)

= X(T (ω1, . . . ,ωk1 ,Y1, . . . ,Yl1)

− ∑
i≤k1

T (ω1, . . . ,∇X ω
i, . . . ,ωk1,Y1, . . . ,Yl1)

− ∑
i≤l1

T (ω1, . . . ,ωk1 ,Y1, . . . ,∇XYi, . . . ,Yl1))S(ω
k1+1, . . . ,ωk1+k2,Yl1+1, . . . ,Yl1+l2)

+T (ω1, . . . ,ωk1,Y1, . . . ,Yl1)(X(S(ωk1+1, . . . ,ωk1+k2,Yl1+1, . . . ,Yl1+l2)

− ∑
i>k1

S(ωk1+1, . . . ,∇X ω
i, . . . ,ωk1+k2,Yl1+1, . . . ,Yl1+l2)

− ∑
i>l1

S(ωk1+1, . . . ,ωk1+k2,Yl1+1, . . . ,∇XYi, . . . ,Yl1+l2))

= ((∇X T )⊗S+T ⊗ (∇X S))(ω1, . . . ,ωk1+k2,Y1, . . . ,Yl1+l2)),

concluding that ∇X(T ⊗S) = (∇X T )⊗S+T ⊗(∇X S). Finally, for any T ∈Γ(T (k,l)M) it follows

that

(∇X(tr(i, j)T ))(ω
1, . . . ,ωk−1,Y1, . . . ,Yl1−1)

= X(tr(i, j)T (ω
1, . . . ,ωk−1,Y1, . . . ,Yl−1))

−
k−1

∑
m=1

tr(i, j)T (ω
1, . . . ,∇X ω

m, . . . ,ωk−1,Y1, . . . ,Yl−1)

−
l−1

∑
m=1

tr(i, j)T (ω
1, . . . ,ωk−1,Y1, . . . ,∇XYm, . . . ,Yl−1)

= X
(

T
(

ω
1, . . . ,ω i−1,dxs,ω i, . . . ,ωk−1,Y1, . . . ,Yj−1,

∂

∂xs ,Yj, . . . ,Yl−1

))
− tr(i, j)

(
k−1

∑
m=1

T (ω1, . . . ,∇X ω
m, . . . ,ωk−1,Y1, . . . ,Yl−1)

)

− tr(i, j)

(
l−1

∑
m=1

T (ω1, . . . ,ωk−1,Y1, . . . ,∇XYm, . . . ,Yl−1)

)
= tr(i, j)(∇X T )(ω1, . . . ,ωk−1,Y1, . . . ,Yl−1),
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proving Property (4).

We know that any map T :X∗(M)×·· ·×X∗(M)×X(M)×·· ·×X(M)→D(M) is a smooth

tensor of type (k, l) if and only if is multilinear over D(M) in k+ l entries. Therefore, the map

∇T : X∗(M)×·· ·×X∗(M)︸ ︷︷ ︸
k-copies

×X(M)×·· ·×X(M)︸ ︷︷ ︸
l+1-copies

→ D(M) (4.1.2)

given by

(∇T )(ω1, . . . ,ωk,Y1, . . . ,Yl,X) = ∇X T (ω1, . . . ,ωk,Y1, . . . ,Yl)

is a (k, l +1) tensor on M. In fact, we know that ∇X T is a smooth tensor, i.e., multilinear over

D(M) in k+ l entries. Since ∇ is a connection on T (k,l)M, it is linear over D(M) on X .

Definition 4.1.1. The tensor (4.1.2) is the covariant differential of T .

Let {Ei} be a local frame for M. If ∇ is a Riemannian connection on M we write

∇XY = (X iY j
Γ

k
i j +X(Y k))Ek, with X = X iEi,Y = Y jE j ∈ X(M),

in the local frame {Ei} and Γk
i j are the connection coefficients of ∇ with respect to this frame.

The next proposition write the covariant derivative of any tensor with respect to a local frame.

Although we use the same notation for Christoffel symbols, this convention will not cause any

confusion.

Proposition 4.1.2. Let M be a Riemannian manifold and ∇ be a family of connections on

T (k,l)M. Let {Ei} be a local frame of M and denote its dual frame by {E i}. Let {Γk
i j} be the

coefficients of ∇ on M with respect to this frame. Let X be a smooth vector field and X iEi its

expression in local coordinates in terms of this frame.

1. The covariant derivative of ω = ωiE i ∈ X∗(M) is locally given by

∇X ω = (X(ωk)−X j
ωiΓ

i
jk)E

k.

2. Let T ∈ Γ(T (k,l)M), whose expression in this local frame is given by

T = T i1...ik
j1... jl Ei1 ⊗·· ·⊗Eik ⊗E j1 ⊗·· ·⊗E jl .
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Then the covariant derivative of T in this local frame is given by

∇X T =

(
X
(

T i1...ik
j1... jl

)
+

k

∑
s=1

XmT i1...p...ik
j1... jl Γ

is
mp −

l

∑
s=1

XmT i1...ik
j1...p... jl Γ

p
m js

)
·

Ei1 ⊗·· ·⊗Eik ⊗E j1 ⊗·· ·⊗E jl

Proof. 1. Let Y = Y jE j ∈ X(M). Thus

(∇X ω)(Y ) = X(ω(Y ))−ω(∇XY )

= X(ωkEk(Y jE j))−ωlE l(X jY k
Γ

i
jk +X(Y i))Ei

= X(ωk)Y k +ωk(X(Y k))−ωi(X jY k
Γ

i
jk)−ωiX(Y i))

= (X(ωk)−X j
ωiΓ

i
jk)Y

k,

implying that ∇X ω = (X(ωk)−X jωiΓ
i
jk)E

k.

2. If T ∈ Γ(T (k,l)M), then

(∇X T )(ω1, . . . ,ωk,Y1, . . . ,Yl) = X(T (ω1, . . . ,ωk,Y1, . . .Yl))

−
k

∑
i=1

T (ω1, . . . ,∇X ω
i, . . . ,ωk,Y1, . . . ,Yl)

−
k

∑
j=1

T (ω1, . . . ,ωk,Y1, . . . ,∇XYj, . . . ,Yl).

Therefore,

(∇X T )(ω1, . . . ,ωk,Y1, . . . ,Yl)

= X(T i1...ik
j1... jl Ei1 ⊗·· ·⊗Eik ⊗E j1 ⊗·· ·⊗E jl(ω1, . . . ,ωk,Y1, . . . ,Yl))

−
k

∑
m=1

T i1...ik
j1... jl Ei1 ⊗·· ·⊗Eik ⊗E j1 ⊗·· ·⊗E jl(ω1, . . . ,∇X ω

m, . . . ,ωk,Y1, . . . ,Yl)

−
l

∑
n=1

T i1...ik
j1... jl Ei1 ⊗·· ·⊗Eik ⊗E j1 ⊗·· ·⊗E jl(ω1, . . . ,ωk,Y1, . . . ,∇XYn, . . . ,Yl)

= X(T i1...ik
j1... jl ω

1
i1 · · ·ω

k
ikY

j1
1 · · ·Y jl

l )

−
k

∑
m=1

T i1...ik
j1... jl Ei1 ⊗·· ·⊗Eik ⊗E j1 ⊗·· ·⊗E jl

(ω1, . . . ,(X(ωm
q )−X p

ω
m
a Γ

a
pq)E

q, . . . ,ωk,Y1, . . . ,Yl)
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−
l

∑
n=1

T i1...ik
j1... jl Ei1 ⊗·· ·⊗Eik ⊗E j1 ⊗·· ·⊗E jl

(ω1, . . . ,ωk,Y ,
1 . . . ,(X(Y q

n )+X pY a
n Γ

q
pa)Eq, . . . ,Yl)

= X(T i1...ik
j1... jl ω

1
i1 · · ·ω

k
ikY

j1
1 · · ·Y jl

l )

−
k

∑
m=1

T i1...im...ik
j1... jl ω

1
i1 · · ·(X(ωm

im)−X p
ω

m
a Γ

a
pim) · · ·ω

k
ikY

j1
1 · · ·Y jl

l

−
l

∑
n=1

T i1...ik
j1... jn... jl ω

1
i1 · · ·ω

k
ikY

j1
1 · · ·(X(Y jn

n )+X pY a
n Γ

jn
pa) · · ·Y

jl
l

= X(T i1...ik
j1... jl )ω

1
i1 · · ·ω

k
ikY

j1
1 · · ·Y jl

l

+T i1...ik
j1... jl X(ω1

i1 · · ·ω
k
ikY

j1
1 · · ·Y jl

l )

−
k

∑
m=1

T i1...ik
j1... jl ω

1
i1 · · ·X(ωm

im) · · ·ω
k
ikY

j1
1 · · ·Y jl

l

+
k

∑
m=1

T i1...im...ik
j1... jl ω

1
i1 · · ·X

p
ω

m
a Γ

a
pim · · ·ω

k
ikY

j1
1 · · ·Y jl

l

−
l

∑
n=1

T i1...ik
j1... jn... jl ω

1
i1 · · ·ω

k
ikY

j1
1 · · ·X pY a

n Γ
jn
pa · · ·Y

jl
l

−
l

∑
n=1

T i1...ik
j1... jl ω

1
i1 · · ·ω

k
ikY

j1
1 · · ·X(Y jn

n ) · · ·Y jl
l .

But,

T i1...ik
j1... jl X(ω1

i1 · · ·ω
k
ikY

j1
1 · · ·Y jl

l ) =
k

∑
m=1

T i1...ik
j1... jl ω

1
i1 · · ·X(ωm

im) · · ·ω
k
ikY

j1
1 · · ·Y jl

l

+
l

∑
n=1

T i1...ik
j1... jl ω

1
i1 · · ·ω

k
ikY

j1
1 · · ·X(Y jn

n ) · · ·Y jl
l .

Thus,

∇X T =

(
X
(

T i1...ik
j1... jl

)
+

k

∑
m=1

XhT i1...p...ik
j1... jl Γ

im
hp −

l

∑
s=1

XhT i1...ik
j1...p... jl Γ

p
h js

)
·

Ei1 ⊗·· ·⊗Eik ⊗E j1 ⊗·· ·⊗E jl

To simplify the notation, when we write the components of the covariant differential in terms

of a local frame, it is usual to use a semicolon to separate indices resulting from differentiation

from the preceding indices. For example, if Y =Y iEi is a smooth vector field in the local frame
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{Ei}, then ∇Y is a smooth tensor of type (1,1). Then we write

∇Y = Y k
;iEk ⊗E i.

By the expression of the Riemannian connection ∇ in a local frame on M,

∇Y (ω,X) = ∇XY (ω)

= (X iY j
Γ

k
i j +X(Y k))ωk

= (X iY j
Γ

k
i j +X iEi(Y k))ωk

= (Y j
Γ

k
i j +Ei(Y k))Ek ⊗E i(ω,X).

Since the coefficient is unique, it follows that Y i
; j = Y kΓi

jk +E j(Y i).

In analogous way, if ω ∈X∗(M), then ∇ω is a tensor of type (0,2). Writing ∇ω = ωi; jE i⊗

E j, we have that

∇ω(Y,X) = (∇X ω)(Y )

= (X(ωk)−X j
ωiΓ

i
jk)Y

k

= (E j(ωk)−ωiΓ
i
jk)E

k ⊗E j(Y,X),

showing that ωi; j = E j(ωi)−ωkΓk
ji.

Applying this convention to the definition of covariant differential for any tensor T of type

(k, l), we have that

∇T = T i1...ik
j1... jl ;mEi1 ⊗·· ·⊗Eik ⊗E j1 ⊗·· ·⊗Em.

because ∇T is a tensor of type (k, l +1). By (4b)

∇T (ω1, . . . ,ωk,Y1, . . . ,Yl,X)

= (∇X T )(ω1, . . . ,ωk,Y1, . . . ,Y l)

=

(
X
(

T i1...ik
j1... jl

)
+

k

∑
m=1

XhT i1...p...ik
j1... jl Γ

im
hp −

l

∑
s=1

XhT i1...ik
j1...p... jl Γ

p
h js

)
·ω1

i1 · · ·ω
k
ikY

j1
1 · · ·Y jl

l

=

(
Eh

(
T i1...ik

j1... jl

)
+

k

∑
m=1

T i1...p...ik
j1... jl Γ

im
hp −

l

∑
s=1

T i1...ik
j1...p... jl Γ

p
h js

)
·ω1

i1 · · ·ω
k
ikY

j1
1 · · ·Y jl

l Xh.
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Thus, in the local frame {Ei} of M and the convention adopted above we have that

T i1...ik
j1... jl ;h

= Eh

(
T i1...ik

j1... jl

)
+

k

∑
m=1

T i1...p...ik
j1... jl Γ

im
hp −

l

∑
s=1

T i1...ik
j1...p... jl Γ

p
h js.

As we define the (k, l+1)-tensor ∇T for any (k, l)-tensor T , we can apply again the covari-

ant differential to have a (k, l +2)-tensor ∇2T = ∇(∇T ), called by second covariant differen-

tial of T . Given X ,Y ∈ X(M), denote by ∇2
X ,Y T the tensor of type (k, l) obtained putting X ,Y

in the last entries of ∇2T , i.e.,

(∇2
X ,Y T )(ω1, . . . ,ωk,Y1, . . . ,Yl) := ∇

2T (ω1, . . . ,ωk,Y1, . . . ,Yl,Y,X).

It is important see that ∇2
X ,Y T is not equal to ∇X(∇Y T ), because ∇2

X ,Y T is linear over D(M) on

Y , while that ∇X(∇Y T ) is not.

Proposition 4.1.3. Let M be a Riemannian manifold and ∇ be a family of connections on

T (k,l)M. For any T ∈ Γ(T k,lM),

∇
2
X ,Y T = ∇X(∇Y T )−∇∇XY T.

Proof. The covariant derivative ∇Y T can be expressed as the trace of ∇T ⊗Y in the last two

indexes. Indeed, if {Ei} is a local frame with dual local frame {E i},

tr(∇T ⊗Y )(E i1, . . . ,E ik ,E j1, . . . ,E jl) = ∇T ⊗Y (E i1, . . . ,E ik ,E i,E j1, . . . ,E jl ,Ei)

= (∇T (E i1 , . . . ,E ik ,E j1, . . . ,E jl ,Ei)Y (E i))

= T i1...ik
j1... jl ;mY m

By the other side, we just compute that ∇Y T = ∑T i1...ik
j1... jl ;mY m. The general case is a consequence

of the multilinearity.

Similarly, ∇2
X ,Y T = tr(tr(∇2T ⊗X)⊗Y ). In fact,

tr(tr(∇2T⊗X)⊗Y )(ω1, . . . ,ωk,Y1, . . . ,Yl)

= tr(∇2T ⊗X)⊗Y (ω1, . . . ,ωk,E i,Y1, . . . ,Yl,Ei)

= tr(∇2T ⊗X)(ω1, . . . ,ωk,Y1, . . . ,Yl,Ei)Y (E i)

= (∇2T ⊗X)(ω1, . . . ,ωk,E j,Y1, . . . ,Yl,Ei,E j)Y (E i)
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= ∇
2T (ω1, . . . ,ωk,Y1, . . . ,Yl,Ei,E j)X(E j)Y (E i)

= ∇
2T (ω1, . . . ,ωk,Y1, . . . ,Yl,Ei,E j)X jY i

= ∇
2T (ω1, . . . ,ωk,Y1, . . . ,Tl,Y,X)

= (∇2
X ,Y T )(ω1, . . . ,ωk,Y1, . . . ,Yl).

Therefore the equality holds. Finally, we have that

∇X(∇Y T ) = ∇X(tr(∇T ⊗Y ))

= tr(∇X(∇T ⊗Y ))

= tr(∇X(∇T )⊗Y +∇T ⊗∇XY )

= tr(tr(∇∇T ⊗X)⊗Y )+ tr(∇T ⊗∇XY )

= ∇
2
X ,Y T +∇∇XY T.

To make Proposition 4.1.3 more concrete, we have the following example.

Example 4.1.4 (The Hessian). Let f be a smooth map on M. Then ∇ f ∈ X∗(M). But

∇ f (X) = ∇X f = X( f ) = d f (X).

Therefore, ∇ f = d f . The (0,2)-tensor ∇2 f = ∇d f is the Hessian of f . We have that

∇
2 f (Y,X) = ∇

2
X ,Y f

= ∇X(∇Y f )−∇∇XY f

= ∇X(Y ( f ))− (∇XY )( f )

= X(Y ( f ))− (∇XY ) f .

Let (x1, . . . ,xn) : U → Rn be a coordinate system on an open set U ⊂ M. In local coordinates,

∇2 f = f;i jdxi ⊗dx j, with

f;i j =
∂ f

∂x j∂xi −Γ
k
ji

∂ f
∂xk .



4.2 Curvature Tensor in the Cotangent Bundle 76

4.2 Curvature Tensor on the Cotangent Bundle

In this section we define the curvature operator on the cotangent bundle and prove relations

with the usual definition of the curvature operator on the tangent bundle.

Let (M,⟨·, ·⟩) be an n-dimensional Riemannian manifold. Denote by R : X(M)×X(M)×

X(M)→ X(M) the curvature operator on M, i.e., the (1,3)-tensor defined as

R(X ,Y )Z = ∇Y ∇X Z −∇X ∇Y Z +∇[X ,Y ]Z.

The Riezs representation theorem allows us to define the linear map Z : T M → T ∗M by

v 7→ ⟨v, ·⟩p. Z induces an isomorphism between the tangent and cotangent bundles. The inverse of

this isomorphism will be denoted by \. These isomorphisms are called musical isomorphisms.

For any X ,Y ∈ X(M) let R∗(X ,Y ) : X∗(M)→ X∗(M) the (1,1)-tensor induced by the cur-

vature operator and defined as

R∗(X ,Y )ξ = (R(X ,Y )ξ \)Z.

Definition 4.2.1. The operator R∗(X ,Y ) will be called by curvature operator on T ∗M.

The Riemannian metric on M induces a Riemannian metric in the cotangent bundle by the

following identification:

⟨·, ·⟩∗ : T ∗M×T ∗M → D(M)

(ξ ,η) 7→ ⟨ξ \,η \⟩.

By definition of ⟨·, ·⟩∗ we have an isometry between T M and T ∗M.

Let {Ei} be a local frame on M and denote by {E i} the dual local frame of M. For any

X ,Y ∈ X(M):

tr(X ⊗⟨·, ·⟩)(Y ) = (X ⊗⟨·, ·⟩)(E i,Y,Ei)

= X(E i)⟨Y,Ei⟩

= X igi jY j.
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Therefore, X Z = X igi jE j = tr(X ⊗⟨·, ·⟩). Thus,

∇Y X Z = ∇Y tr(X ⊗⟨·, ·⟩)

= tr((∇Y X)⊗⟨·, ·⟩)+ tr(X ⊗∇Y ⟨·, ·⟩).

But, ∇Y ⟨·, ·⟩(W,Z) = Y (⟨W,Z⟩)−⟨∇YW,Z⟩−⟨W,∇Y Z⟩= 0. Then,

∇Y X Z = tr((∇Y X)⊗⟨·, ·⟩)

= (∇Y X)
Z
.

(4.2.1)

Putting X = ξ
\, we have that

(∇Y ξ )
\
= ∇Y ξ

\

because Z and \ are the inverse of each other. The next theorem gives a relation between the

second covariant derivative of a 1-form and the curvature operator.

Theorem 4.2.2 (Ricci identity). Let (M,⟨·, ·⟩) be a Riemannian manifold. The second covariant

differential of (k, l)-tensors satisfies the following identities. If Z ∈ X(M), then

∇
2
Y,X Z −∇

2
X ,Y Z = R(X ,Y )Z (4.2.2)

If β ∈ X∗(M), then

∇
2
Y,X β −∇

2
X ,Y β = R∗(X ,Y )β . (4.2.3)

Proof. For any T ∈ Γ(T (k,l)M), we have that

∇
2
Y,X T −∇

2
X ,Y T = ∇Y ∇X T −∇∇Y X T − (∇X ∇Y T −∇∇XY T )

= ∇Y ∇X T −∇X ∇Y T +∇[X ,Y ]T.

In particular, this equality is true when T = Z ∈ X(M), proving (4.2.2). For β ∈ X∗(M) since

∇Y β = (∇Y β
\
)
Z, we have that

∇Y ∇X β −∇X ∇Y β +∇[X ,Y ]β = ∇Y (∇X β
\
)
Z−∇X(∇Y β

\
)
Z
+(∇[X ,Y ]β

\
)
Z

= (∇Y ∇X β
\
)
Z− (∇X ∇Y β

\
)
Z
+(∇[X ,Y ]β

\
)
Z

= (R(X ,Y )β \)Z

= R∗(X ,Y )β ,
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proving (4.2.3).

The main idea is to use R∗ to obtain a curvature tensor on the cotangent bundle. First we

need to show that the curvature tensor on T ∗M has the linearity in each factor. The operator R∗

has the following properties:

1. R∗ is D(M)-bilinear on X(M)×X(M);

2. For all pair X ,Y ∈ X(M), the curvature operator R∗(X ,Y ) : X∗(M) → X∗(M) is linear

over D(M).

Indeed, let X1,X2 ∈ X(M) and f ,g ∈ D(M). It follows by (4.2.3), that

R∗( f X1 +gX2,Y )ξ (Z) = ∇
2
Y, f X1+gX2

ξ (Z)−∇
2
f X1+gX2,Y ξ (Z)

= ∇
2
ξ (Z, f X1 +gX2,Y )−∇

2
ξ (Z,Y, f X1 +gX2)

= f ∇
2
ξ (Z,X1,Y )+g∇

2
ξ (Z,X2,Y )− f ∇

2
ξ (Z,Y,X1)−g∇

2(Z,Y,X2)

= f (∇2
Y,X1

ξ (Z)−∇
2
X1,Y ξ (Z))+g(∇2

Y,X2
ξ (Z)−∇

2
X2,Y ξ (Z))

= ( f R∗(X1,Y )ξ +gR∗(X2,Y )ξ )(Z)

for any ξ ∈ X∗(M) and Z ∈ X(M). In analogous way, we show that

R∗(X , fY1 +gY2)ξ = f R∗(X ,Y1)ξ +gR∗(X ,Y2)ξ .

Now, given ξ ,η ∈ X∗(M) and f ∈ D(M), it follows that

R∗(X ,Y )(ξ +η) = ∇
2
Y,X(ξ +η)−∇

2
X ,Y (ξ +η)

= (∇2
Y,X ξ −∇

2
X ,Y ξ )+(∇2

Y,X η +∇
2
X ,Y η)

= R∗(X ,Y )ξ +R∗(X ,Y )η)

and

R∗(X ,Y )( f ξ ) = (R(X ,Y )( f ξ
\
))
Z
= ( f R(X ,Y )ξ \)Z = f R∗(X ,Y )ξ .

By the musical isomorphism we can rewrite the dual curvature operator R∗ by

R∗(α,β )ξ := R∗(α
\
,β
\
)ξ (4.2.4)
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for any α,β ,ξ ∈ X∗(M).

Proposition 4.2.3 (First Bianchi identity for 1-forms). For any α,β ,ξ ∈ X∗(M),

R∗(α,β )ξ +R∗(β ,ξ )α +R∗(ξ ,α)β = 0.

Proof. In fact,

R∗(α,β )ξ +R∗(β ,ξ )α +R∗(ξ ,α)β = (R(α \,β \)ξ \)Z+(R(β \,ξ \)α \)Z+(R(ξ \,α \)β \)Z

= 0

by the First Bianchi identity for vector fields.

From now on, for any α,β ,ξ ,η ∈ X∗(M) we use the following notation:

(α,β ,ξ ,η)∗ := ⟨(R∗(α,β )ξ )
\
,η
\⟩.

By the Riemannian metric ⟨·, ·⟩∗ on the cotangent bundle, we can write

(α,β ,ξ ,η)∗ = ⟨R∗(α,β )ξ ,η⟩∗. (4.2.5)

In order to analyze (4.2.5), the action of the musical isomorphism in the covariant derivative

of a 1-form, implies that

(α,β ,ξ ,η)∗ = ⟨R∗(α,β )ξ ,η⟩∗

= ⟨R(α \,β \)ξ \,η \⟩.
(4.2.6)

With this construction, we gain the following proposition.

Proposition 4.2.4. For any α,β ,ξ ,η ∈ X∗(M) the follow identities is true:

1. (α,β ,ξ ,η)∗+(β ,ξ ,α,η)∗+(ξ ,α,β ,η)∗ = 0;

2. (α,β ,ξ ,η)∗ =−(β ,α,ξ ,η)∗;

3. (α,β ,ξ ,η)∗ =−(α,β ,η ,ξ )∗;

4. (α,β ,ξ ,η)∗ = (ξ ,β ,α,β )∗.
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Proof. The proof is a direct consequence of,

(α,β ,ξ ,η)∗ = ⟨R(α \,β \)ξ \,η \⟩

and (1), (2), (3) and (4) for vector fields X ,Y,Z,W ∈ X(M) (see [13]).

4.3 Sectional Curvature on the Cotangent Bundle

Let V be a n-dimensional vector space with an inner product ⟨·, ·⟩. We use the notation

|v∧w| to indicate the expression

√
|v|2|w|2 −⟨v,w⟩2. (4.3.1)

The expression (4.3.1) represents the area of a bi-dimensional parallelogram generated by v,w∈

V. Analogously for all ξ ,η ∈ V∗ we define

ξ ∧η = (ξ
\∧η

\
)
Z (4.3.2)

and it is straightforward that

|ξ ∧η |∗ = |(ξ ∧η)
\|= |ξ \∧η

\|.

Let (M,⟨·, ·⟩) be a Riemannian manifold. Take p ∈ M, for any ξ ,η ∈ T ∗
p M denote by σ∗ ⊂

T ∗
p M the bidimensional subspace generated by ξ and η . Consider the number

K(σ∗) :=
(ξ ,η ,ξ ,η)∗

(|ξ ∧η |∗)2 ,

The next proposition is a direct consequence of (4.2.3) and (4.3.2).

Proposition 4.3.1. Let σ∗ = span{ξ ,η} ⊂ T ∗
p M be a bidimensional subspace. Thus, K(σ∗) =

K(σ), where σ = span{ξ
\
,η
\}. In particular, K(σ∗) doesn’t depend on the choice of ξ ,η ∈σ∗.
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Proof. We can note that

K(σ∗) =
(ξ ,η ,ξ ,η)∗

(|ξ ∧η |∗)2

=
⟨R(ξ \,η \)ξ \,η \⟩

|ξ \∧η
\|2 = K(σ),

and the fact that K(σ) doesn’t depend on the choice of ξ
\ and η

\ (see [13]).

Definition 4.3.2. Given p ∈ M and a bidimensional subspace σ∗ ⊂ T ∗
p M, the real number

K(ξ ,η) = K(σ∗) with {ξ ,η} a basis of σ∗, is called sectional curvature of σ∗ in p.

The next lemma allows us to characterize when the sectional curvature is constant using the

curvature operator on T ∗M.

Lemma 4.3.3. Let V be a vector space of dimension n ≥ 2 with an inner product ⟨·, ·⟩. Let

R : V∗×V∗×V∗ → V∗ e R′ : V∗×V∗×V∗ → V∗ trilinear maps such that (1), (2), (3) and (4)

of Proposition 4.2.4 holds for

(α,β ,ξ ,η) = ⟨R∗(α,β )ξ ,η⟩∗

and

(α,β ,ξ ,η)∗
′
= ⟨R∗′(α,β )ξ ,η⟩∗.

If α,β are linearly independent, write

K(σ∗) =
(α,β ,α,β )∗

(|α ∧β |∗)2 , K′(σ∗) =
(α,β ,α,β )∗

′

(|v∧w|∗)2

with σ∗ being the bidimensional subspace generated by α and β . If for every σ∗ ⊂V∗, we have

that K(σ∗) = K′(σ∗), then R∗ = R∗′ .

Proof. It is a consequence of Proposition 4.3.1 and the proof of the lemma for vector fields (see

[13]).

As a consequence, we have that:

Proposition 4.3.4. Let (M,⟨·, ·⟩) be a Riemannian manifold and p ∈ M. Define a trilinear map

R∗′ : T ∗
p M×T ∗

p M×T ∗
p M → T ∗

p M by

⟨R∗′(α,β )ξ ,η⟩∗ = ⟨α,ξ ⟩∗⟨β ,η⟩∗−⟨β ,ξ ⟩∗⟨α,η⟩∗.
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for all α,β ,ξ ,η ∈ T ∗
p M. Therefore, M has constant sectional curvature equal to K0 on T ∗M if

and only if R∗ = K0R∗′ with R∗ being the curvature operator of T ∗M.

Proof. For all σ∗ ⊂ T ∗
p M assume that K(σ∗) = K0 and define

⟨R∗′(α,β )ξ ,η⟩∗ := (α,β ,ξ ,η)∗
′
.

It is immediately that R∗′ satisfies (1), (2), (3) and (4) of proposition 4.2.4. As

(ξ ,η ,ξ ,η)∗ = ⟨ξ ,ξ ⟩∗⟨η ,η⟩∗− (⟨ξ ,η⟩∗)2,

for all pair of covectors ξ ,η ∈ T ∗
p M it follows that

⟨R∗(ξ ,η)ξ ,η⟩∗ = K0(⟨ξ ,ξ ⟩∗⟨η ,η⟩∗− (⟨ξ ,η⟩∗)2)

= K0⟨R∗′(ξ ,η)ξ ,η⟩∗.

By the Lemma 4.3.3, for any α,β ,ξ ,η ∈ T ∗
p M,

⟨R∗(α,β )ξ ,η⟩∗ = K0⟨R∗′(α,β )ξ ,η⟩∗,

showing that R∗ = K0R∗′ .

By the other side, let K∗(ξ ,η) the dual sectional curvature of {ξ ,η} in p with ξ and η

linearly independent covectors. Thus,

K∗(ξ ,η) =
(ξ ,η ,ξ ,η)∗

(|ξ ∧η |∗)2 = K0
(ξ ,η ,ξ ,η)∗

′

(|ξ ∧η |∗)2 = K0.

4.4 Ricci and Scalar Curvatures on Cotangent Bundle

Let ηn = ξ ∈ T ∗
p M an unit covector, fix a orthonormal basis {η1, . . . ,ηn−1} of the hyper-

plane of T ∗
p M orthogonal to ξ . Denote by {η1, . . . ,ηn−1} the dual basis of {η1, . . . ,ηn−1}
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relative to the musical isomorphisms. Define

Ric∗p(ξ ) :=
1

n−1

n−1

∑
i=1

⟨R∗(ξ ,ηi)ξ ,ηi⟩∗ = Ricp(ξ
\
) (4.4.1)

K∗(p) :=
1
n

n

∑
j=1

Ric∗p(η j) =
1

n(n−1)

n

∑
j=1

n−1

∑
i=1

⟨R∗(η j,ηi)η j,ηi⟩∗ = K(p). (4.4.2)

The above expressions is called by Ricci curvature in the direction of ξ and scalar curvature

in p, respectively. Observe that the term scalar curvature at p can be defined independent on the

fact that it is calculated on TpM or on T ∗
p M because K∗(p) = K(p). Moreover, by (4.4.1) and

(4.4.2), it is clear that K∗(p) and Ric∗p(ξ ) doesn’t depend on the choice of the bases.

Define the bilinear form

Q : T ∗
p M×T ∗

p M → R

(ξ ,η) 7→ tr(ω 7→ R(ξ \,η \)∗ω)

It is well known that the trace does not depend on the choice of coordinates. If ξ is a unitary

covector and {η1, . . . ,ηn = ξ} a orthonormal basis of T ∗
p M, we have by (4) of 4.2.4 that

Q(ξ ,η) =
n

∑
i=1

(ξ ,ξi,η ,ξi)
∗

= Q(η ,ξ ).

Therefore, Q is a symmetric bilinear form and Q(ξ ,ξ ) = (n−1)Ricp(ξ ). The tensor Q or 1
n−1Q

is called by Ricci tensor on T ∗M.

4.5 Jacobi Fields on Cotangent Bundle

Let γ : [a,b]→ (M,⟨·, ·⟩) be a geodesic on M and consider a Jacobi field J(t) along γ , that

is, a vector field satisfying
D2J
dt2 +R(γ ′(t),J(t))γ ′(t) = 0.

Fix a coordinate system on M. On the cotangent bundle, using the Legendre transform, we
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have that

(
D2JZ
dt2

)
s
=

(
D2J
dt2

)Z
s

=−(R(γ ′(t),J(t))γ ′(t))Zs
=−Ri

jkl(γ
′) j(t)Jk(t)(γ ′)l(t)gis

=−Ri
jkl(γ

′) j(t)Jh(t)ghuguk(γ ′)l(t)gis

=−(gisRi
jklg

uk)(γ ′) j(t)(JZ)u(t)(γ ′)l(t)

where Jh(t)ghu = (JZ)u(t) and JZ(t) is also a solution of a linear ordinary differential equation,

which is similar to the Jacobi equation. Therefore these are not any simplification on the Jacobi

equation when we consider it on the cotangent bundle.



CHAPTER 5

Euler-Arnold Equations

Let G be a Lie Group, g be its Lie algebra and g∗ be the dual vector space of g. In a Lie group

G, it is often possible to represent its invariant geometrical objects on g or g∗. In this Chapter we

study a particular case of the geodesic equations on g∗. Our goal is to extend relations between

the bi-invariance of the Haar measure of G and the measure preserving property of the geodesic

flow on g∗. In Section 5.1, we introduce the basic concepts which are needed for our goal. In

Section 5.2, we study this problem when the Lie group is equipped with a left invariant Finsler

structure. For more details about Haar measure, see [30] and [41]. For unimodular Lie groups,

see [31]. For more details about Euler-Arnold equations in Finsler theory, see [2] and [34].

5.1 Unimodular Lie Groups

Let G be an n-dimensional Lie group. Denote by B(G) the σ -algebra generated by all open

subsets of G. This σ -algebra is called Borel algebra and its elements is called by Borel subsets

of G. A measure µ : B(G)→ [0,+∞] is called left invariant if for all Borel subsets S ∈ B(G)

and all g ∈ G we have

µ(LgS) = µ(S) (5.1.1)

for all g ∈ G. The right invariant measure is defined in the same way that (5.1.1) but we apply

the right translation in the elements of the Borel algebra.

The existence of a left invariant (right invariant) measure on the Lie group G is guaranteed

by the following theorem:

Theorem 5.1.1 (Haar’s Theorem). There exists, up to a positive multiplicative constant, a

unique countably additive and nontrivial measure µ on the Borel subsets of G satisfying the
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following conditions:

1. The measure µ is left invariant;

2. The measure µ is finite on every compact subset K ⊂ G;

3. The measure µ is outer regular on Borel subsets S ⊂ G:

µ(S) = inf{µ(U) : S ⊂U and U is open in G}.

4. The measure µ is inner regular on open subsets U ⊂ G:

µ(U) = sup{µ(K) : K ⊂U and K is compact}.

Proof. See page 165 of [41].

A Haar measure is a measure µ given in Theorem 5.1.1. If there exists a bi-invariant Haar

measure µ , the Lie group G will be called unimodular.

In [31], Milnor gives many equivalences for G to be a unimodular Lie group. He states that,

1. The Lie group G is unimodular if and only if the linear transformation Ad(g) has deter-

minant ±1 for every g ∈ G, where Ad(g) = d(Rg−1 ◦Lg).

2. A connected Lie group G is unimodular if and only if the linear transformation ad(v) =

[v, ·] has trace zero for every v ∈ g.

Let {e1, . . . ,en} be a basis of g. The Lie algebra structure can be described by an n×n×n

array of structures constants ck
i j where

ad(ei)(e j) = ck
i jek.

If the basis {e1, . . . ,en} is orthonormal, then ck
i j = ⟨[ei,e j],ek⟩. The second equivalence can be

written as

Proposition 5.1.2. A connected Lie group G with a left invariant Riemannian metric ⟨·, ·⟩ is

unimodular if and only if tr(ad(ei)) = ck
ik is zero for all 1 ≤ i ≤ n, where {e1, . . . ,en} is a basis

of g.
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From now on, we consider G with an auxiliary left invariant Riemannian metric ⟨·, ·⟩. Let

X be a smooth vector field on G with φt denoting its flow. We say that φt preserves the Haar

measure µ of G if

µ(φt(S)) = µ(S)

for every Borel subset S contained in the domain of φt and for all t ∈ I.

Let (x1, . . . ,xn) : U → Rn be a local coordinate system on an open set U ⊂ G. A Haar

measure restricted to U is a positive scalar multiple of

µ⟨·,·⟩ =
√

det(gi j)dx1 ∧ . . .∧dxn

where gi j = ⟨ ∂

∂xi ,
∂

∂x j ⟩. The Liouville theorem (see page 21 of [41]) show that the measure µ⟨·,·⟩

is preserved by the flow φt of a vector field X on G if and only if divX := tr(Y 7→ ∇XY ) is null.

It is well known that the divergence of X = X i ∂

∂xi is given by

div(X) =
1√

det(gi j)

∂

∂xk

(
Xk
√

det(gi j)

)

and depends only on the volume element induced by the Riemannian metric (see [29]). There-

fore the results in this chapter about flows that preserves the volume element will not depend on

the choice of ⟨·, ·⟩.

5.2 Euler-Arnold Equations in Finsler Theory

In 1966, Vladimir Arnold observed in [4] that many basic equations in physics can be seen

as equations in Lie groups with a left invariant Riemannian metric. The aim of Arnold was the

study of equations in hydrodynamics. For this, Arnold describe the geodesics equations using

the Hamiltonian formalism and the left invariant metric as

α
′(t) = α(t)([α(t)\, ·]) (5.2.1)

with α : I → g∗ is a smooth curve on the dual Lie algebra g∗. The first order differential equation

(5.2.1) is called Euler-Arnold equation.

In [25], Kozlov showed that the solution of the Euler-Arnold equations preserve the Haar

measure on g∗ if and only if the Lie group G is unimodular Lie group. In terms of hydrody-
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namics, Koslov showed that the flow of Euler-Arnold equation is an incompressible fluid if and

only if G is a unimodular group.

The aim of this section is to generalize the results obtained by Kozlov for Finsler theory.

Let F : g→ R be a left invariant Minkowski norm on G. Given v ∈ g\{0}, define the element

vZ by

vZ(w) := gi j(v)viw j

where gi j is the Hessian matrix of F2. In page 407 of [6] we have the following proposition.

Proposition 5.2.1. Let F∗ denote the dual norm on g∗, as defined in (3.3.5). Then:

1. The Legendre transform v 7→ vZ if a smooth diffeomorphism from g\{0} onto g∗ \{0};

2. It is a norm preserving. That is,

F∗(v
Z
) = F(v);

3. The inverse of the Legendre transform is given by

ξi 7→ ξ
i := gi j(ξ )ξ j;

4. At ξ = vZ, we have

gi j(ξ ) = gi j(v)

where

gi j(ξ ) :=
[

1
2

F2
∗ (ξ )

]
ξiξ j

(5.2.2)

and gi j(v) denotes the inverse matrix of gi j(v);

Since the Legendre transform on a Finsler manifold (M,F) depends only on F restricted

to each tangent space, Proposition 5.2.1 can be naturally adapted to a Finsler manifold. For a

generalization of this setting for some C0-Finsler manifolds see [37].

From now on, consider a Lie group endowed with a left invariant Finsler structure F .

Let ⟨·, ·⟩ be an auxiliary left invariant Riemannian metric on G. We can see the Minkowski

sphere SF∗ as a submanifold of the Lie algebra g∗ of codimension 1 given by the inclusion

i : SF∗ ↪→ g∗.

Let {e1, . . . ,en+1} be a basis of the Lie algebra g. Denote by {e1, . . . ,en+1} the dual basis of

g∗. In [2] and [34] the Euler-Arnold equation on Lie groups endowed with C0-Finsler structures
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is calculated. In addition, it is shown that the solutions of the Euler-Arnold equation are tangent

to the sphere SF∗ because the Hamiltonian H is the energy map on g∗ and the energy is constant

along the solutions of Hamilton equations. The Euler-Arnold equation on g∗ when F is a Finsler

structure is given by

E : g∗ → g∗

α 7→ α([α
\
, ·])

(5.2.3)

Denote by ESF∗ = E |SF∗ . If we write α = αiei, in local coordinates the vector field (5.2.3) is

given by

E (α)ek = α([α
\
,ek])

= α je j([α iei,ek])

= α jα
ic j

ik.

(5.2.4)

Let ∇ be a Riemannian (flat) connection on g∗ with respect to the auxiliary inner product ⟨·, ·⟩∗,

denote by ∇ the induced Riemannian connection on SF∗ (see Section 1.4). Given α ∈ SF∗ denote

by {E1, . . . ,En+1} the orthonormal frame of g∗ in a neighborhood U of α such that {E1, . . . ,En}

is a orthonormal frame of SF∗ . The shape operator of SF∗ in g∗ with respect to En+1(α) is given

by:

AEn+1(α) : TαSF∗ → TαSF∗

η 7→ −
(

∇ηEn+1(α)
)T

.

The shape operator is a symmetric operator (see [13]). Thus there exist a orthonormal basis of

eigenvectors {e1, . . . ,en} of TαSF∗ and principal curvatures k1, . . . ,kn. The vector field En+1 of

(T SF∗)⊥ can be decomposed as

En+1(α) = ϕα +Y n+1(α) (5.2.5)

where ϕ ∈ D(G) and Y n+1(α) ∈ TαSF∗ . Write Y n+1(α) = ylE l(α). Extending the vector field

En+1 radially we have that

(∇αEn+1)(α) = 0. (5.2.6)
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Thus,

(divg∗E )(α) =
n+1

∑
l=1

⟨∇E lE ,E l⟩∗(α)

=
n

∑
l=1

⟨∇E lE ,E l⟩∗(α)+ ⟨∇En+1E ,En+1⟩∗(α)

=
n

∑
l=1

⟨
(

∇E lE
)T

+
(

∇E lE
)⊥

,E l⟩∗(α)+ ⟨∇En+1E ,En+1⟩∗(α)

=
n

∑
l=1

i∗⟨∇E lE ,E l⟩∗(α)+ ⟨∇En+1E ,En+1⟩∗(α)

= divESF∗ (α)+ ⟨∇En+1E ,En+1⟩∗(α)

= divESF∗ (α)−⟨E ,∇En+1En+1⟩∗(α)

= divESF∗ (α)+ ⟨E (α),SEn+1(α)(Y
n+1(α))⟩∗−⟨E (α),ϕ∇αEn+1⟩∗

= divES∗F (α)+ ⟨α jα
ic j

imEm(α),ylAEn+1(α)(E
l(α))⟩

due to (5.2.4), (5.2.5) and (5.2.6). It follows that

(divg∗E )(α) = divES∗F (α)+α jα
ic j

imyl⟨Em(α),klE l(α)⟩

= divESF∗ (α)+
n

∑
l=1

α jα
ic j

imylklδ
ml

= divESF∗ (α)+
n

∑
m=1

(α jα
ic j

imymkm)(α). (5.2.7)

Equation (5.2.7) allow us to extend the result proved by Kozlov as:

Theorem 5.2.2. The Euler-Arnold equations in the Riemannian sphere S⟨·,·⟩∗ preserve the Haar

measure if and only if G is unimodular.

Proof. If the Minkowski norm F is the left invariant Riemannian metric ⟨·, ·⟩, the vector field

(5.2.5) is En+1(α) = α . Thus, the equation 5.2.7 is given by

divESF∗ (α) = (divg∗E )(α).

By [25], (divg∗E )(α) = 0 if and only if G is unimodular and the result follows.

Equation (5.2.7) states that if the vector field En+1 is in the radial direction, that is, if for all

α ∈ SF∗ the normal vector field is given by En+1(α) = ϕα for some ϕ ∈ D(M), then divg∗E =

divES∗F .
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Consider the map

dist0 : SF∗ → R

α 7→ |α|∗

where |α|∗ =
√

⟨α,α⟩∗. Since SF∗ is a compact set of g∗, the map dist0 has a critical point. Let

α0 be a critical point of dist0 on SF∗ . Then, En+1(α0) = ϕα0 for some ϕ ∈ D(M). Indeed, let

v ∈ Tα0SF∗ . Then there exists a smooth curve γ : I → SF∗ such that γ(0) = α0 and γ ′(0) = v.

Thus,

0 =
1
2
(d(dist20)α0)(v)

=
1
2

(
d
dt

dist20(α(t))
∣∣∣
t=0

)
=

1
2

(
d
dt
⟨γ(t),γ(t)⟩

∣∣∣
t=0

)
= ⟨v,α0⟩,

showing that α0 is normal to Tα0SF∗ . This implies the following

Proposition 5.2.3. If α0 ∈ SF∗ is a critical point of the map dist0, then

divESF∗ (α0) = divg∗E (α0).

As a direct consequence, we have

Corollary 5.2.4. If the Finsler structure F∗ on g∗ is Riemannian, then

divESF∗ = divg∗E .

Proof. It is enough to consider ⟨·, ·⟩∗ as the inner product correspondent to F∗.

We can analyze the divergence of the Euler-Arnold equations considering an arbitrary basis

{e1, . . . ,en+1} of g∗ and an auxiliary inner product ⟨·, ·⟩∗ on g∗ such that {e1, . . . ,en+1} is an

orthonormal basis. In local coordinates, the vector field E defined on g∗ with respect to a
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Minkowski norm F is:

E (α)ek = α([α
\
,ek])

= α je j([αsgslel,ek])

= α jαsgslc j
lk,

where gis is the inverse of the fundamental tensor of F . If ∇ is Riemannian flat connection on

g∗ \{0} with respect to the metric ⟨·, ·⟩∗, we have that ⟨∇el ek,el⟩= 0 and

(divg\{0}E )(α) = ⟨∇el α jαsgisc j
ikek,el⟩∗

= el(α jαsgisc j
ik)⟨e

k,el⟩∗+α jαsgisc j
ik⟨∇el ek,el⟩∗

= αsgisc j
ikek(α j)+α jgisc j

ikek(αs)+α jαsc
j
ikek(gis)

= αsgisck
ik +α jgisc j

is +α jαsc
j
ikC

kis

By the Schwartz theorem and (5.2.2) of Proposition 5.2.1, Ckis is symmetric with respect to k, i

and s. Moreover, gis is symmetric and c j
is is anti-symmetric with respect to i and s. Thus gisc j

is

and c j
ikC

kis are always zero. Then,

(divg\{0}E )(α) = asgisck
ik. (5.2.8)

If G is a unimodular group, then ck
lk = 0 for every l = 1, . . . ,n and divg\{0}(E ) ≡ 0. Recip-

rocally, if ck
sk ̸= 0 for some s = 1, . . . ,k, then consider αs proportional to ck

sk and observe that

(divg\{0}(E ))(α) = αsgisck
ik > 0. Therefore we proved the following result.

Theorem 5.2.5. Let G be a Lie group endowed with a left invariant Finsler structure. Then the

flow correspondent to the Euler-Arnold equations on g∗ preserves the Haar measure on g∗\{0}

if and only if G is unimodular.



Final Considerations

In this chapter we write a little about what was done in this work and what can be done in

the future.

The Chapter 4 tells us that geometrical invariants such as curvatures and Jacobi fields in

Riemannian manifolds on the cotangent bundle do not have a simpler formula compared with

their version on tangent bundle. These facts are not helpful, in contrast to the geodesic equation

on the cotangent bundle which is simpler than on T M. It would be interesting to find an example

and eventually put this equation in a computer to see if the computer needs less computational

power to find or estimate geodesics.

Chapter 5 gives us Equation (5.2.7). We have some observations to do about the term

n

∑
m=1

α jα
ic j

imymkm. (5.2.9)

This term depends on the extension of the orthonormal frame in the radial direction and of the

principal curvatures of the Finsler sphere. Corollary 5.2.4 states that if the Finsler structure F∗ is

Riemannian then divESF∗ = divg∗E . Therefore it makes sense to ask if the converse holds: If the

divergence on g∗ coincides with the divergence on SF∗ , then the left invariant Finsler structure

on the Lie group it Riemannian.

In the same direction, it can be discussed what means the term (5.2.9). Proposition 5.2.3

states that if a point of the sphere SF∗ is a critical point of the distance map dist0, then (5.2.9)

is zero. It makes sense trying to see (5.2.9) as a geometric object related to the geometry of

SF∗ ⊂ g∗.
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