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Devo, portanto, expressar minha gratidão ao Professor Alexandre José Santana, que
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avaliação desta tese e por todas as contribuições e sugestões realizadas.
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Ricardo Cezar Ferreira, Olı́vio Augusto Weber e Albo Carlos Cavalheiro agradeço por

me proporcionarem uma introdução suave e completa ao universo da Matemática.
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ABSTRACT

The Lie group Sl (n,H) is the Lie group of order n quaternionic matrices g such that

|det g| = 1. This thesis establishes conditions for a subsemigroup with nonempty in-

terior, S ⊂ Sl (n,H), to coincide with the entire group Sl (n,H). From this, we set con-

ditions on matrices A,B ∈ sl (n,H) ensuring controllability for the invariant control

system ġ = Ag + uBg on Sl (n,H). We also prove that these conditions are generic in

the sense that we obtain an open and dense set of controllable pairs (A,B) ∈ sl (n,H)2.

Subsequently, the Lie saturate technique is used to establish controllability criteria

for bilinear control systems on Sl(n,C) and Sl(n,H), as well as on certain semidirect

products. Our study also employs quaternions to explore invariant control sets for

vector fields induced by SO(1, 4) and SU(1, 2) on the unit quaternion sphere S3, their

flag manifold. Throughout this thesis, these investigations deepen the understanding

of controllability conditions for control systems on classical real Lie groups and their

geometric characteristics.

Keywords: controllability, matrix Lie algebras, group actions, controllability vector

fields.

MSC 2020. 93B05, 15B30, 57M60, 57R27.



RESUMO

O grupo Lie Sl (n,H) é o grupo de Lie das matrizes n × n quaterniônicas tais que

|det g| = 1. Nesta tese apresentamos condições para um subsemigrupo com interior

não-vazio, S ⊂ Sl (n,H), coincidir com todo o grupo Sl (n,H). A partir disso, são deter-

minadas condições sobre as matrizes A,B ∈ sl (n,H) para garantir a controlabilidade

do sistema de controle invariante ġ = Ag + uBg em Sl (n,H). Provamos também que

essas condições são genéricas no sentido de que obtemos um conjunto aberto e denso

de pares controláveis (A,B) ∈ sl (n,H)2.

Posteriormente, a técnica do saturado de Lie é utilizada para estabelecer critérios

de controlabilidade para sistemas de controle bilineares em Sl(n,C) e Sl(n,H), bem

como em certos produtos semidiretos. Nosso estudo também emprega quatérnios

para explorar conjuntos de controle invariantes para campos de vetores induzidos por

SO(1, 4) e SU(1, 2) na esfera S3, variedade flag destes últimos. Ao longo desta tese, es-

sas investigações aprofundam a compreensão das condições de controlabilidade para

sistemas de controle em grupos Lie reais clássicos e suas caracterı́sticas geométricas.

Palavras-chave: controlabilidade, álgebras de Lie de matrizes, ações de grupos, con-

trolabilidade de campos de vetores.

MSC 2020. 93B05, 15B30, 57M60, 57R27.
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INTRODUCTION

The control theory on Lie groups has its roots in the late 1960s and early 1970s with

a series of papers that include the works of V. Jurdjevic and H. J. Sussmann [14], who

first achieved controllability results on compact Lie groups. Further developments

were made by V. Jurdjevic and I. Kupka [12, 13], in the first half of the 1980s, where

the authors established conditions for a control system evolving on a Lie group to be

transitive, introducing the technique based on the concept of Lie saturate.

Some improvements to the results in [12, 13] were obtained by J. P. Gauthier and

G. Bornard [8] for bilinear control systems evolving on the Lie group Sl(n,R). Subse-

quently, in the 1980s, numerous results concerning controllability of invariant control

systems on semisimple Lie groups were obtained. For example, J. P. Gauthier, I. Kupka

and G. Sallet [9] considered bilinear systems evolving on Lie groups whose Lie alge-

bras are real normal forms (also called split real forms) of complex simple Lie algebras

of type Al, Dl, E6, E7 or E8. A few years later R. El Assoudi and J. P. Gauthier [2] ad-

dressed right-invariant control systems on simple Lie groups of Bl, Cl, F4 and G2 types,

also considering real normal forms. Controllability of bilinear systems on simple Lie

groups whose Lie algebras are real normal forms of complex simple Lie algebras was

also studied by F. Silva Leite and P. E. Crouch [32] and later by R. El Assoudi and J. P.

Gauthier and I. Kupka [3, 4].

Since the 1990s, L. A. B. San Martin and collaborators worked on a series of papers

about controllability (transitivity) and a certain type of local controllability (control

sets) for semigroup actions of semisimple Lie groups on homogeneous manifolds. See,

for example, L. A. B. San Martin [24], L. A. B. San Martin and P. A. Tonelli [29], O. G. do

Rocio, L. A. B. San Martin and A. J. Santana [19], V. Ayala and L. A. B. San Martin [5].

This approach has proven to be very useful for studying the controllability of control

systems. Specifically, in A. L. Dos Santos and L. A. B. San Martin [30], the authors

employed the previously mentioned approach (Lie Theory) and the topology of flag
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manifolds to study the controllability of bilinear control systems and invariant control

systems on semisimple Lie groups.

In this thesis, we also address the topic of global controllability, in the sense of

controlling the entire state space, for invariant control systems in Sl(n,H), systems in

Sl(n,C), in the semi-direct products sl(2,R) ⋊ R2 and sl(2,C) ⋊ C2, and we also study

local controllability, in the sense of determining the invariant control sets, for certain

control systems induced on S3 by the action of SO(1, 4) and SU(1, 2).

Part of our work aims to investigate controllability conditions for control systems

on certain classical Lie groups whose Lie algebras are non-compact and non-split real

forms of complex semisimple Lie algebras. For the complex Lie algebras of type Al, the

non-compact and non-split real forms are sl(n,H) and su(p, q) (see L. A. B. San Martin

[26] or S. Helgason [10] for a complete classification).

Semigroups and controllability on the special linear quaternionic Lie group are

the subjects of Chapter 2 (see B. A. Rodrigues, L. A. B. San Martin and A. J. Santana

[22]). The central result of this chapter shows that a subsemigroup S ⊂ Sl (n,H) with

nonempty interior must be the whole group in case it contains a certain subgroup of

Sl (n,H) isomorphic to Sl (2,H) (see Theorem 2.2.1).

This approach was already applied in A. L. Dos Santos and L. A. B. San Martin

[30, 31]. In these papers the same problem was dealt for connected complex semisimple

Lie groups and some real Lie groups whose Lie algebras are split real forms of complex

Lie algebras. As the Lie algebra sl(n,H) is not in any of these classes, the results in [30]

and [31] do not include the group worked out here. But our strategy is also based in

the following result proved in [29]. If S ⊂ G is a proper semigroup with nonempty

interior in a semisimple Lie group G, then there exists some G-flag manifold FΘ such

that the unique S-invariant control set CΘ ⊂ FΘ is contained in a contractible set. In

fact, to prove that S = Sl(n,H) we first show that several G-orbits are non contractible

4-spheres where G is isomorphic to Sl(2,H) (see Section 2.2 for a clear description of G),

and after we prove that some of these orbits are contained in the S-invariant control

set.

Subsequently we apply this theory to the controllability of

ġ = Ag + u(t)Bg.
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More precisely, we find conditions on the matrices A and B to have G contained in the

system semigroup (generated by exp t(A+ uB), t ≥ 0, u ∈ R). Therefore if we assume

also the Lie algebra rank condition then our results can be applied to obtain that the

system semigroup is the system group (generated by exp t(A+ uB), t, u ∈ R), implying

the controllability of the above system).

Further, we prove that the controllability for invariant systems on Sl (n,H) is a

generic property in the sense that there is an open and dense set C ⊂ sl (n,H)2 such

that the control system ġ = Ag + uBg with unrestricted controls is controllable for all

pairs (A,B) ∈ C.

In Chapter 3 we study controllability from another perspective. The results therein

are inspired by [8], which in turn improves the controllability results present in the

classical papers by V. Jurdjevic and I. Kupka, [12] and [13], for the case Sl(n,R). We

obtain similar results for the cases Sl(n,C) and Sl(n,H) and using the Lie saturate tech-

nique we also get controllability results for the semidirect products sl(2,R) ⋊ R2 and

sl(2,C)⋊C2.

In many situations we consider as a control system on a Lie group G a subset Γ

of the Lie algebra g of G. A system Γ is said to satisfy the Lie algebra rank condition

(LARC) when it generates g as a Lie algebra, that is, Lie(Γ) = g. The Lie algebra rank

condition is a necessary condition for controllability, but in general it is not sufficient.

The Lie saturate technique for controllability consists of a extension process that con-

structs from Γ a subset LS(Γ) ⊂ Lie(Γ), such that the controllability of Γ on G turns out

to be equivalent to the condition LS(Γ) = g. The set LS(Γ) is called Lie saturate or Lie

wedge of Γ.

Using this approach we prove that if a bilinear control system Γ = A + RB on

Sl(n,C) is such that A = (aij) with a1n, an1 ̸= 0 and B = diag(b1, b2, · · · , bn) is a strongly

regular element (see Definition 3.2.1) satisfying

Re(b1) > Re(b2) > · · · > Re(bn) and Im(bi)− Im(bj) ̸= 0 whenever i ̸= j,

then the controllability of Γ is equivalent to the irreducibility of A.

The idea behind the proof is to use the characterization of the irreducibility of A

by means of strongly connected graphs in way to avoid the zero entries of A when
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showing that a basis B and its opposite −B are contained in the Lie saturate LS(Γ).

The set LS(Γ) has a nice geometric characterization, that is, it is a topologically closed,

convex and positive cone, which implies that the condition ±B ⊂ LS(Γ) ensures that

LS(Γ) = sl(n,C).

Continuing to employ the Lie wedge method, we present a second theorem that

establishes conditions for the controllability of bilinear controls systems on Sl(n,H)

(see Theorem 3.3.4). It is actually a weaker version of Theorem 2.3.1, as even if the

Lie algebra rank condition is not required, it immediately follows from the equality

LS(Γ) = sl(n,H). However, if we keep in mind that the Lie algebra rank condition

is usually difficult to verify, even with the assistance of computational devices, the

theorem turns out to be interesting on its own, since all of its hypotheses can be quite

easily verified.

As a final application of this method to ensure controllability, we state and prove

three theorems concerning controllability on the semidirect products sl(2,R)⋊R2 and

sl(2,C) ⋊ C2. Just like in the previous case, the conditions obtained depends only on

the entries of matrices that define the control systems, rendering them practical tools

for verifying controllability in such situations.

Quaternions prove to be highly useful in Chapters 4 and 5, where we explore invari-

ant control sets for vector fields induced by SO(1, 4) and SU(1, 2) on the sphere S3, the

sphere of unit quaternions (see B. A. Rodrigues, L. A. B. San Martin and A. J. Santana

[21]). A Cartan decomposition of the Lie algebra so(1, 4) can be identified as the direct

sum so(4)⊕H, in which so(4) corresponds to the compact component, and H stands for

the symmetric one. The maximal abelian subalgebra contained in the symmetric com-

ponent is one-dimensional, implying that there is only one flag manifold for so(1, 4),

which is precisely the sphere S3. For symmetric elements, the vector fields given by

the infinitesimal action of so(1, 4) on S3 are gradient vector fields of height functions,

and elements in the compact component so(4) give rise to vector fields defined by right

and left multiplication by imaginary quaternions.

We provide a characterization for the invariant control sets on S3 for control sys-

tems with 1 ∈ H as a drift and control vector fields corresponding to pure quaternions.

Such control sets appear as spherical domes in some cases, while in others, they are

described as geodesically convex closures of the set of attractor points for the vector
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fields corresponding to the control system. This observation seems to be true in gen-

eral for appropriate families of vector fields whose trajectories follow geodesics. In

this context, we establish that if the set E of attractors for a family Γ of geodesic vector

fields on a differentiable manifold M is both closed and geodesically convex, then E is

the invariant control set for Γ.

Following the same general lines of Chapter 4, on Chapter 5 we will embark on

exploring the geometrical aspects inherent to the Lie group SU(1, 2). The compact and

symmetric components in a Cartan decomposition for su(1, 2) are identified respec-

tively with u(2) and H, and for an Iwasawa decomposition for su(1, 2) the identification

is

su(1, 2) = u(2)⊕ a⊕Heis,

where a denotes the maximal abelian subalgebra in the symmetric component of the

Cartan decomposition and Heis is the Heisenberg Lie algebra. Just like so(1, 4), the

Lie algebra su(1, 2) stands as a real rank 1 Lie algebra, featuring a four-dimensional

symmetric part in its Cartan decompositions, ultimately leading to the identification

of the sphere S3 as its sole flag manifold.

An element q ∈ k = u(2) = su(2)⊕ z decomposes as q = z + a, where z ∈ su(2) and

a ∈ z, being z the one-dimensional center of the unitary Lie algebra u(2). The vector

field induced on S3 by q is expressed as the combination of left multiplication by z

(considered as an imaginary quaternion) and right multiplication by ai.

Nonetheless, the infinitesimal action on S3 takes a different shape for symmetric

elements, since the occurrence of the positive root 2α implies that the Borel metric

does not coincides with the canonical metric given by the immersion of S3 in H.

As at the beginning of every journey, before taking the first step it is important to

prepare a backpack with the essential items for the journey. In Chapter 1, we briefly

gather the most important prerequisites trying to make this work as self-contained as

possible. Within this chapter, a concise overview of the theory regarding the classifica-

tion of real semisimple Lie algebras is presented in Section 1.1, some results about the

realification and complexification of vector spaces are left for the Appendix A. In Sec-

tion 1.2 we provide the definitions of the Cartan and Iwasawa decompositions. Some

basic notions about flag manifolds are discussed in Section 1.3, and the concepts from

the Control Theory that will be important for this work are outlined in 1.4.
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The remainder of this work is organized as follows. Chapter 2 focuses on the study

transitivity for subsemigroups of Sl(n,H), with the results applied to the controllabil-

ity of invariant control systems evolving on this group. In Chapter 3, the Lie saturate

technique is employed to establish controllability conditions for bilinear control sys-

tems on the Lie groups Sl(n,C), Sl(2,H), Sl(n,H) as well as on the semidirect products

Sl(2,R)⋊R2 and Sl(2,C)⋊C2. Chapter 4 provides geometrical insights into the struc-

ture of SO(1, 4) and determines invariant control sets for certain control systems in-

duced by SO(1, 4) on the sphere S3. Chapter 5 follows the same general lines as Chap-

ter 4 and begins exploring the geometry inherent to SU(1, 2). Section 5.2.4 describes

the vector fields induced by SU(1, 2) on S3 and offers a preliminary understanding of

the behavior of such vector fields.



CHAPTER 1

PRELIMINARIES

In this chapter we collect and summarize the main concepts and results that will ap-

pear throughout our work. Most of the definitions and proofs can be found in [26]

and [28], which we highly recommend for a precise and detailed construction of the

theory. Some of the real semisimple Lie algebras constitute the environment where we

are going to study invariant control sets and controllability for control systems. A few

formulas and notations concerning the quaternions should be discussed in the exam-

ples. The Cartan and Iwasawa decompositions are essential in the study of the real

semisimple Lie algebras, specially when defining the flag manifolds, that will stand as

state space of control systems given by vector fields induced by infinitesimal actions.

1.1 Classical Lie algebras and their real forms

A Lie algebra is said to be solvable when its derived series eventually vanishes and it

is said to be nilpotent when its central descending series eventually vanishes. Of major

importance to this work are the semisimple Lie algebras. A Lie algebra g is said to be:

(i) simple if dim g ̸= 1 and its only ideals are 0 and g itself.

(ii) semisimple if it has no solvable ideals other than 0.

Definition 1.1.1. A Cartan subalgebra of a Lie algebra g is a nilpotent subalgebra h ⊂ g

that coincides with its own normalizer Ng(h) in g.

Example 1.1.2. Consider the quaternion algebra H = ⟨1, i, j,k⟩. Remember that the product

of two quaternions is defined on the basis {1, i, j,k} by the following rules:

i2 = j2 = k2 = −1, ij = k, ji = −k.
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Given p ∈ H, we write p = p0 + p1i+ p2j+ p3k = (p0, p1, p2, p3) and we define the vector part

of p as p = p1i+ p2j+ p3k. With these assumptions, p ∈ H can be seen as the sum of a scalar

with a vector, that is, p = p0 + p. The sum in H is defined termwise while the product of two

quaternions p = p0 + p1i+ p2j+ p3k and q = q0 + q1i+ q2j+ q3k can be written as

p · q = p0q0 − p · q+ p0q+ q0p+ p× q. (1.1)

Taking into account this formula for the product, the canonical inner product on H assumes the

form ⟨p, q⟩ = 1/2(pq+ qp), and thus the norm is given simply by |p|2 = pp. These formulas are

quite useful and they will show their own importance in the next chapters.

The subspace formed by the immaginary quaternions ImH endowed with the Lie brackets

[z, w] = zw − wz is a simple Lie algebra isomorphic to su(2). In fact, in ImH we have

[i, j] = 2k, [j,k] = 2i and [i,k] = −2j,

while in su(2) for the basis

A =

 0 i

i 0

 , B =

 0 −1

1 0

 , C =

 i 0

0 −i

 ,

we have

[A,B] = 2C, [B,C] = 2A and [A,C] = −2B.

This implies that ImH = su(2). Also, h = ⟨k⟩ is a Cartan subalgebra of Im(H). In fact, h is

nilpotent (it is abelian) and for any z = ai+ bj+ ck we have

[z,k] = [ai+ bj+ ck,k] = a[i,k] + b[j,k] = −2aj+ 2bi,

and for [z,k] to be in h both the coefficients a and b must be zero. In other words, it holds

Ng(h) = h.

The characteristic polynomial of ad(X), X ∈ g, has the form

pX(t) = tn + pn−1(X)tn−1 + · · ·+ p1(X)t+ p0(X)

where n is the dimension of g. If X has coordinates X1, X2, . . . , Xn with respect to
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some fixed basis for g, we can see each pk(·) as a polynomial function of the n variables

X1, X2, . . . , Xn, which is of degree n− k in X1, X2, . . . , Xn.

Definition 1.1.3. The rank of a Lie algebra g is the less integer r such that the polynomial

function pr is not identically zero.

Obviously the rank of g can be at most n. Further, g has rank exactly n if and only

if g is nilpotent. In fact, if the rank of g is n, then pX(t) = tn, for every X ∈ g. So, by

the Cayley-Hamilton theorem, pX(ad(X)) = ad(X)n = 0, which means that ad(X) is

nilpotent, for every X ∈ g. It follows from the Engel’s theorem that g is a nilpotent Lie

algebra. On the other hand, if g is nilpotent, then ad(X) is nilpotent for every X ∈ g.

But nilpotent operators does not have zero eigenvalues, showing that for an arbitrary

X ∈ g, ad(X) has characteristic polynomial of the form pX(t) = tn, ensuring that the

rank of g is n.

If X is a nonzero element of g, then ad(X)·X = [X,X] = 0, that is, 0 is an eigenvalue

of ad(X). In this way, if g ̸= 0, then p0 = 0, that is, the rank of g must be at least 1.

Definition 1.1.4. An element X ∈ g is called regular if the algebraic multiplicity of 0 as an

eigenvalue of ad(X) is minimal (when compared with all the other elements of g). Otherwise,

X is said to be a singular element.

Evaluating the characteristic polynomial of ad(X), we see that X is regular exactly

when pr(X) ̸= 0, where r is the rank of g.

It is possible to show that finite dimensional Lie algebras always admit Cartan sub-

algebras, and every Cartan subalgebra of a Lie algebra g has the dimension equals the

rank of g (see [26], Theorem 4.3 and its corollary).

Example 1.1.5. Consider for the Lie algebra sl(2,C) the canonical basis

X =

 0 1

0 0

 , H =

 1 0

0 −1

 , Y =

 0 0

1 0

 .

The subalgebra h = ⟨H⟩ is a Cartan subalgebra of sl(2,C). In fact, h is abelian (since it is

one-dimensional), and hence it is nilpotent. Further, given Z = aX + bH + cY ∈ g we have

[Z,H] = [aX + bH + cY,H] = a[X,H] + c[Y,H] = −2aX + 2cY,
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and so these brackets will vanish if and only if a = c = 0. This means that Ng(h) = h, proving

that h is a Cartan subalgebra of sl(2,C) and so sl(2,C) has rank 1.

Given Z = aX + bH + cY in sl(2,C), we have

ad(Z) =


2b −2a 0

−c 0 a

0 2c −2b

 ,

whose characteristic polynomial is pZ(t) = t3 − 4(b2 + ac)t. This tells us that Z is regular if

and only if b2 + ac ̸= 0. In other words, Z ∈ sl(2,C) is regular if and only if det(Z) ̸= 0.

Example 1.1.6. Let us consider in the Lie algebra

so(3,C) = {A ∈ sl(3,C) | AT = −A}

the canonical basis

E =


0 1 0

−1 0 0

0 0 0

 , F =


0 0 1

0 0 0

−1 0 0

 , G =


0 0 0

0 0 1

0 −1 0

 .

It is easy to see that [E,F ] = −G, [E,G] = F and [F,G] = −E. And from this follows that

the subalgebras of dimension 2 or 3 cannot be abelian. Furthermore, the subalgebra h = ⟨G⟩ is

a Cartan subalgebra of so(3,C), since X = aE + bF + cG, for a, b, c ∈ C, then

[X,G] = [aE + bF + cG,G] = a[E,G] + b[F,G] = aF − bE,

and these brackets belong to h if and only if a = b = 0, that is, X = cG, and hence h

coincides with its normalizer in g. It is easy to see that h1 = ⟨E⟩ and h2 = ⟨F ⟩ are also Cartan

subalgebras of so(3,C).

Now, if we consider the quadratic form given by the matrix

J =


1 0 0

0 0 1

0 1 0

 ,
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we have that gT Idg = J , where

g =
1√
2i


√
2i 0 0

0 i 1

0 1 i

 , with inverse g−1 =

√
2i

2


√
2i/i 0 0

0 −i 1

0 1 −i

 .

And so so(3,C) is isomorphic to gso(3,C)g−1, whose matrices are of the form


0 b c

−c a 0

−b 0 −a

 ,

being this last Lie algebra characterized by the condition AJ + JAT = 0. It is straightforward

to check that ghg−1 = ⟨D⟩, where

D =


0 0 0

0 1 0

0 0 −1

 ,

in way that this subalgebra can be seen as a Cartan subalgebra of so(3,C).

Consider X = aE + bF + cG. Evaluating the matrix of ad(X) gives

ad(X) · E = 0E − cF + bG

ad(X) · F = cE + 0F − aG

ad(X) ·G = −bE + aF + 0G,

and so

ad(X) =


0 c −b

−c 0 a

b −a 0

 ,

whose characteristic polynomial is pX(t) = −t3 − (a2 + b2 + c2)t. This shows that so(3,C)

has rank 1 (agreeing with the one-dimensional Cartan subalgebra found) and X is a regular

element if and only if a2 + b2 + c2 ̸= 0.

Finally, note that sl(2,C) and so(3,C) are isomorphic. To see this just define the isomor-
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phism φ : sl(2,C) → so(3,C) by

φ(X) =


0 i 0

−i 0 1

0 −1 0

 , φ(H) =


0 0 −2i

0 0 0

2i 0 0

 ,

φ(Y ) =


0 −i 0

i 0 1

0 −1 0

 .

The matrix of φ is given by

φ =


i 0 −i

0 −2i 0

1 0 1

 , whose inverse is φ−1 =


−i/2 0 1/2

0 i/2 0

i/2 0 1/2

 .

As φ−1(E) = i/2(Y −X), φ−1(F ) = i/2H and φ−1(G) = 1/2(X + Y ), we see that

 0 −a

a 0

 and

 0 a

a 0


also generate Cartan subalgebras of sl(2,C).

Example 1.1.7. Writing Eij for the matrix having 1 in the ij-entry and 0 elsewhere, the Lie

algebra so(5,C) has as basis

e1 = (E21 − E12), e2 = (E31 − E13), e3 = (E41 − E14), e4 = (E51 − E15),

e5 = (E32 − E23), e6 = (E42 − E24), e7 = (E52 − E25),

e8 = (E43 − E34), e9 = (E53 − E35), e10 = (E54 − E45).

As in the previous example one can show that h = ⟨e1, e8⟩ is a Cartan subalgebra of so(5,C),

and the set generated by the matrices of the form

H =


0 0 0

0 Λ 0

0 0 −Λ

 , where Λ = diag(a, b),



1.1 Classical Lie algebras and their real forms 24

can also be seen as a Cartan subalgebra of so(5,C).

The Cartan-Killing form is a very powerful tool to characterize semisimple Lie al-

gebras. Its non-degeneracy translates into the semisimplicity of the Lie algebra.

Definition 1.1.8 (Invariant forms). Let g be a Lie algebra over K. A bilinear form β : g×g →

K is said to be invariant if for every X, Y, Z ∈ g holds

β([X, Y ], Z) = β(X, [Y, Z]).

For instance, we can equip gl(V ) with a natural invariant bilinear form defined by

β(X, Y ) = tr(XY ).

To see that β is invariant, just remember that tr(AB) = tr(BA):

β([X, Y ], Z) = tr([X, Y ]Z) = tr(XY Z − Y XZ)

= tr(XY Z)− tr(Y XZ)

= tr(XY Z)− tr(XZY )

= tr(XY Z −XZY )

= tr(X(Y Z − ZY )) = tr (X[Y, Z]) = β(X, [Y, Z]).

Now let ϕ : g → h be a Lie algebra homomorphism and β an invariant form in h.

We can induce an invariant form βϕ in g in the following way

βϕ(X, Y ) = β(ϕ(X), ϕ(Y )), X, Y ∈ g.

As ϕ is a Lie algebra homomorphism and as β is invariant in h, it follows that βϕ is an

invariant form in g:

βϕ([X, Y ], Z) = β(ϕ([X, Y ]), ϕ(Z))

= β([ϕ(X), ϕ(Y )], ϕ(Z))

= β(ϕ(X), [ϕ(Y ), ϕ(Z)])

= β(ϕ(X), ϕ([Y, Z])) = βϕ(X, [Y, Z]).



1.1 Classical Lie algebras and their real forms 25

If ρ : g → gl(V ) is a representation of g on V , it follows that the trace in gl(V )

induces an invariant form in g by

βρ(X, Y ) = tr(ρ(X)ρ(Y )).

Definition 1.1.9. The Cartan-Killing form κ in g is defined by setting ρ as being the adjoint

representation, that is,

κ(X, Y ) = tr(ad(X)ad(Y )).

Proposition 1.1.10. If h is an ideal of the Lie algebra g, then the restriction of κ to h× h is the

Cartan-Killing form of h.

Proof: See [26], Section 3.2.

The orthogonal complement of W ⊂ g with respect to κ is defined as being the

subset W⊥ given by

W⊥ = {X ∈ g | κ(X, Y ) = 0,∀ Y ∈ W}.

Note that if h is an ideal of g, then h⊥ is also an ideal of g. In fact, given X ∈ h⊥, Y ∈ g

and Z ∈ h we have

κ([X, Y ], Z) = κ(X, [Y, Z]) = 0,

since [Y, Z] ∈ h. Hence, [X, Y ] ∈ h⊥, showing that h⊥ is an ideal of g.

Definition 1.1.11. Let g be a finite dimensional Lie algebra and β : g × g → K a bilinear

invariant form. We say that β is non-degenerate if its radical S is 0, where S = g⊥, that is,

S = {X ∈ g | β(X, Y ) = 0 ∀ Y ∈ g}.

Theorem 1.1.12. A Lie algebra g is semisimple if and only if its Cartan-Killing form is non-

degenerate.

Proof: See [26], Theorem 3.8.

A Lie algebra g is the direct sum of ideals h1, h2, . . . hk simply if g is the direct sum

of h1, h2, . . . , hk as sum of vector subspaces. In special we have that hi ∩ hj = 0 if i ̸= j.
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Also, [hi, hj] = 0 since [hi, hj] ⊂ hi ∩ hj . The Lie brackets in the direct sum is naturally

defined componentwise.

Theorem 1.1.13. If g is a semisimple Lie algebra, then there are simple ideals h1, h2,. . . ,hk of

g such that g = h1 ⊕ h2 ⊕ · · · ⊕ hk. Each simple ideal of g coincides with some component hi

and the Cartan-Killing form of hi is the restriction of κ to hi × hi, for i = 1, 2, · · · , k.

Proof: See [26], Theorem 3.10.

The converse of this statement is also true, that is, the direct sum of simple Lie

algebras (or even semisimple) is also semisimple. To see this, suppose g = h1 ⊕ h2 with

both components semisimple and let a be an abelian ideal of g. If π1 is the projection

on h1, then π1(a) is an abelian ideal of h1. Thus, π1(a) = 0, that is, a ⊂ h2. Similarly for

the projection on h2, we get a ⊂ h1 which follows that a = 0.

This theorem simplifies the classification of the semisimple Lie algebras, as it im-

plies that it is sufficient to classify all the simple ones. At the end of this section we

present the classification of the classical real simple Lie algebras.

A real Lie algebra g is said to admit a complex structure J when

(i) J is a complex structure on the vector space g and

(ii) ad(X) ◦ J = J ◦ ad(X), for every X ∈ g.

Note that the last condition implies that [JX, JY ] = −[X, Y ]. In fact, we have that

[X, JY ] = ad(X) ◦ J(Y ) = J ◦ ad(X)(Y ) = J [X, Y ] = −J [Y,X]

= −J ◦ ad(Y )(X) = −ad(Y ) ◦ J(X) = −[Y, JX]

= [JX, Y ],

that is, the condition (ii) tells us that [X, JY ] = [JX, Y ] = J [X, Y ], and hence,

[JX, JY ] = J2[X, Y ] = −[X, Y ].

A real vector space V endowed with a complex structure J can be regarded as a

complex vector space V C with the scalar multiplication

(a+ ib)X = aX + bJX, X ∈ V, a, b ∈ R.
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The space V C is called complex vector space associated to V , and it is different from

the complexified space VC, obtained from V via complexification (see Appendix A for

details).

Definition 1.1.14. Let gc be a complex Lie algebra. A real form of gc is a subalgebra g of the

real Lie algebra gRc such that gRc = g+ ig (direct sum).

Each Z ∈ gc can be uniquely written in the form Z = X + iY , X, Y ∈ g. The

conjugation σ : gc → gc defined by X + iY 7→ X − iY is an automorphism of gRc .

An antilinear and invertible transformation σ satisfying

[σX, σY ] = σ[X, Y ]

is called antiautomorphism. It is clear that an antiautomorphism of gc is an automor-

phism of the realified space gRc . It is also straightforward that the real subspace of gc

formed by the fixed points of σ is a subalgebra of the realified gRc , actually, if σ(X) = X

and σ(Y ) = Y , then

σ[X, Y ] = [σX, σY ] = [X, Y ],

showing that the Lie brackets are also fixed under σ.

Hence, a real form of gc can also be defined as being a subalgebra of the realified

gRc which is the subspace of fixed points of a conjugation σ that is also an antiautomor-

phism. And this means that the complex Lie algebra gc is the complexification of the

real form. In fact, as σ is a linear transformation of gRc and an involution (σ2 = 1), we

have gRc = g1 ⊕ g−1, where g1 and g−1 are the eigenspaces associated to the eigenval-

ues 1 and −1, respectively. Now, as σ is antilinear in gc, for a given X ∈ g1 we have

σ(iX) = −iX , that is, iX ∈ g−1. But this tells us that J(g1) ⊂ g−1, being J the complex

structure of gRc . Analogously, if X ∈ g−1, then σ(iX) = −iσ(X) = −i(−X) = iX , that

is, J(g−1) ⊂ g1. Since J is injective, it follows that dim g1 = dim g−1. Thus gc is the

complexification of g1.

A real Lie algebra g is said to be compact when its Cartan-Killing form,

⟨X, Y ⟩g = tr (ad(X)ad(Y )) ,

is negative definite. This definition is justified by the fact that a real semisimple Lie
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algebra g is the Lie algebra of a compact Lie group if and only if it is compact in the

above sense (note that a compact Lie algebra is semisimple since its Cartan-Killing

form is nondegenerate). A more detailed discussion about compact Lie algebras can

be found in [28], Chapter 11.

Theorem 1.1.15. Every complex semisimple Lie algebra gc admits a compact real form u.

Proof: See [26], Theorem 12.13.

Proposition 1.1.16. If g0 and g1 are real forms of gc with σ0 and σ1 corresponding conjugations

such that σ0σ1 = σ1σ0, then g1 = (g1 ∩ g0)⊕ (g1 ∩ ig0).

Proof: See [26], Proposition 12.15.

This proposition implies that two compact real forms u0 and u1 of gc are equal if and

only if the corresponding conjugations commute. In fact, if the conjugations commute,

we have u1 = (u1∩ u0)⊕ (u1∩ iu0). Given X ∈ u1∩ iu0 of the form X = iY , with Y ∈ u1,

the negative definiteness of the Cartan-Killing forms of u0 and u1 shows that

0 ≥ ⟨X,X⟩ = −⟨Y, Y ⟩ ≥ 0.

This means that X = 0, hence u1 ⊂ u0. A repetition of this argument interchanging the

roles of u0 and u1 concludes the proof.

Theorem 1.1.17. Let u be a compact real form of the complex semisimple Lie algebra gc and

let g0 be any real form of gc, with corresponding conjugation σ. Then there exists an inner

automorphism ϕ of gc such that σ commutes with the conjugation corresponding to the compact

real form ϕ(u).

Proof: See [26], Theorem 12.18.

From this theorem the uniqueness of the compact real forms can be stated in the

following sense: if u1 and u2 are two compact real forms of gc, then there exists an

automorphism ϕ of g such that ϕ(u2) = u2.

The following theorem summarizes the classification of the real forms of the classi-

cal simple complex Lie algebras:
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Theorem 1.1.18 (Onishchik and Vinberg [17], Theorem 6, p. 233). Any real form of a

classical simple complex Lie algebra g is isomorphic to exactly one of the following real forms:

1. g = sl(n,C), n ≥ 2

(i) sl(n,R)

(ii) sl(n,H), n = 2m

(iii) su(p, q), p+ q = n, p = 0, 1, . . . , [n/2]

2. g = so(n,C), n = 3 or n ≥ 5

(i) so(p, q), p+ q = n, p = 0, 1, . . . , [n/2]

(ii) u∗m(H), n = 2m.

3. g = sp(n,C), n = 2m ≥ 2

(i) sp(n,R), n = 2m

(ii) sp(p, q), q + p = m, p = 0, 1, . . . , [m/2].

The next theorem exhaust, up to isomorphisms, all the non-abelian real simple Lie

algebras. For a detailed classification of the real forms of the exceptional simple com-

plex Lie algebras we refer San Martin [26] and Helgason [10].

Theorem 1.1.19 ([26], Theorem 12.11). Let g be a real simple Lie algebra. The possibilities

for g are:

(i) g is the real form of a simple complex Lie algebra, or

(ii) g is the realified of a simple complex Lie algebra.

Note that this theorem completely classifies the real semisimple Lie algebras, since

any semisimple Lie algebra decomposes as the direct sum of simple Lie algebras (see

Theorem 1.1.13). In this work we will be specially interested in the Lie algebras sl(n,H),

so(1, 4) and su(1, 2), for their very rich intrinsic geometry.
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1.2 Cartan and Iwasawa decompositions

Cartan decompositions

Let g be a noncompact semisimple Lie algebra over R, gC its complexification and σ the

conjugation in gC with respect to g. A direct sum decomposition g = k ⊕ s is called a

Cartan decomposition if there is a compact real form u such that

σ(u) ⊂ u, g ∩ u = k, g ∩ iu = s.

As u is a subalgebra, we have [u, iu] ⊂ iu and [iu, iu] ⊂ u. Note that the Lie brackets

between the components of the Cartan decomposition satisfy

[k, k] ⊂ k, [k, s] ⊂ s, [s, s] ⊂ k.

This means that k is a subalgebra such that s is left invariant under its adjoint represen-

tation. Note also that s is not a subalgebra, otherwise we would have [s, s] = 0, and s

would be an abelian ideal, contradicting the semisimplicity of g.

If g0 is a noncompact real form of the complex semisimple Lie algebra gc with cor-

responding conjugation σ, then for a given real compact form u with conjugation τ , we

can assume, without loss of generality, that τσ = στ (Theorem 1.1.17), and this means

that g0 is invariant under τ while u is invariant under σ. Thus, Lemma 1.1.16 implies

that

g0 = k⊕ s, where k = g0 ∩ u and s = g0 ∩ iu,

which is the Cartan decomposition for g0. Of course the Cartan decomposition for g0

depends on the choice of the real compact form u.

Proposition 1.2.1. Given a Cartan decomposition g0 = k⊕ s, the involutive automorphism θ

defined by θ(X) = X if X ∈ k, and θ(Y ) = −Y if Y ∈ s, is such that the bilinear form

Bθ(X, Y ) = −⟨X, θY ⟩

is an inner product in g0. On the other hand, given an automorphism θ such that the bilinear

form defined like above is an inner product, then its eigenspaces determine a Cartan decompo-
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sition. The automorphism θ is called Cartan involution.

Proof: See [26], Proposition 12.21.

Proposition 1.2.2. Let g0 = k⊕ s be a Cartan decomposition with involution θ. Then ad(X),

X ∈ k is skew-symmetric with respect to Bθ while ad(Y ), Y ∈ s, is symmetric. Also, k and s

are orthogonal with respect to both the Cartan-Killing form ⟨·, ·⟩ and Bθ.

Proof: See [26], Proposition 12.22.

In the case that the real semisimple Lie algebra is the realified of a complex Lie

algebra, then its Cartan decompositions are the decompositions of the complex Lie

algebra into real and immaginary parts with respect to the compact real forms:

Proposition 1.2.3. Let gc be a complex semisimple Lie algebra and u a compact real form. Then

gRc = u⊕ iu is a Cartan decomposition of the realified of gc.

Proof: See [26], Proposition 12.23.

Theorem 1.2.4. Let g0 be a real semisimple Lie algebra and consider g0 = k1 ⊕ s1 and g0 =

k2 ⊕ s2 two Cartan decompositions of g0. Then, there is an automorphism ϕ of g0 such that

ϕ(k1) = k2 and ϕ(s1) = s2.

Proof: See [26], Theorem 12.24.

Example 1.2.5. Consider gc = sl(n,C) and the conjugation σ defined by σ(A) = −A
T . It is

clear that σ is an antiautomorphism. The Lie algebra of fixed points of σ is

su(n,R) = {A ∈ sl(n,C) | A = −A
T}.

For the real form g0 = sl(n,R), we have that g0 ∩ u is the subalgebra formed by the real skew-

hermitian matrices, that is, the algebra so(n), of the skew-symmetric matrices. On the other

hand, g0 ∩ iu is the subspace formed by the real matrices X such that iX is skew-hermitian,

that is, the subspace s of the symmetric matrices. Hence, sl(n,R) = so(n,R) ⊕ s is a Cartan

decomposition of sl(n,R). The corresponding Cartan involution is given by θ(X) = −X t,

since θ = 1 in so(n,R) and θ = −1 in s.
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Example 1.2.6. For the Lie algebra of real symplectic matrices

sp(n,R) = {A ∈ gl(2n,R) | AJ + JAT = 0},

where J has the n× n block form

J =

 0 −1

1 0

 ,

a Cartan decomposition is

k =


 A B

−B A

 ∣∣∣∣∣∣ A+ AT = B −BT = 0


and

s =


 A B

B −A

 ∣∣∣∣∣∣ A− AT = B −BT = 0

 ,

that is, skew-symmetric and symmetric matrices in sp(n,R).

The following theorem states the Cartan decomposition at the Lie group level. It

shows that a noncompact semisimple Lie group G can be written as G = KS = SK,

with K = exp k and S = exp s, where g = k ⊕ s is a Cartan decomposition of the Lie

algebra g of G.

Theorem 1.2.7 (Global Cartan Decomposition). Let G be a connected semisimple Lie group

and g = k ⊕ s a Cartan decomposition for its Lie algebra. Write K = ⟨exp k⟩ and S = exp s.

Then,

1. G = SK = KS and every g ∈ G is uniquely written as g = sk or g = ks, where k ∈ K

and s ∈ S.

2. S is an embedded submanifold of G diffeomorphic to s under the embedding exp : s → S.

3. The maps K × S → G given by (k, s) 7→ ks and (k, s) 7→ sk are diffeomorphisms.

4. The center Z(G) of G is contained in K.

5. K = exp k and K is compact if and only if Z(G) is finite.

Proof: See [28], Theorem 12.4.
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Iwasawa decompositions

As in the case of the complex semisimple Lie algebras, the real ones also admit root

spaces decompositions. In the real case, instead of considering Cartan subalgebras, the

root space decompositions are obtained from maximal abelian subalgebras contained

in the symmetric part of the Cartan decomposition.

Let g be a real semisimple Lie algebra, g = k⊕ s a Cartan decomposition and a ⊂ s

a maximal abelian subalgebra, in the sense that it is not contained in any other abelian

subalgebra of s. It is easy to ensure the existence of such subalgebras, since the unidi-

mensional subspaces in s are abelian subalgebras of g contained in s.

For instance, considering the Cartan decomposition sl(n,R) = so(n) ⊕ s, where

s is the subspace of symmetric matrices, we have that the subalgebra a of diagonal

matrices is a maximal abelian subalgebra contained in s. Note that a is also a Cartan

subalgebra, even though this fact does not occurs in general. A general fact is that a

maximal abelian subalgebra a is always contained in a Cartan subalgebra (often being

different from it).

Proposition 1.2.8. Let a be a maximal abelian subalgebra contained in s. There is a maxi-

mal abelian subalgebra h of g containing a. The subalgebra h is a Cartan subalgebra and it

decomposes as a direct sum h = (h ∩ k)⊕ a.

Proof: See [26], Proposition 12.25.

Let α be a real linear functional on a and consider the subspace

gα = {X ∈ g | ad(H)X = α(H)X, for all H ∈ a}.

Such a functional α ̸= 0 is called a restricted root of g with respect to a if gα ̸= 0.

The zero functional appears as a weight of the adjoint representation of a in g, since

a is abelian, and the subspace associated to the zero weight is the centralizer of a, z(a),

because ad(H), H ∈ a, is diagonalizable. So, g decomposes as

g = z(a)⊕
∑
α

gα.

Considering the Cartan decomposition of the elements of z(a), writing m = z(a) ∩ k,
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then z(a) = m ⊕ a (see [28], Proposition 12.5) and the previous decomposition can be

rewritten as

g = m⊕ a⊕
∑
α

gα.

The set of restricted roots is a finite set of linear functionals in a, and thus the subset

a = {H ∈ a |α(H) ̸= 0 for every root α}

is an open and dense subset of a. An element H ∈ a is called real regular. The cen-

tralizer of a real regular element is z(a) and from this follows that if X ∈ s is such that

[H,X] = 0 for some real regular element H , then X ∈ a. In other words, the set of

elements in s that commute with a real regular element H is exactly a.

The above decompositions depend upon the choice of the maximal abelian subalge-

bra a, but this choice dos not affect the generality, since two maximal abelian subalge-

bras a1, a2 ⊂ s are obtained from one another by an element of Kad (see [28], Proposition

12.6 and its corollary).

The inclusion [k, s] ⊂ s shows that the subspace s is left invariant under the sub-

group Kad. Thus, if a ⊂ s is maximal abelian and k ∈ Kad, then k(a) ⊂ s is also a

maximal abelian subalgebra. Every single maximal abelian subalgebra is obtained in

this way by conjugations under the elements of Kad:

The common dimension of the maximal abelian subalgebras a ⊂ s is called real

rank of g, and in general the real rank differs from the Lie algebra’s rank (the dimension

of its Cartan subalgebras).

To define an Iwasawa decomposition for g, we start choosing:

• a Cartan decomposition g = k⊕ s,

• a maximal abelian subalgebra a ⊂ s and

• a real regular element H ∈ a.

From the decomposition of g into the root spaces of a, we define

n = n+H =
∑

α(H)>0

gα,
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which is the sum of the eigenspaces of ad(H) associated with positive eigenvalues.

With these choices, the decomposition

g = k⊕ a⊕ n

is called an Iwasawa decomposition for g.

Theorem 1.2.9. The Iwasawa decomposition is a direct sum decomposition.

Proof: See [28], Theorem 12.8.

The component k in an Iwasawa decomposition g = k⊕a⊕n is a compact subalgebra

while a is abelian. With respect to n and a⊕ n we have the following result:

Proposition 1.2.10. The component n of the Iwasawa decomposition is a nilpotent subalgebra

and a⊕ n is a solvable Lie algebra.

Proof: See [28], Proposition 12.9.

Example 1.2.11. For sl(n,R), choosing the real regular element H = diag{a1, . . . , an}, with

a1 > a2 > · · · > an, we get

• k = so(n);

• a is the algebra of traceless diagonal matrices;

• n is the algebra of upper triangular matrices with zero diagonal;

Finally, at the Lie group level the Iwasawa decompositions are described by the

following theorem.

Theorem 1.2.12 ([28], Theorem 12.12). Let G be a connected semisimple Lie group and g =

k⊕ a⊕ n an Iwasawa decomposition for its Lie algebra g. Then, G = KAN , where K = exp k,

A = exp a and N = exp n. The map

ϕ = K × A×N → KAN,

given by ϕ(k, a, n) = kan, is a diffeomorphism. The groups A, N and AN are simply connected

and diffeomorphic to euclidean spaces.
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The subgroup K is the same of the Cartan decomposition. The abelian subgroup

A = exp a is closed, since S = exp s is closed in G, a is closed in s and exp s → S is a

diffeomorphism.

Example 1.2.13. Let G = Sl(n,R) and the Iwasawa decomposition of its Lie algebra sl(n,R) =

so(n)⊕ a⊕ n, where a is the algebra of diagonal matrices and n the algebra of upper triangular

matrices. We get then the Iwasawa decomposition Sl(n,R) = SO(n)AN , where A is the group

formed by the diagonal matrices with positive entries and determinant 1 and N is the group

formed by the upper triangular matrices having 1 at each diagonal entry.

1.3 Flag manifolds

Let g = k⊕a⊕n+ an Iwasawa decomposition and let m = g0∩k be the centralizer of a in k.

As a is maximal abelian in s, we have g0 = m⊕a. The subalgebra p = m⊕a⊕n+ is called

standard minimal parabolic subalgebra. It is in fact a subalgebra since [m, n+] ⊂ n+ and

[a, n+] ⊂ n+. If g is an automorphism of g, then g · g is a subalgebra.

We define a parabolic minimal subalgebra of g as being a subalgebra q that is con-

jugate to the standard minimal parabolic subalgebra via an automorphism g of g. In

other words, q is parabolic minimal if for some automorphism g of g it holds q = g · p.

A parabolic subalgebra is a subalgebra of g containing a minimal parabolic subalgebra.

Let G be a Lie group with Lie algebra g. A parabolic subgroup of G is the normalizer

in G of a parabolic subalgebra, that is, if p ⊂ g is a parabolic subalgebra then

P = {g ∈ G |Ad(g)p = p}

is the parabolic subgroup of G associated to p. Note that P is a Lie subgroup of G, since

it is a closed subgroup.

A flag manifold of a Lie group G is a coset space G/Q with Q a parabolic subgroup

of G. For the group SU(1, 2) the only flag manifold is given by the standard minimal

parabolic subgroup P as above. Since a parabolic subgroup Q is always conjugate to a

standard parabolic subgroup PΘ, it is enough consider standard parabolic subgroups

to obtain the flag manifolds for a given Lie group G. Given a simple root system Σ, the

subsets of Σ are ordered by inclusion and this induces an ordering of the flag manifolds



1.4 Control systems and controllability 37

as well. We say that a flag manifold FΘ1 = G/PΘ1 is bigger than FΘ2 = G/PΘ2 if and

only if Θ1 ⊂ Θ2. Thus, under this ordering we get only one maximal flag manifold,

corresponding to Θ = ∅. There are rankRg−1 minimal flag manifolds, which are exactly

those corresponding to the subsets Θ that are complementary to the sets having only

one element.

Flag manifolds are connected (because G is connected) and the following proposi-

tion ensures that flag manifolds are compact as well.

Proposition 1.3.1. K acts transitively on any flag manifold FΘ.

Proof: First of all, we know that FΘ = G/PΘ has Lie algebra g/pΘ, and dimFΘ =

dim g − dim pΘ. Let π : G → G/PΘ be the canonical projection. The orbit K · b0 of the

origin b0 ∈ G/PΘ is a submanifold of G/PΘ with tangent space dπ1(k), and dim dπ1(k) =

dim k−dim(k∩p). Now, the Iwasawa decomposition gives us g = k+pΘ, hence dim g =

dim k+dim pΘ−dim(k∩pΘ). This implies that the dimension of the orbit K ·b0 coincides

with dim(G/PΘ), and hence the orbit is an open submanifold in G/PΘ. Since K is

compact, we get that K · b0 is closed as well. Finally, the connectedness of FΘ = G/PΘ

implies that K · b0 = FΘ, that is, K acts transitively on the flag manifold FΘ.

1.4 Control systems and controllability

Here we denominate control system a family of a complete vector fields Γ on an n-

dimensional manifold M . A trajectory of Γ is a continuous curve γ from an interval

[0, T ], T ≥ 0 of the real line into M such that for some partition 0 < t1 < t2 < · · · < tn =

T there exist vector fields X1, . . . , Xn in Γ such that the restriction of γ to each interval

[ti−1, ti) is an integral curve of Xi. A special case studied here are the control systems

given by the equations

ẋ(t) = X1(x) + Σl
i=2uiXi(x),

where Xj ∈ Γ and

U = {u ∈ L∞(R,Rm) |u(t) ∈ U for almost all t}.

We assume that the control range U ⊂ Rm is nonempty and that for every initial
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state x ∈ M and every u ∈ U there exists a unique solution denoted by ϕ(t, x, u), t ∈ R,

satisfying ϕ(0, x, u) = x. We can also admit piecewise constant controls, that is,

Upc = {u : R → U ⊂ Rm |u picewise constant}.

The positive orbit of x ∈ M at time exactly t > 0 is the set

O+
t (x) = {y ∈ M | ∃u ∈ U with y = ϕ(t, x, u)} .

Similarly, the negative orbit of x ∈ M at time t > 0 is

O−
t (x) = {y ∈ M | ∃u ∈ U with x = ϕ(t, y, u)} .

The positive and negative orbits of x ∈ M up to time T are defined as

O+
≤T (x) =

⋃
0≤t≤T

O+
t (x)

= {y ∈ M, such that there are 0 ≤ t ≤ T and u ∈ U with y = ϕ(t, x, u)}

and

O−
≤T (x) =

⋃
0≤t≤T

O−
t (x)

= {y ∈ M, such that there are 0 ≤ t ≤ T and u ∈ U with x = ϕ(t, y, u)}

The positive and negative orbits of x ∈ M are

O+(x) =
⋃

T>0
O+

≤T (x) =
⋃

t>0
O+

t (x)

and

O−(x) =
⋃

T>0
O−

≤T (x) =
⋃

t>0
O−

t (x).

A key concept for this work is that one of controllability of a control system Γ, which

roughly speaking means that the orbit of every single point of M under Γ covers the

whole manifold M .

Definition 1.4.1. A control system Γ is controllable from x ∈ M when O+(x) = M , and it is

said to be controllable when it is controllable from every x ∈ M .
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When a control system Γ fails to be controllable, one can ask for the maximal subsets

of M where controllability holds. These are the control sets.

Definition 1.4.2. A nonvoid set C ⊂ M is an invariant control set of a control system Γ on

M if it has the following properties:

(i) for all x ∈ C there is a control u ∈ U such that ϕ(t, x, u) ∈ C for all t ≥ 0,

(ii) for all x ∈ C one has clC = cl(O+(x)), and

(iii) C is maximal with these properties, that is, if C ′ ⊃ C satisfies conditions (i) and (ii), then

C ′ = C.

As special cases of control systems that occur very often in the literature we have:

1. The bilinear control systems with unrestricted controls,

ẋ = Ax+
m∑
i=1

ui(t)Bix,

where A,B1, B2, . . . , Bm ∈ Mn(R) and u(t) = (u1(t), . . . , um(t)) ∈ Rm. This control

system is given by the family

Γ = {Xu = A+ u1B1 + · · ·+ AmBm |u = (u1, . . . , um) ∈ Rm}

of vector fields, where Xu(x) = Ax+
∑m

i=1 ui(t)Bix, x ∈ Rn. These are also called

control-affine systems.

2. The affine systems,

ẋ = Ax+ a+
m∑
i=1

ui(t)(Bix+ bi), x ∈ Rn,

being A,B1, . . . , Bm ∈ Mn(R), a, b1, . . . , bm ∈ Rn, u(t) = (u1(t), . . . , um(t)) ∈ Rm.

As before, this system can be described by the family

Γ = {Xu = (A, a) + u1(B1, b1) + · · ·+ um(Bm, bm) |u = (u1, . . . , um) ∈ Rm},

where Xu(x) = Ax+ a+
∑m

i=1 ui(t)(Bix+ bi), x ∈ Rn.
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Another important class of control systems are the invariant control systems, given

by a family of (right or left) invariant vector fields on a Lie group G, that is, a subset Γ

of the Lie algebra g of G.

Definition 1.4.3. An invariant control system Γ ⊂ g is said to satisfy the Lie algebra rank

condition (LARC) if the Lie algebra generated by Γ, Lie(Γ), is the whole g, that is,

Lie(Γ) = g.

Complete controllability can occur only on connected Lie groups and the Lie alge-

bra rank condition is a necessary condition for controllability, although in general it is

not sufficient.

In this work we are going to give sufficient conditions for the controllability of some

invariant control systems on certain Lie groups and study the invariant control sets for

several non controllable systems.



CHAPTER 2

CONTROLLABILITY AND SEMIGROUPS

OF INVARIANT CONTROL SYSTEMS ON

Sl (n,H)

Let Sl (n,H) be the Lie group of n × n quaternionic matrices g with |det g| = 1. In

this chapter we prove that a subsemigroup S ⊂ Sl (n,H) with nonempty interior is

equal to Sl (n,H) if S contains a special subgroup isomorphic to Sl (2,H). From this,

we give sufficient conditions on A,B ∈ sl (n,H) to ensure that the invariant control

system ġ = Ag + uBg is controllable on Sl (n,H). We prove also that these conditions

are generic in the sense that we obtain an open and dense set of controllable pairs

(A,B) ∈ sl (n,H)2.

2.1 Lie theoretical setting for Sl(n,H)

In this section we establish some necessary notations, concepts and results. For details

see Rabelo and San Martin [18], San Martin [27, 28] and San Martin and Tonelli [29].

Let G be a semi-simple connected and noncompact Lie group with finite center and

denote by g its Lie algebra. We describe the flag manifolds of G from the simple roots

of g. Choose an Iwasawa decomposition g = k ⊕ a ⊕ n+ and take Π the set of roots of

the pair (g, a). Denote by Π+ and Σ the set of positive and simple roots, respectively,

which correspond to the nilpotent component

n+ =
∑
α∈Π+

gα,
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with gα standing for the α-root space. Consider m the centralizer of a in k. Then the

standard minimal parabolic subalgebra of g is given by p = m⊕ a⊕ n+. We can define

the maximal flag manifold F of G as G/P where P is the minimal parabolic subgroup

defined as the normalizer of p in G. Recall that P = MAN where A = exp a, N = exp n+

and M is the centralizer of A in K = exp k.

Given a subset Θ ⊂ Σ, let n− (Θ) be the subalgebra spanned by the root spaces g−α,

α ∈ ⟨Θ⟩ where ⟨Θ⟩ is the set of positive roots generated by Θ. We define the parabolic

subalgebra associated to Θ by

pΘ = n− (Θ)⊕ p.

Then we have the homogeneous space FΘ = G/PΘ, also called as (partial) flag manifold

where PΘ is the normalizer of pΘ in G, that is, PΘ = {g ∈ G : Ad (g) pΘ = pΘ} and called

parabolic subgroup (associated to Θ).

Let

a+ = {H ∈ a : α (H) > 0 for all α ∈ Σ}

be the Weyl chamber associated to Σ. We say that X ∈ g is regular in case X =

Ad (g) (H) for some g ∈ G and H ∈ a+. Analogously, x ∈ G is said to be regular

in case x = ghg−1 with h ∈ A+ = exp a+, that is, x = expX with X regular in g.

The Weyl group W associated to a is the finite group generated by the reflections

over the root hyperplanes α = 0 contained in a, α ∈ Σ. For Θ ⊂ Σ there is a subgroup

WΘ ⊂ W generated by the reflections w.r.t. α ∈ Θ. Let bΘ ∈ FΘ be the origin in the

sense of [18]. Then the Bruhat decomposition of FΘ is given by

FΘ =
⋃

w∈W/WΘ

N · wbΘ.

Hence, a Schubert cell in FΘ can be defined as cl(N · wbΘ).

Given two subsets Θ1 ⊂ Θ2 ⊂ Σ, the corresponding parabolic subgroups satisfy

PΘ1 ⊂ PΘ2 , then there is a canonical fibration G/PΘ1 → G/PΘ2 . In particular, F = F∅

projects onto every flag manifold FΘ.

Take a semigroup S with intS ̸= ∅. Consider the action of S in the flag manifolds

of G. It was proved in [29] that S is not transitive in FΘ unless S = G. Moreover,

there exists just one closed invariant subset CΘ ⊂ FΘ such that Sx is dense in CΘ for
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all x ∈ CΘ. This subset is called the invariant control set of S in CΘ. Since S is not

transitive, CΘ ̸= FΘ.

There exists Θ ⊂ Σ such that π−1
Θ (CΘ) ⊂ F is the invariant control set in the maximal

flag manifold. Among the subsets Θ satisfying this property, there is one which is

maximal, in the sense that it contains all the others. We denote this subset by Θ(S)

and say that it is the flag type of S. Alternatively, we denote this type of S by the

corresponding flag manifold F (S) = FΘ(S). Furthermore, CΘ(S) is contractible in FΘ(S)

(see e.g. [27] and references therein).

Now, we collect and specialize some of the above concepts in case of Sl(n,H). In

a matrix Lie algebra, a Cartan decomposition g = k ⊕ s is given by skew symmetric

and symmetric (or hermitian) matrices. Hence, the natural Cartan decomposition of

sl (n,H) is given by

k = {X ∈ Mn×n (H) : X = −X
T} and s = {X ∈ Mn×n (H) : X = X

T}

where X is a quaternionic conjugation. The algebra k of the quaternionic skew hermi-

tian matrices is denoted by k = sp (n) and is the compact real form of sp (n,C). Note

that a real form of a complex Lie algebra is compact if its Cartan-Killing form is nega-

tive definite (see e.g. [28]).

The maximal abelian subalgebra a ⊂ s is given by the diagonal matrices Λ =

diag{a1, . . . , an} with ai ∈ R and trΛ = 0. The roots of a are the following linear

functionals

αrs (Λ) = (λr − λs) (Λ) = ar − as r ̸= s.

The vector space gαrs , corresponding to the root αrs, is given by the quaternionic ma-

trices with non zero entries only in the position rs. Then all roots have multiplicity 4.

The set of simple roots is given by

Σ = {λ1 − λ2, . . . , λn−1 − λn}

= {α12, . . . , α(n−1)n}.

With this choice, the set of positive roots is formed by αrs with r < s. Hence, an

Iwasawa decomposition is sl (n,H) = sp (n) ⊕ a ⊕ n+, where n+ is the Lie algebra of
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upper triangular quaternionic n× n matrices with zero entries in the diagonal.

For d = 1, . . . , n − 1, we denote by Grd (H) the grassmannian of d-dimensional

quaternionic subspaces of Hn. The group Sl (n,H) acts transitively on each Grd (H) and

the compact subgroup Sp (n) ⊂ Sl (n,H) also acts transitively on Grd (H).

Theorem 2.1.1. Let S ⊂ Sl (n,H) be a proper subsemigroup with intS ̸= ∅. Then there are

d ∈ {1, . . . , n− 1} and a subset Cd ⊂ Grd (H) satisfying

1. Cd is closed, has nonempty interior and it is invariant by the action of S. (Cd is the

unique invariant control set of S in Grd (H)).

2. Cd is contractible in Grd (H) in the sense that there exists H ∈ sl (n,H) such that etHCd

shrinks to a point as t → +∞.

In the context of the above theorem, the grassmannian Grd (H) is the flag type of

the semigroup S.

2.2 Transitivity of a subsemigroup of Sl (n,H)

In this section, following the same constructions and notations developed in the pre-

vious sections, we prove our central result that gives sufficient conditions for a semi-

group S to be equal to Sl (n,H). The proof of this result is based on the existence of

a flag type of a proper semigroup S with intS ̸= ∅. By Theorem 2.1.1, we get that

S = Sl (n,H) if we can prove that S does not leave invariant contractible subsets in the

grassmannians Grd (H), d = 1, . . . , n− 1.

In the Lie group Sl (n,H), the connected Lie subgroup G = ⟨exp g±α⟩ is described

in the following way. For a ordered pair (r, s), 1 ≤ r < s ≤ n, let Sl (2,H)r,s be the

subgroup of Sl (n,H) (isomorphic to Sl (2,H)) of the matrices in the space span{er, es}

where {e1, . . . , en} is the standard basis of Hn, plugged into the n× n matrices. That is,

Sl (2,H)r,s = ⟨exp sl (2,H)r,s⟩ where the Lie algebra sl (2,H)r,s is given by the matrices

in sl (n,H) having nonzero entries only at the positions (a, b) with a, b ∈ {r, s}.

Now, we are able to state the main result of this section.

Theorem 2.2.1. Let S ⊂ Sl (n,H) be a subsemigroup with intS ̸= ∅ and suppose that

Sl (2,H)r,s ⊂ S for some pair of indices (r, s), 1 ≤ r < s ≤ n. Then S = Sl (n,H).
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Before proving this theorem, we need some remarks and lemmas. In the hypothesis

of the above theorem we consider separately the case where (r, s) = (1, n), that is,

Sl (2,H)1,n ⊂ S. Then the strategy to prove this case will be based in Theorem 2.1.1.

Since we have int(S) ̸= ∅, the idea is to show that for all d ∈ {1, . . . , n − 1} the

S-invariant closed Cd sets with int(Cd) ̸= ∅ are not contractible in the sense of the item

2 of Theorem 2.1.1.

Let C ⊂ Grd (H). Note that if there exists H ∈ sl(n,H) such that etHC shrinks to

a point as t → ∞, then C is contractible in the usual sense. To see this, denote by

id : C → C the identity map of C. We need to construct an homotopy between id and

a constant map. Let H ∈ sl(n,H) be such that

lim
t→∞

etHC = {c0},

where c0 ∈ Grd(H). Define F : C × I → C by setting F (x, t) = e(
t

1−t)Hx if t ∈ [0, 1) and

F (x, 1) = c0 for all x ∈ C. Then F is a homotopy between id and the constant map c0.

In fact, F (x, 0) = e0·Hx = x and F (x, 1) = c0 for all x ∈ C. Also F is a continuous map,

since

lim
t→1

e(
t

1−t)Hx = c0, ∀x ∈ C.

This means that if C is not contractible in the usual sense, then C is not contractible

in the sense of item 2 of Theorem 2.1.1.

So to prove our theorem, we will show that for all d ∈ {1, . . . , n− 1} the S-invariant

closed Cd sets with int(Cd) ̸= ∅ contains an orbit that is not contractible in the usual

sense. This implies that the orbit is not contractible in the sense of item 2 of Theorem

2.1.1, and so Cd cannot be contractible in this sense.

In this way we will proceed in some steps.

The next lemma describes the non-contractible Sl (2,H)1,n-orbits in the grassman-

nians that are proved to be contained in the invariant control sets Cd. They are 4-

dimensional spheres.

Lemma 2.2.2. For d = 1, . . . , n − 1 let Vd be the subspace of Hn spanned by the first d basic

vectors,

Vd = {(q1, . . . , qd, 0, . . . , 0) : qr ∈ H}.
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Then the Sl (2,H)1,n-orbit in Grd (H) through Vd is diffeomorphic to S4.

Proof: We have that the orbit Sl (2,H)1,n Vd is diffeomorphic to the homogeneous space

Sl (2,H)1,n /P , where

P = {g ∈ Sl (2,H)1,n | gVd = Vd}

is the isotropy subgroup of Vd under the action of Sl (2,H)1,n in Grd(H). By a direct

computation one sees that P is the subgroup of upper triangular matrices in Sl (2,H)1,n,

which is a parabolic subgroup of Sl (2,H)1,n. This means that Sl (2,H)1,n /P is a flag of

Sl (2,H)1,n. As we know, Sl (2,H) is a real rank 1 group so that it has just one flag mani-

fold which is diffeomorphic to a sphere. That is, the orbit Sl (2,H)1,n Vd is diffeomorphic

to a sphere. Finally,

dim
(
Sl (2,H)1,n /P

)
= dim

(
Sl (2,H)1,n

)
− dim (P ) = 15− 11 = 4.

Therefore Sl (2,H)1,n /P as well as the Sl (2,H)1,n-orbit through Vd is a sphere S4.

The next step is to check that for any d = 1, . . . , n− 1 the orbit Sl (2,H)1,n Vd ≈ S4 is

not contractible in Grd (H) in the usual sense, that is, the identity map

id : Sl (2,H)1,n Vd → Sl (2,H)1,n Vd

is not homotopic to a point.

In other words, we are required to prove that the 4-sphere Sl (2,H)1,n Vd is not a

representative of the identity of the homotopy group π4 (Grd (H)). To this purpose we

recall the cellular decomposition of Grd (H) given in [18]. From that decomposition the

homology H∗ (Grd (H)) of a grassmannian Grd (H) is freely generated by the Schubert

cells and Hr (Grd (H)) = {0} if r is not a multiple of 4. In Grd (H) there is just one

4-dimensional cell which is the orbit Sl (2,H)d,d+1 Vd. Here,

Sl (2,H)d,d+1 = ⟨exp sl (2,H)d,d+1⟩ ≈ Sl (2,H)

and sl (2,H)d,d+1 is the algebra of matrices with nonzero entries only in the entries

(d, d), (d, d+ 1), (d+ 1, d) and (d+ 1, d+ 1). Analogous to Lemma 2.2.2 we have that

Sl (2,H)d,d+1 Vd is diffeomorphic to S4.
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Now, by the Hurewicz homomorphism we have π4 (Grd (H)) ≈ H4 (Grd (H)) be-

cause the homology is trivial in degrees less than 4. It follows that π4 (Grd (H))≈ Z and

the equivalence class of the orbit Sl (2,H)d,d+1 Vd ≈ S4 is a generator of π4 (Grd (H)).

The next lemma shows that Sl (2,H)1,n Vd ≈ S4 is a generator as well.

Lemma 2.2.3. The orbits Sl (2,H)d,d+1 Vd ≈ S4 and Sl (2,H)1,n Vd ≈ S4 are homotopic to each

other.

Proof: The homotopy is performed by the product of two one-parameter subgroups.

Let A,B ∈ sl (n,H) be the matrices such that Ae1 = ed, Aed = −e1, Bed+1 = en,

Ben = −ed+1 and Aer = Ber = 0 elsewhere. Put P (t) = etAetB. Then for all t,

P (t)Vd = Vd and P (π/2) permutes the subspaces spanned by {ed, ed+1} and {e1, en}

so that P (π/2) Sl (2,H)d,d+1 P (π/2)−1 = Sl (2,H)1,n. Hence,

P (π/2) Sl (2,H)d,d+1 Vd = P (π/2) Sl (2,H)d,d+1 P (π/2)−1 P (π/2)Vd

= Sl (2,H)1,n Vd,

showing that the map t 7→ P (t) Sl (2,H)d,d+1 Vd is a homotopy between the orbits

Sl (2,H)d,d+1 Vd and Sl (2,H)1,n Vd.

Now, we can start the proof of Theorem 2.2.1 in the case when Sl (2,H)1,n ⊂ S.

Denote by N the nilpotent group of lower triangular matrices in Sl (n,H) having 1’s at

the diagonal. It is well known (and easy to prove) that NVd is an open and dense set in

Grd (H). Hence, as intCd ̸= ∅ we have NVd ∩ Cd ̸= ∅ where Cd is the invariant control

set of S in Grd (H).

The assumption Sl (2,H)1,n ⊂ S of Theorem 2.2.1 implies that gCd ⊂ Cd for any

g ∈ Sl (2,H)1,n. Since Cd is closed it follows that any limit lim glx, with x ∈ Cd and

gl ∈ Sl (2,H)1,n, also belongs to Cd.

Now, take x = gVd ∈ NVd ∩ Cd with g ∈ N and

h = diag{λ, 1, . . . , 1, λ−1} ∈ Sl (2,H)1,n

with λ > 1. As l → +∞ the sequence of conjugations hlgh−l converges to the matrix

g1 ∈ N that has zeros at the first column and the last row outside the diagonal. We have

h−lVd = Vd so that hlx = hlgVd = hlgh−lVd implying that W = limhlVd = g1Vd ∈ Cd.
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Therefore the orbit Sl (2,H)1,n W is entirely contained in Cd.

The next step is to prove that the orbit Sl (2,H)1,nW ⊂ Cd is a sphere S4 homotopic

to Sl (2,H)1,n Vd. By the zeros in the first column and the last row of g1, the subspace

W = g1Vd is the direct sum ⟨e1⟩ ⊕ W1 where W1 is a (d− 1)-dimensional subspace

of spanH{e2, . . . , en−1}. If d = 1 then W = Vd and we are done. Otherwise, let G =

Sl (n− 2,H)2,...,n−1 ≈ Sl (n− 2,H) be the subgroup of matrices in Sl (n,H) where the

restriction to spanH{e1, en} is the identity. Then G commutes with Sl (2,H)1,n so that

if g ∈ G then gSl (2,H)1,n W = Sl (2,H)1,n gW , that is, the image under g ∈ G of the

orbit Sl (2,H)1,n W is again an orbit of Sl (2,H)1,n. Moreover, G acts transitively in the

grassmannian of (d− 1)-dimensional subspaces of spanH{e2, . . . , en−1}. Hence, there

exists g ∈ G such that gW1 = spanH{e2, . . . , ed} so that gW = Vd. It follows that the orbit

Sl (2,H)1,n W is diffeomorphic to Sl (2,H)1,n Vd and then is a sphere S4. Furthermore,

G is connected so that there is a continuous curve gt ∈ G with g0 = 1 and g1 = g.

Therefore t 7→ gtSl (2,H)1,n W is a homotopy between Sl (2,H)1,nW and Sl (2,H)1,n Vd,

therefore Sl (2,H)1,n W ≈ S4 is not contractible.

We proved that the invariant control set Cd of the semigroup S in Grd (H) contains

a non-contractible sphere S4. Hence, Cd is not contractible. Since d = 1, . . . , n − 1 is

arbitrary, S cannot be a proper semigroup, concluding the proof of Theorem 2.2.1 in

the case when Sl (2,H)1,n ⊂ S.

Corollary 2.2.4. Let T ⊂ Sl (n,H) be a semigroup with nonempty interior. Suppose that

Sl (2,H)r,s ⊂ T for some pair (r, s), r ̸= s. Then T = Sl (n,H).

Proof: Let P be a matrix in Sl (n,H) that permutes the subspaces ⟨e1⟩ and ⟨er⟩ and

the subspaces ⟨en⟩ and ⟨es⟩. Then PSl (2,H)r,s P
−1 = Sl (2,H)1,n so that the semigroup

PTP−1 contains Sl (2,H)1,n. Since intPTP−1 ̸= ∅ we conclude, by Theorem 2.2.1, that

PTP−1 = Sl (n,H), hence T = Sl (n,H).

2.3 Application to Controllability

In this section we apply Theorem 2.2.1 to show the following result that gives sufficient

conditions for controllability of the control system

ġ = Ag + u(t)Bg, A,B ∈ sl(n,H). (2.1)
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Theorem 2.3.1. The system (2.1) is controllable if the following conditions are satisfied.

H1. The pair (A,B) generates sl (n,H) as a Lie algebra (Lie algebra rank condition).

H2. B = diag{a1 + ib1, . . . , an + ibn} with a1 > a2 ≥ · · · ≥ an−1 > an, bn ̸= 0 ̸= b1 and

b1/bn is irrational.

H3. Denote the 1, n and n, 1 entries of the matrix A by p ∈ H and q ∈ H, respectively. Let

H1,i and Hj,k be the (real) subspaces of H spanned by {1, i} and {j, k} respectively. Then

p and q do not belong to H1,i ∪Hj,k.

The proof of Theorem 2.3.1 will be made throughout this section and it follows from

Theorem 2.2.1 combined with the following proposition. Although the Lie algebra

rank condition will not be needed for this proposition, it allows us to conclude the

proof of the Theorem 2.3.1 by ensuring that the system semigroup S has nonempty

interior, leading us to the conditions required for Theorem 2.2.1.

Proposition 2.3.2. Under the conditions H2 and H3 of Theorem 2.3.1, the semigroup S of the

system contains the group Sl (2,H)1,n.

To prove this proposition, let S be the system semigroup of the invariant system

(2.1) and write

c (S) = {X ∈ sl (n,H) : ∀t ≥ 0, etX ∈ clS}

for the Lie wedge of S (see [12], [13] and Hilgert, Hofmann and Lawson [11]). The

main properties of c (S) are:

1) c (S) is a closed convex cone in the Lie algebra sl (n,H);

2) c (S) ∩ (−c (S)) is a Lie subalgebra and

3) If X ∈ c (S) ∩ (−c (S)) then ead(X)c (S) = c (S).

By definition of S we have that A + uB ∈ c (S) for all u ∈ R (since we consider

unrestricted controls). Hence, A ∈ c (S) and if u ̸= 0 then

1

|u|
A+

u

|u|
B =

1

|u|
(A+ uB) ∈ c (S) .

Taking limits as u → ±∞ we see that ±B ∈ c (S), that is, B ∈ c (S)∩ (−c (S)). It follows

that etad(B)A ∈ c (S) and hence e−t(a1−an)etad(B)A ∈ c (S) for all t ∈ R where a1, . . . , an

are the real parts of the entries of B.
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Now, by assumption we have a1 > a2 > · · · > an so that as t → +∞ the entries

e−t(a1−an)etad(B)A converge to 0 except the (1, n)-entry. The (1, n)-entry of the matrix

e−t(a1−an)etad(B)A is eit(b1−bn)p where p is as in the statement of the above theorem and

b1, . . . , bn are the imaginary parts of the entries of B. Choosing a sequence tk → +∞

such that eit(b1−bn) → 1 we conclude that

X =


0 · · · p
... . . . ...

0 · · · 0

 ∈ c (S) .

Using again the properties of the Lie wedge c (S) we have that for all t ∈ R,

e−t(a1−an)etad(B)X =


0 · · · eitb1pe−itbn

... . . . ...

0 · · · 0

 ∈ c (S) . (2.2)

The following lemma about conjugation of quaternions shows that gα1n = spanH{X} is

contained in c (S).

Lemma 2.3.3. Consider the action of the circle group S1 = {eit | t ∈ [0, 2π]} in the complex

plane C given by rotation (t, x) = eitx. If x ̸= 0, then the orbit S1x is a circle and the closed

convex cone generated by S1x is C.

Proof: It is immediate that S1x is a circle of radius a = |x|. Denote by co(S1x) the

convex cone generated by S1x and let z = reis1 ∈ C be any complex number. Writing

x = aeis2 and choosing t = s1 − s2, we have (r/a) eitx ∈ co(S1x), but

r

a
eitx =

(r
a
ei(s1−s2)

) (
aeis2

)
= reis1 = z,

proving that co(S1x) = C.

Lemma 2.3.4. Consider the torus T2 acting on the quaternions H by

ϕ ((t, s), q) = eitqe−is.

Write q = a + b, with a = x1 + x2i ∈ H{1,i} and b = x3j + x4k ∈ H{j,k}. Suppose that
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q /∈ H{1,i} ∪ H{j,k}, that is, a ̸= 0 ̸= b. Then, the orbit T2q is a 2-dimensional torus and H is

the convex cone generated by T2q.

Proof: Note initially that ϕ is in fact an action because ϕ((0, 0), q) = q and

ϕ((t, s) · (u, v), q) = ei(t+u)qe−i(s+v) = eit(eiuqe−iv)e−is = ϕ ((t, s), ϕ((u, v), q)) .

Now, the restriction of this action to the orbit T2q is a transitive action. Let Hq be the

isotropy subgroup of q under ϕ. As T2 is abelian, then Hq is a normal closed subgroup

of T2. This means that T2/Hq is a Lie group diffeomorphic to T2q such that dimT2/Hq =

dimT2 − dimHq. Further, as T2 is abelian, compact and connected we have that T2/Hq

is also abelian, compact and connected. This means that the orbit T2q is a torus. In this

way, to conclude the first part of the proof all we need to do is show that this orbit is

2-dimensional.

The tangent space of T2q at q is spanned by

∂

∂t

(
eitqe−is

)∣∣
(0,0)

= iq and
∂

∂s

(
eitqe−is

)∣∣
(0,0)

= −qi,

and we have

iq = ix1 − x2 + kx3 − jx4 = v + w

−qi = −ix1 + x2 + kx3 − jx4 = −v + w

with v = ix1 − x2 and w = kx3 − jx4. The assumption about q says that v ̸= 0 ̸= w

so that {v, w} is linearly independent. Hence {iq, qi} is linearly independent as well

because the linear combination a(v+w) + b(v−w) = 0 implies a+ b = 0 and a− b = 0,

that is, a = b = 0. This shows that the orbit T2q is a 2-dimensional torus.

To the convex cone C generated by T2q take r = eitqe−is ∈ T2q. Then −r = eiπr =

ei(t+π)qe−is also belongs to T2q. Hence C is a subspace. Also, it is easy to see that C is

invariant under left multiplication by i, in fact,

i lim
n→∞

eitnqe−isn = lim
n→∞

ei(tn+
π
2 )qe−isn ,

and the same holds for convex combinations of elements in T2q. The orbit contains
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eiπ/2q = iq = ia + ib and qe−i3π/2 = qi = ai + bi = ia − ib. So that C contains ia and ib

and hence contains a and b. Finally,

x2

x1

a+ ia = x2 +
x2
2

x1

i− x2 + x1i =

(
x2
2

x1

+ x1

)
i ∈ C

and

ia− x1

x2

a = −x2 + x1i−
x2
1

x2

− x1i = −x2 −
x2
1

x2

∈ C,

which implies that H{1,i} ⊂ C. Analogously, we have H{j,k} ⊂ C. Thus H is the cone

generated by T2q.

Lemma 2.3.5. Let CX and CY be the closed convex cones generated by the sets X and Y in H,

respectively. If Y ⊂ X is dense in X , then CY = CX .

Proof: It is clear that CY ⊂ CX . On the other hand, let x ∈ CX and let (xn)n∈N ⊂ co(X)

be a sequence such that xn → x as n → ∞, where co(X) stands for the convex cone

generated by X . If k = dim(co(X)), let B = {x1, . . . , xk} be a basis for co(X). Then for

each n ∈ N, xn can be written as xn = α1
nx

1 + · · ·+ αk
nx

k, where αi
n ≥ 0, 1 ≤ i ≤ k. As Y

is dense in X , for each n ∈ N and each 1 ≤ i ≤ k, choose yin ∈ Y such that |xi−yin| < 1
nβ

,

where β = α1
n + · · ·+ αk

n. For each n ∈ N, set yn = α1
ny

1
n + · · ·+ αk

ny
k
n. Then

|xn − yn| = |(α1
nx

1 + · · ·+ αk
nx

k)− (α1
ny

1
n + · · ·+ αk

ny
k
n)|

= |α1
n(x

1 − y1n) + · · ·+ αk
n(x

k − ykn)|

≤ α1
n

1

nβ
+ · · ·+ αk

n

1

nβ
=
(
α1
n + · · ·+ αk

n

) 1

nβ
=

β

nβ
=

1

n
,

and this means that yn → x as n → ∞. Since yn ∈ co(Y ), we conclude that x ∈ CY , that

is, CX ⊂ CY .

Corollary 2.3.6. Let c1, c2 ∈ R with c1c2 ̸= 0 and c1/c2 irrational. Take q ∈ H with q /∈

H{1,i} ∪H{j,k}. Then H is the closed convex cone generated by the curve eitc1qe−itc2 .

Proof: Since c1/c2 is irrational, the curve
(
eitc1 , eitc2

)
is dense in the torus T2. Hence

t 7→ eitc1qe−itc2 is dense in the orbit T2q which implies the corollary.

Applying this corollary to the curve (2.2) it follows, by the assumption on B in
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Theorem 2.3.1, that the subspace gα1n = spanH{X} is contained in c (S) and hence in

c (S) ∩ (−c (S)).

By similar arguments we get lower triangular matrices in c (S): taking limits as

t → −∞ of e−t(a1−an)etad(B)A it follows that

Y =


0 · · · 0
... . . . ...

q · · · 0

 ∈ c (S) ,

hence applying the same idea we conclude that gαn1 = spanH{Y } is contained in c (S)

and therefore in c (S) ∩ (−c (S)).

Now, the Lie algebra generated by gα1n and gαn1 is sl (2,H)1,n then this Lie algebra

is contained in c (S). It follows that Sl (2,H)1,n is contained in S, concluding the proof

of Proposition 2.3.2.

2.4 Cartan subalgebras and genericity

In this section we prove that controllability for invariant control systems in Sl (n,H) is

a generic property.

We begin discussing the Cartan subalgebra of sl (n,H) (see e.g. Warner [36]). Con-

sidering the same notations of Section 2, note that the algebra of diagonal matrices

h = {diag{a1 + ib1, . . . , an + ibn} : ar, br ∈ R, a1 + · · ·+ an = 0} (2.3)

is a Cartan subalgebra of sl (n,H) since it is maximal abelian and ad (H) is semi-simple

for any H ∈ h.

Next we prove that up to conjugation, h is the only Cartan subalgebra of sl (n,H).

First take the Cartan decomposition sl (n,H) = sp (n) ⊕ s given in Section 2. The sub-

space a ⊂ s is a maximal abelian subalgebra contained in s.

Observe that the Cartan subalgebra h decomposes as h = (h ∩ sp (n)) ⊕ a. More

generally j is said to be a standard Cartan subalgebra if it decomposes as j = jk⊕ ja with

jk = j ∩ k and ja = j ∩ a. The following statement is a basic fact for the classification of

Cartan subalgebras in real semi-simple Lie algebras (Theorem of Kostant-Sugiura).
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Proposition 2.4.1. Any Cartan subalgebra of g = sl (n,H) is conjugate (by an inner auto-

morphism) to a standard Cartan subalgebra j.

Proof: See [36], Section 1.3.1.

In the next proposition, we prove that in sl (n,H) there is a unique conjugacy class of

Cartan subalgebras. We give a direct proof without relying in the general classification

theorem (Theorem of Kostant-Sugiura).

Proposition 2.4.2. Every Cartan subalgebra of sl (n,H) is conjugate (by an inner automor-

phism) to the subalgebra h defined in (2.3).

Proof: Let j = jk⊕ ja be a standard Cartan subalgebra. The following simple arguments

show that jk is a Cartan subalgebra of sp (n) and ja = a. We have dim ja ≤ dim a = n− 1.

Also, dim jk ≤ ranksp (n) = n because jk is an abelian subalgebra of sp (n) and hence

is contained in a Cartan subalgebra of sp (n), whose dimension is ranksp (n). On the

other hand, dim j = ranksl (n,H) = dim h = 2n − 1. Hence, we must have dim jk = n

and dim ja = n − 1. By the first equality, jk is a Cartan subalgebra of sp (n) while the

second equality shows that ja = a.

Now, jk commutes with a and then is contained in the algebra m ≈ sp (1)n of di-

agonal matrices with entries in the imaginary quaternions ImH. Since dim jk = n =

ranksp (1)n, there is an inner automorphism g = ead(X), X ∈ m, such that g (jk) = hk and

g fixes a. Therefore, g (j) = h showing that any standard Cartan subalgebra is conjugate

to h. By the above proposition, h is a representative of the unique conjugacy class of

Cartan subalgebras of sl (n,H).

Denote by a+ the Weyl chamber of real diagonal matrices

diag{a1, . . . , an} with a1 > · · · > an.

A matrix B satisfying the second condition of Theorem 2.3.1 belongs to a+ + hk where

hk is as above the space of diagonal matrices with entries in iR. Denote by D0 ⊂ a++hk

the set of the matrices B satisfying that condition. By definition, if H ∈ a+ and X =

diag{ib1, . . . , ibn} ∈ hk then H + X ∈ D0 if and only if b1bn ̸= 0 and b1/bn is irrational.

Hence, D0 is a dense subset of a+ + hk.
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Let W be the permutation group in n letters (Weyl group) acting on the diagonal

matrices by permutation of indices. The set Wa+ = {wa+ : w ∈ W} is open and dense

in a. Since D0 is dense in a+ + hk, it follows that

WD0 = {wD0 : w ∈ W} ⊂ a+ hk = h

is dense in h.

We apply now Proposition 2.4.2 ensuring that every Cartan subalgebra is conjugate

to h. This implies that the set {Ad (g) h : g ∈ Sl (n,H)} is dense in sl (n,H) because

the set of regular elements is dense and each regular element is contained in a Cartan

subalgebra. With these facts we get the following density result.

Proposition 2.4.3. Let D be the set of conjugates of the matrices B satisfying the second

condition of Theorem 2.3.1. Then D is dense in sl (n,H).

Proof: Take an open set U ⊂ sl (n,H). Then there exists a regular element X of sl (n,H)

with X ∈ U . Let hX be the unique Cartan subalgebra containing X . By Proposition

2.4.2 there exists g ∈ Sl (n,H) such that Ad (g) hX = h. Then Ad (g)U ∩ h is a nonempty

open set of h and hence Ad (g)U ∩WD0 ̸= ∅. This means that U meets Ad (g−1)WD0 ⊂

D. Therefore as U is arbitrary it follows that D is dense.

Now, we can show the main result of this section.

Theorem 2.4.4. There is an open and dense set C ⊂ sl (n,H)2 such that the control system

ġ = A (g) + uB (g) with unrestricted controls (u ∈ R) is controllable for all pairs (A,B) ∈ C.

To prove this theorem, first note that the union H1,i∪Hj,k is a nowhere dense subset

of H, which implies that its complement is an open and dense subset of H. Conse-

quently, the set of matrices A satisfying the third condition of Theorem 2.3.1 is open

and dense in sl (n,H).

Remark 2.4.5. For Ω ⊂ M × N open, the set π1

(
Ω ∩ π−1

2 (b)
)
⊂ M is open in M for any

b ∈ N . Here, M and N are arbitrary metric spaces and π1 : M×N → N and π2 : M×N → N

are the canonical projections in the first and second coordinates, respectively. To see this take

the continuous map ib : M → M ×N , ib(x) = (x, b), and observe that

π1

(
Ω ∩ π−1

2 (b)
)
= {π1(x, b) | (x, b) ∈ Ω} = {x ∈ M | ib(x) ∈ Ω} = (ib)

−1(Ω).
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Now we can prove that the set C ⊂ sl(n,H)2 of the conjugates of pairs satisfying

the three conditions of Theorem 2.3.1 is dense in sl(n,H)2.

Let O be an open subset of sl(n,H)2. Since the set of pairs (A,B) satisfying H1 is

open and dense in sl(n,H)2, there is (A,B) ∈ O satisfying H1. Moreover, there exists

O′ ∋ (A,B) for which every pair belonging to O′ satisfies H1. Without loss of generality

we can assume O′ ⊂ O. Now, π2(O
′) is open in sl(n,H) and by Proposition 2.4.3 we can

choose B̃ ∈ π2(O
′) ∩ D. As the set π1

(
O′ ∩ π−1

2 (B̃)
)

is open in sl(n,H)2, by the above

considerations we can take Ã ∈ π1

(
π−1
2 (B̃) ∩O′

)
satisfying H3. Thus the pair (Ã, B̃)

has the following properties:

i) (Ã, B̃) ∈ O′ ⊂ O.

ii) (Ã, B̃) is conjugate to a pair satisfying H1, H2 and H3.

That is, (Ã, B̃) ∈ O∩C proving that C is dense in sl(n,H)2. Finally, as invariant systems

remain controllable, under small perturbations, we can slightly enlarge the dense set

C to get the open and dense set, as claimed in Theorem 2.4.4.



CHAPTER 3

THE LIE SATURATE TECHNIQUE FOR

CONTROLLABILITY

Now we shall study controllability from a slightly different perspective. The results

in this chapter are inspired by Gauthier and Bornard [8], which in turn improves the

controllability results present in the classical papers by Jurdjevic and Kupka, [12] and

[13]. We first recall the Lie saturate and its main properties, and subsequently we

state our controllability result on Sl(n,C), adapting the results in [8], that were made

considering the case Sl(n,R). The same method for controllability via the Lie saturate

is applied to Sl(n,H) and some semidirect products.

3.1 The Lie saturate and irreducible matrices

If G is a connected Lie group with Lie algebra g, we will denote by Lie(Γ) the Lie

algebra generated by Γ ⊂ g, that is, the smallest Lie subalgebra of g containing Γ.

Given a right invariant control system Γ, let AΓ denote its attainable set from the

identity.

Definition 3.1.1. The Lie saturate of Γ, written as LS(Γ), is the set

LS(Γ) = {A ∈ Lie(Γ) | exp(tA) ∈ cl(AΓ) ∀t ≥ 0} .

Some useful properties of the Lie saturate are listed in the next proposition.

Proposition 3.1.2 (cf. [12]). Let G be a connected Lie group and Γ ⊂ g a right invariant

control system. Then

1. LS(Γ) is topologically closed;
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2. LS(Γ) is convex:

X, Y ∈ LS(Γ) ⇒ αX + (1− α)Y ∈ LS(Γ) ∀α ∈ [0, 1].

3. LS(Γ) is a positive cone:

X ∈ LS(Γ) ⇒ αX ∈ LS(Γ) ∀α ≥ 0.

Thus,

X, Y ∈ LS(Γ) ⇒ αX + βY ∈ LS(Γ) ∀α, β ≥ 0.

4. For any ±X, Y ∈ LS(Γ) and any t ∈ R,

exp(t adX)Y = exp(tX)Y exp(−tX) ∈ LS(Γ).

5. ±X,±Y ∈ LS(Γ) implies that ±[X, Y ] ∈ LS(Γ).

The following theorem will be the main tool in way to achieve controllability under

certain circumstances.

Theorem 3.1.3. A right invariant control system Γ ⊂ g is controllable on a connected Lie

group G if and only if LS(Γ) = g.

Proof: See [13], Proposition 2.

A characterization of the concept of irreducibility by means of the graph theory

will be quite useful in the present context, so let us explain it briefly. The matrices to

be considered can have real, complex or even quaternionic entries, since the main idea

relies on the entries being 0 or not.

Definition 3.1.4. An n×n matrix A (n ≥ 2), whose entries are real, complex or quaternionic,

is called reducible if there exists an n× n permutation matrix P such that

PAP t =

 A1,1 A1,2

0 A2,2

 ,

where A1,1 is an r × r submatrix, with 1 ≤ r < n. Otherwise, A is said irreducible. If n = 1,

then A is reducible if its single entry is 0, and irreducible otherwise.
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Definition 3.1.5. A finite directed graph associated to the n × n matrix A = (aij) is a set

of n points in the plane, say P1, · · · , Pn (called nodes), together with directed arcs connecting

these points in such a way that the point Pi is joined to the point Pj by means of a line directed

from Pi to Pj if and only if aij ̸= 0.

A directed path from the node Pi to the node Pj in the graph is simply a collection

of concatenated directed arcs starting at Pi and ending at Pj , that is,

−→
PiPl1 ,

−→
Pl1Pl2 , · · · ,

−→
Plr−1Plr , with lr = j.

Definition 3.1.6. A directed graph is said to be strongly connected if for any ordered pair of

nodes Pi and Pj there exists a directed path connecting Pi to Pj .

The following simple result characterizes completely the irreducibility of a given

square matrix A via the strongly connectedness of its directed graph. For completeness

we prove it here, although a more detailed approach and further applications can be

found in [35].

Theorem 3.1.7 (cf. [35], Theorem 1.6). A square matrix A of order n is irreducible if and

only if its directed graph g(A) is strongly connected.

Proof: Suppose that A is reducible, then there exist Ã and a permutation matrix P such

that

A = PÃP t = P

 A11 A12

0 A22

P t,

where A11 is of order r and A22 is of order (n − r), for some 1 ≤ r < n. Set v1, . . . , vn

for the nodes of g(A) and ṽ1, . . . , ṽn for the nodes of g(Ã). In g(Ã) observe that there

does not exist a directed path from ṽi to ṽj if r < i ≤ n and 1 ≤ j ≤ r. Hence g(Ã)

is not strongly connected. As the directed graph of Ã is obtained from that of A just

by renumbering the nodes and this operation does not affect the connectedness of the

directed graph, it follows that g(A) is not strongly connected.

Conversely, suppose g(A) is not strongly connected. Then, there exists nonempty

sets of vertices S1 and S2 of g(A) such that no directed path from vi to vj exists if vi ∈ S2

and vj ∈ S1. Let |S1| = r and |S2| = n−r. Relabel the vertices of g(A) as ṽ1, . . . , ṽn where

ṽ1, . . . , ṽr ∈ S1 and ṽr+1, . . . , ṽn ∈ S2. Permute the matrix A in the same way to create
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Ã. Thus, the directed graph created from relabeling the vertices of g(A) is precisely

those of g(Ã). Since there are no directed paths in g(Ã) from the vertices in S2 to the

vertices in S1, it means that Ã must have a block of zeros with size (n − r) × r in the

low left corner. In other words, Ã is reducible. Being A and Ã similar by permutations,

it follows that A is reducible as well.

3.2 Controllability on Sl(n,C)

In [30] the authors improve the main theorem of [13], giving sufficient conditions for

controllability on connected, simple and complex Lie groups. In this section we deal

with control systems evolving on Sl(n,C) and under certain conditions we set neces-

sary and sufficient conditions for the controllability of bilinear control systems on this

group. The source of inspiration and the general lines for the proof follows the main

theorem in [8].

For the canonical basis of sl(n,C) as a C-vector space we take the set B formed by

the matrices Eij , i ̸= j, 1 ≤ i, j ≤ n, and Eii − E11, 1 < i ≤ n. Here, Eij stands for the

matrix which has 1 in the ij-entry and 0 elsewhere. Given A ∈ sl(n,C) we denote by
jAi the matrix which the only nonzero column is the j-th, and this column is exactly

the i-th column of A. In a similar way, jAi stands for the matrix having all lines zero,

except for the j-th line, with this line being precisely the i-th line of A.

It is easy to see that EijA = iAj , AEij =
jAi and [Eij, A] = iAj − jAi.

Definition 3.2.1 (cf. [13]). A matrix B ∈ sl(n,C) is said strongly regular if its eigenvalues

λ1, . . . , λn are all distinct and the real parts of the eigenvalues satisfy

Re(λp)− Re(λq) ̸= Re(λs)− Re(λt), ∀ p, q, s, t such that {p, q} ≠ {s, t}.

Through section B = diag(b1, b2, · · · , bn) will indicate a fixed strongly regular ele-

ment where bi ∈ C for i = 1, 2, . . . , n, and Re(bp) − Re(bq) ̸= Re(bs) − Re(bt), for all

p, q, s, t such that {p, q} ≠ {s, t}. We should ask the following additional hypotheses on

B:

Im(bi)− Im(bj) ̸= 0 whenever i ̸= j
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and

Re(b1) > Re(b2) > · · · > Re(bn).

Lemma 3.2.2. If B ∈ LS(Γ), ±Eij ∈ LS(Γ) and Ejm ∈ LS(Γ), i ̸= j, j ̸= m, i ̸= m, then

spanC(Eim) ⊂ LS(Γ).

Proof: We have that

exp(−tEij)Ejm exp(tEij) = Ejm − tEim ∈ LS(Γ), ∀t ∈ R,

and this implies that

lim
t→±∞

1

|t|
(Ejm − tEim) = ±Eim ∈ LS(Γ).

Now,

exp(tB)(±Eim) exp(−tB) = et(bi−bm)(±Eim) ∈ LS(Γ), ∀t ∈ R.

Choosing t ∈ R in way that et(bi−bm) ∈ R we see that spanR(Eim) ⊂ LS(Γ). Similarly,

taking t ∈ R such that et(bi−bm) is purely imaginary we get spanR(iEim). Putting alto-

gether we conclude that spanC(Eim) ⊂ LS(Γ).

As in the previous lemma, if A and ±Eij belong to LS(Γ), i ̸= j, then ±(jAi − iAj) ∈

LS(Γ). A simple calculation with the curve exp(−tEij)A exp(tEij), t ∈ R, shows this

fact.

Lemma 3.2.3. If A, ±B and ±Eij (with i ̸= j) are elements in LS(Γ) and if ckm (with k ̸= m)

is a nonzero and non-diagonal entry in jAi or in iAj , then spanC(Ekm) ⊂ LS(Γ).

Proof: According to the precedent paragraph we have ±(jAi − iAj) ∈ LS(Γ). Then, the

curves

± exp(tB)(jAi − iAj) exp(−tB)

are entirely contained (t ∈ R) in the Lie saturate LS(Γ). The km-entries of these curves

are given by

±(jAi − iAj)kme
(bk−bm)t,
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where (jAi − iAj)km indicates the km-entry of the matrix jAi − iAj . Let k0m0 be the

index corresponding to the maximum of the differences Re(bk)−Re(bm) such that (jAi−

iAj)km ̸= 0. We can choose a sequence tN → ∞ in way that etN (bk0−bm0 ) ∈ R. Moreover,

taking tN ∈ R such that

cos(tN(Im(bk0)− Im(bm0))) = 1 and sin(tN(Im(bk0)− Im(bm0))) = 0,

we get

etN (bk0−bm0 ) = etN (Re(bk0 )−Re(bm0 )) ∈ R.

This choice implies that

± 1

etN (bk0−bm0 )
exp(tB)(jAi − iAj) exp(−tB) ∈ LS(Γ), ∀N ∈ N.

The nonzero entries of these two curves have the form

±ckm
etN (bk−bm)

etN (bk0−bm0 )
= ±ckm

etN (bk−bm)

etN (Re(bk0 )−Re(bm0 ))
.

Taking limits as tN → ∞ all these entries converges to 0, except that one corresponding

to the k0m0-entry, which is exactly ck0m0 . In other words,

lim
tN→∞

1

etN (bk0−bm0 )
exp(tB)(jAi − iAj) exp(−tB) = ck0m0Ek0m0 ∈ LS(Γ).

This implies that exp(tB)(ck0m0Ek0m0) exp(−tB) ∈ LS(Γ), for all t ∈ R. But

exp(tB)(ck0m0Ek0m0) exp(−tB) = et(bk0−bm0 )ck0m0Ek0m0 .

We can make four different choices of t ∈ R to get

cos(tN(Im(bk0)− Im(bm0))) = ±1 and i sin(tN(Im(bk0)− Im(bm0))) = ±i,

and this shows that spanR(ck0m0Ek0m0) ⊂ LS(Γ) and spanR(ick0m0Ek0m0) ⊂ LS(Γ), that

is,

spanC(ck0m0Ek0m0) = spanC(Ek0m0) ⊂ LS(Γ).

We can then consider the element (jAi − iAj) − ck0m0Ek0m0 and iterate the preceding
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procedure. At this point the maximum over the numbers Re(bk) − Re(bm) will have

decreased and this iteration will successively show that all the needed inclusions are

true.

We can now state a controllability theorem on sl(n,C).

Theorem 3.2.4. Let B = diag(b1, b2, · · · , bn) ∈ sl(n,C) a strongly regular element satisfying

Re(b1) > Re(b2) > · · · > Re(bn) and Im(bi)− Im(bj) ̸= 0 whenever i ̸= j.

If A ∈ sl(n,C) is such that a1n ̸= 0 ̸= an1, then the invariant control system Γ = A + uB is

controllable on Sl(n,C) if and only if A is irreducible.

Proof: At first we prove that the irreducibility of A is a necessary condition for con-

trollability. To see this we suppose A reducible and show that the system Γ is not

controllable. If the matrix A is reducible, then there exists a permutation matrix P such

that

PAP t =

 A1,1 A1,2

0 A2,2

 . (3.1)

Being B a diagonal matrix, it is easy to see that any permutation matrix leaves B in

the diagonal form (by conjugation as above), and this means that both A and B are

conjugate to matrices of the form (3.1). The set formed by the matrices having the form

(3.1) is a Lie subalgebra of sl(n,C). Consequently, Lie(Γ) ⊊ sl(n,C) and this implies

that LS(Γ) ̸= sl(n,C).

Now we prove the sufficiency, in other words, we show that the system Γ under the

conditions imposed on A and B is controllable.

In this way, our first aim is to show that ±E1n ∈ LS(Γ) and ±En1 ∈ LS(Γ).

As LS(Γ) is a closed convex positive cone, we have exp(t B)A exp(t B) ∈ LS(Γ) for

all t ∈ R. Taking (tN)N∈N ⊂ R a sequence such that e±tN (bn−b1) ∈ R, simple calculations

together with limits show us that

etN (bn−b1) ∈ R exp(t B)A exp(t B) ∈ LS(Γ) −→ a1nEn1 = An1 ∈ LS(Γ)

and

e−tN (bn−b1) ∈ R exp(t B)A exp(t B) ∈ LS(Γ) −→ a1nE1n = A1n ∈ LS(Γ).
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Knowing that A1n, An1 ∈ LS(Γ), we have

exp(t ad(B))A1n ∈ LS(Γ) and exp(t ad(B))An1 ∈ LS(Γ),

for all t ∈ R. But it is easy to see that

exp(t ad(B))A1n = exp(t B)A1n exp(−t B) = et(b1−bn)A1n

and

exp(t ad(B))An1 = exp(t B)An1 exp(−t B) = et(bn−b1)An1.

Calling M = Im(b1)− Im(bn) and letting t = π
M

we have

et(b1−bn) = e
π(b1−bn)

M = e
π

Re(b1−bn)
Im(b1−bn) (cos(π) + i sin(π)) = −e

π
Re(b1−bn)
Im(b1−bn)

and

et(bn−b1) = e
π(bn−b1)

M = e
π

Re(bn−b1)
Im(bn−b1) (cos(π) + i sin(π)) = −e

π
Re(bn−b1)
Im(bn−b1) .

This choice together with t = 0 shows us that spanR{A1n, An1} ⊂ LS(Γ), but this is

equivalent to

spanR{E1n, En1} ⊂ LS(Γ).

In the same fashion, choosing t ∈ R such that cos(t) = 0 and sin(t) = ±1 we get

spanR{iA1n, iAn1} ⊂ LS(Γ). And these considerations allow us to conclude that

spanC{E1n} ⊂ LS(Γ) and spanC{En1} ⊂ LS(Γ).

We proceed to prove that LS(Γ) = sl(n,C). Being A irreducible, Theorem 3.1.7 says us

that for any m ̸= n exists a directed path on the graph of A from the node Pn to the

node Pm. We can choose this path free of loops, that is, a path

−→
PnPi1 ,

−→
Pi1Pi2 , · · · ,

−→
PipPm .

without repetition of index. In particular,

Pik ̸= Pn, Pik ̸= Pm ∀k = 1, 2, . . . , p.
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Further, we are interested in the case which this path does not pass through P1. The

only two obvious possibilities are:

• This path in fact does not pass through P1 or

• Pik = P1 for some k.

If the second case occurs, taking the greatest k such that Pik = P1, we get the path

−→
P1Pik+1

,
−→

Pik+1
Pik+2

, · · · ,
−→

PipPm,

such that Pik+h
̸= P1, Pik+h

̸= Pm and Pik+h
̸= Pn for every h. In every case we get either

1. a path from the node Pn to the node Pm not passing through P1

or

2. a path from the node P1 to the node Pm not passing through Pn.

Note that the former situation can be obtained from the latter just by interchanging

1 and n, and this would not affect the generality of our reasoning. Therefore we can

assume that the path is from Pn to Pm not passing through P1, and the arcs of this path

correspond respectively to ani1 , ai1i2 , . . . , aipm (nonzero entries of A).

As ±E1n ∈ LS(Γ) and ±(ani1E1i1)1i1 is a nonzero and non diagonal (because ik ̸= 1)

entry in ±1An, an application of Lemma 3.2.3 shows that spanC{E1i1} ⊂ LS(Γ). A

simple iteration of this reasoning shows also that

spanC{E1i2 , . . . , E1m} ⊂ LS(Γ).

Being ±En1 elements of LS(Γ), as E1m ∈ LS(Γ) the Lemma 3.2.2 shows us that

spanC{Enm} ⊂ LS(Γ).

We now take a path from the node Pm to the node Pn with corresponding nonzero

and non diagonal entries amj1 , aj1j2 , . . . , ajpn. We make a procedure like the previous

one but in the opposite sense, that is, starting by the last arc on the path, that corre-

sponds to the entry ajpn(Ejp1)jp1 of 1An we conclude that spanC{Ejp1} ⊂ LS(Γ). Then

we follow with the iterations until the first arc on the path. At this point we have that
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amj1(Em1)m1 is a nonzero and nondiagonal entry on 1Aj1 , thus Lemma 3.2.3 implies that

spanC{Em1} ⊂ LS(Γ).

Since spanC{Em1} ⊂ LS(Γ) and spanC{E1n} ⊂ LS(Γ) Lemma 3.2.2 ensures that

spanC{Emn} ⊂ LS(Γ).

Let k ̸= 1, n,m. Applying the same reasoning as before we get

spanC{Ekm} ⊂ LS(Γ) and spanC{Emk} ⊂ LS(Γ).

This means that spanC{Ekm} ⊂ LS(Γ) for all pairs of indices (k,m) with k ̸= m, but

these subspaces generate sl(n,C) as a Lie algebra. Consequently LS(Γ) = sl(n,C) and

this implies that Γ is controllable on Sl(n,C).

3.3 Controllability on Sl(n,H)

The Lie algebra sl(2,H) is the real simple Lie algebra formed by matrices having trace

with zero real part and it complexifies to a complex Lie algebra isomorphic to sl(4,C).

It is a fifteen dimensional Lie algebra whose basis vectors will be denoted as follows.

Set Eij to be the matrix whose the (k,m) entry is given by

(Eij)km = δik · δjm, where δij =

 1 if i = j,

0 if i ̸= j,

and let Eq
ij denote the 2× 2 matrix whose the (k,m) entry is given by

(Eq
ij)km = q · δik · δjm, where δij =

 1 if i = j,

0 if i ̸= j.

Then, the set B formed by the matrices

E22 − E11, E12, E21, E
i
12, E

j
12, E

k
12, E

i
21, E

j
21, E

k
21, E

i
11, E

j
11, E

k
11, E

i
22, E

j
22, E

k
22

will be considered as the canonical basis of sl(2,H) as a vector space over R.

For sake of convenience we reproduce here the Lemma 2.3.4 and its Corollary 2.3.6

that were proved in Chapter 1.
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Lemma 3.3.1. Consider the torus T2 acting on the quaternions H by

ϕ ((t, s), q) = eitqe−is.

Write q = a + b, with a = x1 + x2i ∈ H{1,i} and b = x3j + x4k ∈ H{j,k}. Suppose that

q /∈ H{1,i} ∪ H{j,k}, that is, a ̸= 0 ̸= b. Then, the orbit T2q is a 2-dimensional torus and H is

the convex cone generated by T2q.

Corollary 3.3.2. Consider c1, c2 ∈ R with c1c2 ̸= 0 and c1/c2 irrational. Take q ∈ H with

q /∈ H{1,i} ∪H{j,k}. Then H is the closed convex cone generated by the curve eitc1qe−itc2 .

With this results and notations in mind we are able to state a controllability theorem

that slightly improves Theorem 2.3.1 for the Lie group Sl(2,H), in the sense that under

certain conditions we get a necessary and sufficient condition for controllability.

Theorem 3.3.3. Let A,B ∈ sl(2,H) be matrices such that B = diag{a+ ib1,−a+ ib2} with

b1b2 ̸= 0 and b1/b2 irrational. Denote the (1, 2) and (2, 1) entries of the matrix A by p ∈ H and

q ∈ H, respectively. Let H1,i and Hj,k be the (real) subspaces of H spanned by {1, i} and {j,k},

respectively, and suppose that p and q do not belong to H1,i ∪ Hj,k. Then the right invariant

control system with unrestricted controls Γ = A+RB is controllable on Sl(2,H) if and only if

p and q are both nonzero quaternions.

Proof: We start by proving the necessary condition. Since we are dealing with matrices

of order 2, the condition p ̸= 0 ̸= q is equivalent to A being an irreducible matrix. So, if

we suppose A reducible it would exist a permutation matrix P such that

PAP T =

 a11 a12

0 a22

 . (3.2)

As B is diagonal, it is easy to see that any permutation matrix leaves B in the diagonal

form (by conjugation as above), and this means that both A and B are conjugate to

matrices of the form (3.2). The set formed by the matrices having the form (3.2) is a Lie

subalgebra of sl(2,H). Consequently, Lie(Γ) ⊊ sl(2,H) and this implies that LS(Γ) ̸=

sl(2,H).

By the other hand, to prove that Γ is controllable it suffices to show that LS(Γ) =

sl(2,H). First of all, since LS(Γ) is a closed convex positive cone, then A + tB ∈ LS(Γ)
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implies that ±B ∈ LS(Γ) as a consequence of the following convergences

A+ tB

|t|
−→ ±B as t → ±∞.

Thus, A,±B ∈ LS(Γ) and we can apply Proposition 3.1.2 item (4) with X = B and

Y = A to conclude that exp(t adB)A ∈ LS(Γ) for all t ∈ R.

Direct calculations shows us that

e−2atexp(t adB)A =

 e−2ats eit(b1−b2)p

e−4ateit(b1−b2)q e−2atr

 , where A =

 s p

q r


and the quaternions p and q are as in the statement of the theorem. It is clear that when

t → ∞ all the entries of this matrix converges to 0 except for the (1, 2)−entry.

Choosing a sequence tk → ∞ such that eitk(b1−b2) → 1 we conclude that

X =

 0 p

0 0

 ∈ LS(Γ).

Similarly, we have

e2atexp(t adB)A =

 e2ats e4ateit(b1−b2)p

eit(b1−b2)q e2atr

 ∈ LS(Γ) ∀t ∈ R

and taking limits as t → −∞ we get

Y =

 0 0

q 0

 ∈ LS(Γ).

Again by the item (4) of Proposition 3.1.2 we have that

e−2atexp(tB)Xexp(tB) =

 0 eitb1pe−itb2

0 0

 ∈ LS(Γ)

and

e2atexp(tB)Y exp(tB) =

 0 0

eitb2qe−itb1 0

 ∈ LS(Γ).
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Applying Corollary 3.3.2 to these curves we conclude that spanH{X} and spanH{Y }

are contained in LS(Γ). In other words, this means that

spanR{E12, E21, E
i
12, E

j
12, E

k
12, E

i
21, E

j
21, E

k
21} ⊂ LS(Γ).

Now, by the item (5) of Proposition 3.1.2 we have that

±[E21, E12] = ±E22 − E11 ∈ LS(Γ).

Also,

±[Ej
12, E

k
21] = ±

 i 0

0 i

 ∈ LS(Γ) and ± [E21, E
k
12] = ±

 −i 0

0 i

 ∈ LS(Γ).

Adding these terms together will give us

±Ei
11 ∈ LS(Γ) and ± Ei

22 ∈ LS(Γ).

And we go on with similar computations:

±[Ei
12, E

k
21] = ±

 −j 0

0 −j

 ∈ LS(Γ) and ± [E21, E
j
12] = ±

 −j 0

0 j

 ∈ LS(Γ)

implies that

±Ej
11 ∈ LS(Γ) and ± Ej

22 ∈ LS(Γ).

Finally,

±[Ei
12, E

j
21] = ±

 k 0

0 k

 ∈ LS(Γ) and ± [E21, E
k
12] = ±

 −k 0

0 k

 ∈ LS(Γ),

what leads us to conclude that

±Ek
11 ∈ LS(Γ) and ± Ek

22 ∈ LS(Γ).

Consequently, ±B ⊂ LS(Γ) proving LS(Γ) = sl(2,H).
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Using Theorem 3.1.3 we also can state a similar theorem about the controllability

of Γ = A + RB, for specific A,B ∈ sl(n,H). The reader should note that it is a weaker

version of Theorem 2.3.1, because even if the Lie algebra rank condition is not asked,

it follows immediately from the equality LS(Γ) = sl(n,H). However, if we keep in

mind that the Lie algebra rank condition is usually hard to check even with the help of

computational devices, the following theorem turns out to be interesting on its own,

since all of its hypotheses can be quite readily verified.

Theorem 3.3.4. Let A,B ∈ sl(n,H) be matrices satisfying the following conditions

1. B = diag{α1 + iβ1, . . . , αn + iβn} with

i) α1 > α2 > · · · > αn−1 > αn;

ii) αi − αj ̸= αk − αm if (i, j) ̸= (k,m).

iii) βi ̸= 0 for i = 1, . . . , n;

iv) βi/βj /∈ Q if i ̸= j.

2. Denote by aij the entries of the matrix A. Let H1,i and Hj,k be the (real) subspaces of H

spanned by {1, i} and {j,k} respectively. Then

i) ai1, a1i /∈ H1,i ∪Hj,k for i = 2, . . . , n;

ii) ain, ani /∈ H1,i ∪Hj,k for i = 1, . . . , n− 1.

Under these conditions, the bilinear control system Γ = A+ RB is controllable.

Proof: As A+ uB ∈ c (S) for all u ∈ R, it is immediate that A ∈ LS(Γ) and if u ̸= 0 then

1

|u|
A+

u

|u|
B =

1

|u|
(A+ uB) ∈ LS(Γ).

Taking limits as u → ±∞ we see that ±B ∈ LS(Γ). It follows that etad(B)A ∈ LS(Γ) and

hence

e−t(α1−αn)etad(B)A ∈ LS(Γ)

for all t ∈ R where α1, . . . , αn are the real parts of the entries of B. Now by assumption

α1 > α2 > · · · > αn so that as t → +∞ the entries e−t(α1−αn)etad(B)A converge to 0

except for the (1, n)-entry. The (1, n)-entry of e−t(α1−αn)etad(B)A is eit(β1−βn)p where p is
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as in the statement of the theorem and β1, . . . , βn are the imaginary parts of the entries

of B. Choosing a sequence tk → +∞ such that eit(β1−βn) → 1 we conclude that

X =


0 · · · p
... . . . ...

0 · · · 0

 ∈ LS(Γ).

Using again the properties of the Lie saturate we have that for all t, s ∈ R,

e−t(α1−αn)etad(B)X =


0 · · · eitβ1pe−itβn

... . . . ...

0 · · · 0

 ∈ LS(Γ).

Applying Corollary 3.3.2 to this curve it follows that the subspace spanH{X} is con-

tained in LS(Γ). By taking limits as t → −∞ of e−t(α1−αn)etad(B)A it follows that

Y =


0 · · · 0
... . . . ...

q · · · 0

 ∈ LS(Γ),

and applying again the Corollary 3.3.2 we conclude that spanH{Y } ⊂ LS(Γ).

Claim 1. ±(nA1 − 1An),±(1An − nA1) ∈ LS(Γ).

In fact, since spanH{X} ⊂ LS(Γ), we have that ±E1n ∈ LS(Γ), this means that

α(t) = exp(−tE1n)A exp(tE1n) ∈ LS(Γ), ∀t ∈ R.

But

α(t) = (Id− tE1n)A(Id+ tE1n)

= A+ tAE1n − tE1nA− t2E1nAE1n

= A+ t(nA1)− t(1An)− t2annE1n.

Again, as spanH{X} ⊂ LS(Γ), we have that β(t) := α(t)+t2annE1n ∈ LS(Γ) for all t ∈ R.
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Thus
1

|t|
β(t) =

1

|t|
A+

t

|t|
(nA1 − 1An) ∈ LS(Γ), ∀t ∈ R.

By taking limits as t → ±∞ we get that ±(nA1 − 1An) ∈ LS(Γ). The same proof as

above with En1 rather than E1n shows us that ±(1An − nA1) ∈ LS(Γ).

Claim 2. spanH{E1i, Eni, Ei1, Ein} ⊂ LS(Γ) for i = 2, . . . , n− 1.

In fact, we already know that spanH{E1n} ⊂ LS(Γ). So, let us consider the matrix

C := (nA1 − 1An)− (a11 − ann)E1n which has null (1, n)-entry. Then the curves

γ1(t) = ± exp(tadB)C (t ∈ R),

are contained in LS(Γ). Further, the (k,m)-entries of these curves are given by

γ1(t)km = ±et(αk−αm)eit(βk−βm)ckm.

Let (k0,m0) be a non diagonal entry such that αk0 −αm0 is the maximum (or minimum)

of the differences αk − αm such that ckm ̸= 0. Thus, as t → ∞ (−∞), all the entries

of e−t(αk0
−αm0 )γ(t) goes to 0 but the (k0,m0)-entry, which is given by eit(βk0

−βm0 )ck0m0 .

Taking a sequence tl → ∞ such that eitl(βk0
−βm0 ) → 1 we obtain that ck0m0Ek0m0 ∈ LS(Γ).

Recalling that ck0m0 is one of that terms listed in the condition 2 of the theorem, we can

apply Corollary 3.3.2 and conclude that spanH{ck0m0Ek0m0} ⊂ LS(Γ). That is,

spanH{Ek0m0} ⊂ LS(Γ).

Now, consider the matrix C1 := C − ck0m0Ek0m0 . We can iterate the reasoning just

made until getting

spanH{E12, E13, . . . , E1(n−1), E2n, E3n, . . . , E(n−1)n} ⊂ LS(Γ).

In the same fashion, we define the matrix D = (1An− nA1)− (ann− a11) and the curves

γ2(t) = ± exp(tadB)D (t ∈ R),
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and proceed in a similar way as before to conclude that

spanH{E21, E31, . . . , E(n−1)1, En2, En3, . . . , En(n−1)} ⊂ LS(Γ).

We turn now our attention to the diagonal matrices. Direct computations shows us

that

±[E1i, Ei1] = ±(E11 − Eii) ∈ LS(Γ), i = 2, 3, . . . , n.

We also have that

±[Ej
1i, E

k
i1] = ±(Ei

11 + Ei
ii) ∈ LS(Γ) i = 1, 2, . . . , n,

and

±[Ei
1i, Ei1] = ±(Ei

11 − Ei
ii) ∈ LS(Γ) i = 1, 2, . . . , n,

which implies that ±Ei
ii ∈ LS(Γ) for i = 1, 2, . . . , n. Interchanging the roles of i, j and k

in the above calculations we get

±Ei
ii, ±Ej

ii, ±Ek
ii ∈ LS(Γ), i = 1, 2, . . . , n.

Finally, we can prove that the remaining matrices are in LS(Γ) by the following rela-

tions. For i, j ̸= 1, i, j ̸= n and i ̸= j,

±[Ei1, E1j] = ±Eij,

±[Ei1, E
i
1j] = ±Ei

ij, ±[Ei1, E
j
1j] = ±Ej

ij, ±[Ei1, E
k
1j] = ±Ek

ij.

Consequently, LS(Γ) = sl(n,H) proving that the bilinear control system Γ is control-

lable on Sl(n,H). This concludes the proof of Theorem 3.3.4
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3.4 Application to semidirect products

Let g and h be Lie algebras and ρ a representation of g on h such that ρ(X) ∈ Derh for

all X ∈ g. The semidirect product of g and h is defined to be g × h endowed with the

Lie brackets

[(X1, Y1), (X2, Y2)] = ([X1, X2], ρ(X1)Y2 − ρ(X2)Y1 + [Y1, Y2]) .

The Lie algebra g×h decomposes as the direct sum of the ideals g×0 and 0×h that are

isomorphic to g and h, respectively. A detailed construction of the semidirect product

can be found in [28].

Theorem 3.1.3 tells us that we can decide about the controllability of a right in-

variant control system Γ just by checking a condition at the Lie algebra level. In such

a way, following the technique introduced by Gauthier and Bornard in [8], based on

the seminal papers of Jurdjevic and Kupka [13] and [12], we get conditions for con-

trollability of right invariant control systems on the semidirect products Sl(2,R) ⋊ R2

and Sl(2,C) ⋊ C2. We also refer to [20] for a different approach of controllability on

Sl(2,R)⋊R2.

3.4.1 The case sl(2,R)⋊R2

The Lie algebra sl(2,R) represents canonically on R2 via matrix multiplication, that is,

ρ(X) : R2 → R2, ρ(X)v = X · v, X ∈ sl(2,R), v ∈ R2,

and clearly ρ(X) is a derivation for every X ∈ sl(2,R). Thus, we have the semidirect

product sl(2,R)⋊R2 with the Lie brackets

[(A1, v1), (A2, v2)] = ([A1, A2], A1v2 − A2v1). (3.3)

Given

A =

 a11 a12

a21 a22

 ∈ sl(2,R) and v =

 a1

a2

 ∈ R2,
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the pair (A, v) ∈ sl(2,R)⋊R2 can be written as the order 3 matrix in the block form

(A, v) =


a11 a12 a1

a21 a22 a2

0 0 0

 .

In this way, the Lie brackets (3.3) can be computed directly via the matrix commutator,

that is,

[(A1, v1), (A2, v2)] =

 [A1, A2] A1v2 − A2v1

0 0

 .

Since we are dealing with a low dimensional case, the notation for the basis ele-

ments can be shortened if we write E1 := (E22 − E11, 0), E2 := (E12, 0), E3 := (E21, 0),

E4 := (0, e1), and E5 := (0, e2). Thus we consider B = {E1, E2, E3, E4, E5} as the canoni-

cal basis for sl(2,R)⋊R2. The Lie brackets between these elements are easily computed

and are given by

[E1, E2] = −2E2, [E1, E3] = 2E3, [E1, E4] = −E4, [E1, E5] = E5,

[E2, E3] = −E1, [E2, E4] = 0, [E2, E5] = E4,

[E3, E4] = E5, [E3, E5] = 0, [E4, E5] = 0.

During this section and the next, and if there is no risk of confusion, intending to

clarify the notation we can write simply B to indicate the element (B, 0), or even write

A for (A,α). It will be specified at the beginning of each proof.

Keeping these considerations in mind, we have

Theorem 3.4.1. Consider in the Lie algebra sl(2,R) ⋊ R2 the right invariant control system

Γ = (A,α)x+ u(B, 0)x, u ∈ R, defined by (A,α) and (B, 0), such that

(A,α) =


−a a12 a1

a21 a a2

0 0 0

 and (B, 0) =


−b 0 0

0 b 0

0 0 0

 ,

with a, b > 0 and a12 · a21 < 0. Then, the system Γ is controllable on Sl(2,R)⋊R2.

Proof: Our aim is to show that LS(Γ) = sl(2,R)⋊R2. Let’s do that.
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First of all, it is easy to see that A := (A,α) ∈ LS(Γ) and ±B := ±(B, 0) ∈ LS(Γ),

and so does

exp(t ad(B))A = exp(t B)A exp(−t B), ∀t ∈ R.

But

exp(t B)A exp(−t B) =



a

a12e
−2tb

a21e
2tb

a1e
−tb

a2e
tb


,

and since ±B = ±bE1, b > 0, we have ±E1 ∈ LS(Γ). Thus,

At =



0

a12e
−2tb

a21e
2tb

a1e
−tb

a2e
tb


∈ LS(Γ).

Multiplying At by e2tb and passing to the limit, we have that



0

a12

0

0

0


∈ LS(Γ).

Analogously, if we multiply At by e−2tb and take into limits, we get



0

0

a21

0

0


∈ LS(Γ).

Without loss of generality, suppose that a12 > 0 and a21 < 0. Hence the previous
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inclusions shows us that

E2 ∈ LS(Γ) and − E3 ∈ LS(Γ).

Summing up, we have E2 − E3 ∈ LS(Γ). Now, this element generates a periodic 1-

parameter subgroup:

exp(t(E2 − E3)) =


cos(t) sin(t) 0

− sin(t) cos(t) 0

0 0 1

 ,

and this means that −(E2 − E3) ∈ LS(Γ). By combining these terms we get

−(E2 − E3) + E2 = E3 ∈ LS(Γ)

and

−(E2 − E3)− E3 = −E2 ∈ LS(Γ).

So ±E1,±E2,±E3 ∈ LS(Γ). Now, as A ∈ LS(Γ), we obtain a1E4 + a2E5 ∈ LS(Γ). This

implies the following inclusions hold for all t ∈ R:

exp (tE2)(a1E4 + a2E5) exp (−tE2) ∈ LS(Γ)

and

exp (tE3)(a1E4 + a2E5) exp (−tE3) ∈ LS(Γ).

A direct computation shows us that

exp (tE2)(a1E4 + a2E5) exp (−tE2) =


0 0 a1 + a2t

0 0 a2

0 0 0


and

exp (tE3)(a1E4 + a2E5) exp (−tE3) =


0 0 a1

0 0 a1t+ a2

0 0 0
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Choosing in the first equation t =
−2a1
a2

, we get

X =


0 0 −a1

0 0 a2

0 0 0

 ∈ LS(Γ),

and if we choose in the second equation t =
−2a2
a1

, we get that

−X =


0 0 a1

0 0 −a2

0 0 0

 ∈ LS(Γ).

This allows us to compute Lie brackets inside the Lie saturate using these elements. So

we have

[E2, X] = [E2,−a1E4 + a2E5] = −a1[E2, E4] + a2[E2, E5] = a2E4,

[E2,−X] = [E2, a1E4 − a2E5] = a1[E2, E4]− a2[E2, E5] = −a2E4

and this implies that ±E4 ∈ LS(Γ). Finally,

[E3, X] = [E3,−a1E4 + a2E5] = −a1[E3, E4] + a2[E3, E5] = −a1E5,

[E3,−X] = [E3, a1E4 − a2E5] = a1[E3, E4]− a2[E3, E5] = a1E5,

which means that ±E5 ⊂ LS(Γ). Consequently, ±B ⊂ LS(Γ) and we conclude that the

invariant control system Γ is controllable on Sl(2,R).

Theorem 3.4.2. Consider in the Lie algebra sl(2,R)⋊R2 the elements (A,α) and (B, β) such

that

(A,α) =


−a a12 a1

a21 a a2

0 0 0

 e (B, β) =


−b 0 b1

0 b b2

0 0 0

 ,

with a, b > 0 and a12·a21 < 0. Assume also that ba1−ab1−a12b2 ̸= 0 and ba2−ab2+a21b1 ̸= 0.

Then, the control system Γ = {(A,α) + u(B, β) | u ∈ R} is controllable on Sl(2,R)⋊R2.
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Proof: As before, the proof will be accomplished as soon as we show that LS(Γ) =

sl(2,R)⋊R2. Without loss of generality, suppose that a12 > 0 and a21 < 0.

First of all, it is easy to see that A := (A,α) ∈ LS(Γ) and ±B := ±(B, β) ∈ LS(Γ).

Thus

exp(t ad(B))A = exp(t B)A exp(−t B), ∀t ∈ R.

But

exp(t B)A exp(−t B) =



a

a12e
−2tb

a21e
2tb

ab1
b
e−bt(ebt − 1)− a12b2

b
e−2bt(ebt − 1) + a1e

−bt

−ab2
b
(ebt − 1)− a21b1

b
ebt(ebt − 1) + a2e

bt


,

multiplying by
e2tb

a12
and passing to the limit, we have that

M =

[
0 1 0

b2
b

0

]t
= E2 +

b2
b
E4 ∈ LS(Γ)

Analogously, if we multiply by
−e−2tb

a21
and take into limits, we get

N =

[
0 0 −1 0

b1
b

]t
= −E3 +

b1
b
E5 ∈ LS(Γ).

Summing up, we have X = E2−E3+
b2
b
E4+

b1
b
E5 ∈ LS(Γ). Now, this element generates

a periodic 1-parameter subgroup:

exp (tX) =


cos(t) sin(t) −b1 cos(t) + b2 sin(t) + b1

− sin(t) cos(t) b2 cos(t) + b1 sin(t)− b2

0 0 1

 ,

and this means that −X ∈ LS(Γ). By combining these terms we get −X +M = −N ∈

LS(Γ) and −X +N = −M ∈ LS(Γ). Hence

±B,±M,±N ∈ LS(Γ).
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Now, as (A,α) ∈ LS(Γ), we obtain

b(A,α)− a(B, β) + ba21N − ba12M =


0 0 ba1 − ab1 − a12b2

0 0 ba2 − ab2 + a21b1

0 0 0

 ∈ LS(Γ).

Let x = ba1 − ab1 − a12b2 and y = ba2 − ab2 + a21b1. With this notation, we have that the

following inclusions hold for all t ∈ R:

exp (tM)(xE4 + yE5) exp (−tM) ∈ LS(Γ)

and

exp (tN)(xE4 + yE5) exp (−tN) ∈ LS(Γ).

A direct computation shows us that

exp (tM)(xE4 + yE5) exp (−tM) =


0 0 x+ ty

0 0 y

0 0 0


and

exp (tN)(xE4 + yE5) exp (−tN) =


0 0 x

0 0 y − xt

0 0 0

 .

Choosing in the first equation t =
−2x

y
, we get

Y =


0 0 −x

0 0 y

0 0 0

 ∈ LS(Γ),

and if we choose in the second equation t =
2y

x
, we get that

−Y =


0 0 x

0 0 −y

0 0 0

 ∈ LS(Γ).



3.4 Application to semidirect products 81

This allows us to compute Lie brackets inside the Lie saturate using these elements. So

we have

±[M,Y ] = ±
[
E2 +

b2
b
E4,−xE4 + yE5

]
= ±y[E2, E5] = ±yE4

and this implies that ±E4 ∈ LS(Γ). And we have

±[M,N ] = ±
[
−E3 +

b1
b
E5,−xE4 + yE5

]
= ±x[E3, E4] = ±xE5

which means that ±E5 ⊂ LS(Γ). Also,

±1

b
(B, β)∓ b1

b
E4 ∓

b2
b
E5 = ±E1 ∈ LS(Γ),

±M ∓ b2
b
E4 = ±E2 ∈ LS(Γ)

and

±N ∓ b1
b
E5 = ±E3 ∈ LS(Γ).

That is

B = {±E1,±E2,±E3,±E4,±E5} ⊂ LS(Γ)

which implies that LS(Γ) = sl(2,R)⋊R2, proving that the invariant control system Γ is

controllable.

3.4.2 The case sl(2,C)⋊C2

Now we consider the Lie group Sl(2,C)⋊C2, whose Lie algebra can be described as

sl(2,C)⋊C2 =

(A, z) :=

 A z

0 0

 ∣∣∣∣∣∣ A ∈ sl(2,C), z ∈ C2

 ⊂ sl(3,C)

endowed with the Lie brackets

[(A1, z1), (A2, z2)] =

 [A1, A2] A1z2 − A2z1

0 0

 .

As before, the set B = {E1, E2, E3, E4, E5} will denote the canonical basis for the Lie
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algebra sl(2,C)⋊C2.

Theorem 3.4.3. Consider on the Lie group Sl(2,C) ⋊ C2 the right invariant control system

Γ = {(A,α) + u(B, 0) |u ∈ R}, where

(A,α) =


a a12 a1

a21 −a a2

0 0 0

 and (B, 0) =


b 0 0

0 −b 0

0 0 0

 ,

with both a12 and a21 nonzero complex numbers and Im(b) ̸= 0. Then, Γ is controllable on

Sl(2,C)⋊C2.

Proof: Write B to indicate (B, 0). As (A,α) + uB ∈ LS(Γ) for all u ∈ R, we obtain

lim
u→±∞

1

|u|
((A,α) + uB) = ±B ∈ LS(Γ),

since LS(Γ) is a positive closed convex cone in sl(2,C) ⋊ C2. As a consequence we get

exp(t ad(B))(A,α) ∈ LS(Γ) for all t ∈ R. By the formula

exp(t ad(B))(A,α) = exp(t B)(A,α) exp(−t B)

we have

exp(t B) =


et b 0 0

0 e−t b 0

0 0 1

 and exp(−t B) =


e−t b 0 0

0 et b 0

0 0 1

 ,

hence

exp(t B)(A,α) exp(−t B) =


a a12e

2bt a1e
bt

a21e
−2bt −a a2e

−bt

0 0 0

 .

Rewriting this element as a column vector in the basis B, we get

exp(t B)(A,α) exp(−t B) =
[
a a12e

2bt a21e
−2bt a1e

bt a2e
−bt

]t
.

Being b ∈ C with Im(b) ̸= 0, we can take a sequence tk → ∞ such that e2tk b ∈ R.
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Precisely, choose tk =
kπ

Im(b)
, k ∈ Z. So,

e2tkb = e2tkRe(b) (cos (2tkIm(b)) + i sin (2tkIm(b)))

= e2kπ
Re(b)
Im(b) (cos (2kπ) + i sin (2kπ))

= e2kπ
Re(b)
Im(b) ∈ R, ∀k ∈ N.

As e2kπ
Re(b)
Im(b) , k ∈ Z, is a positive real number, we get that

e2kπ
Re(b)
Im(b) exp(tk B)(A,α) exp(−tk B) ∈ LS(Γ), ∀k ∈ Z.

Calling m = kRe(b)
Im(b)

and taking into limits we get

lim
m→∞

e−2πm exp(tk B)(A,α) exp(−tk B) =



0

a12

0

0

0


=: A1 ∈ LS(Γ).

Also,

lim
m→−∞

e2πm exp(tk B)(A,α) exp(−tk B) =



0

0

a21

0

0


=: A2 ∈ LS(Γ).

Now, as A1, A2 ∈ LS(Γ), we have

exp(t ad(B))A1 ∈ LS(Γ) and exp(t ad(B))A2 ∈ LS(Γ),

for all t ∈ R. But it is easy to see that

exp(t ad(B))A1 = exp(t B)A1 exp(−t B) = e2btA1

and

exp(t ad(B))A2 = exp(t B)A2 exp(−t B) = e−2btA2.
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Choosing t = π
2Im(b)

we have

e2b t = e
πb

Im(b) = eπ
Re(b)
Im(b) (cos(π) + i sin(π)) = −eπ

Re(b)
Im(b)

and

e−2b t = e
−πb
Im(b) = e−π

Re(b)
Im(b) (cos (−π) + i sin (−π)) = −e−π

Re(b)
Im(b) .

This choice together with t = 0 shows us that spanR{A1} ⊂ LS(Γ) and spanR{A2} ⊂

LS(Γ), since LS(Γ) is a positive cone.

In the same fashion, choosing t ∈ R such that cos(t) = 0 and sin(t) = ±1 we get

spanR{iA1} ⊂ LS(Γ) and spanR{iA2} ⊂ LS(Γ). And these considerations allow us to

conclude that

spanC{E2} ⊂ LS(Γ) and spanC{E3} ⊂ LS(Γ).

Computing the Lie brackets between the basis elements E2 and E3 we get

±[E2, E3] = ∓E1 ∈ LS(Γ) and ± [iE2, E3] = ∓iE1 ∈ LS(Γ),

which means that

spanC{E1} ⊂ LS(Γ).

Now, since A ∈ LS(Γ) and spanC{E1, E2, E3} ⊂ LS(Γ) we obtain

a1E4 + a2E5 ∈ LS(Γ),

and this yields

exp(t ad(B))(a1E4 + a2E5) ∈ LS(Γ), ∀t ∈ R.

An easy calculation shows that

exp(t B)(a1E4 + a2E5) exp(−t B) =


0 0 a1e

bt

0 0 a2e
−bt

0 0 0

 .

Choosing a sequence (tk)k∈Z ⊂ R such that cos(tkIm(b)) = 1 and sin(tkIm(b)) = 0, we
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get e±b t ∈ R in such way that

lim
tkRe(b)→∞

e−btk exp(tk B)(a1E4 + a2E5) exp(−tk B) = a1E4 ∈ LS(Γ)

and

lim
tkRe(b)→−∞

ebtk exp(tk B)(a1E4 + a2E5) exp(−tk B) = a2E5 ∈ LS(Γ).

Again, we have

exp(t ad(B))(a1E4) = eb ta1E4 ∈ LS(Γ),

exp(t ad(B))(a2E5) = e−b ta2E5 ∈ LS(Γ).

Suitable choices of t ∈ R shows that

±a1E4 ∈ LS(Γ), ±ia1E4 ∈ LS(Γ),

±a2E5 ∈ LS(Γ) and ± ia2E5 ∈ LS(Γ),

which is equivalent to say that

spanC{E4} ⊂ LS(Γ) and spanC{E5} ⊂ LS(Γ),

proving that LS(Γ) = sl(2,C)⋊C2, that is, Γ is controllable on Sl(2,C)⋊C2.



CHAPTER 4

INVARIANT CONTROL SETS FOR SOME

CONTROL SYSTEMS INDUCED BY so(1, 4)

ON S3

Now we explore invariant control sets for vector fields induced by SO(1, 4) on the

sphere S3. For symmetric elements, the vector fields given by the infinitesimal action

of so(1, 4) on S3 are gradient vector fields of height functions, and elements in the com-

pact component so(4) give rise to vector fields defined by right and left multiplication

by imaginary quaternions.

We provide a characterization for the invariant control sets on S3 for control sys-

tems with 1 ∈ H as a drift and control vector fields corresponding to pure quaternions.

Such control sets appear as spherical domes in some cases, while in others, they are

described as geodesically convex closures of the set of attractor points for the vector

fields corresponding to the control system.

4.1 General Theorem

A subset C of a differentiable manifold M is said to be geodesically convex if the min-

imal geodesic segment joining p, q ∈ C is contained in C. We define also the geodesic

convex hull of a subset as the smaller geodesically convex subset C ⊂ M containing it.

Let C∞(M) be the set of all complete C∞ vector fields on a differentiable manifold

M . Given X ∈ C∞(M), we say that a point a ∈ M is an attractor fixed point for X in

M if the vector field X vanishes in a and limt→∞Xt(x) = a for every initial state x ∈ M ,

where Xt denotes the flow corresponding to X . For simplicity we will refer to such
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points as just the attractors of X .

Theorem 4.1.1. Let M be a differentiable manifold with an affine connection ∇ and Γ ⊂

C∞(M) a family of vector fields on M such that every X ∈ Γ satisfies ∇XX = cXX , where

cX : M → R is a smooth function on M . Assume that every X ∈ Γ admits only one global

attractor a ∈ M and suppose also that a trajectory γ for X is minimal geodesic between all of

its points and the attractor a. If

E = {a ∈ M | a is attractor for some X ∈ Γ}

is closed and geodesically convex, then E is the invariant control set for Γ.

Proof: The condition ∇XX = cXX on the vector fields of the system tells us that the

trajectories for the vector fields X ∈ Γ follow the geodesics on M , and in this case we

call X a geodesic vector field.

Now, let D be the invariant control set for Γ. We know that

D =
⋂
x∈M

cl(SΓ · x),

where SΓ denotes the semigroup of the system Γ. Since every y ∈ E is an attractor

fixed point for some X ∈ Γ, we have y ∈ cl(SΓ · x), for every x ∈ M . In other words,

E ⊆ D. Being D a control set, if x ∈ D then x ∈ cl(SΓ · y), for every y ∈ D. In particular,

x ∈ cl(SΓ · y) for every y ∈ E (we just proved that E ⊆ D). Well, x ∈ cl(SΓ · y) implies

that we can choose a trajectory γ for the control system Γ with starting point at y and

endpoint xT arbitrarily close from x. Let us say that the very last path γT of γ joins

xT ′ ∈ E to xT and corresponds to X0 ∈ Γ with attractor fixed point x0. By the definition

of E we have that x0 ∈ E and γT is a minimal geodesic segment joining xT ′ to x0. Since

A is geodesically convex, we must have γT ⊂ E, that is xT ∈ E. That is, x ∈ clE, and

this proves the equality E = D. Hence E is the invariant control set for Γ.

The above theorem assumes the set of attractors E to be geodesically convex. How-

ever, there are examples where this convexity does not hold. In this work we present

some examples, which suggest that if this occurs then the convex hull of E can be a

good candidate for the invariant control set. Our first example will consider a control

system evolving on the projective space Pn−1 induced by the action of Sl(n,R).
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Example 4.1.2. Let

v0 =

 1√
n

w

 ∈ Rn with
1

n
+ |w|2 = 1

and

Bi =

 0 0

0 Xi

 ∈ sl(n,R), i = 1, . . . ,m = dim(so(n− 1)),

where each diagonal block Xi has order n−1 and {X1, . . . , Xm} is a basis for so(n−1). Setting

A = v0v
t
0− 1

n
Idn, we will describe the set of attractors E and the invariant control set C for the

control system

ẋ = Ax+ u1B1x+ · · ·+ umBmx, x ∈ Pn−1. (4.1)

Before anything else, note that (4.1) satisfies the Lie algebra rank condition. In fact, to verify

this let ad be the adjoint representation of

so(n− 1) =

 0 0

0 so(n− 1)


on s ⊂ sl(n,R), the subspace of symmetric matrices. The restriction of ad to the subspace

W =


 0 wt

w 0

 ;w ∈ Rn−1


of sl(n,R) is an irreducible representation of ad. In fact, if

B =

 0 0

0 X

 ∈ so(n− 1) and w̃ =

 0 wt

w 0


we have

[B, w̃] =

 0 (Xw)t

Xw 0

 .

Similarly, the restriction of ad to

s0 =


 0 0

0 S

 ; S traceless symmetric


is irreducible.
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Now, we can decompose A = v0v
t
0 − 1

n
Idn as

A =
1√
n

 0 wt

w 0

+

 0 0

0 wwt − 1
n
Idn−1

 =:
1√
n
w̃ + S0,

and since w ̸= 0 we obtain that the subspaces generated by

ad (so(n− 1))

(
1√
n
w̃

)
and ad (so(n− 1)) (S0)

are W and s0, respectively. Finally, the skew-symmetric matrices of the form

 0 −wt

w 0

 , w ∈ Rn−1,

are obtained as Lie brackets between suitable matrices 0 ut

u 0

 ∈ s0 and

 0 0

0 X

 ∈ so(n− 1),

proving that (4.1) satisfies LARC, and this implies that the invariant control set for this system

has nonempty interior.

Now we describe the system (4.1) in a more detailed way. For, let Gl(n,R) acting on the

projective space Pn−1 under g ∗ [x] := [gx], where g ∈ Gl(n,R) and [x] ∈ Pn−1 indicates the

straight line containing 0 and x ∈ Sn−1. We have that

g ∗ x =

[
gx

|gx|

]
,

and given any X ∈ gl(n,R) the corresponding infinitesimal action on Pn−1 is

X̃[x] =
d

dt

(
etX ∗ x

)∣∣
t=0

=
d

dt

(
etXx

|etXx|

)∣∣∣∣
t=0

= [Xx− ⟨Xx, x⟩x].

For instance, if X = diag(1, 0, . . . , 0) ∈ gl(n,R) and x = (x1, . . . , xn) ∈ Sn−1, then

Xx = (x1, 0, . . . , 0) is the projection of x along e1 = (1, 0, . . . , 0) and X̃[x] is given by the

orthogonal projection of Xx on the one dimensional subspace generated by x. We have that

X̃[e1] = 0 and if x belongs to the orthogonal complement of e1 we also have X̃[x] = 0. The

trajectories for X̃ follow the great circles and [e1] is the only attractor fixed point for X̃ while
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the points in the orthogonal complement of e1 are the repeller fixed points for X̃ .

In this way, if Γ ⊂ Pn−1 is a closed and geodesically convex set, for every [x] ∈ Γ corre-

sponds a vector field X̃x where Xx indicates the projection over the line generated by x in Rn. If

Γ̃ is the family of such vector fields, then the previous theorem tells us that its invariant control

system is exactly Γ.

Now, let s ⊂ sl(n,R) be the subspace of symmetric matrices, and consider the embedding

of the projective space Pn−1 in s which associates to each [v] ∈ Pn−1, |v| = 1, the symmetric

n× n trace free matrix V given by

V = vvt − 1

n
Idn.

Given [v], [w] ∈ Pn−1, with respect to the canonical inner product in s, we have

⟨V,W ⟩ = trVW

= tr

(
vvtwwt − 1

n
vvt − 1

n
wwt +

1

n2
Idn

)
= tr

(
⟨v, w⟩vwt − 1

n
vvt − 1

n
wwt +

1

n2
Idn

)

since tr(vvt) = |v| and tr(vwt) = ⟨v, w⟩, we get

⟨V,W ⟩ = ⟨v, w⟩2 − 1

n
− 1

n
+

n

n2
= ⟨v, w⟩2 − 1

n
.

For the symmetric matrix E0
11 = e1e

t
1 − 1

n
Idn, let C be the convex set in Pn−1 defined by

C =
{
[v] ∈ Pn−1 | ⟨V,E0

11⟩ ≥ 0
}
.

We have

C =

{
[v] ∈ Pn−1 | ⟨v, e1⟩2 −

1

n
≥ 0

}
=

{
[v] ∈ Pn−1 | ⟨v, e1⟩ ≥

1√
n

}
,

and if θ is the angle between v and e1, then C is the set of [v] ∈ Pn−1 such that cos(θ) ≥ 1/√n,

that is, the spherical dome in Pn−1 of the elements [v] whose v1 ≥ 1/√n, and C can be seen as

the intersection of an halfspace in s with Pn−1 (using the embedding previously defined).
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Returning to system (4.1), note that [v0] ∈ Pn−1 is the attractor fixed point for the vector

field on Pn−1 induced by A = v0v
t
0 − 1

n
Id. In fact, |v0| = 1 and

Av0 − ⟨Av0, v0⟩v0 =

(
v0v

t
0 −

1

n
Idn

)
v0 −

〈(
v0v

t
0 −

1

n
Idn

)
v0, v0

〉
v0

= v0v
t
0v0 −

1

n
v0 −

〈
v0v

t
0v0 −

1

n
v0, v0

〉
v0

= |v0|v0 −
1

n
v0 −

(
|v0|3 −

1

n
|v0|2

)
v0

= 0

Also, the spherical dome C is invariant under each Bi, since

etBi =

 1 0

0 etXi


and 〈

etBiv, etBie1
〉
=
〈
etBiv, e1

〉
≥ 1√

n
,

for every v ∈ Rn such that ⟨v, e1⟩ ≥ 1/√n.

Being {X1, . . . , Xm} a basis for so(n − 1), choosing adequate controls we see that the at-

tractors for the vector fields induced by A+ u1B1 + · · ·+ umBm in Pn−1 just rotate around the

boundary of C, meaning that

E =

{
[v] ∈ Pn−1 | ⟨v, e1⟩ =

1√
n

}

is fulfilled with attractors for system (4.1), that is, C is invariant under (4.1), and hence the

invariant control set for this system must be contained in C. Furthermore, if O+(x) stands for

the positive orbit of x ∈ Pn−1, then for every y ∈ E we have

y ∈
⋂

x∈Pn−1

clO+(X),

ensuring that C is the invariant control set for (4.1).
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4.2 Lie-theoretic structure of SO(1, 4)

The purpose of this section is to present the concepts and structures necessary to de-

scribe the control systems for which we will study the invariant control sets. As it is

difficult to find bibliographical references that deal with Lie theory in the special case

of SO(1, 4), then we will provide here the necessary theory of SO(1, 4) for the purpose

of this work, for example, the description of the Cartan decomposition, the flag mani-

fold and the vector fields on this manifold.

4.2.1 Cartan decomposition

The quadratic form with matrix

Ip,q =

 1p 0

0 −1q


gives rise to the indefinite special orthogonal Lie algebra of type (p, q). That is to

say, the Lie algebra so(p, q) consists of the order (p + q) real matrices that are skew-

symmetric with respect to Ip,q, that is,

so(p, q) = {X ∈ sl(p+ q,R) | Ip,qX +X tIp,q = 0}.

The skew-symmetry with respect to any other quadratic form equivalent to Ip,q defines

a Lie algebra isomorphic to so(p, q). We are interested in the Lie algebra so(1, 4), and in

this case the condition I1,4X +X tI1,4 = 0 implies that the matrix X (which is an order

5 matrix) must have the block form

X =

 0 β

βt γ

 , with γ = −γt, that is, γ ∈ so(4) = su(2)⊕ su(2).

The corresponding compact real form in this case is the Lie algebra so(5) and the asso-

ciate conjugation in so(5,C) is θ(X) = −X t (note that it is an involutive automorphism

for this Lie algebra). The bilinear form Bθ in so(1, 4) given by Bθ(X, Y ) = −⟨X, θY ⟩

is an inner product in so(1, 4), as follows from [26] (Lemma 12.21). This implies that



4.2 Lie-theoretic structure of SO(1, 4) 93

so(1, 4) decomposes as the direct sum of the eigenspaces

V1 = {X ∈ so(1, 4) | θ(X) = X} and V−1 = {X ∈ so(1, 4) | θ(X) = −X}.

Setting k = V1 and s = V−1, then so(1, 4) = k ⊕ s is a Cartan decomposition. Explicitly,

we have

k =


 0 0

0 γ

 ∈ so(1, 4)

∣∣∣∣∣∣ γ ∈ so(4)

 = so(4)

and

s =


 0 β

βt 0

 ∈ so(1, 4)

∣∣∣∣∣∣ β ∈ R4

 .

Also, u = k ⊕ is is a compact real form for so(5,C) (see [26] Proposition 12.27). It is

given by

u =


 0 iβ

iβt γ

∣∣∣∣∣∣ β ∈ R4, γ ∈ so(4)

 .

The application u → so(5) defined by

 0 iβ

iβt γ

 7→

 0 β

−βt γ


is a Lie isomorphism between u and so(5). A maximal abelian subalgebra a contained

in s is generated by the matrices

 0 β

βt 0

 , where β = [1, 0, 0, 0],

and thus so(1, 4) is a real rank 1 non-compact real form of so(5,C). When realizing

so(1, 4) by the quadratic form given by

J1,n =


−13 0 0

0 0 1

0 1 0
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we get a simpler way to compute the restricted roots with respect to a maximal abelian

subalgebra in s. In this realization X ∈ so(1, 4) if and only if X has the form


A B C

Ct α 0

Bt 0 −α

 , where A ∈ so(3).

A Cartan decomposition is given by the symmetric and the anti-symmetric matrices

of this type.

Precisely,

k =




A B −B

−Bt 0 0

Bt 0 0


∣∣∣∣∣∣∣∣∣ A ∈ so(3), Bt ∈ R3


and

s =




0 B B

Bt α 0

Bt 0 −α


∣∣∣∣∣∣∣∣∣ B

t ∈ R3, α ∈ R

 .

In this realization, a maximal abelian subalgebra contained in s is

a =




0 0 0

0 α 0

0 0 −α


∣∣∣∣∣∣∣∣∣ α ∈ R

 .

And the restricted roots are the functionals ±λ : a → R, λ(H) = α, where H =

diag(0, α,−α) ∈ a. The only simple root is λ and it has multiplicity 3. The correspond-

ing root spaces are

gλ = {X ∈ so(1, 4) | ad(H)X = λ(X), ∀H ∈ a}

=




0 0 C

Ct 0 0

0 0 0

 ∈ so(1, 4)

∣∣∣∣∣∣∣∣∣ Ct ∈ R3

 ,
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similarly we have

g−λ =




0 B 0

0 0 0

Bt 0 0

 ∈ so(1, 4)

∣∣∣∣∣∣∣∣∣ Bt ∈ R3


and

g0 =




A 0 0

0 α 0

0 0 −α

 ∈ so(1, 4)

∣∣∣∣∣∣∣∣∣ A ∈ so(3), α ∈ R

 .

4.2.2 The flag manifold of SO(1, 4)

By Proposition 1.3.1 we have that FΘ = K/KΘ, where the stabilizer is given by KΘ =

K ∩ PΘ.

Since so(1, 4) is a rank one real Lie algebra, there is only one flag manifold for

SO(1, 4), namely the maximal one. Note that we can identify F = SO(1, 4)/P as a K-

orbit under the adjoint representation, that is, Ad(K)H = K/KH , where H ∈ cla+ and

KH is the centralizer of H in K.

Proposition 4.2.1. The only flag manifold F of SO(1, 4) embeds in the component s of the

Cartan decomposition as the Ad(SO(4))-orbit of H ∈ a+.

Proof: The component s of the Cartan decomposition g = k⊕ s = so(4)⊕ s is invariant

under the adjoint representation of K = SO(4). Since a is an one dimensional subal-

gebra, a Weyl chamber a+ ⊂ a is just a ray starting at the origin. Choosing an element

H ∈ a+, the stabilizer of H under the adjoint action of K on s is the centralizer KH of

H in K, which is given by K ∩ P . It follows that the adjoint orbit Ad(SO(4))H ⊂ s is

identified with the coset space K/KH , and this one is the flag manifold F = G/P .

Proposition 4.2.2. The sphere S3 is the only flag manifold of SO(1, 4).

Proof: We look at so(1, 4) realized by I1,4, where the maximal abelian subalgebra a
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contained in s is of the form

a = span


 0 e1

et1 0

 , e1 = (1, 0, 0)

 .

Let

H =

 0 e1

et1 0

 ∈ a+ and x =

 1 0

0 β

 ∈ K, with β ∈ SO(4).

Denote by β1i and by βi1 the first row and the first column of β respectively. With this

notation we have

xH = Hx ⇔

 0 e1

βi1 0

 =

 0 β1i

et1 0

 ,

from which β1i = e1 and βi1 = et1. This means that β is of the form

β =

 1 0

0 γ

 , γ ∈ SO(3).

Hence, x ∈ KH if and only if x has the block form

x =


1 0 0

0 1 0

0 0 γ

 , γ ∈ SO(3).

This shows that KH = SO(3), and we get F = K/KH = SO(4)/SO(3) = S3.

The previous computations remain basically unchanged for SO(1, n), and in this

case we have F = SO(n)/SO(n− 1) = Sn−1.

4.2.3 The infinitesimal action of so(1, 4) on S3

Now we describe the vector fields induced on the sphere S3 by the action of SO(1, 4).

Remember that an infinitesimal action of so(1, 4) on S3 is a homomorphism so(1, 4) →

Γ(TS3), where Γ(TS3) stands for the Lie algebra of vector fields on S3. By means of an

infinitesimal action of so(1, 4) on S3 one can see the Lie algebra so(1, 4) as a Lie algebra

of vector fields on the sphere S3.
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Theorem 4.2.3. The infinitesimal action of so(1, 4) induced by the action of SO(1, 4) on S3

has as image the vector space formed by the vector fields

X(q,z,w)(x) =
1

2
(q − xqx) + zx+ xw, x ∈ S3,

where q ∈ H = s and z, w ∈ ImH = su(2). This vector space is a 10-dimensional Lie algebra

isomorphic to so(1, 4).

Proof: We begin by investigating the vector fields corresponding to elements belonging

to the s component. There exists a K-invariant Riemannian metric such that for every

q ∈ H = s the vector field X̃q induced by q on S3 is the gradient of the height function

fq(·) = ⟨q, ·⟩ with respect to this K-invariant metric (see [7] and [34] for details). In the

present case, since α(H) = 1 (H ∈ a+) for every positive root α for which α(H) ̸= 0

we have that the Borel metric coincides with the metric induced by the immersion of

S3 in s (by this reason S3 is called an immersed flag manifold). The height function

fq is linear on s, so its gradient vector field evaluated at p ∈ S3 is obtained from the

orthogonal projection of q over p. In fact, (gradfq)p = d(fq)p(v) is the cotangent vector

ω such that ω(v) = ⟨q, v⟩, that is, the cotangent vector ω such that

⟨ω, v⟩ = ⟨q, v⟩, ∀v ∈ TpS
3.

Since

⟨q − ⟨q, p⟩p, v⟩ = ⟨q, v⟩ ∀v ∈ TpS
3,

we get

(gradfq)p = q − ⟨q, p⟩p.

The vector field X̃q is thus given by

X̃q(p) = q − ⟨q, p⟩p

= q − 1

2
(qp+ pq) p

= q − 1

2
(qpp+ pqp), p ∈ S3.

Since |p| = pp = 1, we get

X̃q(p) =
1

2
(q − pqp).
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Now we turn our attention to the elements in the compact component k. We know that

the adjoint representation

Ad : K → Gl(so(1, 4))

k 7→ Ad(k) = d(Ck)1.

is differentiable and defines the action

K × s → s, (k, x) 7→ Ad(k)x.

Since the flag S3 embeds in s as an Ad(K)-orbit, we can consider the restriction of the

above action to S3 (viewed as an Ad(K)-orbit) to get an infinitesimal action of k on S3.

Thus, for X ∈ k the corresponding infinitesimal action on S3 is given by

X̃(x) = d(Ad)1(X)x = ad(X)x,

that is, the induced vector field is given by the adjoint action of k on s.

Now, as the Lie algebra ImH is represented in H through left multiplication and

also through right multiplication we have that the Lie algebra so(4) = su(2) ⊕ su(2) is

isomorphic to the Lie algebra of linear transformations {Ez +Dw | z, w ∈ ImH}.

As the Lie algebra so(4) decomposes as the sum of two simple ideals commuting

to each other, we describe the adjoint representation of k = so(4) on s looking at each

simple ideal. The first component corresponds to left multiplication by immaginary

quaternions and the second one corresponds to right multiplication by immaginary

quaternions, since these two kinds of quaternionic multiplications commute with each

other as we have already seen.

We can check this as follows. Given β = (p, q, r, s) ∈ R4, we identify an element

S ∈ s as a quaternion number in the following way

S =

 0 β

βt 0

 ∈ s ⇔ S = p+ qi+ rj+ sk ∈ H. (4.2)
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Set

A2 =

 0 −1

1 0

 , B2 =

 0 1

1 0

 and C2 =

 −1 0

0 1

 .

With this notation, define the so(4) matrices

γi =

 A2 0

0 −A2

, iγ =

 A2 0

0 A2

,

γj =

 0 −12

12 0

, jγ =

 0 C2

−C2 0

,

γk =

 0 A2

A2 0

, kγ =

 0 −B2

B2 0

.

If we write

Xi =

 0 0

0 γi

 , iX =

 0 0

0 iγ

 ,

and so on, we get the following relations:

[Xi, S] = Si ∈ H, [Xj, S] = Sj ∈ H, [Xk, S] = Sk ∈ H,

[iX,S] = iS ∈ H, [jX,S] = jS ∈ H, [kX,S] = kS ∈ H,

where Si, Sj, Sk, iS, jS and kS are well defined from (4.2). Finally, we have that

⟨γi, γj, γk⟩ and ⟨iγ,j γ,k γ⟩ are ideals of so(4), each one isomorphic to su(2). Thus, the

adjoint representation of these components corresponds to right and left multiplication

by immaginary quaternions, as claimed.

Note that the construction in the above proof gives us a direct way to verify the

isomorphism so(4) = su(2)⊕ su(2).

In the remaining of this section we study the gradient vector fields X(q,0,0). To get

a description about the behavior of these vector fields, we start by studying the singu-

larities of the vector fields X(q,z,w) on the sphere S3. Remember that we can consider S3
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as the Lie group SU(2). So, given a vector field on SU(2) we define the function

F : SU(2) −→ su(2)

by setting

F (p) = d(Dp−1)p(X(p)) = X(p) · p−1

that completely determines the vector field X .

Note that a point p ∈ SU(2) is a singular point for X if and only if F (p) = 0. Thus

the set of singular points of the vector field X is F−1{0} and X has no singular points

if and only if F−1{0} = ∅, that is, 0 does not belong to the image of the function F .

Now we prove the following lemma.

Lemma 4.2.4.

(i) The vector field X is right-invariant if and only if its corresponding function F is constant.

More precisely, F (p) = X(1) for all p ∈ SU(2).

(ii) The vector field X is left-invariant if and only if F (p) = Ad(p)X(1).

Proof: In fact, for the item (i), suppose that X is a right-invariant vector field, that is,

d(Dg)h(X(h)) = X(hg), ∀g, h ∈ SU(2).

This implies that

F (p) = d(Dp−1)p(X(p)) = X(pp−1) = X(1) ∈ SU(2).

By the other hand, if F (p) = X(1) for all p ∈ SU(2), we get

F (p) = X(p) · p−1 = X(1) ⇐⇒ X(p) = X(1) · p,

that is, X is right-invariant.

For item (ii), suppose first that X is left-invariant, that is,

d(Eg)h(X(h)) = X(gh), ∀g, h ∈ SU(2).
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Note that

Ad(p)X(1) = d(Dp−1)p ◦ d(Ep)1(X(1)) = d(Dp−1)p(X(p)) = F (p).

Reciprocally, if F (p) = Ad(p)X(1), we have

F (p) = X(p) · p−1 = Ad(p)X(1) = p ·X(1) · p−1 ⇐⇒ X(p) = p ·X(1),

proving that X is left-invariant and concluding the proof.

Now we take a look at the functions corresponding to the vector fields given in the

previous theorem. A vector field

X(q,z,w)(p) =
1

2
(q − pqp) + zp+ pw, p ∈ SU(2),

can be written as

X(q,z,w) = X(q,0,0) +X(0,z,0) +X(0,0,w)

and the corresponding function is given by F(q,z,w) = F(q,0,0)+F(0,z,0)+F(0,0,w), since it is

defined by the differential of the right translation by p−1, which is linear. The functions

F(q,0,0), F(0,z,0) and F(0,0,w) are given by

1. X(0,z,0)(p) = zp implies that F(0,z,0)(p) = X(0,z,0)(p) · p−1 = zpp−1 = z, in other

words, F(0,z,0) is constant. Note that this agrees with the item (i) above, since

X(0,z,0) is a right-invariant vector field.

2. Since X(0,0,w) = pw we have F(0,0,w)(p) = pwp−1 = Ad(p)X(1). And again it agrees

with item (ii) above, because X(0,0,w) is left-invariant. Furthermore, as p−1 = p,

we get F(0,0,w)(p) = pwp.

3. Finally, for the vector field X(q,0,0) =
1
2
(q − pqp) we have

F(q,0,0)(p) = X(q,0,0)(p) · p−1 =
1

2
(q − pqp)p,

and so

F(q,0,0)(p) =
1

2
(qp− pqpp) =

1

2
(qp− pq) = Imqp = Impq.



4.3 Invariant control sets 102

It turns out that F(q,0,0)(p) = Impq = 0 if and only if pq = x ∈ R, that is, p|q|2 = xq,

which means that the only singularities for X(q,0,0) are the antipodal points p = ± q
|q| .

In the sequel we deal with the image of F(1,0,0). Since F(1,0,0)(p) = Im(p), we have

that F(1,0,0)(S
3) is exactly the unit ball in ImH. To get a more detailed description of

this image we look at the great circles passing by the elements ±1 ∈ S3. The great

circle Cz is just the intersection of the plane generated by {1, z} with S3 (here z is an

purely immaginary unit quaternion). The computations with Ci give us a good idea

of how the general case works. Let C+
i be the semicircle C+

i = {p ∈ Ci | ⟨p, i⟩ ≥ 0}.

As p runs through C+
i from 1 to −1 the values F(1,0,0)(p) cover twice the line segment

[0, i] = {ti | t ∈ [0, 1]}. In fact, for p going from 1 to i we have Re(p) ≥ 0 and Im(p)

goes from 0 to i. When p goes from i to −1 we have Re(p) ≤ 0 and Im(p) goes from

i to 0. Briefly, as p goes from 1 to −1 on C+
i the image F(1,0,0)(p) goes from 0 to i and

then goes back from i to 0, always lying on the line segment [0, i]. On the other half

C−
i the situation is quite analogous, in this case however the image is the line segment

[−i, 0] = {−ti | t ∈ [0, 1]}, also covered twice as p goes from 1 to −1. By placing the

things together we get

F(1,0,0)(Ci) = [−i, i] = {ti | t ∈ [−1, 1]}.

An analogous reasoning works for a general great circle Cz, that is, F(1,0,0)(Cz) =

[−z, z], the line segment joining −z and z.

4.3 Invariant control sets

In this section we describe the control sets for a family of control systems on the sphere

S3 having X(1,0,0) as drift and control vector fields corresponding to pure quaternions.

Others control systems, that is, considering others drifts and control vector fields the

computations clearing become very intricate and the approach should be different to

determine the control sets. Specifically the family of system considered here is given

by:

(i) X(1,0,0) + uX(z,0,0), where z ∈ ImH, u ∈ [−1, 1].

(i’) X(1,0,0) + uX(z,0,0), z ∈ ImH, u = ±1.
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(ii) X(1,0,0) + uX(z1,0,0) + vX(z2,0,0), z1, z2 ∈ ImH and (u, v) ∈ [0, 1]2.

(ii’) X(1,0,0) + uX(z1,0,0) + vX(z2,0,0), z1, z2 ∈ ImH, (u, v) = (0, 0), (1, 0), (0, 1).

(iii) X(1,0,0) + uX(i,0,0) + vX(j,0,0) + wX(k,0,0), (u, v, w) ∈ B[0, 1
2
] ⊂ R3.

Note that the Lie algebra so(1, 4) cannot be generated by less than four symmetric

elements, that is, elements in s. For example, k ∈ s does not belong to the Lie algebra

generated by {1, i, j} ⊂ s in so(1, 4) (here we identify the elements in s with quaternions

as in Theorem 4.2.3).

Hence we do not have controllability on the identity component of SO(1, 4) for these

control systems whose vector fields correspond to elements in the component s of the

Cartan decomposition of so(1, 4), that is, vector fields of the form X(q,0,0), q ∈ H.

Before the main results of this section we introduce the following concepts that

will be important in the description of the control sets. A subset C ⊂ S3 is said to

be spherically convex when for any pair of points p, q ∈ C every minimal geodesic

segment joining them are contained in C. Given a subset S ⊂ S3, denote by KS the

cone spanned by S, that is,

KS = {tp | p ∈ S, t ≥ 0} ⊂ s,

and denote by coS the conic hull of S,

coS =

{
n∑

i=1

aipi

∣∣∣∣∣ ai ≥ 0, pi ∈ S, n ∈ N

}
.

Cones are very useful in characterizing convex sets in the sphere, since it is well known

that a non-empty subset C ⊂ S3 is convex if and only if the cone KC is convex and

pointed (that is, KC ∩ (−KC) ⊆ {0}). This means that the proper convex sets on S3 are

the intersections of S3 with pointed convex cones. In fact, if K is a convex and pointed

cone, then KC = K ∩ S3 is convex since KC is exactly K. This means that the spherical

convex hull of a subset A ∈ S3 is the intersection of its conical hull coA with S3.

With respect to the quaternions H, the following notations are quite useful. Given

p ∈ H, we write p = p0 + p1i + p2j + p3k and we denote the imaginary part of p as a

three-dimensional vector p = p1i+ p2j+ p3k. Under these assumptions, the product of
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two quaternions p = p0 + p1i+ p2j+ p3k and q = q0 + q1i+ q2j+ q3k assumes the form

p · q = p0q0 − p · q+ p0q+ q0p+ p× q.

Our first result is this section determines which spherical domes are invariant by

X(1±z,0,0).

Proposition 4.3.1. Given z ∈ ImH, let r1 = 1/
√

1 + |z|2. Then, for every a ∈ [0, r1) the

spherical dome

Sa = {p ∈ S3 |Re(p) ≥ a}

is invariant under the family of vector fields {X(1+z,0,0), X(1−z,0,0)}.

Proof: For a pure quaternion z

X(1−z,0,0)(p) =
1

2
((1− z)− p(1 + z)p) =

1

2

(
1− z − p2 − pzp

)
.

If p ∈ S3 ∩ ImH the above expression becomes

X(1−z,0,0)(p) =
1

2
(2− z − pzp) .

Similarly,

X(1+z,0,0)(p) =
1

2
(2 + z + pzp) .

Evaluating the products we get pz = −p · z+ p× z, and hence

pzp = −(p× z) · p− (p · z)p+ (p× z)× p

= −(p · z)p+ (p× z)× p ∈ ImH.

Since both z and pzp are pure quaternions, we can see that X(1−z,0,0)(p) and X(1+z,0,0)(p)

have positive real parts (being p a pure quaternion). This fact ensures that the upper

half of the sphere S3 is invariant under the trajectories of the family

{
X(1−z,0,0), X(1+z,0,0)

}
.

Now, let S3 ∋ p = a+ w, with 0 < a < 1 and w ∈ ImH. Note that |w| =
√
1− a2.
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We have then

X(1+z,0,0)(p) = X(1+z,0,0)(a+ w)

=
1

2

(
1 + z − (a+ w)2 + (a+ w)z(a+ w)

)
=

1

2

(
1 + z − (a+ w)2 + a2z + azw + awz + wzw

)
= Re

(
X(1+z,0,0)(a+ w)

)
+ Im

(
X(1+z,0,0)(a+ w)

)
,

where

Re
(
X(1+z,0,0)(a+ w)

)
=

1

2

(
1− a2 +w ·w − 2az ·w

)
and

Im
(
X(1+z,0,0)(a+ w)

)
=

1

2

(
z − 2aw −w ×w + a2z + wzw

)
.

Similarly,

X(1−z,0,0)(a+ w) = Re
(
X(1−z,0,0)(a+ w)

)
+ Im

(
X(1−z,0,0)(a+ w)

)
,

where

Re
(
X(1−z,0,0)(a+ w)

)
=

1

2

(
1− a2 +w ·w + 2az ·w

)
and

Im
(
X(1−z,0,0)(a+ w)

)
=

1

2

(
−z − 2aw −w ×w − a2z − wzw

)
.

The real parts of X(1+z,0,0)(a+ w) and X(1−z,0,0)(a+ w) are thus given by

Re
(
X(1−z,0,0)(a+ w)

)
= 1− a2 + a

√
(1− a2)|z| cos(t)

and

Re
(
X(1+z,0,0)(a+ w)

)
= 1− a2 − a

√
(1− a2)|z| cos(t),

where t denotes the angle between w and z.

Being t the angle formed by w and z, define the number

rt =
1√

1 + |z|2 cos2(t)
.

Note that Re
(
X(1−z,0,0)(a+ w)

)
= 0 if and only if a = rt or a = 1. For a fixed t ∈ [0, 2π],
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t ̸= π/2, t ̸= 3π/2, we have

Re
(
X(1−z,0,0)(a+ w)

)
> 0 if a ∈ [0, rt)

Re
(
X(1−z,0,0)(a+ w)

)
< 0 if a ∈ (rt, 1) ,

If t = π/2 or t = 3π/2, then Re
(
X(1−z,0,0)(a+ w)

)
> 0 for every a ∈ [0, 1), since in this case

Re
(
X(1−z,0,0)(a+ w)

)
= 1 − a2. For a given z ∈ ImH the number rt is minimum when

cos(t) = 1. Observe that

r1 =
1√

1 + |z|2

is precisely the real part of the singularities of X(1±z,0,0). This implies that if a ∈ [0, r1)

then Re
(
X(1±z,0,0)(a+ w)

)
> 0 for every possible w. In other words, for every a ∈ [0, r1)

the spherical dome Sa = {p ∈ S3 |Re(p) ≥ a} is invariant under {X(1±z,0,0)}.

The Figure 4.1 is a three dimensional representation of the trajectories of X(1±z,0,0).

The trajectories are the great circles containing the antipodal points 1±z
|1±z| . The figure

shows the attractors (the white and gray dots) while the quaternion 1 is represented

by the black dot.

Figure 4.1: A 3D representation of the trajectories of X(1−z,0,0) and X(1+z,0,0)

Now we can describe the control sets for the families of control systems given in

the beginning of this section.

Case (i):

For the control system with bounded controls

Γ =
{
X(1,0,0) + uX(z,0,0) | z ∈ ImH, u ∈ [−1, 1]

}
,
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since all the attractors for such a system lie on (and cover) the minimal geodesic seg-

ment C on S3 joining the attractors of X(1+z,0,0) and X(1−z,0,0), it follows from Teorem

4.1.1 that C is the only invariant control set for Γ.

Case (i’):

Using a geometrical approach we will show now that the invariant control set for

the bang-bang control system

{X(1,0,0) ±X(z,0,0)} (z ∈ ImH)

is still a geodesic segment joining p1 and p2, the singularities (attractors) of the vector

fields X(1+z,0,0) and X(1−z,0,0), respectively. That is, the spherical closed convex hull C

of the set {p1, p2}, which is given by C = cl(co{p1, p2}) ∩ S3.

Theorem 4.3.2. On the sphere S3 the invariant control set for the family {X(1±z,0,0)} is the

minimal geodesic segment C joining

p1 =
1 + z

|1 + z|
and p2 =

1− z

|1− z|
.

Proof: Denote by D the unique invariant control set for this system (it exists since S3

is a compact Hausdorff space). Our aim is to show that C = D.

Note first that for every pair of points x, y ∈ C, x, y ̸= p1, p2 we have a trajectory

of the system joining x and y. In fact, the solutions for this control system follow

geodesic curves in S3. If the solution with initial value x that goes towards p1 do not

contains y, then the solution going towards p2 does. Furthermore, p1 ∈ clO+(p2) and

p2 ∈ clO+(p1). In other words, C is contained in the closure of the positive orbit of all

its elements. Also, the positive orbit of all its points is contained in C.

Now let x ∈ D. For any y ∈ C we have x in the closure of the positive orbit of y,

that is, we can approximate x by an trajectory of the control system starting at y. This

trajectory is the concatenation of solutions, all of them lying on the great circle that

contains 1, p1 and p2, that is, all the trajectory is contained in this great circle. Since C is

spherically convex, every path of the trajectory is a minimal geodesic segment between

its initial and final points. This implies that x ∈ cl(C) = C, and the maximality of D

ensures that C = D.
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Case (ii):

Again, Theorem 4.1.1 ensures that the control system with constrained controls

{
X(1,0,0) + uX(z1,0,0) + vX(z2,0,0) |u, v ∈ [0, 1]

}
(z1, z2 ∈ ImH)

is such that its invariant control set is the spherical closed convex hull of the set A =

{1, p1, p2, p3}, being p1 the attractor corresponding to u = 1 and v = 0, p2 corresponding

to u = 0 and v = 1 and p3 to u = 1 and v = 1. However, if the controls were considered

in the interval [−1, 1], we should have add to the set A also the attractors corresponding

to the control values u, v = −1. Any other attractors would belong to the spherical

closed convex hull too, and a similar reasoning works.

Case (ii’):

In this case with only two vector fields for the control, the situation is quite similar

to that one in case (i’) and a geometrical reasoning still works.

Theorem 4.3.3. If Γ = {X(1,0,0), X(1+z1,0,0), X(1+z2,0,0)}, z1, z2 ∈ ImH, is a family of vector

fields on the sphere S3 such that the attractors p1 and p2 for X(1+z1,0,0) and X(1+z2,0,0) do not

belong to the same great circle containing 1, then the invariant control set for Γ in S3 is the

spherical closed convex hull of A = {1, p1, p2}.

Proof: Let coA be the conic hull of A. The closed convex hull of A is

C = S3 ∩ cl(coA).

Note that C has empty interior in S3 since it is a two-dimensional submanifold (coA is a

cone generated by three elements). To avoid confusion, write algintC for the algebraic

interior of C. The relative boundary of coA is the union of the conic hulls of {1, p1},

{1, p2} and {p1, p2}, that is, the relative boundary of C is union of great circle arcs

joining 1 to p1, 1 to p2 and p1 to p2.

To see that C is the desired invariant control set, let x ∈ algintC. Denote by X1(x),

Xp1(x) and Xp2(x) the solutions for the corresponding vector fields with initial value x.

Remember that all these solutions follows geodesics on S3. Let C1 be the closed convex

hull of {x,1, p1}, C2 the closed convex hull of {x,1, p2} and C3 that one of {x, p1, p2}. It is

clear that C = C1∪C2∪C3. If y ∈ algintC1, then we obtain a trajectory from x to y in the
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following way. The convexity of C tells us that the solution X1(y) meets Xp1(x) in y1 ∈

algintC (the intersection X1(y)∩Xp1(x) is nonempty since both solutions are contained

in the same three dimensional subspace of s, and the intersection belongs to algintC

by convexity). The solution X1(y1) contains y since X1(y1) and X1(y) are contained in

the same great circle of S3. Thus, joining Xp1(x) and X1(y1) we get a trajectory from

x to y. Analogous reasonings work for algintC2 and algintC3, just interchanging the

considered solutions. If y ∈ algintC does not belong to algintCi, i = 1, 2, 3, then y

belongs to X1(x), Xp1(x) or Xp2(x), and can be trivially reached from x. This proves

that C is contained in the closure of the positive orbit of all its elements.

Now, let D be the unique invariant control set for this control system and take

x ∈ D. We just proved that C ⊂ D, by the maximality of D. That is, for any y ∈ C

we have x ∈ clO+(y). In other words, we can get close of x by trajectories starting at

y. Every path of such trajectory is a minimal geodesic segment, and this implies that

x ∈ clC, by the definition of spherical closed convex hull. Hence x ∈ C, and so C = D.

Case (iii):

Although very interesting, the control systems considered above does not satisfy

the Lie algebra rank condition, as said in the beginning of this section. One can note

that all the invariant control sets obtained have empty interior in S3. In our final the-

orem we investigate a control system satisfying the Lie algebra rank condition. Note

that checking LARC is easier if it is done with matrices instead of vector fields (see

Proposition 4.2.3).

Theorem 4.3.4. Consider the control system with restricted controls defined by the vector fields

X(1,0,0) + uX(i,0,0) + vX(j,0,0) + wX(k,0,0), (u, v, w) ∈ B[0, 1] ⊂ R3,

where B[0, 1] stands for the closed ball of radius 1 in R3 centered at the origin. Then, the

invariant control set for this control system is exactly the spherical dome

C = {p ∈ S3 |Re(p) ≥ 1/
√
2}.

Proof: To prove this theorem, note first that the invariance follows from computa-
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tions similar to those we have done for X(1±z,0,0) in Proposition 4.3.1. The singularities

corresponding to the vector fields X(1±i,0,0), ±X(1±j,0,0) and X(1±k,0,0) on the invariant

hemisphere are
1± i√

2
,

1± j√
2
,

1± k√
2

and such singularities lie on the boundary of the spherical dome C, since their real

parts are all 1/
√
2, and the same statement is true for the singularities corresponding to

vector fields

X(1,0,0) + uX(i,0,0) + vX(j,0,0) + wX(k,0,0)

such that u2 + v2 + w2 = 1.

By the other hand, let p in the boundary of C. It must have the form p = 1/
√
2 + z,

with z ∈ ImH. Observe that

|p|2 = 1

2
+ |z|2 =⇒ |z| = 1√

2
.

Write z = u0i + v0j + w0k. Then u2
0 + v20 + w2

0 = 1/2 and the attractor corresponding to

the vector field

X(1,0,0) +
√
2u0X(i,0,0) +

√
2v0X(j,0,0) +

√
2w0X(k,0,0)

is the point p, as can be easily checked. This proves that every point belonging to the

boundary of C is a singularity of a vector field of the control system corresponding to

a control (u, v, w) such that u2 + v2 + w2 = 1.

The previous reasoning still holds for controls (u, v, w) ∈ B[0, a], with a > 0. In this

case, the singularities corresponding to controls (u, v, w) such that u2+v2+w2 = a2 are

in the boundary of the spherical dome

Ca =

{
p ∈ S3

∣∣∣∣Re(p) ≥ 1√
1 + a2

}
,

and so we conclude that all of the points belonging to C are singularities corresponding

to some vector field of the control system. The result is thus a consequence of Theorem

4.1.1.



CHAPTER 5

FUTURE DIRECTIONS CONCERNING

THE SPECIAL UNITARY LIE GROUP

SU(1, 2)

Following the same general lines of the previous chapter, the present chapter will be set

for start exploring the geometrical aspects of the Lie group SU(1, 2). Just as so(1, 4), the

Lie algebra su(1, 2) is also a real rank 1 Lie algebra with a four dimensional symmetric

part in the Cartan decompositions, leading to the sphere S3 as its only flag manifold.

The infinitesimal action on S3 is quite different in this case, since the occurrence of the

positive root 2α implies that the Borel metric does not coincides with the canonical

metric given by the immersion of S3 in H.

5.1 General structure of su(p, q)

For a complex matrix M , denote by M∗ its conjugate transpose, that is, M∗ = M
t
. Let

Ip,q denote the block diagonal matrix

Ip,q =

 Ip 0

0 −Iq

 ,

where Ip and Iq are p × p and q × q identity matrices. The group SU(p, q) is the group

of (p+ q)× (p+ q) complex matrices M satisfying M∗Ip,qM = Ip,q and det(M) = 1:

SU(p, q) = {M ∈ Mp+q(C) |M∗Ip,qM = Ip,q and det(M) = 1}.
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If we write M as a block matrix of the form

M =

 Ap×p Bp×q

Cq×p Dq×q

 ,

then we have that M ∈ SU(p, q) if and only if det(M) = 1 and

A∗A− C∗C = Ip

B∗B −D∗D = −Iq

A∗B = C∗D

B∗A = D∗C.

Now, if we take a smooth curve M(t) ∈ SU(p, q) with M(0) = I , then we can take the

derivatives of the expressions M∗(t)Ip,qM(t) = Ip,q and det(M(t)) = 1 with respect to t.

We have the derivative of the determinant given by the Jacobi’s formula and

dM∗

dt
Ip,qM(t) +M∗(t)Ip,q

dM

dt
= 0.

Evaluating at t = 0 and calling X = dM
dt

∣∣
t=0

, we get

X∗Ip,q + Ip,qX = 0, trace(X) = 0,

which is the condition for X to be in the Lie algebra su(p, q) of SU(p, q). That is,

su(p, q) = {X ∈ Mp+q(C) |X∗Ip,q + Ip,qX = 0 and trace(X) = 0}.

To see that su(p, q) is in fact a real form of sl(p+ q,C), let

σ : sl(p+ q,C) −→ sl(p+ q,C)

X 7−→−Ip,qX
∗Ip,q.

Note that σ is a conjugation on sl(p+ q,C). In fact, σ is antilinear and

σ(σ(X)) = −Ip,qσ(X)∗Ip,q = −Ip,q (−Ip,qX
∗Ip,q)

∗ Ip,q = I2p,qX
∗∗I2p,q = X,
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that is, σ is an involution. Moreover, su(p, q) is exactly the set of fixed points of σ. If

X ∈ su(p, q), then X∗Ip,q = −Ip,qX , and this implies

σ(X) = −Ip,qX
∗Ip,q = −Ip,q (−Ip,qX) = X.

By the other hand, if X ∈ sl(p+ q,C) is such that σ(X) = X , then we have

−Ip,qX
∗Ip,q = X ⇐⇒ X∗Ip,q = −Ip,qX ⇐⇒ X ∈ su(p, q).

This means that su(p, q) is a real form of sl(p + q,C). Letting A, B, C and D blocks of

sizes p× p, p× q, q × p and q × q, respectively, and writing X as

X =

 A B

C D

 ,

then the conditions X∗Ip,q + Ip,qX = 0 and trace(X) = 0 lead us to

 A∗ C∗

B∗ D∗

 ·

 Ip 0

0 −Iq

+

 Ip 0

0 −Iq

 ·

 A B

C D

 = 0

 A∗ −C∗

B∗ −D∗

+

 A B

−C −D

 = 0

and tr(A) + tr(D) = 0. That is,

 A∗ −C∗

B∗ −D∗

 =

 −A −B

C D

 , tr(A) + tr(D) = 0.

Implying

A∗ = −A, B∗ = C, D∗ = −D, tr(A) + tr(D) = 0.

So, one can see the Lie algebra su(p, q) as being the set

su(p, q) =


 A B

B∗ D

 ∣∣∣∣∣∣ A∗ = −A, D∗ = −D, tr(A) + tr(D) = 0

 ,

where A is of size p× p, B is p× q and D is q × q.
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Considering the compact real form su(n) of sl(n,C), that is,

su(n) = {X ∈ sl(n,C) |X∗ = −X},

then a Cartan decomposition of the algebra su(p, q) is given by its intersection with the

algebra su(p+ q), precisely, su(p, q) = k⊕ s where

k = su(p, q) ∩ su(p+ q) and s = su(p, q) ∩ isu(p+ q)

is a Cartan decomposition of su(p, q). This means that

k =


 A 0

0 D

 ∣∣∣∣∣∣A∗ = −A, D∗ = −D, tr(A+D) = 0


and

s =


 0 B

B∗ 0

 ∣∣∣∣∣∣ B is a p× q matrix

 ,

in fact, a matrix of the form  0 B

B∗ 0

 ,

belongs to su(p, q) and also to isu(p+ q), since

 0 B

B∗ 0

 = iX, where X =

 0 −iB

−iB∗ 0

 ,

so that X∗ = −X . Note also that if X ∈ k, then we can write

X =

 A 0

0 D


=

 A− tr(A)
p

Ip +
tr(A)
p

Ip 0

0 D − tr(D)
q

Iq +
tr(D)

q
Iq


=

 A− tr(A)
p

Ip 0

0 D − tr(D)
q

Iq

+

 tr(A)
p

Ip 0

0 tr(D)
q

Iq


=

 A− tr(A)
p

Ip 0

0 0

+

 0 0

0 D − tr(D)
q

Iq

+

 tr(A)
p

Ip 0

0 tr(D)
q

Iq

 ,
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and this shows that k is not semisimple and isomorphic to

su(p)⊕ su(q)⊕ z,

where the center z is given by the matrices having the form

 tr(A)
p

Ip 0

0 tr(D)
q

Iq

 .

Now we describe a maximal abelian subalgebra a of s. If B1, B2 ∈ s are of the form

B1 = [ Λ1 0 ] and B2 = [ Λ2 0 ],

with λi diagonal p× p real matrices, then we have

B1B
t
2 −B2B

t
1 = 0,

and this means that the matrices B1 and B2 commute. So, a maximal abelian subalge-

bra a of s is

a =


 0 B

B∗ 0

 ∣∣∣∣∣∣ B = [ Λ 0 ], where Λ = diag(a1, . . . , ap), aj ∈ R

 .

From this we obtain that the real rank of the Lie algebra su(p, q) is exactly p = min{p, q}

(since we consider p ≤ q). For a distinguished Cartan subalgebra h of su(p, q), let hk be

hk =


 iA 0

0 iD

 ∣∣∣∣∣∣ A = diag(a1, . . . , ap),

D = diag(b1, . . . , bq),

aj, bj ∈ R,

tr(A) + tr(D) = 0

 .

And then the distinguished Cartan subalgebra is given by h = hk ⊕ a, that is,

h =


 iA B

B∗ iD


∣∣∣∣∣∣∣∣∣
A = diag(a1, . . . , ap),

Λ = diag(b1, . . . , bp),

D = diag(c1, . . . , cq),

B = [ Λ 0 ],

tr(A) + tr(D) = 0,

aj, bj, cj ∈ R

 .

Two hermitian forms are unitarily equivalent if and only if they have the same charac-

teristic roots, that is, if and only if they are similar.
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Let hI and gJ be the Lie algebras given by

gI = {A ∈ sl(n,C) |At
I + IA = 0}

and

gJ = {A ∈ sl(n,C) |At
J + JA = 0}.

If I and J are unitarilly equivalent hermitian forms, there exists U unitary such that

I = U
t
JU . Taking X such that X

t
I + IX , then

0 = X
t
I + IX = X

t
U

t
JU + U

t
JUX

= UX
t
U

t
JUU

t
+ UU

t
JUXU

t

= UX
t
U

t
J + JUXU

t

= (UXU
t
)
t

J + J(UXU
t
)

which means that if X ∈ gI , then (UXU
t
) ∈ gJ , and the Lie algebras gI and gJ are

isomorphic via φ : X 7→ (UXU
t
), since

φ[X, Y ] = U(XY − Y X)U
t
= UXU

t
UY U

t − UY U
t
UXU

t
= [φ(X), φ(Y )].

Now, the hermitian forms

Ip,q =

 Ip 0

0 −Iq

 and Jp,q =


0 Ip 0

Ip 0 0

0 0 −Iq−p


have the same characteristic roots, and so we can also see the Lie algebra su(p, q) as the

set of the matrices that are skew-hermitian with respect to the hermitian form on Cp+q

given by Jp,q. In other words,

su(p, q) = {M ∈ Mp+q(C) |MJp,q + Jp,qM
∗ = 0, tr(M) = 0}.

It is a real form of sl(p+ q,C) with associate conjugation given by

σ(M) = −Jp,qM
∗Jp,q, M ∈ sl(p+ 1,C).
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If M is a matrix in Mp+q(C), writing M in a block form corresponding to the hermitian

form Jp,q,

M =


A B E

C D F

X Y Z

 ,

then we have

M∗ =


A∗ C∗ X∗

B∗ D∗ Y ∗

E∗ F ∗ Z∗

 ,

MJp,q =


B A −E

D C −F

Y X −Z

 and Jp,qM
∗ =


B∗ D∗ Y ∗

A∗ C∗ X∗

−E∗ −F ∗ −Z∗

 .

Thus the condition MJp,q + Jp,qM
∗ = 0 yields

B = −B∗, D = −A∗, Y = E∗, A = −D∗, C = −C∗, X = F ∗,

E = Y ∗, F = X∗, Z = −Z∗.

This means that M must have the block form

M =


A B Y ∗

C −A∗ X∗

X Y Z

 , (5.1)

where B, C and Z are skew-hermitian matrices of respective orders being p, p and q−p.

Consequently, M is in su(p, q) if and only if it has the block form (5.1) and

B,C ∈ u(p), Z ∈ su(q − p) and Im(tr(A)) = 0.

A matrix M ∈ su(p, q) will also belong to su(p+ q) if and only if it has the form

M =


A B −X∗

B A X∗

X −X Z

 , with A,B ∈ u(p), Z ∈ su(q − p) and tr(A) = 0.
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Similarly, a matrix M ∈ su(p, q) belongs also to isu(p+ q) if and only if M has the form

M =


A B X∗

−B −A X∗

X X 0

 , with A = A∗ and B ∈ u(p).

Hence, a Cartan decomposition su(p, q) = k⊕ s is such that

k =




A B −X∗

B A X∗

X −X Z


∣∣∣∣∣∣∣∣∣ A ∈ su(p), B ∈ u(p), Z ∈ su(q − p)


and

s =




A B X∗

−B −A X∗

X X 0


∣∣∣∣∣∣∣∣∣ A = A∗ and B ∈ u(p)

 .

In this realization of su(p, q) a maximal abelian subalgebra in s is given by

a =




Λ 0 0

0 −Λ 0

0 0 0


∣∣∣∣∣∣∣∣∣ Λ = diag(a1, . . . , ap), aj ∈ R

 ,

since in general non-diagonal matrices do not commute with respect to the usual Lie

bracket given by the commutator. Once again we see that the real rank of su(p, q) is

p = dim a. A Cartan subalgebra in su(p, q) is given by

h =




D 0 0

0 −D 0

0 0 iT


∣∣∣∣∣∣∣∣∣

D = diag(z1, . . . , zp), zj ∈ C,

T = diag(a1, . . . , aq−p), aj ∈ R,

tr(2Im(D)) + tr(T ) = 0

 .

So we can take hk = h ∩ k:

hk =




iΛ 0 0

0 iΛ 0

0 0 iT


∣∣∣∣∣∣∣∣∣

Λ = diag(a1, . . . , ap),

T = diag(b1, . . . , bq−p),

aj, bj ∈ R,

tr(Λ) + tr(T ) = 0

 .



5.1 General structure of su(p, q) 119

So, the distinguished Cartan subalgebra is given by h = hk ⊕ a, and it complexifies

into the Cartan subalgebra hC of sl(p + q,C) formed by the diagonal matrices. As we

know, the roots of hC are given by the differences of the diagonal coordinate linear

functionals in hC. Thus, if λj is the linear functional on hC given by λj(H) = aj , where

H = diag(a1, . . . , ap+q) ∈ hC, we have the root system

ΠC = {αj,k = λj − λk, j ̸= k}.

For α ∈ h∗C we set Hα ∈ hC as α(·) = ⟨Hα, ·⟩ and we denote by hR the real vector

subspace of hC generated by Hα, α ∈ ΠC. Since ⟨α, β⟩ ∈ R, the roots α ∈ ΠC are real

valued in hR. We have

hR = {H ∈ hC | ∀α ∈ ΠC, α(H) ∈ R},

and the direct sum decomposition hR = a⊕ ihk, where the real subspaces a and ihk are

orthogonal with respect to the Cartan-Killing form. By definition, a root α ∈ ΠC is said

real if it vanishes in hk and it is said imaginary if it vanishes in a. We denote the sets of

real and imaginary roots in ΠC by ΠRe and ΠIm, respectively. The real roots are given

by ΠRe = {±α1,p+1, . . . ,±αp,2p}. The imaginary roots are

ΠIm = {±αj,k | 2p+ 1 ≤ j ̸= k ≤ p+ q, with q ≥ p+ 2}.

If q = p or q = p + 1 there are no imaginary roots. The restricted roots are the re-

strictions of αj,k, j ̸= k, to the maximal abelian subalgebra a = {diag{Λ,−Λ, 0} |Λ =

diag{a1, . . . , ap}}. Precisely, considering ΠC = {λj − λk, j ̸= k},

• if p < q, then the restricted roots are

{±(λr − λs),±(λr + λs), r ̸= s, 1 ≤ r, s ≤ p} ∪ {±λr,±2λr, 1 ≤ r ≤ p},

• and if p = q, the restricted roots are given by

{±(λr − λs),±(λr + λs), r ̸= s, 1 ≤ r, s ≤ p} ∪ {±2λr, 1 ≤ r ≤ p},

From these sets we obtain the sets of simple roots
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• Σ = {λ1 − λ2, . . . , λp−1 − λp, λp} if p < q, and

• Σ = {λ1 − λ2, . . . , λp−1 − λp, 2λp} if p = q.

The set of the real regular elements a ⊂ a is defined by

a = {H ∈ a |α(H) ̸= 0, for every restricted root α}.

In the case p < q, if H = diag(a1, . . . , ap,−a1, . . . ,−ap, 0, . . . , 0) ∈ a, it is easy to see that

for 1 ≤ r, s ≤ 2p, ±(λr−λs)(H) ̸= 0 only when a1, . . . , ap are all different from each other

and all of them are nonzero. In a similar way, ±(λr−λs)(H) ̸= 0 only if a1, . . . , ap are all

different from each other’s opposite and all of them are nonzero. Lastly, ±λr(H) ̸= 0

for all r = 1, . . . , p only if a1, . . . , ap are all different from zero. Writing Λ = (a1, . . . , ap),

the set of real regular elements is thus given by

a = {H = diag(Λ,−Λ, 0 . . . , 0) | ai ̸= ±aj, ai ̸= 0, for 1 ≤ i, j ≤ p}.

In the case p = q the calculations are completely analogous and the set of real regular

elements is

a = {H = diag(Λ,−Λ) | ai ̸= ±aj, ai ̸= 0, for 1 ≤ i, j ≤ p}.

Associated to the simple root system (p < q)

Σ = {λ1 − λ2, . . . , λp−1 − λp, λp}

we get the set of positive roots

Π+ = {(λr − λs) | 1 ≤ r < s ≤ p} ∪ {(λr + λs), λr | 1 ≤ r, s ≤ p}

and the set of negative roots

Π− = {(λs − λr) | 1 ≤ r < s ≤ p} ∪ {(−λr − λs), −λr | 1 ≤ r, s ≤ p}.

In a similar way, for the simple root system Σ = {λ1 − λ2, . . . , λp−1 − λp, 2λp} we have
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the positive roots

Π+ = {(λr − λs) | 1 ≤ r < s ≤ p} ∪ {(λr + λs), 2λr | 1 ≤ r, s ≤ p}

and the negative roots

Π− = {(λs − λr) | 1 ≤ r < s ≤ p} ∪ {(−λr − λs), −2λr | 1 ≤ r, s ≤ p}.

A Weyl chamber with positive elements is given by

a+ = {H = diag(Λ,−Λ, 0, . . . , 0) | a1 > · · · > ap > 0},

for the case p < q and

a+ = {H = diag(Λ,−Λ) | a1 > · · · > ap > 0},

for the case p = q. Now we turn our attention to the restricted root spaces. We have a

few cases to study:

1. For the roots ±(λr − λs), r ̸= s, 1 ≤ r, s ≤ p, the corresponding root space is

formed by matrices of the form


A 0 0

0 −A∗ 0

0 0 0

 ,

where A has only one non-zero entry, which is non-diagonal.

2. For the roots ±(λr + λs), r ̸= s, 1 ≤ r, s ≤ p, the corresponding root space is

formed by 
0 B 0

C 0 0

0 0 0

 ,

where there is only one non-zero entry (this one being also non-diagonal) in the

block B or in the block C.

3. In the case ±2λr, 1 ≤ r ≤ p, we have the root space formed by matrices of the
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form 
0 B 0

C 0 0

0 0 0

 ,

where there is only one non-zero entry in the block B or in the block C, and such

entry must be diagonal.

4. By last, for ±λr, 1 ≤ r ≤ p, the root space is given by


0 0 Y ∗

0 0 X∗

X Y 0

 ,

where the block X or the block Y has only one non-zero entry.

This allows us to describe the algebras n+ and n−:

n+ =




A B Y ∗

0 −A∗ 0

0 Y 0


∣∣∣∣∣∣∣∣∣

A is strictly upper triangular

B∗ = −B

Y arbitrary

 .

n− =




A 0 0

C −A∗ X∗

X 0 0


∣∣∣∣∣∣∣∣∣

A is strictly lower triangular

C∗ = −C

X arbitrary

 .

We also have

g0 = z(a) =




A 0 0

0 −A∗ 0

0 0 Z


∣∣∣∣∣∣∣∣∣

A is diagonal

Z∗ = −Z

 .

In the previous calculations we are considering the general case p < q. Note that in the

case p = q the blocks X , Y and Z on the third row and on the third column disappear

in the above matrices. An Iwasawa decomposition for su(p, q) is thus given by

su(p, q) = k⊕ a⊕ n+.

Since k = su(p) ⊕ su(q) ⊕ R, we can consider K = SU(p) × SU(q) × S1. By taking
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exponentials of elements in a we get

A =




α 0 0

0 α−1 0

0 0 1


∣∣∣∣∣∣∣∣∣ α diagonal.

 .

In the same way, we have

N = exp (n+) =




∗ ∗ ∗

0 ∗ 0

0 ∗ 1


 ,

where the sizes of the blocks in this description of N agree with the size of the blocks in

n+. We have then SU(p, q) = KAN, a global Iwasawa decomposition of the Lie group

SU(p, q). Now, m = g0 ∩ k is given by

m =




iΛ 0 0

0 iΛ 0

0 0 Z


∣∣∣∣∣∣∣∣∣

Λ is diagonal with real entries,

Z∗ = −Z

 .

The standard minimal parabolic subalgebra is given by

p = m⊕ a⊕ n+ =




Λ B Y ∗

0 −Λ∗ 0

0 Y Z


∣∣∣∣∣∣∣∣∣

Λ is upper triangular,

B∗ = −B, Z∗ = −Z

 .

Given Θ a set of simple roots, we can describe the sets n±(Θ). We will look only at the

general case p < q, since the case p = q is quite similar. We have several cases to study.

Considering the simple system of roots

Σ = {λ1 − λ2, . . . , λp−1 − λp, λp},

we can take

1. Θ = {λ1 − λ2, . . . , λp−1 − λp}, which gives

⟨Θ⟩+ = {λi − λj, 1 ≤ i < j ≤ p},
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and

n+(Θ) =




A 0 0

0 −A∗ 0

0 0 0


∣∣∣∣∣∣∣∣∣ A is strictly upper triangular

 .

2. Choosing Θ = {λ2 − λ3, . . . , λp−1 − λp, λp}, we get

⟨Θ⟩+ = {λi − λj, 2 ≤ i < j ≤ p}

∪{λi, 2λi, 2 ≤ i ≤ p}

∪{λi + λj, 2 ≤ i < j ≤ p},

so

n+(Θ) =




A B Y ∗

0 −A∗ 0

0 Y 0


∣∣∣∣∣∣∣∣∣

A is strictly upper triangular, a12 = 0

first row of B equals to zero

first column of Y and B equals to zero

 .

3. In the case Θ = {λp}, we have ⟨Θ⟩+ = {λp, 2λp}, giving us the set

n+(Θ) =




0 B Y ∗

0 0 0

0 Y 0


∣∣∣∣∣∣∣∣∣

bpp is the only nonzero entry of B, and

Y has nonzero entries only in the p-th column

 .

Let us take a closer look at the Lie brackets in this algebra. If

M =


0 A X∗

0 0 0

0 X 0

 and N =


0 B Y ∗

0 0 0

0 Y 0

 ,

then

[M,N ] =


0 X∗Y − Y ∗X 0

0 0 0

0 0 0


and this implies that the algebra n+(Θ) is isomorphic to the generalized Heisen-

berg Lie algebra of dimension 2(q − p) + 1.
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5.2 The Lie algebra su(1, 2)

The Hermitian forms I3 and J3 having matrices

I3 =


1 0 0

0 −1 0

0 0 −1

 and J3 =


0 1 0

1 0 0

0 0 −1

 .

are unitarilly equivalent, and they have signature (1, 2). So the Lie algebra su(1, 2) can

be defined using any of them. That is, su(1, 2) can be defined as being the Lie algebra

suI(1, 2) = {X ∈ M3(C) |XI3 + I3X
∗ = 0, tr(X) = 0}

or

suJ(1, 2) = {X ∈ M3(C) |XJ3 + J3X
∗ = 0, tr(X) = 0}.

The Lie isomorphism between these two realizations is performed by

φ : suI(1, 2) −→ suJ(1, 2)

X 7−→ PXP−1,

where

P =


1/2 1/2 1/

√
2

1/2 1/2 −1/
√
2

1/
√
2 −1/

√
2 0

 .

5.2.1 Cartan and Iwasawa decompositions

In the realization suI(1, 2) we have that a general matrix X ∈ suI(1, 2) is of the form

X =


ia b x

b id −y

x y iz

 ,

where a, d, z ∈ R and a+ d+ z = 0.



5.2 The Lie algebra su(1, 2) 126

In this realization a Cartan decomposition suI(1, 2) = k⊕ s is given by

k =




ia 0 0

0 id −y

0 y iz


∣∣∣∣∣∣∣∣∣ a = −d− z ∈ R


and

s =




0 b1 b2

b1 0 0

b2 0 0


∣∣∣∣∣∣∣∣∣ b1, b2 ∈ C

 .

Note that the elements X ∈ k can be written as

X =


0 0 0

0
d− z

2
i −y

0 y
z − d

2
i

+


(−d− z)i 0 0

0
d+ z

2
i 0

0 0
d+ z

2
i

 .

And this implies that we can identify k = su(2) ⊕ z = u(2), where z is identified with

the one-dimensional center of the unitary Lie algebra u(2). From now on we will work

with the realization suJ(1, 2), and we should denote it simply by su(1, 2). Any mentions

to the realization suI(1, 2) will be specified. The conditions XJ3 + J3X
∗ and tr(X) = 0

imply that a general element X ∈ su(1, 2) must be of the form

X =


a b y

c −a x

x y −2Im(a)

 ,

where b = −b and c = −c. A Cartan decomposition for su(1, 2) is su(1, 2) = k⊕s, where

k = su(1, 2) ∩ su(3) =




ai bi −x

bi ai x

x −x −2ai

 ∈ M3(C)

∣∣∣∣∣∣∣∣∣ a, b ∈ R

 ,

s = su(1, 2) ∩ isu(3) =




a bi x

−bi −a x

x x 0

 ∈ M3(C)

∣∣∣∣∣∣∣∣∣ a, b ∈ R

 .
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A maximal abelian subalgebra contained in s is

a =




a 0 0

0 −a 0

0 0 0

 ∈ M3(C)

∣∣∣∣∣∣∣∣∣ a ∈ R

 .

A Cartan subalgebra in sl(3,C) is the Lie subalgebra h formed by the diagonal matrices

in sl(3,C). The root system associated with this Cartan subalgebra is

ΠC = {±(λ1 − λ2),±(λ1 − λ3),±(λ2 − λ3)}.

The simple root system is

Σ = {λ1 − λ2, λ2 − λ3},

from which

Π+
C = {λ1 − λ2, λ2 − λ3, λ1 − λ3}.

The set of restricted roots (to the split subalgebra a) is given by Π = {±λ1,±2λ1}, and

the simple root system is Σ = {λ1}. The root spaces associated with the previous roots

are:

1.

gλ1 = {X ∈ su(1, 2) | ad(H)X = λ1(X), ∀H ∈ a}

= {X ∈ su(1, 2) | [H,X] = αX, ∀H = diag(α,−α, 0) ∈ a}

= ger




0 0 1

0 0 0

0 1 0

 ,


0 0 −i

0 0 0

0 i 0


 .

2.

g−λ1 = {X ∈ su(1, 2) | [H,X] = −αX, ∀H = diag(α,−α, 0) ∈ a}

= ger




0 0 0

0 0 1

1 0 0

 ,


0 0 0

0 0 −i

i 0 0


 .
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3.

g2λ1 = {X ∈ su(1, 2) | [H,X] = 2αX, ∀H = diag(α,−α, 0) ∈ a}

= ger




0 i 0

0 0 0

0 0 0


 .

4.

g−2λ1 = {X ∈ su(1, 2) | [H,X] = −2αX, ∀H = diag(α,−α, 0) ∈ a}

= ger




0 0 0

i 0 0

0 0 0


 .

5.

g0 = z(a) = {X ∈ su(1, 2) | [H,X] = 0, ∀H = diag(α,−α, 0) ∈ a}}

= ger




1 0 0

0 −1 0

0 0 0

 ,


i 0 0

0 i 0

0 0 −2i


 .

We have also n+ = gλ1 ⊕ g2λ1 , that is,

n+ =




0 ib x

0 0 0

0 x 0


∣∣∣∣∣∣∣∣∣ x ∈ C, b ∈ R

 .

Consider the basis for n+ formed by

A =


0 0 1

2

0 0 0

0 1
2

0

 , B =


0 0 −i

0 0 0

0 i 0

 , C =


0 i 0

0 0 0

0 0 0

 .

Note that [A,B] = C, [A,C] = 0, [B,C] = 0. If we choose in the Heisenberg Lie algebra

Heis the basis formed by E12, E23 and E13, we can see that n+ and Heis are isomorphic
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via

A 7−→ E12, B 7−→ E23, C 7−→ E13.

Explicitly, the isomorphism φ : n+ → Heis is given by

φ


0 ci a− bi

0 0

0 a+ bi 0

 =


0 2a c

0 0 b

0 0 0

 .

Remembering that k = u(2), we obtain the Iwasawa decomposition for su(1, 2):

su(1, 2) = u(2)⊕ a⊕Heis.

5.2.2 The flag manifold of SU(1, 2)

The standard minimal parabolic subalgebra of su(1, 2) is given by p = m ⊕ a ⊕ Heis,

where

m = g0 ∩ k =




ai 0 0

0 ai 0

0 0 −2a


∣∣∣∣∣∣∣∣∣ a ∈ R

 .

that is

p =




x bi y

0 −x 0

0 y −2Im(x)


∣∣∣∣∣∣∣∣∣ b ∈ R, x, y ∈ C


=




x 0 0

0 −x 0

0 0 −2Im(x)


∣∣∣∣∣∣∣∣∣ x ∈ C

⊕Heis.

Since the only subalgebra of su(1, 2) containing p is su(1, 2) itself, there are no parabolic

subalgebras other than the standard minimal one. This implies that SU(1, 2) has only

one flag manifold , that we will characterize now.

Proposition 1.3.1 implies that FΘ = K/KΘ, where the stabilizer is given by KΘ =

K ∩ PΘ. Viewing FΘ as an homogeneous space of K we can identify it as a K-orbit

under the adjoint representation. Specifically for the group SU(1, 2) we have
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Proposition 5.2.1. The only flag manifold F of SU(1, 2) embeds in the component s of the

Cartan decomposition as the Ad(U(2))-orbit of H ∈ a+.

Proof: The component s of the Cartan decomposition g = k⊕ s = u(2)⊕ s is invariant

under the adjoint representation of K = U(2). Since a is a one dimensional subalgebra,

a Weyl chamber a+ ⊂ a is just a ray starting at the origin. Choosing an element H ∈ a+,

the stabilizer of H under the adjoint action of K on s is the centralizer KH of H in K,

which is given by K ∩ P . It follows that the adjoint orbit Ad(U(2))H ⊂ s is identified

with the coset space K/KH , and this one is the same as the flag manifold F = G/P .

To get a better description of the flag manifold F of SU(1, 2) we take a look at the

stabilizer of H ∈ a+ under the adjoint action of K. If the Lie group SU(1, 2) is realized

via the hermitian form I3 we get

k =




ia 0 0

0 id −y

0 y iz


∣∣∣∣∣∣∣∣∣ a = −d− z ∈ R

 = u(2),

and thus the group K is of the form

K =


 det(u∗) 0

0 u

 ∣∣∣∣∣∣ u ∈ U(2)

 .

Remember that H ∈ a+ in this realization is of the form

H =


0 a 0

a 0 0

0 0 0

 , a > 0.

Writing

x =

 det(u∗) 0

0 u

 ,

where

u =

 m n

p q

 ,
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we have

xH = Hx ⇐⇒


0 a det(u∗) 0

am 0 0

ap 0 0

 =


0 am an

a det(u∗) 0 0

0 0 0



from which  a det(u∗) = am

ap = an = 0
=⇒

 p = n = 0

m = det(u∗)
(since a ̸= 0).

Now we have 1 = det(u∗)mq = mmq, that is, q = 1/m2. By the other hand,

1 = det(u∗)mq = mqmq = |mq|2 =
∣∣∣∣ 1m
∣∣∣∣2 ⇐⇒ |m| = 1.

This means that x ∈ KH is of the form

x =


m 0 0

0 m 0

0 0 1/m2

 , with |m| = 1.

Hence, the stabilizer

KH = {x ∈ K | Ad(x)H = H} = {x ∈ K | xHx−1 = H}

can be seen as the circle group U(1) = {m ∈ C ; |m| = 1}. Now, U(n)/U(n− 1) = S2n−1

and this implies that

F = Ad(K)H = K/KH = U(2)/U(1) = S3,

that is, the only flag manifold of SU(1, 2) is the sphere S3.
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5.2.3 Cartan subalgebras and Jordan-Schur decompositions

There are only two conjugation classes of Cartan subalgebras in su(1, 2) (see Sugiura

[33]). It is easy to see that

h1 =




a+ ib 0 0

0 −a+ ib 0

0 0 −2ib

 ∈ M3(C)

∣∣∣∣∣∣∣∣∣ a, b ∈ R

 = a+ hk

is a Cartan subalgebra in su(1, 2), where

hk =




ib 0 0

0 ib 0

0 0 −2ib

 ∈ M3(C)

∣∣∣∣∣∣∣∣∣ b ∈ R

 .

Now, we have that

h2 =




ib ic 0

ic ib 0

0 0 −2ib

 ∈ M3(C)

∣∣∣∣∣∣∣∣∣ b, c ∈ R

 .

is another Cartan subalgebra of su(1, 2), since it is abelian and X ∈ Ng(h2) if and only

if X ∈ h2. For the Cartan subalgebra h1 its decomposition into toroidal part h+1 and

vector part h−1 is given by h+1 = hk and h−2 = a (in fact, h1 is a maximal abelian subal-

gebra in su(1, 2) containing a). For the Cartan subalgebra h2 the toroidal part is given

by h+2 = h2 and the vector part h−2 = {0}. For the lie algebra su(p, q) we know that two

Cartan subalgebras are conjugate under an inner automorphism if and only if their

toroidal parts have the same dimension. This means that h1 and h2 are not conjugate

Cartan subalgebras and so we can choose them as representative Cartan subalgebras

of their own conjugate classes. We now take a look at the Jordan-Schur decompositions

of the elements belonging to h1 and h2. If Xs ∈ h1, its Jordan-Schur decomposition is

given by Xs = Xh +Xe, where the hyperbolic part Xh ∈ a and the elliptic part Xe ∈ hk.

If Xs ∈ h2 then Xs is an elliptic element, and so its Jordan-Schur decomposition is

Xs = Xh. Since we are working on a semisimple Lie algebra (a simple one to be pre-

cise), the Cartan subalgebras can be expressed as being the maximal toral subalgebras
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(a subalgebra is said to be toral if it consists only of semisimple elements). Since toral

subalgebras are abelian (cf. Humphreys, Chapter 8) we have that for every semisimple

element Xs there is a Cartan subalgebra containing it. In fact, if there is no Cartan sub-

algebra containing it, we can take a Cartan subalgebra h and consider h̃ the subalgebra

generated by h and Xs. Clearly h̃ is a toral subalgebra containing h, which contradicts

the maximality of h. In this way, for an arbitrary element X ∈ su(1, 2) we have that the

semisimple part Xs in its Jordan decomposition is conjugate to an element belonging

to h1 or belonging to h2. Since the Jordan-Schur decomposition X = Xh + Xe + Xn

is unique for every X ∈ su(1, 2) and the components Xh, Xe and Xn commute with

each other, we are lead to know all the possible Jordan-Schur decompositions for the

elements X ∈ su(1, 2). Write X = Xs +Xn, where Xs = Xh +Xe. The possibilities are

then the following

1. Xs = 0.

• Then X = Xn, with Xn conjugate to an element in n+ (which is isomorphic

to the Heisenberg Lie algebra).

2. Xs ̸= 0, Xs ∈ h2.

• Then X = Xe, with Xe conjugate to an element in h2.

3. Xs ̸= 0, Xs ∈ h1. In this case the possibilities are

• X = Xe, with Xe conjugate to an element in h1.

• X = Xh, with Xh conjugate to an element in h1.

• X = Xe +Xh, with Xe +Xh conjugate to an element in h1.

• X = Xh +Xn, with Xh conjugate to an element in h1 and Xn of the form

Xn =


0 ic 0

id 0 0

0 0 0

 .

5.2.4 Elements of su(1, 2) as vector fields on the sphere S3

The subspace formed by the imaginary quaternions ImH endowed with the brackets

[z, w] = zw − wz is a Lie algebra, and this Lie algebra is isomorphic to su(2). In fact, in
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ImH we have

[i, j] = 2k, [j,k] = 2i and [i,k] = −2j,

while in su(2) for the basis

A =

 0 i

i 0

 , B =

 0 −1

1 0

 , C =

 i 0

0 −i

 ,

we have

[A,B] = 2C [B,C] = 2A and [A,C] = −2B.

This implies that ImH = su(2). The Lie algebra ImH is represented in H through left

multiplication and also through right multiplication:

E : ImH −→ gl(H)

z 7−→ Ez

and
D : ImH −→ gl(H)

z 7−→ Dz

where Ez, Dz : H −→ H are given respectively by Ez(q) = zq and Dz(q) = qz, q ∈ H.

The representations E and D are faithful and commute, that is, for all z ∈ ImH we have

Ez ◦Dz(q) = Ez(qz) = zqz = Dz(zq) = Dz ◦ Ez(q), ∀q ∈ H

and if Ez = Dz = 0 then we must have z = 0, that is, ker(E) = ker(D) = {0}. This fact

implies that the Lie algebra u(2) is isomorphic to the Lie algebra of linear transforma-

tions

{Ez + aDi | z ∈ ImH, a ∈ R},

where the center z is given by the transformations aDi, a ∈ R. The group of the unit

quaternions, that is, the sphere

S3 = {q ∈ H ; ∥q∥2 = qq = 1}

is a Lie group isomorphic to SU(2). This can be seen via the identification

1 ⇔

 1 0

0 1

 , i ⇔

 0 i

i 0

 , j ⇔

 0 1

−1 0

 , k ⇔

 −i 0

0 i

 .
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Remember that an infinitesimal action of su(1, 2) on S3 is a homomorphism su(1, 2) →

Γ(TS3), where Γ(TS3) stands for the Lie algebra of vector fields on S3. By means of an

infinitesimal action of su(1, 2) on S3 one can see the Lie algebra su(1, 2) as a Lie algebra

of vector fields on the sphere S3. Considering the Cartan decomposition su(1, 2) =

k⊕ s = u(2)⊕H, the following propositions give us a better description of these vector

fields.

Proposition 5.2.2. The elements in the compact component k under the infinitesimal action of

su(1, 2) induced by the action of SU(1, 2) on S3 have the form

X(0,z,a)(x) = zx+ axi, x ∈ S3,

where z ∈ iH = su(2) and a ∈ R.

Proof: Consider the adjoint representation

Ad : K → Gl(su(1, 2))

k 7→ Ad(k) = d(Ck)1.

We know that it is differentiable and gives rise to the action

K × s → s, (k, x) 7→ Ad(k)x.

Since the flag S3 embeds in s as an Ad(K)-orbit, we can consider the restriction of the

above action to S3 (viewed as an Ad(K)-orbit) to get an infinitesimal action of k on S3.

Thus, for X ∈ k the corresponding infinitesimal action on S3 is given by

X̃(x) = d(Ad)1(X)x = ad(X)x,

that is, the induced vector field is given by the adjoint action of k on s. Recall that

k = u(2) = su(2) ⊕ z. The adjoint representation of su(2) ⊂ k in s corresponds to left

multiplication by immaginary quaternions in H. We can check this as follows. For an

element

Y =


0 z1 z2

z1 0 0

z2 0 0

 ∈ s,
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denoting z1 = p+ qi and z2 = r + si we can write


0 z1 z2

z1 0 0

z2 0 0

 ∈ s ↔ (z1, z2) ∈ C2 ↔ (p, q, r, s) ∈ H.

So, if we take

z =


0 0 0

0 −ai −y

0 y ai

 ∈ su(2), y = c+ di,

we get

ad(z)(Y ) =


0 aiz1 − z2y z1y − aiz2

−yz2 − aiz1 0 0

z1y + aiz2 0 0

 ,

from which
0 aiz1 − z2y z1y − aiz2

−yz2 − aiz1 0 0

z1y + aiz2 0 0

↔ (aiz1 − z2y, z1y + aiz2) ∈ C2

↔ (−aq − cr − ds+ (ap+ cs− dr)i, cp+ dq − as+ (ar + dp− cq)i) ∈ C2.

↔ (−aq − cr − ds, ap+ cs− dr, cp+ dq − as, ar + dp− cq) ∈ H.

By the other hand, if we multiply z = (0, a, c, d) ∈ Im(H) on the left by (p, q, r, s) ∈ H,

we obtain

(0, a, c, d) · (p, q, r, s) = (−aq − cr − ds, ap+ cs− dr, cp+ dq − as, ar + dp− cq),

that is, ad(z) corresponds to left multiplication by the immaginary quaternion z on H,

and the vector field induced by z on S3 is given by X̃z(x) = zx, x ∈ S3. For the elements

belonging to z, we describe the adjoint action in the following way. For

Z =


2ai 0 0

0 −ai 0

0 0 −ai

 ∈ z
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we have

ad(Z)(Y ) =


0 3aiz1 3aiz2

−3iaz1 0 0

−3iaz2 0 0


from which

0 3aiz1 3aiz2

−3iaz1 0 0

−3iaz2 0 0

↔ (3aiz1,−3aiz2) ↔ (−3aq, 3ap, 3as,−3ar).

By the other hand,

3a(p, q, r, s)i = (−3aq, 3ap, 3as,−3ar),

that is, ad(Z) can be identified with right multiplication by 3ai on H, and the vector

field induced by X on S3 is thus given by X̃a(x) = 3axi, x ∈ S3. This implies that the

induced vector field corresponding to a general element in k has the form X̃z + X̃a.

For the s component, there exists a K-invariant Riemannian metric such that for

every q ∈ s = H the vector field X̃q induced by q on S3 is the gradient of the height

function fq(·) = ⟨q, ·⟩ with respect to this K-invariant metric (see [7] and [34] for de-

tails).

In what concerns the elements in the s component, there exists a K-invariant Rie-

mannian metric such that for every q ∈ H = s the vector field X̃q induced by q on S3 is

the gradient of the height function fq(·) = ⟨q, ·⟩ with respect to this K-invariant metric

(see [7] and [34] for details), which is called a Borel metric.

To get the expression for the vector fields X̃(q,0,0) = X̃q induced by q ∈ s in S3 we

will compare the expressions for the gradient of the height function fq with respect to

both the canonical Riemannian metric (immersion) and the Borel metric in S3.

We begin considering S3 endowed with the canonical metric. The height function

fq is linear on s, so its gradient vector field evaluated at p ∈ S3 is obtained from the

orthogonal projection of q over p. In fact, (gradfq)p = d(fq)p(v) is the cotangent vector

ω such that ω(v) = ⟨q, v⟩, that is, the cotangent vector ω such that ⟨ω, v⟩ = ⟨q, v⟩, for all
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v ∈ TpS
3. Since ⟨q − ⟨q, p⟩p, v⟩ = ⟨q, v⟩ ∀v ∈ TpS

3, we get

(gradfq)p = q − ⟨q, p⟩p.

The vector field X̃q is thus given by

X̃q(p) = q − ⟨q, p⟩p

= q − 1

2
(qp+ pq) p

= q − 1

2
(qpp+ pqp), p ∈ S3.

Since ∥p∥ = pp = 1, we get

X̃q(p) =
1

2
(q − pqp).

Finally, a general element X ∈ su(1, 2) can be decomposed as

X = q + k = q + z + ai,

where k = z + ai ∈ k = su(2) + z (z ∈ su(2) and ai ∈ z) and q ∈ s. This implies that the

vector field induced by X on S3 has the form

X̃(q,z,a)(x) =
1

2
(q − xqx) + zx+ axi, x ∈ S3.

Now we consider the Borel metric, which is defined by the inner product in the

origin (su(2) = ImH) such that {i, j,k} is an orthogonal basis satisfying

∥j∥B = ∥k∥B = 1 ∥i∥2B = 2.

This because the Borel metric arises from the fact that S3 is a flag manifold of su(1, 2).

The Borel metric is the K-invariant metric in the flag S3 such that the a subspace kα =

k ∩ (gα + g−α) is orthogonal with kβ if α ̸= β and such that X ∈ kα has norm

∥X∥2B = α(H),

where H ∈ a+ is such that S3 = Ad(K)H (see Proposition 5.2.1).
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For convenience we can rewrite the realization suI(1, 2) as

 ia z

zt A

 , where a ∈ R, z ∈ C2 = H = R4, A ∈ u(2).

The origin of the flag can be chosen as being H given by a = 0, A = 0 and z = (1, 0) ∈

C2. The positive roots are α and 2α, α(H) = 1, and their multiplicities are respectively

2 and 1. The root spaces in k are then kα = span{j,k} and k2α = span{i}, which justifies

the above expression for the Borel metric.

Now we can compare what happens with the gradient vector fields in the canonical

and the Borel metrics.

In general a left invariant metric (·, ·) on a Lie group G is given by an inner product

in the origin. If {Z1, . . . , Zn} is an orthonormal basis with respect to this inner product,

then the left invariant vector fields {Z l
1, . . . , Z

l
n} form an orthonormal referential of the

Riemannian metric. The gradient gradf of a given function f on G with respect to (·, ·)

is thus

gradf = (Z1f)Z1 + · · ·+ (Znf)Zn,

where Zf indicates the directional derivative df(Z).

In the following we are going to denote by gradCf the gradient with respect to the

canonical metric on S3 and by gradBf the gradient with respect to the Borel metric.

Let {Zi, Zj, Zk} be the left invariant vector fields corresponding to the basis {i, j,k} of

su(2) = ImH. Then {Zi, Zj, Zk} is orthonormal with respect to the canonical metric

while { 1√
2
Zi, Zj, Zk} is orthonormal with respect to the Borel metric. Hence we have

gradBf =
1√
2
(Zif)Zi + (Zjf)Zj + (Zkf)Zk

=

(
1√
2
− 1

)
(Zif)Zi + (Zif)Zi + (Zjf)Zj + (Zkf)Zk

=

(
1√
2
− 1

)
(Zif)Zi + gradCf.

Since Zif = (gradCf, Zi) the above formula becomes

gradBf = gradCf +

(
1√
2
− 1

)
(gradCf, Zi)Zi = gradCf +

√
2− 2

2
(gradCf, Zi)Zi.
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which correlates gradBf and gradCf .

Regarding SU (2) as the unit sphere of H endowed with the quaternionic product,

the left invariant vector fields are the linear vector fields given by right multiplication

by imaginary quaternions (see [28], Section 5.2.1). In special,

Zi (p) = pi Zj (p) = pj Zk (p) = pk.

And this allows us to rewrite the above gradients in p ∈ S3 as

gradCf (p) =
∂df

∂i
(p) pi+

∂df

∂j
(p) pj+

∂df

∂k
(p) pk

where

∂df

∂i
(p) =

d

dt
f
(
peit
)∣∣

t=0

∂df

∂j
(p) =

d

dt
f
(
pejt
)∣∣

t=0

∂df

∂i
(p) =

d

dt
f
(
pekt

)∣∣
t=0

.

The gradient with respect to the Borel metric is then

gradBf (p) =

(
1√
2
− 1

)
∂df

∂i
(p) pi+ gradCf (p) .

For the height function fq(p) = ⟨q, p⟩, p ∈ S3 and q ∈ H fixed, we already have its

expression in the canonical metric, that is,

gradCfq (p) =
1

2
(q − pqp) .

However,

∂dfq
∂i

(p) =
d

dt
fq
(
peit
)∣∣

t=0
=

d

dt
⟨q, peit⟩

∣∣
t=0

= ⟨q, pi⟩ = 1

2
(−qip+ piq)

which leads us to

gradBfq (p) =
1

2
(q − pqp) +

√
2− 2

4
(−qip+ piq) pi

=
1

2
(q − pqp) +

√
2− 2

4
piqpi+

√
2− 2

4
q.
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For example, if q = 1 the corresponding vector field is given by

gradBf1(p) =
1

2
(1− p2) +

√
2− 2

4

(
(pi)2 + 1

)
.

By attempting to understand the behavior of this vector field, we can use the stere-

ographic projection to visualize it as a vector field in a three-dimensional space.

To achieve this, let us momentarily consider 1 ∈ H as the north pole of the sphere

S3 = {q ∈ H ; |q| = 1}. Moreover, let us identify the pure quaternions ImH with the

hyperplane

ImH = {z ∈ H ; z = 0 + ui+ vj+ wk} = {(u, v, w) ∈ R3 ; u, v, w ∈ R} = R3.

Let π1 : S3\{1} → R3 be the stereographic projection from the north pole 1 onto ImH,

defined as

π1(p) = z, p ∈ S3, z ∈ ImH,

where z ∈ ImH is the unique point in the intersection r1p ∩ ImH, being r1p the straight

line in H containing 1 and p.

An expression for π1(p) = (u, v, w) in terms of p = a + bi + cj + dk ∈ S3 can be

written as follows. Let

r1p = {1 + tn ; n = p− 1 and t ∈ R} = {(1 + t(a− 1)) + tbi+ tcj+ tdk ; t ∈ R} ⊂ H.

The straight line r1p intersects ImH when 1 + t(a − 1) = 0, that is, when t = 1/1− a.

Therefore, if p = a1+ bi+ cj+ dk ∈ S3, we obtain

π1
p (p) = ui+ vj+ wk =

b

1− a
i+

c

1− a
j+

d

1− a
k ∈ ImH.

Consequently,

Dπ1 =


∇u

∇v

∇w

 =


b

(1−a)2
1

1−a
0 0

c
(1−a)2

0 1
1−a

0

d
(1−a)2

0 0 1
1−a

 .
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The vector field gradBf1 can be expressed as

gradBf1(p) =

(
1− a2 +

√
2− 2

2
b2

)
+

(√
2− 2

2
+ 1

)
abi+

−

(√
2− 2

2
bd+ ac

)
j+

(√
2− 2

2
bc− ad

)
k,

where p = a1+ bi+ cj+ dk is such that a2 + b2 + c2 + d2 = 1.

Then the expression for the projected vector field becomes

Dπ1 (gradBf1(p)) =


b

(1−a)2

(
1− a2 +

√
2−2
2

b2
)
+

√
2−2
2

ab
1−a

c
(1−a)2

(
1− a2 +

√
2−2
2

b2
)
− 1

1−a

(√
2−2
2

bd+ ac
)

d
(1−a)2

(
1− a2 +

√
2−2
2

b2
)
+ 1

1−a

(√
2−2
2

bc− ad
)
 .

With this expression, we hope to be able to find a way to describe the vector field

gradBf1, its trajectories, and continue the study of controllability in this case. However,

the expressions obtained for this specific vector field are already quite complicated,

and for more general gradient vector fields, the expressions might become even more

intricate. Consequently, we are compelled to seek alternate approaches for advancing

this study.



APPENDIX A

REALIFICATION AND

COMPLEXIFICATION OF VECTOR SPACES

This appendix is devoted to give a brief compilation of the basics concepts about re-

alification and complexification of vector spaces. Many textbooks in Linear Algebra

discuss such subjects in details, e.g., [23]. For an approach in the context of Lie Alge-

bras and Lie Groups we refer [26] and [15].

A.1 Realification

A real vector space can be immediately obtained from a complex one simply by re-

striction of the scalars from C to R. This procedure is called realification, and we shall

discuss it now.

Definition A.1.1. If V is a C-vector space, the R-vector space V R obtained from V by restrict-

ing the scalars from C to R is called realified space of V and its dimension is twice that one of

V , that is,

dimR V
R = 2dimC V.

Note that if {e1, . . . , en} is a C-basis of V , then {e1, ie1, . . . , en, ien} is a R-basis for

V R, which justifies the equality above.

Definition A.1.2. Let V be a R-vector space. A linear operator J : V → V for which J2 =

−IdV is said to be a complex structure on V .

Given a complex structure J on a R-vector space V , we can consider V as a C-vector

space with the complex scalar multiplication defined by

(a+ bi) · v := a · v + b · J(v), where v ∈ V, a+ bi ∈ C.
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Example A.1.3. The most natural example of complex structure is given by the multiplication

by i, which defines a complex structure on V R. In other words, if V is a C-vector space, then

the linear operator J : V → V , v 7→ i · v, induces a complex structure on V R in a very natural

way, since both vector spaces have the same underlying set and J2 = −IdV .

This means that it is perfectly possible to get back the complex scalar multiplication in V

from V R via the real linear operator J , as mentioned above.

On the other hand, a complex structure J on a R-vector space W has minimal polynomial

of the form λ2 + 1, whose eigenvalues are ±i, and since its eigenvalues occurs in pairs, dimW

is even. This means that we can use the complex structure J to define on W a complex scalar

multiplication, and so we get a C-vector space for which the realified space is exactly W .

Example A.1.4. Let on R2 the complex structure J having the matrix in the canonical basis

given by

J =

 0 −1

1 0

 .

The complex scalar product defined on R2 from this complex structure is

(a+ ib)(u, v) = a(u, v) + bJ(u, v)

= a(u, v) + b(−v, u)

= (au− bv, av + bu)

= (au− bv) + i(av − bu), u, v ∈ R,

which is the usual representation of C. However, if we choose J as above but in a different

basis, we obtain a different complex scalar multiplication. This means that, in general, a given

R-vector space of even dimension admits many different complex structures that gives rise to

different (although isomorphic) C-vector spaces.

If W is a vector subspace of the C-vector space V , then its realified space WR is a

vector subspace of V R. However, not all vector subspaces of V R are obtained by the

realification of subspaces of V . For this to be true the vector subspace must be closed

under the multiplication by i, which is equivalent to say that a vector subspace of V R

comes from a complex subspace if and only if it is invariant under the natural complex

structure J .
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A.2 Complexification

Consider now a R-vector space V . To obtain from V a C-vector space naturally asso-

ciated with V , we first must to give a meaning to the complex scalar multiplication

(a+ bi) · v, where v ∈ V . Moreover, one should expect for this multiplication to satisfy

(a+ bi) · v = av + biv = av + ibv.

Since V is a R-vector space, the multiplication by i has no meaning in V , and thus

we should regard av + ibv as a formal sum of av with bv, where the factor i keeps the

addends apart. A more precise way to do it is considering av+ ibv as being the ordered

pair (av, bv).

Definition A.2.1. The complexification of a R-vector space V is defined as VC = V ⊕ V ,

with the scalar multiplication defined by

(a+ bi)(v1, v2) = (av1 − bv2, bv1 + av2), a, b ∈ R.

The choice of this operation is justified if we think of the ordered pair (v1, v2) ∈

V ⊕ V as a formal sum v1 + iv2:

(a+ bi)(v1 + iv2) = av1 + aiv2 + biv1 − bv2 = (av1 − bv2) + i(bv1 + av2).

Further, as

i(v, 0) = (0, v),

it follows that

(v1, v2) = (v1, 0) + (0, v2) = (v1, 0) + i(v2, 0).

And this tells us that we can formally think about the elements of VC as elements of

the form v1 + iv2. However, it is worth noting that iv2 has no meaning while i(v2, 0) is

exactly (0, v2).

Example A.2.2. Let RC be the set of ordered pairs (x, y), x, y ∈ R, equipped with the scalar
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multiplication

(a+ ib)(x, y) = (ax− by, bx+ ay).

This makes it clear that RC is isomorphic to C as C-vector spaces, with isomorphism given by

(x, y) 7→ x+ iy.

If V ̸= {0} is a R-vector space and {ei} is a R-basis for V , then {(ei, 0)} is a C-basis

for VC. In fact, given (v1, v2) ∈ VC we can write v1 and v2 as R-linear combinations of the

elements ei, and this shows that every element of VC is a R-linear combination of the

elements (ei, 0) and (0, ei). The equality (0, ei) = i(ei, 0), allows us to pass to C-linear

combinations of the elements (ei, 0). It remains only to show that such set is linearly

independent. But

(a1 + ib1)(e1, 0) + · · ·+ (an + ibn)(en, 0) = (0, 0), ai, bi ∈ R,

is equivalent to

(a1e1 + · · ·+ anen, b1e1 + · · ·+ bnen) = (0, 0),

and the linear independence of ei over R ensures that ai and bi are all zero. This also

proves that dimC(VC) = dimR(V ).

Both the R-subspaces V ⊕ {0} and {0} ⊕ V of VC behave like V , since the sum is

component-wise defined, a(v, 0) = (av, 0) and a(0, v) = (0, av), a ∈ R. For this reason,

the R-linear transformation v 7→ (v, 0) is called canonical embedding of V into VC.

It is also possible to define the complexification of a real vector space V with an

approach based on tensor products. Let us see how to proceed.

Definition A.2.3. The tensor product between the real vector spaces V and W is a real vector

space V ⊗R W together with a R-bilinear map τ : V × W → V ⊗R W such that for every

R-bilinear map φ : V × W → X there exists only one linear map Φ : V ⊗R W → X that

commutes the diagram
V ×W V ⊗R W

X

φ

τ

Φ

that is, φ = Φ ◦ τ . The usual notation to the image τ(v ×w) of v ×w under τ is v ⊗w, which

is called monomial tensor.
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It is possible to prove that the tensor product between V and W always exist. More-

over, the tensor product is unique up to isomorphisms, that is, if τ1 : V ×W → T1 and

τ2 : V × W → T2 are two tensor products between V and W then there is an unique

isomorphism i : T1 → T2 that commutes the diagram

T1

V ×W

T2

i

τ1

τ2

It is also possible to show that the monomial tensors v ⊗ w generate V ⊗R W as a real

vector space. In what concerns complexification, we are particularly interested in the

tensor product of the form V ⊗R C, where V is a real vector space.

If V has {e1, . . . , en} as a basis, then the set

{e1 ⊗ 1, . . . , en ⊗ 1, e1 ⊗ i, . . . en ⊗ i}

is a basis for V ⊗R C. Furthermore, as every element belonging to V ⊗R C can be

uniquely expressed as v1 ⊗ 1 + v2 ⊗ i, v1, v2 ∈ V , we can do the identification

V ⊗R C ⇔ V ⊕ iV,

being iV a vector subspace isomorphic to V .

If a+ib ∈ C, then the multiplication by a+ib is a R-linear map from C to C. Denoting

by m(a+ ib) such multiplication, we have that 1⊗m(a+ ib) defines a R-linear map from

V ⊗R C to V ⊗R C. This allows us to define the multiplication by the complex scalar

α = a+ ib in V ⊗R C by setting

α · (v ⊗ β) := v ⊗ (αβ), v ∈ V, β ∈ C.

And so we define the complexification of V as being the complex vector space

V ⊗R C together with the scalar multiplication above defined.

The vector space V is identified inside V ⊗R C with V ⊗ 1, which is the canon-
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ical embedding of V into V ⊗R C. It is possible to show that there exists a unique

C-isomorphism fV : VC → V ⊗R C that commutes the diagram

V

VC V ⊗R CfV

where the downward arrows indicate the canonical embeddings. This isomorphism is

defined by fV (v1, v2) = v1 ⊗ 1 + v2 ⊗ i.

Both VC and V ⊗R C are direct sums of subspaces V and iV (via canonical embed-

dings), which suggests that a complex vector space W is the complexification of the

real space V when W = V + iV and V ∩ iV = {0}. Note that this differs from the

previous meaning given to the complexification (Definition A.2.1) by the reason that

now we are considering a preexisting vector space as the complexification instead of

starting with a real vector space V and constructing the complexification outside of it.

Definition A.2.4. Let V be a C-vector space. A conjugation in V is an antilinear transforma-

tion σ such that σ2 = 1. In other words, a conjugation in V is a transformation σ : V → V

satisfying

1. σ(v + v′) = σ(v) + σ(v′), v, v′ ∈ V ;

2. σ(cv) = c̄σ(v), c ∈ C and v ∈ V ;

3. σ(σ(v)) = v, v ∈ V .

It is clear that every conjugation is R-linear even if it is not C-linear.

Given a R-vector space V , the elements belonging to VC can be identified with ele-

ments of the form u+ iv, u, v ∈ V and this identification allows us to define a conjuga-

tion σ : VC → VC via

σ(u+ iv) = u− iv.

It is immediate that σ2 = 1 and that σ is antilinear in VC. Moreover,

V = {w ∈ VC | σ(w) = w}.

A C-vector space W endowed with a conjugation can be understood as a complexi-

fied space of a R-vector space. To see it, note that σ is a linear transformation from WR
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on WR having eigenvalues 1 and −1, and thus

WR = W1 ⊕W−1,

being W1 and W−1 the eigenspaces associated to the eigenvalues 1 and −1, respectively.

So, if v ∈ W1, then σ(iv) = −iv, that is, iv ∈ W−1.

In other words, if J is the standard complex structure of WR, we have J(W1) ⊂ W−1

and, similarly, J(W−1) ⊂ W1, which implies that W1 and W−1 has the same dimension.

It follows that W is the complexified space of W1. Further,

W1 = {v ∈ W | σ(v) = v},

where σ is the conjugation obtained from the decomposition W = W1 +W−1 ∼ W1 +

iW−1. It is worth to note that different conjugations give us different ways to see W as

the complexified space of a real vector space.

There is a bijection between the conjugations of a C-vector space V and its real

subspaces that complexifies to V , and there is also a bijection between the C-vector

spaces and the R-vector spaces that admit complex structures.

Finally, the realified of a complex vector space can be complexified. Let (V R)C be

such complexification. We know that the natural complex structure of V R, J , is a R-

linear transformation of V R with eigenvalues ±i, that is, J does not have eigenvectors

in V R, but in its complexification.

Write Vi and V−i for the generalized eigenspaces of J in (V R)C associated, respec-

tively, to the eigenvalues ±i. Restricted to Vi, the matrix of J has the form


i ∗

. . .

i

 .

By the fact that J2 = −1 such matrix is diagonal, which allows us to conclude that

Jv = iv for every v ∈ Vi. Similarly, Jw = −iw for every w ∈ V−i.

Now, as J is real in V R, we have V−i = σ(Vi), where σ is the conjugation of (V R)C

corresponding to V R. This ensures that Vi and V−i have the same dimension and, since
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(V R)C = Vi ⊕ V−i, then the dimension of V±i is the half of that one of V R, which agrees

with the dimension of V . As these spaces are complex, it follows that they are isomor-

phic to V .

This suggests that the complexification of a realified space can be seen as a quater-

nionic vector space with scalar multiplication given by

(a+ bi+ cj+ dk)w = aw + Ew + Fw +Gw, a, b, c, d ∈ R, w ∈ (V R)C,

where E = Jσ, being σ the conjugation of (V R)C, F is the scalar multiplication by i in

(V R)C and G = EF .
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