Use este identificador para citar ou linkar para este item: http://repositorio.uem.br:8080/jspui/handle/1/1426
Autor(es): Bazanella, Gisele Cristina dos Santos
Orientador: Rosane Marina Peralta
Título: Agregação de valor a resíduos agroindustriais: produção de enzimas oxidativas por basidiomicetos e aplicação na descoloração de corantes industriais
Banca: Cristina Giatti Marques de Souza - UEM
Banca: Sílvio Cláudio da Costa - UEM
Banca: Ione Parra Barbosa Tessmann - Brazilian Journal of Microbiology (Impresso)
Banca: Marina Kimiko Kadowaki - UNIOESTE
Palavras-chave: Aproveitamento de resíduos;Descoloração de corantes;Aproveitamento de resíduos;Enzimas ligninolíticas;Moringa oleifera
Data do documento: 2013
Editor: Universidade Estadual de Maringá
Resumo: Corantes sintéticos são liberados no ambiente, através de efluentes decorrentes de indústrias têxteis, de impressão, de artefatos de couro, papel, alimentos, cosméticos, tintas e plásticos. Persistem na natureza, pois são estáveis à luz, temperatura e ataque microbiano. Podem obstruir a passagem de luz solar através dos recursos hídricos, levando a uma diminuição da fotossíntese e consequente diminuição da concentração de oxigênio dissolvido, essencial para sobrevivência de organismos aeróbicos e a uma diminuição da biodegradação de matérias orgânicas. Diante deste contexto, diferentes tecnologias para a descoloração de corantes têm sido estudadas. Atualmente, a remoção de corantes a partir de efluentes é realizada por meios físico-químicos, incluindo adsorção, precipitação, coagulação-floculação, oxidação, filtração e fotodegradação. Abordagens biotecnológicas são também comprovadamente eficazes e potencialmente eco-eficientes no tratamento destas fontes de poluição. Vários microrganismos, incluindo fungos ligninolíticos têm a capacidade de descolorir e degradar uma vasta gama de corantes. A baixa especificidade das enzimas ligninolíticas permite que elas sejam capazes de atacar uma série de moléculas quimicamente semelhantes à lignina, incluindo os corantes sintéticos. No primeiro artigo, uma extensa revisão da capacidade de fungos da podridão branca da madeira e suas enzimas descolorir corantes sintéticos foi realizada. No segundo artigo, a produção de enzimas ligninolíticas lacase e Mn peroxidase pelo fungo da podridão branca Pleurotus pulmonarius (Fr.) Quélet foi estudada em culturas em estado sólido utilizando resíduos agrícolas e de alimentos como substrato. As maiores atividades de lacase foram encontradas nos cultivos com farelo de trigo (2.860 ± 250 U/L), casca de abacaxi (2.450 ± 230 U/L) e bagaço de laranja (2.100 ± 270 U/L) todas elas com uma umidade inicial de 85%. As maiores atividades de Mn peroxidase foram obtidas em culturas com casca de abacaxi (2.200 ± 205 U/L) a uma umidade inicial de 75%. Em geral, a condição de elevada umidade inicial (80-90%) foi a melhor condição para a produção de lacase, enquanto a melhor condição para a produção de Mn peroxidase foi cultivo a baixas umidades iniciais (50-70%). Culturas contendo as atividades da Mn peroxidase elevadas foram mais eficientes na descoloração dos corantes industriais vermelho do congo, azul de metileno e violeta de etila. O corante remazol brilliant blue R (RBBR) foi eficientemente descolorido em culturas com alta atividade de Mn peroxidase e lacase. Finalmente, no terceiro artigo, a produção de lacase por Pleurotus ostreatus foi avaliada em cultivos em estado sólido utilizando-se semente de Moringa oleifera e farelo de trigo como substrato na presença e ausência de carvão ativado como agente clarificador. Os resultados obtidos demonstram que elevadas atividades de lacase foram obtidas nas culturas com M. oleifera (2338a ± 220 U/L) quando comparada às obtidas com o tradicional substrato farelo de trigo (1520c ± 285 U/L). A presença do agente clarificador carvão ativado teve um efeito significativo na produção de lacase nos cultivos em farelo de trigo (2081a,b ± 202 U/L), mas não nos cultivos em M. oleifera (2126a,b ± 48 U/L). O uso de uma mistura de farelo de trigo-semente de Moringa na proporção de 4:1 também resultou em um pequeno incremento na produção de lacase (2252a,b ± 475 U/L). O carvão ativado apresentou um efeito clarificador nos extratos enzimáticos brutos obtidos dos cultivos em M. oleifera. A lacase obtida em cultivos com semente de M. oleifera mais carvão ativado a 1% foi concentrada através de filtração por membrana com cut off de 5 kDa seguido de liofilização e utilizada com sucesso na descoloração do corante antraquinoníco RBBR.
Abstract: Large amounts of chemical dyes are used for various industrial applications such as textile and printing industries. It is estimated that between 10 and 20% of about 0.7 million tons of dyestuff that are manufactured each year and used in dyeing processes may be found in wasterwater. Several of these dyes are very stable to light, temperature and microbial attack, making them recalcitrant compounds. Dyes can obstruct the passage of the sunlight through the water resources, leading to decreased photosynthesis by aquatic plants coupled to a decreased concentration of dissolved oxygen, and to a diminished biodegradation of organic matters. Currently the removal of dyes from the effluents is brought about by physicochemical means, including adsorption, precipitation, coagulationflocculation, oxidation, filtration and photo-degradation. At the present, the biotechnological approaches are proven to be potentially effective and ecoefficient in the treatment of these pollution sources. Several microorganisms including the ligninolytic fungi have the ability to decolorize and degrade a wide range of dyes. The possibility of using the filamentous fungi associated with the decay of wood, usually called white-rot fungi, has attracted considerable attention. White-rot fungi possess a group of oxidative enzymes named lignin-modifying enzymes or ligninolytic enzymes involved in lignin degradation, mainly laccases and peroxidases. Due to the fact that ligninolytic enzymes are non-specific, they are able to attack a series of molecules chemically similar to lignin including the synthetic dyes. In the first paper, a review of implication of white-rot fungi and their ligninolytic enzymes in dye decolorization processes was carried out. In the second article, the production of ligninolytic enzymes (laccase and Mn dependent peroxidase) by the white-rot fungus Pleurotus pulmonarius (FR.) Quélet was studied in solid state cultures using agricultural and food wastes as substrate. The highest activities of laccase were found wheat bran (2,860±250 U/L), pineapple peel ( 2,450±230 U/L) and orange bagasse (2,100±270 U/L) cultures, all of them at an initial moisture level of 85%. The highest activities of Mn peroxidase were obtained in pineapple peel cultures (2,200±205 U/L) at an initial moisture level of 75%. In general, the condition of high initial moisture level (80-90%) were the best condition to laccase activity, while the best condition to Mn peroxidase activity was cultivation at low initial moisture (50-70%). Cultures containing high Mn peroxidase activities were more efficient in the decolorization of the industrial dyes congo red, methylene blue and ethyl violet than those containing high laccase activity. Also, crude enzymatic extracts with high Mn peroxidase activity were more efficient in the in vitro decolorization of methylene blue, ethyl violet and congo red. The dye remazol brilliant blue R (RBBR) was efficiently decolorized by both crude extracts, rich in Mn peroxidase activity or rich in laccase activity. Finally, in the third article, the production of laccase by Pleurotus ostreatus was evaluated in solid-state cultivation using Moringa oleifera seed and wheat bran as substrate in the presence and absence of activated charcoal as a clarifying agent. The results show that high laccase activity was obtained in cultures with M. oleifera (2338 ± 220 U/L) compared to those obtained with traditional wheat bran substrate (1520 ± 285 U/L). The presence of the clarifying agent activated carbon had a significant effect on the laccase production cultures in wheat bran (2081a,b ± 202 U/L) but not in the cultures with M. oleifera (2126a,b ± 48 U/L). The use of a mixture of bran seed of Moringa in 4:1 ratio also resulted in a small increase in the production of lacase (2252a,b ± 475 U/L). The activated charcoal showed a clarifying effect on crude enzyme extract obtained from cultures in M. oleifera. Laccase obtained in seed crops with M. oleifera plus 1% activated carbon was concentrated by membrane filtration with 5 kDa cut off followed by lyophilization and used successfully in decolorization of the anthraquinone dye RBBR.
URI: http://repositorio.uem.br:8080/jspui/handle/1/1426
Aparece nas coleções:3.1 Tese - Ciências Agrárias (CCA)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
000210002.pdf1,48 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.