Use este identificador para citar ou linkar para este item: http://repositorio.uem.br:8080/jspui/handle/1/1443
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorAngélica Marquetotti Salcedo Vieirapt_BR
dc.contributor.authorPinto, Laura Adriane de Moraespt_BR
dc.date.accessioned2018-04-05T17:50:36Z-
dc.date.available2018-04-05T17:50:36Z-
dc.date.issued2016pt_BR
dc.identifier.urihttp://repositorio.uem.br:8080/jspui/handle/1/1443-
dc.description.abstractThe increasing pollution of surface waters, caused groundwater to be further explored becoming a new source of supply worldwide. Manganese is naturally present in groundwater and even at low concentrations can cause a number of problems in water quality, making its removal essential. The presence of manganese in water is a concern for both population and industry, quality water is a prerequisite of great importance for any safe food production. The incidence of manganese in water is directly linked to oxidation and corrosion of pipes, as well as being primarily responsible for adding odor, metallic taste and blackened coloring to water in distribution and supply systems. Manganese (Mn) is an essential microelement, involved in bones and cartilage mineralization, particularly in children in the growth phase. However, high concentrations are toxic to humans and animals, may cause neurotoxic effects, thus, its removal before consumption is essential. In this context, this work objective was to find alternative methods for removing manganese of consumption and food production water. Initially, the moringa pods were collected in the city of Aracajú- SE. They were then washed for removing dirt, and dried in an oven at 60ºC for 24 hours. After drying, the material was subjected to particle size patterning of 0,32 mm and this material then received the name of non-treated pods (VAI). The agent treatment NaOH 0,1mmol (Synth, 97% purity) was evaluated as a basic agent and HCl 0,1 mmol L-1 (Nuclear 36,5% purity) as an acid agent for its ability to improve the Mn sorption by biomass. The pretreatment was carried out following the methodology described by Kumar and Gaur (2011), where 50 mg of untreated biosorbent was added to 50 mL of treating agent and stirred at 80 rpm for 30 min at 25°C. Subsequently the biomass was centrifuged (300 rpm, 15 min), the supernatant discarded and the pellet washed with Milli-Q water until neutral pH, then treated biomass was dried in an oven at 60 °C to constant weight. After drying the material was subjected to particle size standardization process, to obtain particles with a size of 0,32 mm. The pretreated acid pod was named VTA pod, the basic pre-treated pod was named VTB, all were evaluated for their manganese removal ability from tested water. The biosorbents were characterized by EDS, SEM and FTIR. The experimental data was kinetically analyzed and it was found that the biosorption by nine different adsorbents followed pseudo-second order kinetics, with a residence time of 30 min for all the pods. The equilibrium data was analyzed using the Langmuir and Freundlich isotherm model, and the more appropriate model for all adsorbents was Freundlich, confirming the heterogeneous nature of the biosorbents. The thermodynamic properties were also evaluated and confirmed the spontaneous nature of reaction, as the biosorption process by pods viability. This study revealed that the basic treatment promoted an improvement in Mn (II) removal capacity for all the adsorbents. The best removal results were obtained using a pH 6,0, 0,50 g of adsorbent in a contact time of 60 minutes. The most efficient biosorbent for the manganese removal was the basic treated pod, obtaining 94% removal, followed by the integral pod (VAI) with 82% and last, the acid pod (VTA) with 61% of removal. The usage of Moringa oleífera as adsorbent is an attractive option for the treatment of Mn polluted water, since beyond being a natural product of easy obtainment it is a renewable and biodegradable material. The biosorption can be adopted as a pre-treatment for groundwater with industrial purpose, helping not only with health maintenance but also with the improvement of equipment lifespan.en
dc.languageporpt_BR
dc.publisherUniversidade Estadual de Maringápt_BR
dc.rightsopenAccesspt_BR
dc.subjectBiossorçãopt_BR
dc.subjectManganêspt_BR
dc.subjectMoringa oleífera Lampt_BR
dc.subjectPré-tratamento da águapt_BR
dc.subjectBrasil.pt_BR
dc.subjectBiosorptionen
dc.subjectManganeaseen
dc.subjectMoringa oleiferaen
dc.subjectPretreatmenten
dc.subjectBrazil.en
dc.titleBiossorção de Mn(II) por vagem de Moringa oleífera a partir de águas contaminadaspt_BR
dc.typemasterThesispt_BR
dc.contributor.referee1Benício Alves de Abreu Filho - UEM
dc.contributor.referee2Gisele Cristina dos Santos Bazanella - UEM
dc.description.resumoA crescente poluição das águas de superfície, fez com que as águas subterrâneas fossem mais exploradas se tornando uma nova fonte de abastecimento em todo o mundo. O manganês está naturalmente presente em águas subterrâneas e mesmo em baixas concentrações pode ocasionar uma série de problemas na qualidade da água, tornando sua remoção essencial. A presença de manganês na água é uma preocupação tanto para a população como para a indústria, água de qualidade é um pré-requisito de grande importância para a produção de qualquer gênero alimentício seguro. A incidência de manganês na água está diretamente ligada a oxidação e corrosão de tubulações, além de ser a principal responsável por conferir, odor, sabor metálico e coloração enegrecida para água em sistemas de distribuição e abastecimento. O manganês (Mn) é um importante microelemento essencial, está envolvido na mineralização dos ossos e cartilagens, especialmente nas crianças em fase de crescimento. Contudo, altas concentrações são toxicas para os seres humanos e animais, podendo causar efeitos neurotóxicos, sendo assim, essencial sua remoção antes do consumo. Neste contexto, o objetivo deste trabalho foi encontrar métodos alternativos para a remoção de manganês de água destinada ao consumo e produção de alimentos. Inicialmente, as vagens de moringa foram coletadas na cidade de Aracajú- SE . Em seguida, foram lavadas para remoção de sujidades e secas em estuda a 60ºC por 24 horas. Após a secagem, o material foi submetido a padronização granulométrica de 0,32 mm e este material então recebeu o nome de vagens sem tratamento (VAI). Foram avaliados os agentes de tratamentos NaOH 0,1mmol (Synth, 97% de pureza) como agente básico e HCl 0,1 mmol L-1 (Nuclear 36,5% de pureza) como agente ácido, por sua capacidade em melhorar a sorção de Mn pela biomassa. O pré-tratamento foi realizado seguindo a metodologia descrita por Kumar e Gaur (2011), onde 50 mg do biossorvente sem tratamento foi adicionado em 50 mL de agente de tratamento e agitado a 80 rpm durante 30 min a 25 °C. Posteriormente a biomassa foi centrifugada (300 rpm, 15 min), o sobrenadante descartado e o pellet lavado com água Milli-Q até a neutralização do pH, em seguida, a biomassa tratada foi seca em estufa a 60 °C até peso constante. Após a secagem o material foi submetido ao processo de padronização granulométrica, a fim de se obter partículas com um tamanho de 0,32 mm. A vagem pré-tratada ácida recebeu o nome de vagem de VTA, a vagem pré-tratada básica recebeu o nome de VTB, onde todos foram avaliados quanto a sua capacidade para remoção de manganês da água testada. Os biossorventes foram caracterizados por EDS, MEV e FTIR. Os dados experimentais foram analisados cineticamente e descobriu-se que a biossorção pelos nove diferentes adsorventes seguiu a cinética de pseudo-segunda ordem, com tempo de contato de 30 min para todas as vagens. Os dados de equilíbrio foram analisados usando os modelos isotérmicos de Langmuir e Freundlich, onde o modelo foi mais adequado para todos os adsorventes foi o de Freundlich, confirmando a natureza heterogênea dos biossorventes. As propriedades termodinâmicas também foram avaliadas e confirmaram a natureza espontânea da reação assim como a viabilidade do processo de biossorção a partir das vagens. O presente estudo relevou que o tratamento básico promoveu uma melhora na capacidade de remoção de Mn (II) para todos os adsorventes. As melhores remoções foram obtidas utilizando-se pH 6,0, 0,50 g de adsorvente e em tempo de contato de 60 minutos. O biossorvente mais eficiente para a remoção de manganês foi a vagem tratada básica com 94% de remoção, seguida da vagem integral (VAI) com 82% e por fim da vagem ácida (VTA) com remoção de 61%. A utilização da Moringa oleifera como adsorvente é uma opção atraente para o tratamento de águas contaminadas com Mn, já que além de ser um produto natural de fácil obtenção ela é um material renovável e biodegradável. A biossorção pode ser adotada como um pré-tratamento das águas subterrâneas destinadas a indústria, colaborando não apenas com a manutenção da saúde dos consumidores, mas também com o aumento da vida útil dos equipamentos.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência de Alimentospt_BR
dc.publisher.initialsUEMpt_BR
dc.subject.cnpq1Ciências Agráriaspt_BR
dc.publisher.localMaringá, PRpt_BR
dc.description.physical[36 f.]pt_BR
dc.subject.cnpq2Ciência e Tecnologia de Alimentospt_BR
dc.publisher.centerCentro de Ciências Agráriaspt_BR
Aparece nas coleções:2.1 Dissertação - Ciências Agrárias (CCA)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
000222275.pdf1,25 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.