Please use this identifier to cite or link to this item: http://repositorio.uem.br:8080/jspui/handle/1/6227
Authors: Othechar , Pedro Flávio Silva
Orientador: Souza, Josiney Alves de
Title: Atratores direcionais de cociclos topológicos : caracterização via compactificação de Stone Check e ? pré-ordem de Green
Keywords: Cociclos topológicos;Comportamento assintótico;Compactificação de Stone-Cech;Extensão de cociclos;Decomposições de Morse;Topological cocycles;Supercritical sources;Asymptotic behaviour;Stone-Cech compactification;Cocycles extensions;Morse decomposition
Issue Date: 2021
Abstract: Essa tese trata-se do estudo do comportamento assintótico de cociclos topológicos, os quais generalizam sistemas dinâmicos não-autônomos, pois possuem uma ação condutora por um semigrupo abstrato. Um dos principais objetos estudados é o atrator direcional do cociclo topológico. Esse atrator depende de uma direção no semigrupo condutor, o que generaliza os conceitos de atrator do passado e do futuro. Para um cociclo topológico conduzido por um semigrupo reversível munido da ?-pré- ordem de Green inversa, o atrator do passado pode ser descrito através do conjunto limite prolongacional do cociclo estendido na compacticação de Stone-Cech. Antes, porém, obtivemos esse resultado para os processos de evolução, a partir do ponto de vista dos sistemas dinâmicos não-autônomos. Por fim, apresentamos um estudo sobre o conceito de atratividade local, introduzimos as ideias de par atrator-repulsor e, consequentemente, uma teoria de decomposições de Morse não-autônoma para cociclos topológicos.
This thesis is about the study of the asymptotic behavior of topological cocycles, the which generalize non-autonomous dynamical systems, as they have a conductive action by an abstract semigroup. One of the main objects studied is the directional attractor of the topological cocycle. This attractor depends on a direction in the conducting semigroup, which generalizes the past and future attractor concepts. For a topological cocycle conducted by a reversible semigroup equipped with the Inverse Green's ?-pre-order, the attractor of the past can be described through the limit set prolongation of the extended cocycle in Stone-Cech compactication. Before, however, we obtained this result for the evolution processes, from the point of view of the systems non-autonomous dynamics. Finally, we present a study on the concept of local attractiveness, we introduce the attractor-repulsor pair ideas and, consequently, a non-autonomous Morse decompositions theory for topological cocycles.
Description: Orientador: Prof. Dr. Josiney Alves de Souza
Tese (doutorado)--Universidade Estadual de Maringá, Dep. de Matemática, Programa de Pós-Graduação em Matemática, Área de Concentração: Geometria e Topologia, 2021
URI: http://repositorio.uem.br:8080/jspui/handle/1/6227
Appears in Collections:3.5 Tese - Ciências Exatas (CCE)

Files in This Item:
File SizeFormat 
Pedro Flavio Silva Othechar_2021.pdf1,66 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.