Please use this identifier to cite or link to this item: http://repositorio.uem.br:8080/jspui/handle/1/6360
Authors: Schwertner, Edilaine dos Santos Duran
Orientador: Castelani, Emerson Vitor
Sobral, Francisco Nogueira Calmon
Title: Uma classe de métodos do tipo Levenberg-Marquardt com passos múltiplos para problemas de Otimização de Menor Valor Ordenado
Keywords: Levenberg-Marquardt com passos múltiplos;Otimização de menor valor ordenado;Quadrados mínimos não linear;Levenberg-Marquardt Method;Low order-value optimization;Non-linear least squares;Método de Levenberg-Marquardt
Issue Date: 2020
Abstract: Neste trabalho dissertamos acerca do problema de quadrados mínimos, do Método de Levenberg-Marquardt e de três métodos do tipo Levenberg-Marquardt com passos múltiplos, chamados Levenberg-Marquardt Modificado, Levenberg-Marquardt Modificado Acelerado e Levenberg-Marquardt Modificado Acelerado Adaptado. Realizamos uma revisão literária do problema de Otimização de Menor Valor Ordenado (LOVO). Em seguida, trabalhamos com adaptações dos métodos do tipo Levenberg-Marquardt com passos múltiplos, abordados como uma nova estratégia para resolução de problemas do tipo LOVO irrestritos com convergência para pontos fracamente críticos. Neste contexto, junto com técnicas de região de confiança, apresentamos resultados acerca da convergência global do método. Por fim, por meio de experimentos numéricos comparamos o desempenho dos novos métodos com a variação do Método de Gauss-Newton para problemas LOVO e com uma variação do Método de Levenberg-Marquardt com busca linear para problemas LOVO, já conhecidos na literatura.
In this work we talk about the Least Squares problem, the Levenberg-Marquardt method and three methods of the Levenberg-Marquardt type with multiple steps, called Levenberg-Marquardt Modified, Levenberg-Marquardt Modified Accelerated and Levenberg- Marquardt Modified Accelerated Adapted. We performed a literary review of the Lower Ordered Value Optimization problem (LOVO). Then, we work with adaptations of the Levenberg-Marquardt type methods with multiple steps, approached as a new strategy for solving unrestricted LOVO problems with convergence to weakly critical points. In this context, together with trust-region techniques, we present results about the global convergence of the method. Finally, through numerical experiments, we compared the performance of the new methods with the variation of the Gauss-Newton method for LOVO problems and with a variation of the Levenberg-Marquardt method with linear search for LOVO problems, already known in the literature.
Description: Orientador: Prof. Dr. Emerson Vitor Castelani
Coorientador: Prof. Dr. Francisco Nogueira Calmon Sobral
Dissertação (mestrado em Matemática)--Universidade Estadual de Maringá, Dep. de Matemática, Programa de Pós-Graduação em Matemática, Área de Concentração: Matemática Aplicada, 2020
URI: http://repositorio.uem.br:8080/jspui/handle/1/6360
Appears in Collections:2.5 Dissertação - Ciências Exatas (CCE)

Files in This Item:
File SizeFormat 
Edilaine dos Santos Duran Schwertner_2020.pdf1,76 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.